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ABSTRACT
The goal of this paper is to study the effect of wing flap-

ping kinematics on roll maneuverability of flapping flight sys-
tems. Inspired from birds maneuvering action, we study the ef-
fect of asymmetric flapping angular velocities of the wings on
generating roll motions on the body. To expand the generality
of the results, the equations of motion are written dimensionless.
The effect of aerodynamic parameter, forward velocity and wing
inertia are presented. The results show that applying asymmetric
velocities during flight is useful for relatively larger wings.

Introduction
The maneuverability of flying animals and aerial vehicles is

crucial for their operation in natural or urban environments. Ei-
ther it is to navigate between natural obstacles like trees or con-
struction sites, flying systems need to generate centripetal forces
quickly to turn and change their trajectory sometimes to catch a
prey or avoid collision. One of the common ways to generate
centripetal force during flight is through generating roll angle on
the body to redirect the aerodynamic force into the desired di-
rection. Figure 1 shows examples of birds experiencing large
roll angles as they fly. Generating centripetal force through roll
motion is a well-known process for turning in fixed-wing air-
planes (also known as banking) [1]. Airplanes generate roll an-
gle by asymmetrically changing the angle of attack of each wing
to create longitudinal torque to the body. Observations from nat-
ural fliers show birds sometimes use a different strategy to create

∗Address all correspondence to this author.

Figure 1. Birds’ maneuver with large roll angles. Natural fliers generate
roll angle for various maneuvering actions like creating centripetal force
for turning. Pictures are from www.pinterest.com.

roll angle other than asymmetrically changing the wings angle
of attack especially during low forward velocity. The goal of
this paper is to study the effect of this bio-inspired strategy and
the dynamical characteristics of the wing on the roll maneuver
of flapping wing systems. The equations of motion are Non-
dimensionalized to be able to expand the results regardless of
the size.

Observations from avian flights during turning maneuver
show that birds sometimes use asymmetric velocity on their flap-
ping wings during flight in order to generate roll motion [2]. Fig-
ure 2 illustrates the roll creating strategy that birds use in low
forward speeds. Generating roll angle is one of the well-known
strategies to redirect the lift and produce centripetal force to the
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Figure 2. To create roll angle, birds move their wings asymmetrically
with different velocities during down-stroke. The down-stroke starts with
one wing moving at a higher angular velocity with respect to the other
wing. During the second phase of the down-stroke, the velocity of the
wings switch such that the momentum of the body is arrested. The
straight arrows show the aerodynamic force and the curved arrows show
the wing velocities [2].

center of mass trajectory for turning maneuver. Therefore, our
goal is to understand the potentials of the wing kinematics in
generating the roll angle.

Bergou et al. [3] analyzed the bat maneuvers during land-
ing and take off. They concluded that the wing inertia con-
tributes dramatically to roll angle during low speed flight. In
their analysis they included the flapping motion of the wings with
winglength change during each wingbeat and the asymmetry was
in winglength. The flapping motions of the wings in their study
were assumed to be the same and therefore do not result in roll
angle on the body.

Di Luca, et al. [4] created a morphing wing robot inspired
from birds wing morphing during flight to enhance the maneu-
verability of the system. Although their focus was on aerody-
namic performance of the system during flight, they showed that
asymmetric morphing of the wings can enhance the roll maneu-
verability as well. Their paper was about fixed wing drones and
therefore the flapping motions of the wings were not studied and
the asymmetric wing length causes the roll motion.

Ma et al [5] studied an insect scale flapping robot for roll
maneuver using the robot called RoboBee [6]. They used asym-
metrical wing stroke amplitudes in generating the aerodynamic
roll torques, however the results can not be generalized for larger
scale systems.

Karasek et al [7] studied the rapid bank turns of insects by
developing a tailless robotic flapper. They concluded that flies
use torque coupling for rapid banking turns. Their focus was on
insect flight and did not address roll maneuvering of larger fliers.
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Figure 3. The model has a single roll degree of freedom (ψ) and two
flapping wings with independent degrees of freedom (φr and φL). The
global coordinate system (x− y− z) is fixed and the body coordinate
system (xb− yb− zb) rotates with the body. The flapping motions of the
wings are with respect to the body coordinate system.

Methods

In this section the dynamical model and aerodynamic forces
as well as the analysis strategy are explained.
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Model
The model has a body with roll angle and two wings that

each has independent flapping motion shown in figure 3. The
body is a single degree of freedom that captures the effect of
the wing flapping angle kinematics and wing mass distribution
characteristics on roll motion.

The aerodynamics is modeled using a quasi-steady formula-
tion implemented by a blade element method [8]. To achieve this
goal, the wing is divided into finite number of stripes to calculate
the aerodynamic force on the wing. Since the effective velocity
of each stripe varies along the wing length, the effective angle of
attack changes and therefore the integration of the aerodynamic
torque is calculated numerically. For zero forward velocity, the
resultant torque can be found in a closed form solution presented
in other studies about hovering flight that the forward velocity is
assumed zero [9, 10].

