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a b s t r a c t

In this paper, we present a projection-based interpolation framework for structure-preserving model
order reduction of parametric bilinear dynamical systems. We introduce a general setting, covering a
broad variety of different structures for parametric bilinear systems, and then provide conditions on
projection spaces for the interpolation of structured subsystem transfer functions such that the system
structure and parameter dependencies are preserved in the reduced-order model. Two benchmark
examples with different parameter dependencies are used to demonstrate the theoretical analysis.
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1. Introduction

Design and control processes usually involve simulating sys-
ems of differential equations describing the underlying dynam-
cs. An important class of such systems are parametric bilinear
ime-invariant systems. These systems naturally appear in the
odeling of thermal and mechanical systems (see Hu & Wang,
002; Mohler, 1973), plasma devices (see Ou, 2010), electri-
al circuits (see Al-Baiyat et al., 1993), or medical applications
see Saputra et al., 2019). They are also an important tool in the
nalysis of linear stochastic systems like in Benner and Damm
2011) and linear parameter-varying systems as in Benner and
reiten (2011). Bilinear systems also appear in the linearization
rocess of more general nonlinear systems using the Carleman
inearization method; see Carleman (1932). In most cases, these
ilinear systems have special structures resulting from the under-
ying physical model and the dynamics are parameter dependent.

✩ The material in this paper was presented at the 14th World Congress
in Computational Mechanics and ECCOMAS Congress (WCCM-ECCOMAS 2020),
January 11–15, 2021, Paris, France. This paper was recommended for publication
in revised form by Associate Editor Sorin Olaru under the direction of Editor
Sophie Tarbouriech.

∗ Correspondence to: Computational Methods in Systems and Control Theory,
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S.W.R. Werner).
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For example, in case of parametric bilinear mechanical systems,
they have the form

M(µ)ẍ(t; µ) + D(µ)ẋ(t; µ) + K (µ)x(t; µ) = Bu(µ)u(t)

+

m∑
j=1

Np,j(µ)x(t; µ)uj(t) +

m∑
j=1

Nv,j(µ)ẋ(t; µ)uj(t),

y(t; µ) = Cp(µ)x(t; µ) + Cv(µ)ẋ(t; µ),

(1)

here M(µ), D(µ), K (µ), Np,j(µ), Nv,j(µ) ∈ Rn×n, for j = 1, . . . ,m;
u(µ) ∈ Rn×m and Cp(µ), Cv(µ) ∈ Rp×n are constant matrices; and
∈ M ⊂ Rd represents the time-invariant parameters affecting

he dynamics. In (1), u(t) =
[
u1(t), u2(t), . . . , um(t)

]T
∈ Rm

enotes the inputs (forcing), y(t; µ) ∈ Rp the outputs (measure-
ents), and x(t; µ) ∈ Rn×n the internal variables. The parameter
may represent variations in, e.g., material properties or system

eometry.
Due to an increasing demand for accuracy in the modeling

tage, systems as in (1) become larger and larger, e.g., n > 106,
mposing overwhelming demands on computational resources
ike time and memory. The situation is even more prominent in
he parametric problems we consider here due to the need to
valuate/simulate (1) for many samples of µ. The aim of para-
etric model order reduction is to construct a cheap-to-evaluate
pproximation of the input-to-output behavior of the original
ystem by reducing the state-space dimension, i.e., the number
f equations n, in such a way that the reduced model provides
high-fidelity approximation to the original one for the pa-

ameter range of interest. Additionally, the reduced-order model
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hould have the same internal structure as well as the parame-
er dependencies as the original model to retain the underlying
hysical structure. For example, for the system (1), the structure-
reserving parametric reduced-order model will have the form

M̂(µ)¨̂x(t; µ) + D̂(µ) ˙̂x(t; µ) + K̂ (µ)x̂(t; µ) = B̂u(µ)u(t)

+

m∑
j=1

N̂p,j(µ)x̂(t; µ)uj(t) +

m∑
j=1

N̂v,j(µ) ˙̂x(t; µ)uj(t),

ŷ(t; µ) = Ĉp(µ)x̂(t; µ) + Ĉv(µ) ˙̂x(t; µ),

(2)

with M̂(µ), D̂(µ), K̂ (µ), N̂p,j(µ), N̂v,j(µ) ∈ Rr×r , for j = 1, . . . ,m,
Bu(µ) ∈ Rr×m, Ĉp(µ), Ĉv(µ) ∈ Rp×r , and r ≪ n. Note that the
reduced-order model (2) has the same structure as (1) and can be
interpreted as a physically meaningful reduced-order mechanical
system. The structure preservation can also be very beneficial in
terms of computational speed and accuracy; see, e.g., Benner et al.
(2021).

