

Brief paper

Structure-preserving interpolation for model reduction of parametric bilinear systems[☆]Peter Benner^{a,b}, Serkan Gugercin^c, Steffen W.R. Werner^{a,*}^a Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany^b Otto von Guericke University, Faculty of Mathematics, Universitätsplatz 2, 39106 Magdeburg, Germany^c Department of Mathematics and Computational Modeling and Data Analytics Division, Academy of Integrated Science, Virginia Tech, Blacksburg, VA 24061, USA

ARTICLE INFO

Article history:

Received 24 July 2020

Received in revised form 29 January 2021

Accepted 2 June 2021

Available online 10 July 2021

Keywords:

Model order reduction

Parametric bilinear systems

Moment matching

Structure-preserving approximation

Structured parametric interpolation

ABSTRACT

In this paper, we present a projection-based interpolation framework for structure-preserving model order reduction of parametric bilinear dynamical systems. We introduce a general setting, covering a broad variety of different structures for parametric bilinear systems, and then provide conditions on projection spaces for the interpolation of structured subsystem transfer functions such that the system structure and parameter dependencies are preserved in the reduced-order model. Two benchmark examples with different parameter dependencies are used to demonstrate the theoretical analysis.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Design and control processes usually involve simulating systems of differential equations describing the underlying dynamics. An important class of such systems are parametric bilinear time-invariant systems. These systems naturally appear in the modeling of thermal and mechanical systems (see [Hu & Wang, 2002](#); [Mohler, 1973](#)), plasma devices (see [Ou, 2010](#)), electrical circuits (see [Al-Baiyat et al., 1993](#)), or medical applications (see [Saputra et al., 2019](#)). They are also an important tool in the analysis of linear stochastic systems like in [Benner and Damm \(2011\)](#) and linear parameter-varying systems as in [Benner and Breiten \(2011\)](#). Bilinear systems also appear in the linearization process of more general nonlinear systems using the Carleman linearization method; see [Carleman \(1932\)](#). In most cases, these bilinear systems have special structures resulting from the underlying physical model and the dynamics are parameter dependent.

For example, in case of parametric bilinear mechanical systems, they have the form

$$M(\mu)\ddot{x}(t; \mu) + D(\mu)\dot{x}(t; \mu) + K(\mu)x(t; \mu) = B_u(\mu)u(t) \\ + \sum_{j=1}^m N_{p,j}(\mu)x(t; \mu)u_j(t) + \sum_{j=1}^m N_{v,j}(\mu)\dot{x}(t; \mu)u_j(t), \\ y(t; \mu) = C_p(\mu)x(t; \mu) + C_v(\mu)\dot{x}(t; \mu),$$

where $M(\mu), D(\mu), K(\mu), N_{p,j}(\mu), N_{v,j}(\mu) \in \mathbb{R}^{n \times n}$, for $j = 1, \dots, m$; $B_u(\mu) \in \mathbb{R}^{n \times m}$ and $C_p(\mu), C_v(\mu) \in \mathbb{R}^{p \times n}$ are constant matrices; and $\mu \in \mathbb{M} \subset \mathbb{R}^d$ represents the time-invariant parameters affecting the dynamics. In (1), $u(t) = [u_1(t), u_2(t), \dots, u_m(t)]^\top \in \mathbb{R}^m$ denotes the inputs (forcing), $y(t; \mu) \in \mathbb{R}^p$ the outputs (measurements), and $x(t; \mu) \in \mathbb{R}^{n \times n}$ the internal variables. The parameter μ may represent variations in, e.g., material properties or system geometry.

Due to an increasing demand for accuracy in the modeling stage, systems as in (1) become larger and larger, e.g., $n > 10^6$, imposing overwhelming demands on computational resources like time and memory. The situation is even more prominent in the parametric problems we consider here due to the need to evaluate/simulate (1) for many samples of μ . The aim of parametric model order reduction is to construct a cheap-to-evaluate approximation of the input-to-output behavior of the original system by reducing the state-space dimension, i.e., the number of equations n , in such a way that the reduced model provides a high-fidelity approximation to the original one for the parameter range of interest. Additionally, the reduced-order model

[☆] The material in this paper was presented at the 14th World Congress in Computational Mechanics and ECCOMAS Congress (WCCM-ECCOMAS 2020), January 11–15, 2021, Paris, France. This paper was recommended for publication in revised form by Associate Editor Sorin Olaru under the direction of Editor Sophie Tarbouriech.

