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Abstract—Multi-way arrays (tensors) can naturally model
multi-relational data. RESCAL is a popular tensor-based re-
lational learning model. Despite its documented success, the
original RESCAL solver exhibits sensitivity towards outliers,
arguably, due to its L2-norm formulation. Absolute-projection
RESCAL (A-RESCAL), an L1-norm reformulation of RESCAL,
has been proposed as an outlier-resistant alternative. However,
although in both cases efficient algorithms have been proposed,
they were designed to optimize the factor matrices corresponding
to the first and second modes of the data tensor independently. To
our knowledge, no formal guarantees have been presented that
this treatment can always lead to monotonic convergence of the
original non-relaxed RESCAL formulation. To this end, in this
work we propose a novel L1-norm based algorithm that solves
this problem, which at the same time enjoys robustness features
of the same nature as those in A-RESCAL. Additionally, we show
that our proposed method is closely related to a heavily studied
problem in the optimization literature, which enables it to be
equipped with numerical stability and computational efficiency
features. Lastly, we present a series of numerical studies on
artificial and real-world datasets that corroborate the robustness
advantages of the L1-norm formulation as compared to its L2-
norm counterpart.

Index Terms—RESCAL, tensor, decomposition, graph, outlier,
L1-norm

I. INTRODUCTION

Multi-Relational Learning (MRL) is a machine learning
discipline with applications in diverse areas such as social
network analytics, computational biology, and recommenda-
tion systems, to name a few [1], [2]. Numerous representation
formulations have been developed for MRL, such as Proba-
bilistic Relational Models, Relational Dependency Networks,
and tensor-based models, among others [3], [4]. Similarly
to other machine learning applications, tensor processing has
successfully been employed in MRL [5], [6].

In this work, we focus on tensor-based models for learning
with relational data, and, more specifically, the RESCAL
model [7] which has been extensively used for collective clas-
sification, link-prediction, and link-based clustering, among
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other tasks [8]-[10]. RESCAL decomposes a 3-way tensor that
models relations across entities into a smaller core tensor and
a single factor-matrix modelling all entities in both sides of the
relations [13]. It has been documented that, when dealing with
relational datasets, RESCAL outperforms popular tensor fac-
torization models such as DEDICOM [14], Canonical Polyadic
(CP) decomposition [15], and TUCKER?2 [16]. Motivated by
the success of the original solver for RESCAL (L2-RESCAL)
which was based on a least-squares loss function, variants with
a logistic loss function and for non-negative decompositions
have been proposed as well [11], [12].

That being said, as in TUCKER2, L2-RESCAL follows
an L2-norm formulation which has been shown to exhibit
sensitivity against outliers. Outliers often appear due to er-
rors in data storage/transfer, sensor malfunctions, adversar-
ial data contamination etc. To remedy their impact, decom-
position models which take active precaution against them
have been proposed. Arguably, absolute-projection/L1-norm
reformulations of standard PCA and TUCKER?2, L1-norm
PCA (L1-PCA) [17], [18] and Ll-norm TUCKER2 (L1-
TUCKER?2) [19]-[24], respectively, are the most straight-
forward ones.! Motivated by the success of L1-TUCKER?2,
Absolute-projection RESCAL (A-RESCAL) was recently pro-
posed as a robust alternative to L2-RESCAL [26].

Despite the efficient design of L2-RESCAL and A-
RESCAL, it is important to note that they are both essentially
solving a relaxed version of RESCAL which attempts to
independently model the latent spaces of the entities in each
side of the given relations. With that in mind, they both
employ a smart restructuring of the optimization problem,
in an attempt to bias the two latent spaces in way that will
hopefully lead to them being very similar or identical to each
other by the end of the optimization process. However, to the
best of our knowledge, no formal proof has been presented to
date guaranteeing that this important property will be satisfied.

To this end, in this work our contributions are:

e A novel L1-norm based RESCAL solver. Our method

enjoys the advantages offered by such a formulation,

particularly with respect to robustness against outliers.
We will refer to this method as L1-RESCAL.

IThe L1-norm in L1-PCA/L1-TUCKER?2 should not be confused with the
L1-norm regularization approach [25] that is often used to enforce sparsity.
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« Global theoretical monotonic convergence guarantees.
We prove that after each iteration of our proposed op-
timization scheme, the value of the objective function
can only improve until it converges. Also, our method
optimizes the two latent spaces jointly by construction.

o« A connection to an existing efficient optimization
framework. We show that our method can readily take
advantage of an existing heavily studied problem in
the optimization literature which endows it with various
numerical stability and computational efficiency features.

