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Abstract—In this paper1, we present a novel framework that
uses tensor factorization to generate richer feature spaces for
pixel classification in hyperspectral images. In particular, we
assess the performance of different tensor rank decomposition
methods as compared to the traditional kernel-based approaches
for the hyperspectral image classification problem. We propose
ORION , which takes as input a hyperspectral image tensor
and a rank and outputs an enhanced feature space from the
factor matrices of the decomposed tensor. Our method is a
feature explosion technique that inherently maps low dimensional
input space in R

K to high dimensional space in R
R, where

R � K, say in the order of 1000x, like a kernel. We show
how the proposed method exploits the multi-linear structure
of hyperspectral three dimensional tensor. We demonstrate the
effectiveness of our method with experiments on three publicly
available hyperspectral datasets with labeled pixels and compare
their classification performance against traditional linear and
non-linear supervised learning methods such as SVM with Linear,
Polynomial, RBF kernels, and the Multi-Layer Perceptron model.
Finally, we explore the relationship between the rank of the
tensor decomposition and the classification accuracy using several
hyperspectral datasets with ground truth.

Index Terms—Tensor, Tensor Decomposition, Hyperspectral
Imaging.

I. INTRODUCTION

Hyperspectral imaging techniques capture images of objects

or materials with hundreds of spectral bands at each pixel [1].

A particularly important use of these techniques is in capturing

images of land area on the earth’s surface from above using an

aircraft or a satellite fitted with sensors. Since objects under

observation reflect different wavelengths of the spectral band,

each pixel has a large number of features corresponding to

the spectral bands. These features have most popularly been

used to accomplish two tasks – identify the class of each

given pixel, a classification task [2], [3], [4] or, see what that

pixel is made of, an unmixing task [5], [6]. Bioucas et al. [7]

present a survey of problems often encountered in analyzing

hyperspectral remote sensing data. In this paper, we focus on
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the pixel classification task, where labelled data for some of

the pixels is available.

Hyperspectral images (HSI) can be considered as a set of

images stacked together like a 3D cube. For hyperspectral

images with high spatial resolution, the pixel classification

task assumes that each pixel is ‘pure’, i.e. it corresponds

to a single class. In contrast with the classification task, the

unmixing task assumes that each pixel may be composed of

multiple materials or ‘endmembers’ [7]. The main challenges

involved in hyperspectral pixel classification are the large

number of spectral bands, leading to high dimensionality

and the limited availability of labelled data. Previous work

considered the feature space generated using kernel functions

for HSI classification [2], [8], [3]. These works treat data as

a matrix where each row is a pixel in multi-spectral bands.

However, there are three challenges in these kernel spaces

(a) choice of kernel and its parameters. For example, tuning

the parameter γ in Radial Basis Function (RBF) kernel is

non-trivial and impacts the performance of the classifier, (b)

the number of features generated by the kernel methods is

dependent on the number of pixels, i.e. the kernel function

K(X,X) → F takes the k spectral bands for xy pixels as

X ∈ R
xy×k will yield a feature matrix F ∈ R

xy×xy , and

(c) these kernel spaces assume that the pixels are independent

and identically distributed (IID) samples and ignore the spatial

correlation that exists between the pixels.

In this paper we address these challenges by exploring a

new feature explosion method called ORION that uses tensor

completion to generate a richer feature space by exploiting

the multi-dimensional nature of data. ORION allows relaxing

the dimension of the obtained feature space F ∈ R
xy×R

instead of fixed dimension xy from kernel methods. While we

demonstrate the usefulness of ORION for HSI classification,

we would like to emphasize that it can be applied to a broader

range of problems.

Our contributions in this work are as follows:

• Tensorized Feature Space: We introduce a new feature

space based on factors generated using tensor factor-

ization2. This works better or on par with traditional

state-of-the-art classification methods. To the best of our

knowledge, this is the first work that presents a formal

study of feature space explosion with defined number of

2We use decomposition and factorization interchangeably throughout the
paper



features R, unlike kernel methods that fix the length of

the dimension for the number of available samples.