Model reduction for linear and general nonlinear (parametric)
systems has been studied heavily, especially over the last three
decades, using a variety of approaches; see, e.g., Benner et al.
(2017), Scarciotti and Astolfi (2017), Schilders et al. (2008) and
Quarteroni and Rozza (2014). In recent years, the class of bilinear
control systems received additional focus as an important link
between linear and nonlinear systems, since they only involve
the multiplication of states and inputs as nonlinearities. In this
paper, we will concentrate on structure-preserving model reduc-
tion for parametric bilinear systems. For parametric unstructured
(classical) bilinear systems, i.e., for systems of the form

E(µ)ẋ(t; µ) = A(µ)x(t; µ) + B(µ)u(t) +

m∑
j=1

Nj(µ)x(t; µ)uj(t),

y(t; µ) = C(µ)x(t; µ),

(3)

the interpolatory parametric model reduction framework was
developed in Rodriguez et al. (2018) by synthesizing the inter-
polation theory for parametric linear dynamical systems from,
e.g., (Antoulas et al., 2020; Baur et al., 2011), with the subsys-
tem interpolation approaches for bilinear systems; see Antoulas
et al. (2020), Bai and Skoogh (2006), Breiten and Damm (2010)
and Condon and Ivanov (2007). There are other approaches to
model reduction of unstructured bilinear systems, e.g., bilinear
balanced truncation from (Al-Baiyat et al., 1993; Benner & Damm,
2011; Hsu et al., 1983), Volterra series interpolation as in Benner
and Breiten (2012), Flagg and Gugercin (2015) and Zhang and
Lam (2002), or the bilinear Loewner framework from Antoulas
et al. (2016) and Gosea et al. (2019). Those approaches do neither
provide extensions for the parametric bilinear system case nor
have extensions for structured systems and, therefore, will not be
further discussed in this paper. Recently in Benner et al. (2021),
the structured interpolation framework of Beattie and Gugercin
(2009) for linear dynamical systems has been extended to the
case of non-parametric structured bilinear systems. In this paper,
we will extend this interpolation theory to the case of structured
parametric bilinear systems by developing the subspace condi-
tions to be enforced in the projection-based model reduction
framework.

In Section 2, we introduce basic mathematical concepts and
notation. We prove the structure-preserving interpolation frame-
work for parametric bilinear systems in Section 3. The estab-
lished theory is then extended in Section 4 to the interpolation
of parameter sensitivities. Section 5 illustrates the analysis in
two numerical benchmark examples, followed by conclusions in
Section 6.
2

2. Mathematical preliminaries

For a complex-valued matrix X ∈ Cn×m, XH
:= X

T
will denote

its conjugate transpose. Given two matrices A ∈ Cn×m and B ∈

Cp×q, (A ⊗ B) will denote the Kronecker product, i.e.,

A ⊗ B :=

⎡⎢⎣a11B · · · a1mB
...

...

an1B · · · anmB

⎤⎥⎦ ∈ Cnp×mq,

where aij is the (i, j)-th element of A.
Under some mild assumptions, the output of the bilinear sys-

tem (3) can be rewritten in terms of a Volterra series, i.e.,

y(t; µ) =

∞∑
k=1

∫ t

0

∫ t1

0
. . .

∫ tk−1

0
gk(t1, . . . , tk, µ)

×

(
u(t −

k∑
i=1

ti) ⊗ · · · ⊗ u(t − t1)

)
dtk · · · dt1,

where gk denotes the kth regular Volterra kernel; see, e.g., Rugh
(1981). Using the multivariate Laplace transformation from
Rugh (1981), the regular Volterra kernels yield the frequency
representation

Gk(s1, . . . , sk, µ) = C(µ)(skE(µ) − A(µ))−1

×

⎛⎝k−1∏
j=1

(Imj−1 ⊗ N(µ))(Imj ⊗ (sk−jE(µ) − A(µ))−1)

⎞⎠
× (Imk−1 ⊗ B(µ)), (4)

with k ≥ 1, as the kth regular subsystem transfer function of (3),
where N(µ) =

[
N1(µ), . . . , Nm(µ)

]
. The model reduction

theory in Rodriguez et al. (2018) is based on the interpolation
of (4), i.e., unstructured (classical) parametric subsystems.

In this paper, we consider a much more general setting of
multivariate transfer functions. The interpolation of structured
transfer functions for linear systems was developed in Beattie
and Gugercin (2009) and then extended to the parametric setting
in Antoulas et al. (2010). As the structured transfer functions were
recently extended to non-parametric bilinear systems in Benner
et al. (2021), we consider here structured parametric multivariate
transfer functions of the form

Gk(s1, . . . , sk, µ) = C(sk, µ)K(sk, µ)−1

×

⎛⎝k−1∏
j=1

(Imj−1 ⊗ N (sk−j, µ))(Imj ⊗ K(sk−j, µ)−1)

⎞⎠
× (Imk−1 ⊗ B(s1, µ)), (5)

with k ≥ 1, frequency points s1, . . ., sk ∈ C, parameters µ ∈ M ⊂

Rd, N (s, µ) =
[
N1(s, µ), . . . , Nm(s, µ)

]
, and matrix functions

C:C × M → Cp×n, K:C × M → Cn×n,

B:C × M → Cn×m, Nj:C × M → Cn×n,

for j = 1, . . . ,m. For the parametric bilinear mechanical sys-
tem (1), these matrix functions are realized by

K(s, µ) = s2M(µ) + sD(µ) + K (µ),
Nj(s, µ) = Np,j(µ) + sNv,j(µ) for j = 1, . . . ,m,

B(s, µ) = Bu(µ), and C(s, µ) = Cp(µ) + sCv(µ).