« Extensive experimental evaluation. A series of experi-
ments are carried out on both real-world and artificial data
that showcase the advantages offered by L1-RESCAL
over L2-RESCAL.

II. PROBLEM FORMULATION

We consider multi-relational data tensor X € RPXDPxN
such that X. ., = X,, € RP*P models weights of relations
between entities across relation n, Vn € [N], where [N] is
defined as the set of all integers from 1 to N. For d € [D],
and given optimal R € R4*4*N 12.RESCAL [7] can be
formulated as:

Qopt = arginf [[X — R x; Q x2 Q||F
QERDXd
QTQ=1,4

= argsup || X > Q" x2 Q|-
QeRDX
QTQ=1,4
Hence, RESCAL jointly analyzes {X; }nen) and approx-

imates X by X such that X = QoptRy, Qopt, Vn € [N].
Despite its documented success L2 RESCAL exhibits sensi-
tivity against heavily corrupted entries in the processed tensor
due to its L2-norm formulation.

A. Absolute-Projection RESCAL

The authors in [26] proposed an outlier-resistant reformula-
tion of RESCAL, called A-RESCAL, which attempts to solve
the L1-norm based variant

Qopt = argsup ||X x1 QT x5 QT |1,
QERDX
QTQ=14

(Porig)

where || - ||; returns the sum of the absolute entries of its
input argument. For d = 1 and under mild conditions, A-
RESCAL can been solved both exactly and approximately.
For general d € [D], a subspace-deflation based algorithm has
been proposed which optimizes the columns of Q disjointly.

II1. PROPOSED METHOD

Note that, despite its efficiency, A-RESCAL does not pro-
vide a formal guarantee that Q,,; will jointly model the latent
spaces of both the columns and the rows of X,,,Vn € [N].
However, such a guarantee is crucial since it is the only
property that separates RESCAL from TUCKER?2. With this
in mind, we now discuss a novel approach for solving (F,i4)
which aims to overcome this issue.

Firstly, note that (Porig) is equivalent to

arg sup Z Z Z laf Xnqyl,

QEeRP* 1 T 1j5=1

QTQ=1,4
where q; signifies the i-th column of Q. By introducing the
auxiliary tensor B € {—1,+1}%4*N we get

d d
(Qopta Bopt) = argsup Z Z q?Y(Bi,j,:)qja (Peq)
Vi q€RP = =1
Vi [lgi]|=1

Vi#j qf ;=0
BE{*l,ﬁ'l}dXd'XN

where

Bij.:) Z Bi jnXn.

Consider now a relaxation of (P.y), (Pjneq), Which relaxes
the constraint on the columns of Q allowing them to have
norm less than one. We propose a tractable and robust way for
approximating a solution for (P;yq) by separately optimizing
for B and each column of Q in an alternating fashion.
Specifically, we split (P;,¢,) into the following d + 1 simpler
problems:

Vie[d qf = argsup Zqu (By,;.:)d;
qeR” T
[la:||<1
Vi£i qf q;=0

with fixed B and q; Vj # ¢, and

arg max ZZq Bi,.)

BG{ 1+1}dXdXNZ 1=1

B* =

with fixed Q. Also, by taking a closer look we see that

B* =sgn(X x; Q" x» Q") (Pp)
and
* T T
q; = argsup q; Ag; +c’q;, (Pg,)
QiERD
[lail|<1
Vi#i qf q;=0
where 1
A= 5 (Y(B7,Z,) + Y(B“,L)T)
and
d
c= Z (Y(Bj,i,:)T +Y(Bi;.))q
i=1
=

If we now define N € RP*P as the orthogonal projection
matrix on the orthogonal complement of the space spanned by
all columns of Q except q;, then we can calculate q} as

z* = arginf —z' NANz — (Nc)z

zERP

[INz]|<1 (Pocgp)
q; = Nz*
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Algorithm 1: L1I-RESCAL Solver

Input: X € RPXPXN (data tensor), d € ZT (Number
of components), h € Z* (Number of (F,)
iterations between two consecutive iterations of
(PB))

Output: Q € RPxd

Initialize: B € {1, +1}9X¥*N Q € RP*d

170

2 repeat

3 if 7 mod (h+ 1) == 0 then

4 | B sgn(X x1 Q" x,QT)
5 | i+ (j modd)+1

6 q; ¢ TRS_Solver (X,Q,B,i)
7 j—i+1

8 until Convergence/Termination

9 return Q

Thus, solving each (F,;) boils down to solving a potentially
non-convex Quadratically Constrainted Quadratic Program
(QCQP). Interestingly, the optimization problem in (Pgcqp)
has the form of a well studied problem in the optimization
literature called the Trust Region Subproblem (TRS) [28].
Therefore, our method can readily benefit from the relevant
numerical stability and computational efficiency results that
have been published in the past few decades. At this point, our
proposed optimization scheme is summarized in Algorithm 1.
An important aspect that we have not discussed yet, is what
happens when our proposed method returns a Q that contains
one or more columns that are not of unit norm. Firstly, it can
be shown that the solution of TRS can have norm less than
one, only when the TRS is convex. Therefore, in practice one
can expect Q to have columns of unit norm virtually always.
Even if the solution of TRS is not a unit vector, however, we
show next that we can still easily obtain a valid solution.