• Experimental Evaluation: We demonstrate the effec-

tiveness of our proposed method ORION by evaluating it

on publicly available hyperspectral datasets and compare

it against traditional state-of-the-art baselines, linear and

nonlinear supervised learning methods like Linear, Poly-

nomial and RBF Support Vector Machines, and Multi-

Layer Perceptrons.

Reproducibility: To encourage transparency and repro-

ducibility of the experiments, we make our implementation

of ORION and baselines publicly available3. All datasets used

in the experiment are publicly available at [9].

The remainder of this paper is structured as follows, In

section II, we formulate the problem more formally in terms

of tensor and tensor factorization. Section III describes our

proposed method in detail. We demonstrate the effectiveness

of our method in section IV. In section V, we present the

related work in tensors and hyperspectral field and, finally we

conclude our paper in section VI.

II. PROBLEM FORMULATION

In this section, we present some preliminary definitions

required for setting up the problem and define our problem.

Table I describes the symbols used and their descriptions.

A. Preliminary Definitions

Tensor: Tensors are multi-dimensional arrays and are used to

model multi-aspect data. Each dimension of a tensor is called

a mode. For example, a 1-mode tensor is a vector, and a 2-

mode tensor is a matrix. A 3-mode tensor is represented by

X, where X ∈ R
I×J×K .

For example, the hyperspectral image of a land area con-

sisting of several spectral bands can be modeled as a 3-mode

tensor X, where the first two modes I and J represent the

height and width of the image and the third mode K represents

the spectral bands.

Fibers: The row and column vectors are fibers in a matrix.

Given an n-mode tensor, we obtain fibers by fixing the n −
1 indices. For example, in a 3-mode tensor X with indices

I, J,K, X(:, J,K),X(I, :,K) and X(I, J, :) are considered

mode-1, mode-2 and mode-3 fibers respectively.

Kronecker Product The Kronecker product of two matrices

A ∈ R
I×J and B ∈ R

M×N is given by A ⊗ B ∈ R
IM×JN

A ⊗ B =











a11B a12B . . . a1JB

a21B a22B . . . a2JB
...

...
. . .

aI1B aI2B . . . aIJB











where aij refers to elements in matrix A.

Khatri-Rao Product Khatri-Rao product of two matrices A ∈
R

I×R and B ∈ R
J×R is the column-wise Kronecker product

given by A � B ∈ R
IJ×R.

A � B = [a1 ⊗ b1 a2 ⊗ b2 . . . aR ⊗ bR]

3https://github.com/ravdeep003/ORION

where [a1,a2 . . . ,aR] and [b1,b2 . . . ,bR] are columns of

A and B respectively.

Canonical Polyadic Decomposition: Simply referred to as CP

or CANDECOMP/PARAFAC [10], [11], it is one of the most

commonly used tensor decompositions. The CP decomposition

of a 3-mode tensor X ∈ R
I×J×K for a particular rank R is

given by sum of R rank-one tensors:

X ≈

R
∑

r=1

A(:, r) ◦ B(:, r) ◦ C(:, r)

where A, B, and C are factor matrices of size I × R, J × R

and K ×R respectively and ◦ represents the three way outer

product. In case of an n-mode tensor, it represents an n-way

outer product.

Matricization: A tensor can be unfolded or flattened into one

of its modes to form a matrix. For example, a 3-mode tensor

X ∈ R
I×J×K can be matricized in three ways: X1 ∈ R

I×JK ,

X2 ∈ R
J×IK and X3 ∈ R

K×IJ , where Xn represents

matricization in nth-mode.

Tensor Completion: Tensor completion is the task of pre-

dicting missing values in a tensor using tensor factorization.

Tensor factorization strives to capture the underlying hidden

structure even with the case of missing values [12], [13].