* Correspondence to: Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.

E-mail addresses: benner@mpi-magdeburg.mpg.de (P. Benner), gugercin@vt.edu (S. Gugercin), werner@mpi-magdeburg.mpg.de (S.W.R. Werner).

should have the same internal structure as well as the parameter dependencies as the original model to retain the underlying physical structure. For example, for the system (1), the structure-preserving parametric reduced-order model will have the form

$$\begin{aligned} \widehat{M}(\mu)\ddot{\hat{x}}(t; \mu) + \widehat{D}(\mu)\dot{\hat{x}}(t; \mu) + \widehat{K}(\mu)\hat{x}(t; \mu) &= \widehat{B}_u(\mu)u(t) \\ + \sum_{j=1}^m \widehat{N}_{p,j}(\mu)\hat{x}(t; \mu)u_j(t) + \sum_{j=1}^m \widehat{N}_{v,j}(\mu)\dot{\hat{x}}(t; \mu)u_j(t), \end{aligned} \quad (2)$$

$$\dot{y}(t; \mu) = \widehat{C}_p(\mu)\hat{x}(t; \mu) + \widehat{C}_v(\mu)\dot{\hat{x}}(t; \mu),$$

with $\widehat{M}(\mu), \widehat{D}(\mu), \widehat{K}(\mu), \widehat{N}_{p,j}(\mu), \widehat{N}_{v,j}(\mu) \in \mathbb{R}^{r \times r}$, for $j = 1, \dots, m$, $\widehat{B}_u(\mu) \in \mathbb{R}^{r \times m}$, $\widehat{C}_p(\mu), \widehat{C}_v(\mu) \in \mathbb{R}^{p \times r}$, and $r \ll n$. Note that the reduced-order model (2) has the same structure as (1) and can be interpreted as a physically meaningful reduced-order mechanical system. The structure preservation can also be very beneficial in terms of computational speed and accuracy; see, e.g., Benner et al. (2021).

Model reduction for linear and general nonlinear (parametric) systems has been studied heavily, especially over the last three decades, using a variety of approaches; see, e.g., Benner et al. (2017), Scarciotti and Astolfi (2017), Schilders et al. (2008) and Quarteroni and Rozza (2014). In recent years, the class of bilinear control systems received additional focus as an important link between linear and nonlinear systems, since they only involve the multiplication of states and inputs as nonlinearities. In this paper, we will concentrate on structure-preserving model reduction for parametric bilinear systems. For parametric *unstructured (classical)* bilinear systems, i.e., for systems of the form

$$E(\mu)\dot{x}(t; \mu) = A(\mu)x(t; \mu) + B(\mu)u(t) + \sum_{j=1}^m N_j(\mu)x(t; \mu)u_j(t), \quad (3)$$

$$y(t; \mu) = C(\mu)x(t; \mu),$$

the interpolatory parametric model reduction framework was developed in Rodriguez et al. (2018) by synthesizing the interpolation theory for parametric linear dynamical systems from, e.g., (Antoulas et al., 2020; Baur et al., 2011), with the subsystem interpolation approaches for bilinear systems; see Antoulas et al. (2020), Bai and Skoogh (2006), Breiten and Damm (2010) and Condon and Ivanov (2007). There are other approaches to model reduction of unstructured bilinear systems, e.g., bilinear balanced truncation from (Al-Baiyat et al., 1993; Benner & Damm, 2011; Hsu et al., 1983), Volterra series interpolation as in Benner and Breiten (2012), Flagg and Gugercin (2015) and Zhang and Lam (2002), or the bilinear Loewner framework from Antoulas et al. (2016) and Gosea et al. (2019). Those approaches do neither provide extensions for the parametric bilinear system case nor have extensions for structured systems and, therefore, will not be further discussed in this paper. Recently in Benner et al. (2021), the structured interpolation framework of Beattie and Gugercin (2009) for linear dynamical systems has been extended to the case of *non-parametric* structured bilinear systems. In this paper, we will extend this interpolation theory to the case of *structured parametric* bilinear systems by developing the subspace conditions to be enforced in the projection-based model reduction framework.