Lemma 1. If Algorithm 1 converges to a point (Q,B), then
q?' Y (B, ;.)q; is non-negative i, j € [d).

Proof. If we assume that 3Ji,j € [d] such that
qiTY(Bm,:)qj < 0, then we can always design a B’
such that qiTY(Bg,j’:)qj > 0 by flipping the signs of all
the elements of B; ;.. Since no other summand of (Pjneq)
depends on B, ;., we can see that the value of its objective
function will be strictly greater at (Q, B’). This implies that
Algorithm 1 has not converged, which is a contradiction. [J

Lemma 2. [f, upon convergence of Algorithm 1 to a point
(Q,B), 3i € [d] such that ||q;|| < 1, then removing q; from
Q or replacing it with any other vector is guaranteed to not
reduce the value of the objective function of (Pyyig).

Proof. Firstly, we show that for such q; all summands,
q? Y (By ;. )q;, of the objective function, G(q;), of (P,,) are
always zero. This is easy to see when q; = 0, while for
q; # 0 notice that if there existed non-zero summands, then
Lemma 1 would imply that all of them would be positive.

Therefore, we would have that G (HZ—H) > G(q;), and

since q—‘l is feasible for (F,;), we would contradict the
fact that Algorithm 1 has converged. Thus, by observing
that 35,0, [af Xnay| = af Y (B )a; Vk,j € [d], we
conclude that removing q; from Q will have no effect on
the value of the objective function of (F,.;,). Also, note
that replacing q; with any q € RP cannot decrease the
value of the objective function of (P,,;,), since Vj € [d] it
holds that - /7 X, i) >0 = SN laFX,.q;] and
S laf Xaal > 0= 5,0, |af Xoail O
Hence, Lemma 2 implies that we can just normalize non-
zero columns of Q that are not of unit norm upon convergence
of Algorithm 1, while zero columns can be replaced with any
other vector provided that Q remains semi-orthogonal.
A. Convergence Analysis

Firstly, note that if we define

Y(Bl,l,:) Y(BLQ,:) Y(Bl,d,:)
B Y(B21,:) Y(Bp,.)
Y(Bd,l,:) Y (Bg,a.:)

then, we have that

d d
Z Z q Y(Bi;.)q; <

i=1 j=1

sup
Vi q;€RP
Vi |lq;]|<1
Vi#j a a;=0
BE{—1,+1}dXdXN

T
max  d A (Z(B>+Z<B>> < o,
Be{—1,41}dxdxN 2

where A () returns the maximum eigenvalue of its input
matrix. This implies that (P;,¢,) is bounded above.
Secondly, observe that plugging q} or B* into the objective
function of (Fj,cq) Will never decrease its value. This holds
because by definition q; is maximizing the sum of the subset
of summands in (F;,4) that contain q;, without affecting the
rest of the summands. It also holds for B* since it is essentially
just flipping the signs of all negative summands. Therefore,
Algorithm 1 is always guaranteed to converge monotonically.
Finally, we can ensure that the value of the objective function
in (P,r44) will not decrease after an update of a column of Q,
by including an iteration of (Pp) right after each iteration of
(Fy,). This can be achieved by setting h = 0 in Algorithm 1.

IV. EXPERIMENTAL DATA AND RESULTS

To properly assess the performance of LI-RESCAL, we
compared it against L2-RESCAL on link prediction and outlier
robustness. For link prediction we first remove a number of
links, and then we use the Area under the Precision-Recall
curve (AUCpr) to evaluate the quality of the predictions.
Regarding outlier robustness, we introduce noise of large
magnitude on a small number of entries in X, and then we

use the reconstruction, Y, of the corrupted tensor, to assess
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how close it is to X. All experiments were run for h = 0
and a range of number of components with multiple samples
per number of components using random initialization for the
optimization algorithms. Specifically, 50 and 5 samples per
number of components were generated for the artificial and
real-world datasets, respectively. Note that different noise was
generated for each combination of samples and numbers of
components, while for artificial data, a different data tensor
was generated each time as well. Lastly, for a fair comparison,
an iteration of L1-RESCAL was defined to include an update
for all columns of the factor matrix, while its core tensors were
calculated in the same way as its L2-RESCAL counterparts.