TABLE I
SYMBOLS USED IN THE PAPER

Symbols Description

X,X,x, x Tensor, matrix, column vector, scalar

R Set of Real Numbers

◦ Outer product

X(I, J, :) Spanning all elements in the 3rd-mode of X

⊗ Kronecker product

� Khatri-Rao product

We refer interested reader to [14], [15], [16], which present

detailed surveys on tensors, tensor decompositions and their

applications. This work employs MATLAB format of index-

ing.

B. Problem Definition

This work explores a new feature space using tensor com-

pletion and to show its effectiveness, we apply it to hyper-

spectral pixel classification. Previous literature related to HSI

employed methods like feature reduction and kernel methods

[8], [3]. In our work, we exploit the multi-linear structure of

the hyperspectral image tensor using tensor decomposition to

generate a richer space, where the pixels are linearly separable.

More formally we define our problem as follows:

Given a three dimensional hyperspectral image tensor

X ∈ R
I×J×K , a label matrix Y ∈ R

I×J and rank R,

generate a feature space for a classifier such that pixels

in the images are classified into one of the given classes.

III. PROPOSED METHOD: ORION

In this section, we introduce our method ORION and present

the intuition behind it. ORION takes as input a three dimen-

sional tensor X and a tensor rank R and generates a feature



Algorithm 1 ORION

Input: A 3-mode tensor X, a label matrix Y, rank r and

testSize

Output: A vector of predicted classes

1: Extract pixel indices [I, J ] of all the non-zero classes.

2: Split [I, J ] into training and testing data in a stratified

fashion.

3: Create tensor P of ones with same dimensions as X

4: P [testI, testJ, :] = 0
{% Tensor completion problem}

5: A,B,C,λ = CP WOPT (X,P, Rank) [12]

6: data = (A�B) ∗ diag(λ)
7: Using indices in Step 2, split data into training and

testing data

8: Train a linear SVM using training data with 5-fold cross

validation

9: Run the model against testing data

10: return model predictions

space using tensor factorization. The general idea behind the

proposed method lies in mapping the input data to some high

dimensional space corresponding to the rank decomposition

of the tensor.

A. The ORION algorithm

Algorithm 1 presents the steps involved in ORION , applied

to the hyperspectal pixel classification problem. Consider a

3-mode tensor X ∈ R
I×J×K , where I and J represent

the resolution of the image and K represents the number

of spectral bands. For a given test size, we select pixels

with non-zero classes using stratified sampling as specified

in line 2 of the algorithm 1. We do this in order to ensure

that the training and testing data has the same percentage of

representation from each class. We mark all spectral values

of test pixels as zero, i.e. all the third mode fibers of the

test data points are marked as zero, treating the problem

of filling missing values as a tensor completion task. We

employ the tensor completion algorithm CP-WOPT (Weighted

Optimization) [12], implemented in [17] to predict the missing

values. This produces three factor matrices A, B and C. The

first two matrices A and B correspond to the two modes of

the image are used to generate a new feature space.

data = A�B

where � represents Khatri-Rao product. To scale up the

values, we multiply data with diagonalized λ matrix as shown

in line 6 in algorithm 1. We use initial training and testing

indices to generate training and testing data respectively,

removing all the data points with class value as 0. Using the

newly created feature space, we now train a linear Support

Vector Machine (SVM) with 5-fold cross validation.

B. Intuition Behind ORION

The idea behind ORION is to map the input space to higher

dimensional space by exploiting multi-linear structure of the

tensor. Consider a 3-mode tensor, X ∈ R
I×J×K . The CP

decomposition with rank R of X yields three factor matrices

A, B and C of size I × R, J × R & K × R respectively.

The Khatri-Rao product of matrices A and B generates the

new data space in R
IJ×R. Whereas unfolding of tensor X in

third mode would generate data space in R
IJ×K . Since K �

IJ , the matrix rank is bounded by K. However, the upper

bound on tensor rank for which CP can still uniquely identify

the components within the tensor is min (IJ, JK,KI) [16],

which is considerably larger. Thus, by using a large-enough

rank, by virtue of CP’s uniqueness [16], we are able to extract a

feature space that is more expressive than simple unfolding of

the features (or any spectral method in that unfolded matrix).