The reduced-order models are then computed by projection:
Given model reduction bases V ,W ∈ Cn×r , the reduced-order
model Ĝ is described by the reduced-order matrix functions

Ĉ(s, µ) = C(s, µ)V , K̂(s, µ) = WHK(s, µ)V ,
H H (6)
B̂(s, µ) = W B(s, µ), N̂ j(s, µ) = W Nj(s, µ)V ,
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for j = 1, . . . ,m. Model reduction by projection in the sense
of (6) is structure-preserving by nature. In general, every matrix-
valued function can be affinely decomposed with respect to its
arguments, here frequency and parameter, and we can write

K(s, µ) =

nK∑
j=1

hK,j(s, µ)Kj, (7)

where hK,j:C × M → C are scalar functions depending on
frequency and parameter, and Kj ∈ Cn×n are constant matrices,
or j = 1, . . . , nK. In the worst-case scenario, we have nK = n2

nd the Kj’s are elementary matrices. However, we are interested
n cases where nK ≪ n, which is true in most applications. In the
umerical examples we present in Section 5, nK is at most 3. The
hoice of the scalar functions hK,j encodes the internal structure
f the system. Using the affine decomposition, the reduced-order
atrix function is given by

(̂s, µ) =

nK∑
j=1

hK,j(s, µ)WHKjV =

nK∑
j=1

hK,j(s, µ)K̂j.

his works analogously for the other matrix functions in (6),
hich gives a computable realization of the reduced-order model.
ince the functions hK,j stay unchanged, the internal structure

and parameter dependency of the original matrix functions (and
thus of the original system) are retained. The reduced-order
model is then given by replacing the original system matrices in
the affine decomposition (7) by their reduced-order counterparts.

In the following, we will use an abbreviation for the notion of
partial derivatives, namely we denote

∂
s
j1
1 ···s

jk
k
f (z1, . . . , zk) :=

∂ j1+···+jk f

∂sj11 · · · ∂sjkk
(t1, . . . , tk),

for the differentiation of an analytic function f :Ck
→ Cℓ with

respect to the variables s1, . . . , sk and evaluated at z1, . . ., zk. Also,
we denote the vertical concatenation of the bilinear terms by

Ñ (s, µ) =

⎡⎢⎣N1(s, µ)
...

Nm(s, µ)

⎤⎥⎦.

3. Structured interpolation

Interpolatory model reduction has been one of the most com-
monly used and effective approaches to model reduction and
shown to provide locally optimal reduced models for linear, bi-
linear, quadratic-bilinear dynamical systems; we refer the reader
to Antoulas et al. (2020), Baur et al. (2014), Scarciotti and Astolfi
(2017) and references therein for details on interpolatory model
reduction for linear and nonlinear systems. In this setting, one
chooses V and W in (6) such that the reduced-order transfer
functions interpolate the transfer functions of the original system
at selected points. In the setting of parametric structured multi-
variate transfer functions Gk in (5), we want to construct V and
W such that the reduced transfer functions

Gk(s1, . . . , sk, µ) = Ĉ(sk, µ)K̂(sk, µ)−1

×

⎛⎝k−1∏
j=1

(Imj−1 ⊗ N̂ (sk−j, µ))(Imj ⊗ K̂(sk−j, µ)−1)

⎞⎠
× (Imk−1 ⊗ B̂(s1, µ)), (8)

with k ≥ 1, satisfy

Gk(σ1, . . . , σk, µ̂) = Ĝk(σ1, . . . , σk, µ̂) and (9)

∇Gk(σ1, . . . , σk, µ̂) = ∇Ĝk(σ1, . . . , σk, µ̂), (10)
3

for given frequency interpolation points σ1, . . ., σk ∈ C, the
parameter interpolation point µ̂ ∈ M, and where ∇Gk denotes
the Jacobian matrix

∇Gk =
[
∂s1Gk, . . . , ∂skGk, ∂µ1Gk, . . . , ∂µdGk

]
.

We emphasize that for multi-input/multi-output (MIMO) sys-
tems we consider here, the transfer functions Gk are matrix
valued. Therefore, the conditions in (9) and (10) enforce ma-
trix interpolation. This is not usually needed. For MIMO linear
dynamical systems, for example, one enforces tangential inter-
polation, meaning matrix-interpolation along selected directions;
see, e.g., Antoulas et al. (2020). However, for brevity and to keep
the notation concise, we will focus on matrix interpolation.

Even though we have only listed two sets of interpolation
conditions in (9) and (10), Theorems 1 and 2 will show how
to construct V and W to enforce interpolation for more general
cases, including higher-order partial derivatives. The recent work
in Benner et al. (2021) showed how to enforce (9) and (10)
for non-parametric structured bilinear systems. Our theory below
will extend these results to the parametric case. Note that the first
condition (9) does not involve any differentiation with respect
to the parameter µ̂ and can be viewed as interpolation for a
fixed parameter µ = µ̂. Therefore, we might expect that the
subspace constructions from Benner et al. (2021) for the non-
parametric problem might yield the desired subspaces. This is
indeed what we discuss first in Theorems 1 and 2. However, the
second condition (10) involves matching sensitivity with respect
to the parameter as well, which will be discussed in Section 4.

Theorem 1 (Structured Matrix Interpolation). Let G be a parametric
bilinear system, with its structured subsystem transfer functions
Gk in (5), and Ĝ be the reduced-order parametric bilinear sys-
tem, constructed as in (6) with its subsystem transfer functions Ĝk
in (8). Let the matrix functions C(s, µ), K(s, µ)−1, N (s, µ), B(s, µ),
and K̂(s, µ)−1 be defined for given sets of frequency interpolation
points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, and the parameter
interpolation point µ̂ ∈ M.