In Section 2, we introduce basic mathematical concepts and notation. We prove the structure-preserving interpolation framework for parametric bilinear systems in Section 3. The established theory is then extended in Section 4 to the interpolation of parameter sensitivities. Section 5 illustrates the analysis in two numerical benchmark examples, followed by conclusions in Section 6.

2. Mathematical preliminaries

For a complex-valued matrix $X \in \mathbb{C}^{n \times m}$, $X^H := \overline{X}^T$ will denote its conjugate transpose. Given two matrices $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{p \times q}$, $(A \otimes B)$ will denote the Kronecker product, i.e.,

$$A \otimes B := \begin{bmatrix} a_{11}B & \cdots & a_{1m}B \\ \vdots & & \vdots \\ a_{n1}B & \cdots & a_{nm}B \end{bmatrix} \in \mathbb{C}^{np \times mq},$$

where a_{ij} is the (i, j) -th element of A .

Under some mild assumptions, the output of the bilinear system (3) can be rewritten in terms of a Volterra series, i.e.,

$$\begin{aligned} y(t; \mu) &= \sum_{k=1}^{\infty} \int_0^t \int_0^{t_1} \cdots \int_0^{t_{k-1}} g_k(t_1, \dots, t_k, \mu) \\ &\quad \times \left(u(t - \sum_{i=1}^k t_i) \otimes \cdots \otimes u(t - t_1) \right) dt_k \cdots dt_1, \end{aligned}$$

where g_k denotes the k th regular Volterra kernel; see, e.g., Rugh (1981). Using the multivariate Laplace transformation from Rugh (1981), the regular Volterra kernels yield the frequency representation

$$\begin{aligned} G_k(s_1, \dots, s_k, \mu) &= C(\mu)(s_k E(\mu) - A(\mu))^{-1} \\ &\quad \times \left(\prod_{j=1}^{k-1} (I_{m^{j-1}} \otimes N(\mu))(I_{m^j} \otimes (s_{k-j} E(\mu) - A(\mu))^{-1}) \right) \\ &\quad \times (I_{m^{k-1}} \otimes B(\mu)), \end{aligned} \quad (4)$$

with $k \geq 1$, as the k th regular subsystem transfer function of (3), where $N(\mu) = [N_1(\mu), \dots, N_m(\mu)]$. The model reduction theory in Rodriguez et al. (2018) is based on the interpolation of (4), i.e., unstructured (classical) parametric subsystems.

In this paper, we consider a much more general setting of multivariate transfer functions. The interpolation of structured transfer functions for linear systems was developed in Beattie and Gugercin (2009) and then extended to the parametric setting in Antoulas et al. (2010). As the structured transfer functions were recently extended to non-parametric bilinear systems in Benner et al. (2021), we consider here *structured parametric multivariate transfer functions* of the form

$$\begin{aligned} G_k(s_1, \dots, s_k, \mu) &= C(s_k, \mu)K(s_k, \mu)^{-1} \\ &\quad \times \left(\prod_{j=1}^{k-1} (I_{m^{j-1}} \otimes \mathcal{N}(s_{k-j}, \mu))(I_{m^j} \otimes K(s_{k-j}, \mu)^{-1}) \right) \\ &\quad \times (I_{m^{k-1}} \otimes B(s_1, \mu)), \end{aligned} \quad (5)$$

with $k \geq 1$, frequency points $s_1, \dots, s_k \in \mathbb{C}$, parameters $\mu \in \mathbb{M} \subset \mathbb{R}^d$, $\mathcal{N}(s, \mu) = [N_1(s, \mu), \dots, N_m(s, \mu)]$, and matrix functions