IV. EXPERIMENTAL EVALUATION

In this section, we describe our experimental setup and

present our results. We use Tensor Toolbox [17] in Matlab for

our tensor completion task, CP-WOPT [12] is implemented

in this toolbox. For classification algorithms we use Python

Scikit-Learn [18] and tensorly [19] for tensor operations. In the

interest of reproducibility, the implementation of our algorithm

and baselines used is publicly available4.

A. Datasets

To evaluate our method, we use the following publicly

available datasets [9].

• Indian Pines: This dataset was acquired using the

AVIRIS5 sensor [20] and consists of 145×145 pixels and

200 spectral bands. This dataset consist of 10249 labelled

pixels spanning over 16. There is high class imbalance

in this dataset.

• University of Pavia: This dataset was collected using

ROSIS sensor over Pavia in Northern Italy. The original

image resolution of the dataset is 610 × 610 but most

of the image didn’t contain any information so the image

resolution is reduced to 610×340 over 103 spectral bands.

This dataset consist of 42776 labelled pixels spanning

over 9 classes

• Salinas: This dataset was gathered using AVIRIS sensor

over Salinas Valley, California. The dataset consists is

of 512 × 217 resolution over 204 spectral bands. It has

54219 non-zero pixels, labelled with 16 classes. Figure

1(a) shows the ground truth of Salinas dataset.

• Salinas-A: This dataset represents a subscene in the

Salinas dataset. It consists of 86×83 pixels and 6 classes.

Number of nonzero pixels in this dataset are 5348. Figure

1(b) presents the ground truth of Salinas-A dataset.