(a) If V is constructed such that

span(V ) ⊇ span([V1, . . . , Vk]),

where

V1 = K(σ1, µ̂)−1B(σ1, µ̂) and

Vj = K(σj, µ̂)−1N (σj−1, µ̂)(Im ⊗ Vj−1),
(11)

for 2 ≤ j ≤ k, then the following interpolation conditions hold
true:

Gj(σ1, . . . , σj, µ̂) = Ĝj(σ1, . . . , σj, µ̂), (12)

for j = 1, . . . , k.
(b) If W is constructed such that

span(W ) ⊇ span([W1, . . . ,Wθ ]),

where

W1 = K(ςθ , µ̂)−HC(ςθ , µ̂)H and
Wi = K(ςθ−i+1, µ̂)−HÑ (ςθ−i+1, µ̂)H(Im ⊗ Wi−1),

for 2 ≤ i ≤ θ , then the following interpolation conditions hold
true:

Gi(ςθ−i+1, . . . , ςθ , µ̂) = Ĝi(ςθ−i+1, . . . , ςθ , µ̂), (13)

for i = 1, . . . , θ .
(c) Let V be constructed as in Part (a) and W as in Part (b). Then,

in addition to (12) and (13), the interpolation conditions
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Gq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ , µ̂)

= Ĝq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ , µ̂),
(14)

hold for 1 ≤ q ≤ k and 1 ≤ η ≤ θ .

roof. Given the fixed parameter µ̂ ∈ M, the matrix functions
(s, µ̂), K(s, µ̂), N (s, µ̂) and B(s, µ̂) can be viewed as the realiza-
ion of a non-parametric bilinear system. Then, the interpolation
onditions (12)–(14) can be considered as subsystem interpola-
ion of a non-parametric bilinear system as these conditions do
ot involve any variation/sensitivity with respect to µ. Therefore,
he subspace conditions in Benner et al. (2021, Theorem 8), for
interpolating a non-parametric structured bilinear system, apply
here as well, which are precisely the subspace conditions listed
in Parts (a)–(c). However, to make the paper self-contained and
the proof of Theorem 4 in Section 4 easier to follow, we will still
prove Part (a) for k = 2. By induction over k, the rest of the result
in (a) follows directly using the same arguments. Using (8), the
second reduced-order transfer function is given by

Ĝ2(σ1, σ2, µ̂) = Ĉ(σ2, µ̂)K̂(σ2, µ̂)−1N̂ (σ1, µ̂)

× (Im ⊗ K̂(σ1, µ̂)−1)(Im ⊗ B̂(σ1, µ̂)).

We observe that with (6) it holds

(Im ⊗ V )(Im ⊗ K̂(σ1, µ̂)−1)(Im ⊗ B̂(σ1, µ̂))

= (Im ⊗ V K̂(σ1, µ̂)−1WHK(σ1, µ̂)  
PV1

K(σ1, µ̂)−1B(σ1, µ̂)  
V1

),

where PV1 is a projector onto span(V ) and V1 is as defined in (11).
By construction, we have span(V1) ⊆ span(V ); thus PV1V1 = V1
nd, therefore

(Im ⊗ V )(Im ⊗ K̂(σ1, µ̂)−1)(Im ⊗ B̂(σ1, µ̂))

= (Im ⊗ K(σ1, µ̂)−1)(Im ⊗ B(σ1, µ̂)).

Then, Ĝ2 can be written as

Ĝ2(σ1, σ2, µ̂) = C(σ2, µ̂)V K̂(σ2, µ̂)−1WHN (σ1, µ̂)(Im ⊗ V1).

lso, it holds that

V K̂(σ2, µ̂)−1WHN (σ1, µ̂)(Im ⊗ V1)

= V K̂(σ2, µ̂)−1WHK(σ2, µ̂)  
PV2

K(σ2, µ̂)−1N (σ1, µ̂)(Im ⊗ V1)  
V2

= K(σ2, µ̂)−1N (σ1, µ̂)(Im ⊗ V1),

sing the fact that PV2 is another projector onto span(V ) and that
pan(V2) ⊆ span(V ). Inserting this last equality into the second
educed-order transfer function yields

2(σ1, σ2, µ̂) = G2(σ1, σ2, µ̂).

onstructing further projectors onto span(V ) for higher-order
ransfer functions gives the result in (a). The result in Part (b)
ollows exactly the same way by using the Hermitian transposed
atrix functions and constructing now projectors onto span(W ).
art (c) is then resulting from the application of both types of
rojectors onto span(V ) and span(W ). □

In practice, one would construct the final basis matrices V and
via a rank-revealing orthogonalization of the concatenation,

.g., [V1, . . . , Vk]. This could be done, for example, via a rank-
evealing QR decomposition or SVD afterwards, or by a repeated
e-orthogonalization process in every step after each computa-
ion of the next Vi. This yields basis matrices with orthonormal
olumns and reveals rank deficiency in the constructed matri-
es, leading to smaller subspace dimension and thus a smaller
educed order.
4

In Theorem 1, only function values are matched, i.e., the zeroth
erivative. The following theorem extends these results to match-
ng higher-order derivatives in the frequency arguments, i.e., to
nforce Hermite interpolation conditions.

heorem 2 (Hermite Matrix Interpolation). Let G be a paramet-
ic bilinear system, with its structured subsystem transfer func-
ions Gk in (5) and Ĝ be the reduced-order parametric bilinear
ystem, constructed as in (6) with its subsystem transfer functions Ĝk
n (8). Let the matrix functions C(s, µ), K(s, µ)−1, N (s, µ), B(s, µ),
nd K̂(s, µ)−1 be analytic for given sets of frequency interpolation

points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, and the parameter
nterpolation point µ̂ ∈ M.