$$C: \mathbb{C} \times \mathbb{M} \rightarrow \mathbb{C}^{p \times n}, \quad K: \mathbb{C} \times \mathbb{M} \rightarrow \mathbb{C}^{n \times n},$$

$$B: \mathbb{C} \times \mathbb{M} \rightarrow \mathbb{C}^{r \times m}, \quad N_j: \mathbb{C} \times \mathbb{M} \rightarrow \mathbb{C}^{n \times n},$$

for $j = 1, \dots, m$. For the parametric bilinear mechanical system (1), these matrix functions are realized by

$$K(s, \mu) = s^2 M(\mu) + s D(\mu) + K(\mu),$$

$$N_j(s, \mu) = N_{p,j}(\mu) + s N_{v,j}(\mu) \text{ for } j = 1, \dots, m,$$

$$B(s, \mu) = B_u(\mu), \text{ and } C(s, \mu) = C_p(\mu) + s C_v(\mu).$$

The reduced-order models are then computed by projection: Given model reduction bases $V, W \in \mathbb{C}^{n \times r}$, the reduced-order model \widehat{G} is described by the reduced-order matrix functions

$$\begin{aligned} \widehat{C}(s, \mu) &= C(s, \mu)V, & \widehat{K}(s, \mu) &= W^H K(s, \mu)V, \\ \widehat{B}(s, \mu) &= W^H B(s, \mu), & \widehat{N}_j(s, \mu) &= W^H N_j(s, \mu)V, \end{aligned} \quad (6)$$

for $j = 1, \dots, m$. Model reduction by projection in the sense of (6) is structure-preserving by nature. In general, every matrix-valued function can be affinely decomposed with respect to its arguments, here frequency and parameter, and we can write

$$K(s, \mu) = \sum_{j=1}^{n_K} h_{K,j}(s, \mu) \mathcal{K}_j, \quad (7)$$

where $h_{K,j}: \mathbb{C} \times \mathbb{M} \rightarrow \mathbb{C}$ are scalar functions depending on frequency and parameter, and $\mathcal{K}_j \in \mathbb{C}^{n \times n}$ are constant matrices, for $j = 1, \dots, n_K$. In the worst-case scenario, we have $n_K = n^2$ and the \mathcal{K}_j 's are elementary matrices. However, we are interested in cases where $n_K \ll n$, which is true in most applications. In the numerical examples we present in Section 5, n_K is at most 3. The choice of the scalar functions $h_{K,j}$ encodes the internal structure of the system. Using the affine decomposition, the reduced-order matrix function is given by

$$\widehat{K}(s, \mu) = \sum_{j=1}^{n_K} h_{K,j}(s, \mu) W^H \mathcal{K}_j V = \sum_{j=1}^{n_K} h_{K,j}(s, \mu) \widehat{\mathcal{K}}_j.$$

This works analogously for the other matrix functions in (6), which gives a computable realization of the reduced-order model. Since the functions $h_{K,j}$ stay unchanged, the internal structure and parameter dependency of the original matrix functions (and thus of the original system) are retained. The reduced-order model is then given by replacing the original system matrices in the affine decomposition (7) by their reduced-order counterparts.

In the following, we will use an abbreviation for the notion of partial derivatives, namely we denote

$$\partial_{s_1^{j_1} \dots s_k^{j_k}} f(z_1, \dots, z_k) := \frac{\partial^{j_1 + \dots + j_k}}{\partial s_1^{j_1} \dots \partial s_k^{j_k}}(t_1, \dots, t_k),$$

for the differentiation of an analytic function $f: \mathbb{C}^k \rightarrow \mathbb{C}^\ell$ with respect to the variables s_1, \dots, s_k and evaluated at z_1, \dots, z_k . Also, we denote the vertical concatenation of the bilinear terms by

$$\widetilde{\mathcal{N}}(s, \mu) = \begin{bmatrix} \mathcal{N}_1(s, \mu) \\ \vdots \\ \mathcal{N}_m(s, \mu) \end{bmatrix}.$$