To construct the equations of motion, the Lagrangian formu-
lation is used (L = KE−PE). Since the focus here is on the roll
angle dynamics, the change in the potential energy which relates
to the change in height of the center of mass can be ignored. The
kinetic energy (KE) of the system is calculated by:

KE =
1
2

Ibψ̇
2 +

1
2

Iw(ψ̇+ φ̇r)
2 +

1
2

Iw(ψ̇+ φ̇l)
2 (1)

Where Ib and Iw are the roll rotational inertia of the body and
each wing respectively with respect to the center of the body.
Using the Lagrange equation, the equations of motion can be
obtained as:

(Ib +2Iw)ψ̈ = τr + τl− Iwφ̈r− Iwφ̈l (2)

The τl and τr are the aerodynamic torques generated on the
left and right wings respectively. These torques are calculated
numerically at each instant of time (since they are coupled to ψ̇

and αe) as follows:

τi =
∫ s̄i

0

1
2

ρc̄iCN(αe)i(rV 2
∞ + r3(ψ̇+ φ̇i)

2)dr, i = r, l (3)

Here, ρ, c̄ and s̄ are the air density, average wing chord
and the wing length respectively. The subscript i is referred
to left (l) or right (r) wing. In this equation CN(αe) is the
normal aerodynamic force coefficient [9, 11] and is assumed
CN(αe) =CN0 sin(αe) where CN0 = 2.0 [3] and αe is the effective
angle of attack on each stripe that should be determined numeri-
cally based on the effective velocity at each instant of time. This

effective angle of attack is close to zero on the wing root and
maximum at the wing tip in the presence of forward velocity.
The effective angle of attack (αe) varies along the wing due to
the change of the flapping component of the velocity. If the free-
stream velocity approaches zero (for low forward velocities), the
normal coefficient approaches the drag coefficient. The direc-
tion of the torques are determined based on the sign of the total
angular velocity of each wing (sign(ψ̇+ φ̇i)).

When free-stream velocity is zero (V∞ = 0), the integral in
equation 7 can be solved analytically and the equations of motion
can be written as:

(Ib +2Iw)ψ̈ =−κ((ψ̇+ φ̇r)|ψ̇+ φ̇r|+
(ψ̇+ φ̇l)|ψ̇+ φ̇l |)− Iwφ̈r− Iwφ̈l

(4)

The κ carries the size and aerodynamic properties of the
wing and is defined as κ = (ρCN0 c̄s̄4)/8. The non-dimensional
equation of motion can be obtained by dividing both sides of the
above equation by Ib as follows:

(1+2I∗)ψ̈ =−C∗((ψ̇+ φ̇r)|ψ̇+ φ̇r|+
(ψ̇+ φ̇l)|ψ̇+ φ̇l |)− I∗φ̈r− I∗φ̈l

(5)

where C∗ = κ/Ib and I∗ = Iw/Ib are non-dimensional aerody-
namic parameter and relative wing inertia respectively. These
parameters reflect the effect of aerodynamic forces and wing in-
ertia on the roll motion of the body. The advantage of rewriting
the equation of motion in non-dimensional format is that it al-
lows us to expand the generality of the outcome behavior regard-
less of the size of the system.

(1+2I∗)ψ̈ =C∗(τ∗r + τ
∗
l )− I∗φ̈r− I∗φ̈l (6)

Where the corresponding torques can be calculated as:

τ
∗
i =

∫ 1

0
4sin(αe)i(ξ(

V∞

s̄
)2 +ξ

3(ψ̇+ φ̇i)
2)dξ, i = r, l (7)

Analysis
The analysis starts from the beginning of the down-stroke

(t = 0) and ends when the wings reach the designated flapping
angles (t = t f ). The relative angular velocity of the wings with
respect to the body are zero at the beginning and end of the down-
stroke (φ̇i(0) = φ̇i(t f ) = 0, i = L,r). While the two wings share
the same instant for starting and ending the down-stroke (t = 0
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Figure 4. The angle that each wing sweeps (flapping angle range) dur-
ing the maneuvering down-stroke (∆φr and ∆φL).

and t = t f ), the instances at which the angular accelerations of
the wings change, can be different (tr1, tL1 in figure 5) as well as
the maximum flapping angular velocity (φ̇L(tL1) and φ̇r(tr1)) that
wings reach during the down-stroke. Therefore, the angle that
each wing sweeps during the down-stroke (∆φL and ∆φr in figure
4) can be determined as follows:

∆φL = φL f −φL0, ∆φr = φr f −φr0

Given these sweeping angles, and the time history of the
flapping motions, the maximum angular velocity and accelera-
tions of the wings can be calculated.

Since in this study we are interested in those wing flapping
kinematics that lead to zero roll momentum at the end of the
down-stroke (ψ̇(t f ) = 0) we search for only those combinations
of sweeping angles and internal critical times (tL1 and tr1) that
result in zero roll momentum at the end of the down-stroke. The
continuity of the functions for wing kinematics are chosen such
that they can be implemented on a robotic platform. These flap-
ping kinematics are shown in figure 5.