(a) If V is constructed such that

span(V ) ⊇ span([V1,0, . . . , Vk,ℓk ]),

where

V1,j1 = ∂sj1 (K
−1B)(σ1, µ̂) and

Vq,jq = ∂sjqK
−1(σq, µ̂)

×

⎛⎝q−2∏
j=1

∂sℓq−j

(
(Imj−1 ⊗ N )(Imj ⊗ K)

)
(σq−j, µ̂)

⎞⎠
× ∂sℓ1

(
(Imq−2 ⊗ N )(Imq−1 ⊗ K)

× (Imq−1 ⊗ B)
)
(σ1, µ̂) ,

for 2 ≤ q ≤ k and 0 ≤ j1 ≤ ℓ1; 0 ≤ jq ≤ ℓq, then the
following interpolation conditions hold true:

∂
s
ℓ1
1 ···s

ℓq−1
q−1 s

jq
q
Gq(σ1, . . . , σq, µ̂)

= ∂
s
ℓ1
1 ···s

ℓq−1
q−1 s

jq
q
Ĝq(σ1, . . . , σq, µ̂),

(15)

for q = 1, . . . , k and jq = 0, . . . , ℓq.
(b) If W is constructed such that

span(W ) ⊇ span([W1,0, . . . ,Wθ,νθ
]),

where

W1,iθ = ∂siθ (K
−HCH)(ςθ , µ̂) and

Wη,iθ−η+1 = ∂siθ−η+1 (K
−HÑH)(ςθ−η+1, µ̂)

×

⎛⎝ θ−1∏
i=θ−η+2

∂sνi (Imi−1 ⊗ K−HÑH)(ςi, µ̂)

⎞⎠
×
(
Imθ−1 ⊗ ∂sνθ (K−HCH)(ςθ , µ̂)

)
,

for 2 ≤ η ≤ θ and 0 ≤ iθ ≤ νθ ; 0 ≤ iθ−η+1 ≤ νθ−η+1, then
the following interpolation conditions hold true:

∂
s
iθ−η+1
1 s

νθ−η+2
2 ···s

νθ
θ

Gη(ςθ−η+1, . . . , ςθ , µ̂)

= ∂
s
iθ−η+1
1 s

νθ−η+2
2 ···s

νθ
θ

Ĝη(ςθ−η+1, . . . , ςθ , µ̂),
(16)

for η = 1, . . . , θ and iθ−η+1 = 0, . . . , νθ−η+1.
(c) Let V be constructed as in (a) and W as in (b). Then, in

addition to (15) and (16), the interpolation conditions (17)
hold for jq = 0, . . . , ℓq; iθ−η+1 = 0, . . ., νθ−η+1; 1 ≤ q ≤ k

and 1 ≤ η ≤ θ .
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∂
s
ℓ1
1 ···s

ℓq−1
q−1 s

jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···s

νθ
q+η

Gq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ , µ̂)

= ∂
s
ℓ1
1 ···s

ℓq−1
q−1 s

jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···s

νθ
q+η

Ĝq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ , µ̂)

(17)

roof. As in Theorem 1, all the interpolation conditions are
or a fixed parameter µ̂ ∈ M, i.e., they can be proven using a
imilar construction of projectors onto suitable subspaces as in
heorem 1. Therefore, the subspace conditions in Benner et al.
2021, Theorem 9) can be applied here, which are precisely the
ubspace conditions listed in Theorem 2. □

emark 3. We note that the major computational cost stems
rom solving (sparse) linear systems of equations to construct the
asis matrices V and W , as common to the interpolatory model
eduction framework in general.

. Matching parameter sensitivities

So far, the interpolation conditions enforced did not show
ariability with respect to the parameter µ. Even in the Hermite
onditions matched in Theorem 2, the matched derivatives (sen-
itivities) are with respect to the frequency points. This enabled
s to directly employ the conditions and analysis from Benner
t al. (2021). However, for parametric systems it is important
o match the sensitivity with respect to the parameter variation
s well. This is what we establish in the next result, extending
imilar results from linear dynamics in Baur et al. (2011) and
nstructured bilinear dynamics in Rodriguez et al. (2018) to the
ew parametric structured framework. An important conclusion
s that the parameter sensitivity is matched implicitly, i.e., with-
ut ever explicitly computing it. This is achieved by using the
ame set of frequency and parameter interpolation points for V
nd W .

heorem 4 (Two-sided Matrix Interpolation). Let G be a parametric
ilinear system, with its structured subsystem transfer functions
k in (5) and Ĝ be the reduced-order parametric bilinear system,
onstructed as in (6) with its subsystem transfer functions Ĝk in (8).
et the matrix functions C(s, µ), K(s, µ)−1, N (s, µ), B(s, µ), and
(̂s, µ)−1 be analytic for a given set of frequency interpolation points

σ1, . . . , σk ∈ C and the parameter interpolation point µ̂ ∈ M.