A. Data & Experiment types

a) Link Prediction: Here, we consider sparse binary-
valued tensors where we zero out 20% of all ones to assess
how well we can predict the existence of missing links.

Firstly, note that we can construct such a tensor, X', with a
predetermined number of components by randomly creating a
binary-valued core, G, and a binary-valued factor matrix, Q,
which can then be used to define X as G x; Q X35 Q. Also,
G and Q are defined to contain only a small number of ones
in order to produce a sparse X. Note that in this way, we also
achieve a low probability of X containing values other than
zeros and ones. If X’ does not turn out sparse enough or binary-
valued, we can generate new cores and factor matrices, with
potentially higher sparsity, until we get the desired outcome. In
our experiments, we generated tensors of size 150 x 150 x 10
with 5 number of components and at most 1% of all elements
equal to 1. Also, to weaken the perfect RESCAL structure of
X, we randomly flipped some zeros into ones. Specifically,
the number of these flips was set approximately equal to 1%
of the total number of the existing ones in X.

Next, we constructed a 225 x 225 x 29 binary-valued tensor
representing the kinship term sets gathered from 104 of 267
individuals from the Alyawarra speaking people of Central
Australia [29]. Note that each of the 29 kinship terms is
represented by a single frontal slice of the tensor.

b) Outlier Robustness: In this case, we first generate a
core, G, of size 5 x 5 x 50 with entries from the standard
normal distribution, along with a random semi-orthogonal
matrix Q of size 100 x 5. From these we create a tensor
X =G x1Q x2Q of size 100 x 100 x 50 with 5 components.
Then, in order to weaken the ideal low-rank structure of
X, we generate a noise tensor, N, whose elements are also
drawn from the standard normal distribution and we define
X' = X + N -0.01)|X||r/|IN||F. Lastly, we add zero-
mean Gaussian noise with standard deviation 20 to 10 random
entries of X', which in turn produces X. Our objective now is
to assess how close to X’ a RESCAL approximation, 5) of X
can be in the presence of outliers of large magnitude. To quan-
tify this approximation, we define the relative reconstruction
error as ||X" — Y| |r/||X||r.

B. L2-RESCAL vs LI-RESCAL

Starting the comparison with Fig. 1, we see that after
only the first iteration both L2-RESCAL and L1-RESCAL

0.95

0.9

AUC,
AUC,

0.85
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—L1-RESCAL 0.8

5 10 15 20 25 30 35 40 45 50
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(c) 6th Iteration (d) 20th Iteration

Fig. 1. Area under the Precision-Recall Curve at various stages of the
optimization process for the artificial binary-valued data. Lines represent
median values, while shaded regions illustrate the corresponding Ist and 3rd
quartiles.

show a dramatic improvement in their predictions at around
5 components, which is the actual number of components in
the data. However, L1-RESCAL shows clearly a better overall
prediction capability than L2-RESCAL at this point. Also
notice that even though at the first iteration the performance of
L2-RESCAL for more than 5 components starts to deteriorate
non-trivially, it seems that L1-RESCAL is in fact capable
of slightly improving the quality of its predictions as the
number of components increase. Additionally, we observe that
the performance of L2-RESCAL seems to be deteriorating
at a much faster pace from iteration to iteration, while L1-
RESCAL again seems to be more robust to overfactoring.
Similar observations, albeit less pronounced, can be made
for the kinships dataset in Fig. 2. Specifically, notice how L1-
RESCAL is offering again a stronger performance at the first
iteration, while also being slightly more robust to overfactoring
from iteration to iteration as compared to L2-RESCAL.
Lastly, in Fig. 3 it becomes clear that L1-RESCAL can
provide considerably improved robustness against outliers as
opposed to L2-RESCAL. Particularly, notice how the relative
error of L1-RESCAL at the 20th iteration becomes as low as
0.1328, while for L2-RESCAL it tends to be greater than 1.5.

V. CONCLUSION

We proposed L1-RESCAL, a novel solver for the RESCAL
decomposition based on the L1l-norm. We proved that our
method converges monotonically, and that it is also numer-
ically stable due to its connection to the heavily studied Trust
Region Subproblem. Further, our experiments confirmed that
L1-RESCAL can provide robustness against outliers on data
with low-rank structure. Lastly, we discovered that our method
can offer better protection against overfitting due to either
overfactoring or a larger than necessary number of iterations.
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