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Abstract—Multi-way arrays (tensors) can naturally model
multi-relational data. RESCAL is a popular tensor-based re-
lational learning model. Despite its documented success, the
original RESCAL solver exhibits sensitivity towards outliers,
arguably, due to its L2-norm formulation. Absolute-projection
RESCAL (A-RESCAL), an L1-norm reformulation of RESCAL,
has been proposed as an outlier-resistant alternative. However,
although in both cases efficient algorithms have been proposed,
they were designed to optimize the factor matrices corresponding
to the first and second modes of the data tensor independently. To
our knowledge, no formal guarantees have been presented that
this treatment can always lead to monotonic convergence of the
original non-relaxed RESCAL formulation. To this end, in this
work we propose a novel L1-norm based algorithm that solves
this problem, which at the same time enjoys robustness features
of the same nature as those in A-RESCAL. Additionally, we show
that our proposed method is closely related to a heavily studied
problem in the optimization literature, which enables it to be
equipped with numerical stability and computational efficiency
features. Lastly, we present a series of numerical studies on
artificial and real-world datasets that corroborate the robustness
advantages of the L1-norm formulation as compared to its L2-
norm counterpart.

Index Terms—RESCAL, tensor, decomposition, graph, outlier,
L1-norm

I. INTRODUCTION

Multi-Relational Learning (MRL) is a machine learning

discipline with applications in diverse areas such as social

network analytics, computational biology, and recommenda-

tion systems, to name a few [1], [2]. Numerous representation

formulations have been developed for MRL, such as Proba-

bilistic Relational Models, Relational Dependency Networks,

and tensor-based models, among others [3], [4]. Similarly

to other machine learning applications, tensor processing has

successfully been employed in MRL [5], [6].

In this work, we focus on tensor-based models for learning

with relational data, and, more specifically, the RESCAL

model [7] which has been extensively used for collective clas-

sification, link-prediction, and link-based clustering, among
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other tasks [8]–[10]. RESCAL decomposes a 3-way tensor that

models relations across entities into a smaller core tensor and

a single factor-matrix modelling all entities in both sides of the

relations [13]. It has been documented that, when dealing with

relational datasets, RESCAL outperforms popular tensor fac-

torization models such as DEDICOM [14], Canonical Polyadic

(CP) decomposition [15], and TUCKER2 [16]. Motivated by

the success of the original solver for RESCAL (L2-RESCAL)

which was based on a least-squares loss function, variants with

a logistic loss function and for non-negative decompositions

have been proposed as well [11], [12].

That being said, as in TUCKER2, L2-RESCAL follows

an L2-norm formulation which has been shown to exhibit

sensitivity against outliers. Outliers often appear due to er-

rors in data storage/transfer, sensor malfunctions, adversar-

ial data contamination etc. To remedy their impact, decom-

position models which take active precaution against them

have been proposed. Arguably, absolute-projection/L1-norm

reformulations of standard PCA and TUCKER2, L1-norm

PCA (L1-PCA) [17], [18] and L1-norm TUCKER2 (L1-

TUCKER2) [19]–[24], respectively, are the most straight-

forward ones.1 Motivated by the success of L1-TUCKER2,

Absolute-projection RESCAL (A-RESCAL) was recently pro-

posed as a robust alternative to L2-RESCAL [26].

Despite the efficient design of L2-RESCAL and A-

RESCAL, it is important to note that they are both essentially

solving a relaxed version of RESCAL which attempts to

independently model the latent spaces of the entities in each

side of the given relations. With that in mind, they both

employ a smart restructuring of the optimization problem,

in an attempt to bias the two latent spaces in way that will

hopefully lead to them being very similar or identical to each

other by the end of the optimization process. However, to the

best of our knowledge, no formal proof has been presented to

date guaranteeing that this important property will be satisfied.

To this end, in this work our contributions are:

• A novel L1-norm based RESCAL solver. Our method

enjoys the advantages offered by such a formulation,

particularly with respect to robustness against outliers.

We will refer to this method as L1-RESCAL.

1The L1-norm in L1-PCA/L1-TUCKER2 should not be confused with the
L1-norm regularization approach [25] that is often used to enforce sparsity.
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• Global theoretical monotonic convergence guarantees.

We prove that after each iteration of our proposed op-

timization scheme, the value of the objective function

can only improve until it converges. Also, our method

optimizes the two latent spaces jointly by construction.

• A connection to an existing efficient optimization

framework. We show that our method can readily take

advantage of an existing heavily studied problem in

the optimization literature which endows it with various

numerical stability and computational efficiency features.

• Extensive experimental evaluation. A series of experi-

ments are carried out on both real-world and artificial data

that showcase the advantages offered by L1-RESCAL

over L2-RESCAL.