(a) Let V be constructed as in Theorem 1 Part (a) and W be
constructed as in Theorem 1 Part (b) with ςi = σi for i =

1, 2, . . . , k. Then, in addition to (12)–(14) it holds

∇Gk(σ1, . . . , σk, µ̂) = ∇Ĝk(σ1, . . . , σk, µ̂). (18)

(b) Let V be constructed as in Theorem 2 Part (a) and W be
constructed as in Theorem 2 Part (b) with ςi = σi for i =

1, 2, . . . , k. Then, in addition to (15)–(17), it holds

∇

(
∂
s
ℓ1
1 ···s

ℓk
k
Gk(σ1, . . . , σk, µ̂)

)
= ∇

(
∂
s
ℓ1
1 ···s

ℓk
k
Ĝk(σ1, . . . , σk, µ̂)

)
.

(19)

roof. For brevity, we only prove (18). The proof of (19) fol-
ows analogously. As in the proof of Theorem 1, we will con-
truct appropriate projectors onto the projection spaces span(V )
r span(W ). In contrast to Theorem 2, we now also interpolate
he derivative with respect to the parameters. Using the productˆ
ule, the partial derivative of Gk with respect to a single parameter

5

ntry µi, for 1 ≤ i ≤ d, is given by

∂µi Ĝk(σ1, . . . , σk, µ̂)
=

∑
α∈A

(
∂
µ

α1
i
Ĉ(σk, µ̂)

)(
∂
µ

α2
i
K̂−1(σk, µ̂)

)
×

⎛⎝k−1∏
j=1

(Imj−1 ⊗ ∂
µ

α2j+1
i

N̂ (σk−j, µ̂))

× (Imj ⊗ ∂
µ

α2j+2
i

K̂−1(σk−j, µ̂))

⎞⎠
× (Imk−1 ⊗ ∂

µ
α2k+1
i

B̂(σ1, µ̂)),

(20)

where A denotes the set of all columns of the identity matrix
of size 2k + 1. In other words, (20) is a sum of 2k + 1 terms
where each term corresponds to the vector α taking a value
from this set of columns. Therefore, in each term only a single
matrix function is differentiated. We will show that every single
term in the sum (20) matches the same term in the full-order
model, thus, summed together, proving the desired interpolation
property (18). Consider, e.g., the second term in (20), i.e., the term
in which α is the second column of the identity matrix: α =[
α1 α2 α3 · · · α2k+1

]T
=
[
0 1 0 . . . 0

]T. Denote the
corresponding term by Ĥ2. Then,

Ĥ2 := Ĉ(σk, µ̂)
(
∂µi K̂

−1(σk, µ̂)
)

×

⎛⎝k−1∏
j=1

(Imj−1 ⊗ N̂ (σk−j, µ̂))

× (Imj ⊗ K̂(σk−j, µ̂)−1)

⎞⎠ (Imk−1 ⊗ B̂(σ1, µ̂)).

The derivative of the inverse appearing in Ĥ2 is given by

∂µi K̂
−1(σk, µ̂) = −K̂(σk, µ̂)−1

(
∂µi K̂(σk, µ̂)

)
K̂(σk, µ̂)−1.

Therefore, Ĥ2 can be rewritten as

Ĥ2 = −Ĉ(σk, µ̂)K̂(σk, µ̂)−1
(
∂µi K̂(σk, µ̂)

)
K̂(σk, µ̂)−1

×

⎛⎝k−1∏
j=1

(Imj−1 ⊗ N̂ (σk−j, µ̂))

× (Imj ⊗ K̂(σk−j, µ̂)−1)

⎞⎠ (Imk−1 ⊗ B̂(σ1, µ̂))

=: −ŴH
1

(
∂µi K̂(σk, µ̂)

)
V̂k.

Noting that the model reduction matrix V is constructed as in
Theorem 1, we obtain

V V̂k = V K̂(σk, µ̂)−1WHK(σk, µ̂)  
PVk

Vk = Vk,

where PVk is a projector onto span(V ). Similarly, we have

WŴ1 = W K̂(σk, µ̂)−HVK(σk, µ̂)H  
PW1

K(σk, µ̂)−HC(σk, µ̂)H  
W1

= W1,

ith PW1 a projector onto span(W ). Using those two identities,
e obtain

Ĥ2 = −ŴH
1 W

H
(
∂µiK(σk, µ̂)

)
V V̂k = −WH

1

(
∂µiK(σk, µ̂)

)
Vk,

.e., Ĥ2 is identical to the term using the original matrix functions.
ince the same technique can be used for all other α values
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orresponding the other columns in the set A, we obtain, for all
≤ i ≤ d,

∂µi Ĝk(σ1, . . . , σk, µ̂) = ∂µiGk(σ1, . . . , σk, µ̂). (21)

nterpolation of the partial derivatives with respect to the fre-
uency parameters follows by using the fixed parameter µ̂ in
enner et al. (2021, Corollary 2). Together with (21), this proves
18). □

emark 5. Theorem 4 shows how to match the parameter sen-
sitivity implicitly without ever computing this quantity. Match-
ing parameter sensitivities is important, especially in the setting
of optimization and design. These results can be extended to
match the parameter Hessian as well; compare to Rodriguez et al.
(2018). However, we skip those details for brevity.