Results and discussion
We start the result with presenting an example of the wing

flapping motion that results in body roll rotation with zero mo-
mentum at the end of the down-stroke. Figure 6 shows the body
roll angle and angular velocity caused by the wings’ flapping mo-
tion at zero forward velocity (V∞ = 0). As inspired from birds roll
motion (figure 2), one wing starts the down-stroke with higher
velocity than the other one and they reverse the course during the
down-stroke to arrest the roll momentum created on the body. In
this figure, the time is normalized based on the final time (t f ).
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Figure 5. The kinematics of wings (A) flapping angle, (B) angular veloc-
ity, and (C) angular acceleration during a down-stroke. The angle that
each wing sweeps during the down-stroke is ∆φi = φi f −φi0, i = L,r.

For this example the relative inertia of the wings is zero (I∗ = 0)
and the aerodynamic parameter is C∗ = 1.

Figure 7 presents all the solutions that can be obtained with
the wings sweeping all the possible flapping angles (∆φr and
∆φl). It is assumed that ∆φr,l < 160◦ as physical limitation for
wings to sweep as flapping motion (figure 4). The contour lines
in figure 7 are the magnitude of the body roll rotation at the end
of the down-stroke. The grey region shows where the solution
can not be found because the body momentum can not be ar-
rested at the end of the down-stroke. All the possible solutions
are in the region between the 45◦ (symmetry) line and the start
of the grey region. It should be noted that due to the symmetry
of the wings motion on the 45◦ line, the body experiences zero
roll motion on this line. The body experiences counterclockwise
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Figure 6. An example of wing flapping motion and its effect on the roll
rotation and velocity of the body. To obtain a net roll angle with zero
momentum at the end of the down-stroke, the left wing moves faster in
the beginning and then slows down while the right wing starts with a lower
velocity and then moves faster to arrest the momentum of the body. At
the end of the down-stroke, both wings reach zero velocity along with the
body.

wise rotation bellow the symmetry line and negative roll motion
above this line. Since the body roll angle increases as the contour
lines get further from the 45◦ line, to achieve higher roll angle,
the region between the symmetry line and the grey region should
be expanded. In this figure, the maximum roll angle is about 65◦

which is at the furthest distance to the symmetry line.
The effect of non-dimensional aerodynamic parameter (C∗)

on the roll angle is shown in figures 8 and 9 for V∞ = 0 and
V∞ = 5 m/s respectively. Like before, the region between the 45◦

line and each grey boundary shows the possible solution region.
Comparing these two figures to each other shows the forward
velocity expands the solution region and therefore gives higher
roll angle at the end of the down-stroke. Moreover, both figures
show that increasing C∗ expands the solution region regardless
of the forward velocity. Therefore, for systems with small C∗

(like flies with about C∗ < 0.1 [3]) the roll rotation is small and
not practical to use this body roll generating strategy while for
birds’ and bats’ scale C∗ > 0.5 [3] and this strategy is useful.

Figure 10 shows the effect of wing inertia on the body roll
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Figure 7. The effect of asymmetric wing motion on the body roll angle.
In the grey regions solution can not be found (the body roll momentum
can not be arrested at the end of the down-stroke). If the wings move
symmetrically, the solution will be on the 45◦ (symmetry) line. Positive
(counterclockwise) roll angles are between below the symmetry line until
the grey region boundary. Negative (clockwise) roll angles are above the
symmetry line until the grey region boundary.

angle in zero forward velocity (V∞ = 0). In this figure the aero-
dynamic parameter is assumed C∗ = 1. The possible solution
region between the 45◦ line and the grey boundaries expand as
the relative wing inertia decreases. While for insect scale sys-
tems I∗ is close to zero, but since C∗ is close to zero as well, the
system can not achieve acceptable roll angle. This figure shows
that birds with relatively lower I∗ with respect to bats have a bet-
ter performance in using this body roll generating strategy.

Conclusion
In this paper a bio-inspired strategy to create roll motion on

flapping wing flight systems is studied. The strategy is based
on creating asymmetric velocity on the wings during a down-
stroke. The results showed that for relatively large wings and
low wing mass with respect to the body inertia, the system can
experience large roll angle after only a down-stroke. As the wing
inertia increases, the resultant roll angle at the end of the down-
stroke decreases which suggests the deficiency of this strategy
for heavy wing systems like bats. The overall results show for
systems with large aerodynamic parameter and low wing inertia
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Figure 8. The effect of aerodynamic parameter (C∗) on the roll angle
for systems with zero forward velocity (V∞ = 0) and massless wings
(I∗ = 0). The solution region (between the 45◦ line and each grey region
boundary) expands as C∗ increases.

(like birds in general), this strategy can be useful as it is used by
birds in nature.

FUTURE WORK
Implementation of the findings in this paper on a single de-

gree of freedom robotic prototype is the next step to compare the
results. After that the model will be expanded and the interac-
tions of other degrees of freedom will be studied.
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