II. PROBLEM FORMULATION

We consider multi-relational data tensor X ∈ R
D×D×N

such that X :,:,n = Xn ∈ R
D×D models weights of relations

between entities across relation n, ∀n ∈ [N ], where [N ] is

defined as the set of all integers from 1 to N . For d ∈ [D],
and given optimal R ∈ R

d×d×N , L2-RESCAL [7] can be

formulated as:

Qopt = arg inf
Q∈R

D×d

QTQ=Id

||X −R×1 Q×2 Q||F

= arg sup
Q∈R

D×d

QTQ=Id

||X ×1 Q
T ×2 Q

T ||F .

Hence, RESCAL jointly analyzes {Xn}n∈[N ] and approx-

imates X by X̂ such that X̂ :,:,n = QoptRnQ
>
opt, ∀n ∈ [N ].

Despite its documented success, L2-RESCAL exhibits sensi-

tivity against heavily corrupted entries in the processed tensor

due to its L2-norm formulation.

A. Absolute-Projection RESCAL

The authors in [26] proposed an outlier-resistant reformula-

tion of RESCAL, called A-RESCAL, which attempts to solve

the L1-norm based variant

Qopt = arg sup
Q∈R

D×d

QTQ=Id

||X ×1 Q
T ×2 Q

T ||1, (Porig)

where ‖ · ‖1 returns the sum of the absolute entries of its

input argument. For d = 1 and under mild conditions, A-

RESCAL can been solved both exactly and approximately.

For general d ∈ [D], a subspace-deflation based algorithm has

been proposed which optimizes the columns of Q disjointly.

III. PROPOSED METHOD

Note that, despite its efficiency, A-RESCAL does not pro-

vide a formal guarantee that Qopt will jointly model the latent

spaces of both the columns and the rows of Xn, ∀n ∈ [N ].
However, such a guarantee is crucial since it is the only

property that separates RESCAL from TUCKER2. With this

in mind, we now discuss a novel approach for solving (Porig)

which aims to overcome this issue.

Firstly, note that (Porig) is equivalent to

arg sup
Q∈R

D×d

QTQ=Id

N∑

n=1

d∑

i=1

d∑

j=1

|qT
i Xnqj |,

where qi signifies the i-th column of Q. By introducing the

auxiliary tensor B ∈ {−1,+1}d×d×N , we get

(Qopt,Bopt) = arg sup
∀i qi∈R

D

∀i ||qi||=1

∀i 6=j qT
i qj=0

B∈{−1,+1}d×d×N

d∑

i=1

d∑

j=1

qT
i Y(Bi,j,:)qj , (Peq)

where

Y(Bi,j,:) =
N∑

n=1

Bi,j,nXn.

Consider now a relaxation of (Peq), (Pineq), which relaxes

the constraint on the columns of Q allowing them to have

norm less than one. We propose a tractable and robust way for

approximating a solution for (Pineq) by separately optimizing

for B and each column of Q in an alternating fashion.

Specifically, we split (Pineq) into the following d+ 1 simpler

problems:

∀i ∈ [d] q∗
i = arg sup

qi∈R
D

||qi||≤1

∀l 6=i qT
i ql=0

d∑

k=1

d∑

j=1

qT
kY(Bk,j,:)qj

with fixed B and qj ∀j 6= i, and

B
∗ = argmax

B∈{−1,+1}d×d×N

d∑

i=1

d∑

j=1

qT
i Y(Bi,j,:)qj

with fixed Q. Also, by taking a closer look we see that

B
∗ = sgn(X ×1 Q

T ×2 Q
T ) (PB)

and

q∗
i = arg sup

qi∈R
D

||qi||≤1

∀j 6=i qT
i qj=0

qT
i Aqi + cTqi, (Pqi )

where

A =
1

2

(
Y(Bi,i,:) +Y(Bi,i,:)

T
)

and

c =

d∑

j=1
j 6=i

(
Y(Bj,i,:)

T +Y(Bi,j,:)
)
qj .

If we now define N ∈ R
D×D as the orthogonal projection

matrix on the orthogonal complement of the space spanned by

all columns of Q except qi, then we can calculate q∗
i as





z∗ = arg inf
z∈R

D

||Nz||≤1

−zTNANz− (Nc)T z

q∗
i = Nz∗





. (PQCQP )
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Algorithm 1: L1-RESCAL Solver

Input: X ∈ R
D×D×N (data tensor), d ∈ Z

+ (Number

of components), h ∈ Z
∗ (Number of (Pqi )

iterations between two consecutive iterations of

(PB))

Output: Q ∈ R
D×d

Initialize: B ∈ {−1,+1}d×d×N ,Q ∈ R
D×d

1 j ← 0
2 repeat

3 if j mod (h+ 1) == 0 then

4 B ← sgn(X ×1 Q
T ×2 Q

T )

5 i← (j mod d) + 1
6 qi ← TRS_Solver(X ,Q,B,i)

7 j ← j + 1
8 until Convergence/Termination

9 return Q

Thus, solving each (Pqi ) boils down to solving a potentially

non-convex Quadratically Constrainted Quadratic Program

(QCQP). Interestingly, the optimization problem in (PQCQP )

has the form of a well studied problem in the optimization

literature called the Trust Region Subproblem (TRS) [28].