Remark 6. All the results in Theorems 1, 2 and 4 are formulated
for a single parameter interpolation point µ̂ ∈ M. However,
the results directly extend to interpolation at multiple parameter
sampling points µ̂(1), . . . , µ̂(q)

∈ M by constructing the projection
spaces for every parameter sample and then concatenating the
resulting spaces into a single global projection space. As example,
consider the task of interpolating

G1(σ1, µ̂
(1)), G2(σ1, σ2, µ̂

(1)),

G1(σ3, µ̂
(2)), G2(σ3, σ4, µ̂

(2)),
(22)

with the four frequency points σ1, σ2, σ3, σ4 and the two param-
eter points µ̂(1), µ̂(2). Using Theorem 1 Part (a), we can construct
basis matrices V (1), V (2) for the interpolation in either µ̂(1) or
µ̂(2), respectively. The construction of a reduced-order model
that satisfies all interpolation conditions (22) is then given by
constructing V such that

span(V ) ⊇ span([V (1), V (2)
]).

Remark 7. The results simplify drastically for single-input/single-
output (SISO) systems. In that case, the multivariate transfer
functions corresponding to bilinear systems (5) can be written
without Kronecker products as

Gk(s1, . . . , sk, µ) = C(sk, µ)K(sk, µ)−1

×

⎛⎝k−1∏
j=1

N (sk−j, µ)K(sk−j, µ)−1

⎞⎠B(s1, µ),

and the construction of the corresponding projection spaces sim-
plifies such that no Kronecker products are involved anymore.

5. Numerical examples

We illustrate the analysis with two benchmark examples. The
experiments reported here have been executed on a machine
with 2 Intel(R) Xeon(R) Silver 4110 CPU processors running at
2.10 GHz and equipped with 192 GB total main memory. The
computer is run on CentOS Linux release 7.5.1804 (Core) with
MATLAB 9.7.0.1190202 (R2019b).

5.1. Parametric bilinear time-delay system

In the first example from Gosea et al. (2019), we consider
a time-delayed heated rod modeled by a one-dimensional heat
equation

∂tv(ζ , t) = ∂2
ζ v(ζ , t) + a1(ζ )v(ζ , t) + a2(ζ )v(ζ , t − 1) + u(t),

with homogeneous Dirichlet boundary conditions. We parame-
terize the diffusivity using the coefficients

a = −µ sin(ζ ) and a = µ sin(ζ ), for µ ∈ [1, 10].
1 2

6

The non-parametric example in Gosea et al. (2019) is recovered
for µ = 2. After a spatial discretization, we obtain a parametric
bilinear system of the form

Eẋ(t) = (A0 − µAd)x(t) + µAdx(t − 1) + Nx(t)u(t) + Bu(t),
y(t) = Cx(t),

with m = p = 1 and n = 5 000. In our structured parametric
setting, this model corresponds to the matrix functions

K(s, µ) = sE − (A0 − µAd) − µe−sAd,

B(s, µ) = B, N (s, µ) = N, and C(s, µ) = C .

The reduced-order model is constructed via Theorem 4 Part (a)
with the frequency sampling points {±10−4i, ±104i} and the
parameter sampling points {1, 5.5, 10} for the first two transfer
functions. By construction, the reduced-order model has the same
parametric time-delay structure as the original one, where the
reduced matrices are given by

Ê = WHEV , Â0 = WHA0V , Âd = WHAdV ,

N̂ = WHNV , B̂ = WHB, Ĉ = CV ,

using the orthogonal truncation matrices V and W . The reduced-
order system has the state-space dimension r = 24.

Fig. 1(a) shows the relative time response error in the output,
given by

err1,t(t, µ) :=
|y(t; µ) − ŷ(t; µ)|

|y(t; µ)|
,

or t ∈ [0, 10] and µ ∈ [1, 10], using the same test input signal as
n Gosea et al. (2019), namely, u(t) = 0.05 (cos(10t) + cos(5t)).
he maximum error in the time and parameter domain is

max
∈[1,10]

(
max

t∈[0,10]
err1,t(t, µ)

)
≈ 9.993 · 10−6,

llustrating a high-fidelity parametric reduced model over the full
arameter domain. Fig. 1(b) depicts the relative error in the first
ransfer function over the parameter range, computed as

rr1,f(ω1, µ) :=
|G1(ω1i, µ) − Ĝ1(ω1i, µ)|

|G1(ω1i, µ)|
,

where ω1 ∈ [10−4, 104
] and µ ∈ [1, 10]. As for the time domain

error, we computed the maximum error to be

max
µ∈[1,10]

(
max

ω1∈[10−4,104]

err1,f(ω1, µ)
)

≈ 7.002 · 10−6,

showing the accuracy of the parametric reduced model in the
frequency domain as well. We computed the maximum relative
error in the second transfer function G2(s1, s2, µ) as well to obtain

max
µ∈[1,10]

(
max

ω1,ω2∈[10−4,10+4]

err1,f(ω1, ω2, µ)
)

≈ 6.657 · 10−4,

where

err1,f(ω1, ω2, µ) :=
|G2(ω1i, ω2i, µ) − Ĝ2(ω1i, ω2i, µ)|

|G2(ω1i, ω2i, µ)|
.