4https://github.com/ravdeep003/ORION
5https://aviris.jpl.nasa.gov/





TABLE II
CLASSIFICATION ACCURACY OF ALL THE METHODS FOR 80-20 SPLIT

Indian Pines Pavia University Salinas-A Salinas

Linear SVM 0.8708± 0.0035 0.9176 ± 0.0017 0.9986 ± 0.0016 0.9339 ± 0.0014

Polynomial SVM 0.8979± 0.0054 0.9481 ± 0.0015 0.9978 ± 0.0015 0.9463 ± 0.0014

RBF SVM 0.9178± 0.0050 0.9622 ± 0.0020 0.9985 ± 0.0017 0.9620 ± 0.0024

MLP 0.9182± 0.0057 0.9635 ± 0.0041 0.9982 ± 0.0010 0.9629 ± 0.0045

ORION -1000 0.9916± 0.0022 0.9502 ± 0.0032 0.9690 ± 0.0067 0.9927 ± 0.0010

ORION -2000 0.9949± 0.0022 0.9828 ± 0.0030 0.9680 ± 0.0063 0.9954 ± 0.0006

TABLE III
CLASSIFICATION ACCURACY OF ALL THE METHODS FOR 30-70 SPLIT

Indian Pines Pavia University Salinas-A Salinas

Linear SVM 0.8371 ± 0.0034 0.9134 ± 0.0015 0.9965 ± 0.0010 0.9322 ± 0.0007

Polynomial SVM 0.8511 ± 0.0042 0.9367 ± 0.0010 0.9941 ± 0.0017 0.9406 ± 0.0009

RBF SVM 0.8739 ± 0.0041 0.9546 ± 0.0007 0.9966 ± 0.0011 0.9515 ± 0.0012

MLP 0.8693 ± 0.0098 0.9556 ± 0.0029 0.9931 ± 0.0029 0.9475 ± 0.0041

ORION -1000 0.9725 ± 0.0032 0.9119 ± 0.0015 0.8607 ± 0.0146 0.9662 ± 0.0013

ORION -2000 0.9806 ± 0.0031 0.9544 ± 0.0021 0.8982 ± 0.0073 0.9832 ± 0.0013

TABLE IV
MEAN F1-SCORE OF ALL THE METHODS FOR 80-20 SPLIT OVER 10 RUNS

Indian Pines Pavia University Salinas-A Salinas

Linear SVM 0.8700 ± 0.0036 0.9162 ± 0.0019 0.9986 ± 0.0016 0.9326 ± 0.0016

Polynomial SVM 0.8977 ± 0.0054 0.9477 ± 0.0016 0.9978 ± 0.0015 0.9454 ± 0.0014

RBF SVM 0.9175 ± 0.0050 0.9620 ± 0.0020 0.9985 ± 0.0017 0.9620 ± 0.0024

MLP 0.9180 ± 0.0056 0.9634 ± 0.0040 0.9982 ± 0.0010 0.9628 ± 0.0045

ORION -1000 0.9915 ± 0.0022 0.9484 ± 0.0038 0.9687 ± 0.0068 0.9927 ± 0.0010

ORION -2000 0.9949 ± 0.0022 0.9823 ± 0.0032 0.9675 ± 0.0066 0.9954 ± 0.0006

TABLE V
MEAN F1-SCORE OF ALL THE METHODS FOR 30-70 SPLIT OVER 10 RUNS

Indian Pines Pavia University Salinas-A Salinas

Linear SVM 0.8358 ± 0.0033 0.9118 ± 0.0016 0.9965 ± 0.0010 0.9310 ± 0.0006

Polynomial SVM 0.8503 ± 0.0042 0.9361 ± 0.0010 0.9941 ± 0.0017 0.9396 ± 0.0009

RBF SVM 0.8734 ± 0.0041 0.9544 ± 0.0007 0.9966 ± 0.0011 0.9512 ± 0.0012

MLP 0.8690 ± 0.0095 0.9555 ± 0.0029 0.9931 ± 0.0029 0.9469 ± 0.0041

ORION -1000 0.9725 ± 0.0032 0.9068 ± 0.0018 0.8583 ± 0.0151 0.9661 ± 0.0013

ORION -2000 0.9804 ± 0.0031 0.9528 ± 0.0025 0.8961 ± 0.0074 0.9832 ± 0.0012

baseline and has similar classification accuracy. This depicts

that ORION is effective even with limited labelled data. For

both of the scenarios (80-20 and 30-70 split), tables IV and

V report mean F1 scores of our method and baselines. They

follow the same trend as the overall accuracy.

We explore the effect of rank on the overall accuracy for

Indian Pines and Salinas-A datasets. Figure 2 shows the plot of

mean accuracy vs. rank for Indian Pines dataset. We observed

that as the rank increases, classification accuracy improves

as well until a certain point, where the change in rank does

not provide any significant improvements and the accuracy

stabilizes.

D. Discussion about Salinas-A and Salinas

The Salinas-A (Figure 1(b)) dataset has 5348 labelled pixels

with 6 classes, and is a subscene of the full Salinas (Figure

1)(a) dataset which has 54129 labelled pixels and 16 classes.

For Salinas-A, all baselines outperform ORION with rank

1000 and 2000, however, in the case of Salinas, ORION

with same ranks outperforms all the baselines. This trend is

similar in both 80-20 and 30-70 splits. Upon visual inspection,

Salinas-A appears linearly separable whereas Salinas is not.

We conjecture that Salinas appears to have more concrete

and uniform blocks, potentially better trilinear structure that

is exploited via CP decomposition. Judging the trilinearity of

a dataset is a difficult problem and while there exist heuristics

for this [22], we reserve further investigation for our future

work.

V. RELATED WORK

Hyperspectral image classification takes as input a set of

observations and assigns a unique label to each pixel [6].

Supervised linear methods in HSI classification are prone to

the curse of dimensionality due to the lack of large number of

training samples [23]. Support vector machines (SVM) have

been employed to deal with this phenomenon [8]. SVMs allow

classification of data points in a higher dimensional space

using a nonlinear transformation.
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