Therefore, our method can readily benefit from the relevant

numerical stability and computational efficiency results that

have been published in the past few decades. At this point, our

proposed optimization scheme is summarized in Algorithm 1.

An important aspect that we have not discussed yet, is what

happens when our proposed method returns a Q that contains

one or more columns that are not of unit norm. Firstly, it can

be shown that the solution of TRS can have norm less than

one, only when the TRS is convex. Therefore, in practice one

can expect Q to have columns of unit norm virtually always.

Even if the solution of TRS is not a unit vector, however, we

show next that we can still easily obtain a valid solution.

Lemma 1. If Algorithm 1 converges to a point (Q,B), then

qT
i Y(Bi,j,:)qj is non-negative ∀i, j ∈ [d].

Proof. If we assume that ∃i, j ∈ [d] such that

qT
i Y(Bi,j,:)qj < 0, then we can always design a B

′

such that qT
i Y(B′

i,j,:)qj > 0 by flipping the signs of all

the elements of Bi,j,:. Since no other summand of (Pineq)
depends on Bi,j,:, we can see that the value of its objective

function will be strictly greater at (Q,B′). This implies that

Algorithm 1 has not converged, which is a contradiction.

Lemma 2. If, upon convergence of Algorithm 1 to a point

(Q,B), ∃i ∈ [d] such that ||qi|| < 1, then removing qi from

Q or replacing it with any other vector is guaranteed to not

reduce the value of the objective function of (Porig).

Proof. Firstly, we show that for such qi all summands,

qT
kY(Bk,j,:)qj , of the objective function, G(qi), of (Pqi ) are

always zero. This is easy to see when qi = 0, while for

qi 6= 0 notice that if there existed non-zero summands, then

Lemma 1 would imply that all of them would be positive.

Therefore, we would have that G
(

qi

||q
i
||

)
> G(qi), and

since qi

||q
i
|| is feasible for (Pqi ), we would contradict the

fact that Algorithm 1 has converged. Thus, by observing

that
∑N

n=1 |q
T
kXnqj | = qT

kY(Bk,j,:)qj ∀k, j ∈ [d], we

conclude that removing qi from Q will have no effect on

the value of the objective function of (Porig). Also, note

that replacing qi with any q′
i ∈ R

D cannot decrease the

value of the objective function of (Porig), since ∀j ∈ [d] it

holds that
∑N

n=1 |q
′T
i Xnqj | ≥ 0 =

∑N

n=1 |q
T
i Xnqj | and∑N

n=1 |q
T
j Xnq

′
i| ≥ 0 =

∑N

n=1 |q
T
j Xnqi|.

Hence, Lemma 2 implies that we can just normalize non-

zero columns of Q that are not of unit norm upon convergence

of Algorithm 1, while zero columns can be replaced with any

other vector provided that Q remains semi-orthogonal.

A. Convergence Analysis

Firstly, note that if we define

Z(B) =




Y(B1,1,:) Y(B1,2,:) · · · Y(B1,d,:)
Y(B2,1,:) Y(B2,2,:)

...
. . .

Y(Bd,1,:) Y(Bd,d,:)




then, we have that

sup
∀i qi∈R

D

∀i ||qi||≤1

∀i 6=j qT
i qj=0

B∈{−1,+1}d×d×N

d∑

i=1

d∑

j=1

qT
i Y(Bi,j,:)qj ≤

max
B∈{−1,+1}d×d×N

d λmax

(
Z(B) + Z(B)T

2

)
<∞,

where λmax(·) returns the maximum eigenvalue of its input

matrix. This implies that (Pineq) is bounded above.

Secondly, observe that plugging q∗
i or B∗ into the objective

function of (Pineq) will never decrease its value. This holds

because by definition q∗
i is maximizing the sum of the subset

of summands in (Pineq) that contain qi, without affecting the

rest of the summands. It also holds for B∗ since it is essentially

just flipping the signs of all negative summands. Therefore,

Algorithm 1 is always guaranteed to converge monotonically.

Finally, we can ensure that the value of the objective function

in (Porig) will not decrease after an update of a column of Q,

by including an iteration of (PB) right after each iteration of

(Pqi ). This can be achieved by setting h = 0 in Algorithm 1.

IV. EXPERIMENTAL DATA AND RESULTS

To properly assess the performance of L1-RESCAL, we

compared it against L2-RESCAL on link prediction and outlier

robustness. For link prediction we first remove a number of

links, and then we use the Area under the Precision-Recall

curve (AUCPR) to evaluate the quality of the predictions.

Regarding outlier robustness, we introduce noise of large

magnitude on a small number of entries in X , and then we

use the reconstruction, Ỹ , of the corrupted tensor, to assess
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