All these results show that the structure-preserving parametric
reduced-order model is an accurate approximation of the original
system over the full parameter domain.
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Fig. 1. Relative errors for the time-delay system.
Fig. 2. First transfer functions for the damped mass-spring system.
.2. Parametric bilinear mechanical system

As second example, we consider a parametrized version of the
ulti-input/multi-output damped mass-spring system from Ben-
er et al. (2021), a special case of the model (1), given by

Mẍ(t; µ) + Dẋ(t; µ) + Kx(t; µ) = Buu(t)
+ µ1Np,1x(t)u1(t) + µ2Np,2x(t)u2(t),

y(t; µ) = Cpx(t; µ)ẋ(t; µ),

where µ = (µ1, µ2) is the parameter entering through the
bilinear terms and all the other matrices are exactly as in Benner
et al. (2021), except for Cp, which we set as Cp = [e2, en−3]

T,
where ej denotes the jth column of the n-dimensional identity
matrix. We have then n = 1 000 masses, m = 2 inputs and p = 2
outputs. The parameter set is M = [0, 1] × [0, 1]. Note that for
µ = (0, 0), the system becomes linear as the bilinear terms are
multiplied with 0. In our setting, this parametric bilinear model
corresponds to

K(s, µ) = s2M + sD + K , B(s, µ) = Bu,

N (s, µ) =
[
µ1Np,1, µ2Np,2

]
, and C(s, µ) = Cp.

Two reduced-order models are constructed via Theorem 1 to
illustrate, on the one hand, the qualitative behavior of the
structure-preserving reduced-order models, and, on the other
hand, the effect of interpolation point selection. For the first
reduced-order model, the interpolation points {±10−4i, ±104i}
are used in the frequency domain for the first two transfer
function levels and combined with {(0, 1), (1, 0)} in the parameter
domain. To preserve the structural properties, such as positive
definiteness of the mass, damping and stiffness matrices, we use a
one-sided projection, i.e., we choose W = V . Since the first trans-
fer function (the linear term) is independent of the parameter,
some of the vectors in the construction of V are redundant and
7

have been removed, yielding a structured parametric reduced-
order model with r = 40. The reduced-order system matrices are
then given by

M̂ = VHMV , D̂ = VHDV , K̂ = VHKV ,

N̂p,1 = VHNp,1V , N̂p,2 = VHNp,2V ,

B̂u = VHBu, Ĉp = CpV ,

with the orthogonal truncation matrix V .
Next, we investigate the first transfer function of this reduced-

order model in Fig. 2. For most frequencies, the relative error,
computed by

err2,f(ω1) :=
∥G1(ω1i) − Ĝ1(ω1i)∥2

∥G(ωi)∥2
,

over the frequency range ω1 ∈ [10−4, 10+4
], is at machine preci-

sion except for a bump in the middle, where the transfer function
behavior changes. To reduce the error in this region, we construct
a second reduced-order model by adding an additional frequency
interpolation point where the first reduced-order model attains
its maximum error, around the frequency ±1.85i. The second
reduced-order model has the order r = 60.

Fig. 2 illustrates the expected error behavior. The interpolation
is numerically exact in the additional interpolation point and,
additionally, has a significantly reduced error in the surround-
ing region. For a more detailed comparison, we have computed
the maximum errors in frequency and time domain, which are
provided in Table 1, with

err2,t(µ) := max
(

max
|yj(.; µ) − ŷj(.; µ)|

)
,

j∈{1,2} t∈[0,100] |yj(.; µ)|
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able 1
aximum errors for the damped mass-spring system.

StrInt (r = 40) StrInt (r = 60)

max
µ

err2,t(µ) 2.7665e−3 8.3947e−6

max
ω1

err2,f(ω1) 1.3407e−4 9.9974e−8

max
µ,ω1,ω2

err2,f(ω1, ω1, µ) 1.4242e−3 9.1448e−6

for the time simulations using the input signal
u(t) =

[
sin(200t) + 200, − cos(200t) − 200

]T, and
rr2,f(ω1, ω1, µ) :=

∥G2(ω1i, ω2i, µ) − Ĝ2(ω1i, ω2i, µ)∥2

∥G2(ω1i, ω2i, µ)∥2
,

for the second transfer functions with ω1, ω2 ∈ [10−4, 10+4
] and

∈ [0, 1]2. In both frequency and time domains, the errors of
the larger reduced-order model with the additional interpolation
point are significantly smaller than for the smaller reduced sys-
tem. This suggests that a greedy procedure based on an error
estimator, and selecting the next interpolation point based on
minimizing the error with respect to the estimator as suggested
for linear parametric time-invariant systems in Feng and Benner
2019) will be a promising future research direction.

. Conclusions

We have presented a structure-preserving interpolation
ramework for model order reduction of parametric bilinear sys-
ems. We have established the subspace conditions to enforce
nterpolation both in the frequency and parameter domains. Two
umerical examples illustrate that the approach is well suited
or efficient structure-preserving model order reduction of para-
etric bilinear systems. The presented approach covers arbitrary
arameter dependencies of the system as well as more system
tructures than shown in the examples.
An important open question is the appropriate choice of in-

erpolation points in the frequency as well as the parameter
omains to minimize the approximation error in some appropri-
te measure. In the parametric linear system case, this problem
an be solved using error estimators in a greedy interpolation
oint selection. But for parametric bilinear systems, such error
stimators are not yet developed. Preservation of stability in the
tructured parametric bilinear reduced-order model is another
mportant avenue to investigate. While there are some special
tructures where stability can be preserved, this is a topic of
uture research for the general bilinear structure we considered
n this paper.
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