3. Structured interpolation

Interpolatory model reduction has been one of the most commonly used and effective approaches to model reduction and shown to provide locally optimal reduced models for linear, bilinear, quadratic-bilinear dynamical systems; we refer the reader to Antoulas et al. (2020), Baur et al. (2014), Scarciotti and Astolfi (2017) and references therein for details on interpolatory model reduction for linear and nonlinear systems. In this setting, one chooses V and W in (6) such that the reduced-order transfer functions interpolate the transfer functions of the original system at selected points. In the setting of parametric structured multivariate transfer functions G_k in (5), we want to construct V and W such that the reduced transfer functions

$$\begin{aligned} \widehat{G}_k(s_1, \dots, s_k, \mu) &= \widehat{C}(s_k, \mu) \widehat{K}(s_k, \mu)^{-1} \\ &\times \left(\prod_{j=1}^{k-1} (I_{m^{j-1}} \otimes \widehat{\mathcal{N}}(s_{k-j}, \mu)) (I_{m^j} \otimes \widehat{K}(s_{k-j}, \mu)^{-1}) \right) \\ &\times (I_{m^{k-1}} \otimes \widehat{\mathcal{B}}(s_1, \mu)), \end{aligned} \quad (8)$$

with $k \geq 1$, satisfy

$$G_k(\sigma_1, \dots, \sigma_k, \hat{\mu}) = \widehat{G}_k(\sigma_1, \dots, \sigma_k, \hat{\mu}) \quad \text{and} \quad (9)$$

$$\nabla G_k(\sigma_1, \dots, \sigma_k, \hat{\mu}) = \nabla \widehat{G}_k(\sigma_1, \dots, \sigma_k, \hat{\mu}), \quad (10)$$

for given frequency interpolation points $\sigma_1, \dots, \sigma_k \in \mathbb{C}$, the parameter interpolation point $\hat{\mu} \in \mathbb{M}$, and where ∇G_k denotes the Jacobian matrix

$$\nabla G_k = [\partial_{s_1} G_k, \dots, \partial_{s_k} G_k, \partial_{\mu_1} G_k, \dots, \partial_{\mu_d} G_k].$$

We emphasize that for multi-input/multi-output (MIMO) systems we consider here, the transfer functions G_k are matrix valued. Therefore, the conditions in (9) and (10) enforce matrix interpolation. This is not usually needed. For MIMO linear dynamical systems, for example, one enforces tangential interpolation, meaning matrix-interpolation along selected directions; see, e.g., Antoulas et al. (2020). However, for brevity and to keep the notation concise, we will focus on matrix interpolation.

Even though we have only listed two sets of interpolation conditions in (9) and (10), Theorems 1 and 2 will show how to construct V and W to enforce interpolation for more general cases, including higher-order partial derivatives. The recent work in Benner et al. (2021) showed how to enforce (9) and (10) for non-parametric structured bilinear systems. Our theory below will extend these results to the parametric case. Note that the first condition (9) does not involve any differentiation with respect to the parameter $\hat{\mu}$ and can be viewed as interpolation for a fixed parameter $\mu = \hat{\mu}$. Therefore, we might expect that the subspace constructions from Benner et al. (2021) for the non-parametric problem might yield the desired subspaces. This is indeed what we discuss first in Theorems 1 and 2. However, the second condition (10) involves matching sensitivity with respect to the parameter as well, which will be discussed in Section 4.

Theorem 1 (Structured Matrix Interpolation). *Let G be a parametric bilinear system, with its structured subsystem transfer functions G_k in (5), and \widehat{G} be the reduced-order parametric bilinear system, constructed as in (6) with its subsystem transfer functions \widehat{G}_k in (8). Let the matrix functions $C(s, \mu)$, $K(s, \mu)^{-1}$, $\mathcal{N}(s, \mu)$, $\mathcal{B}(s, \mu)$, and $\widehat{K}(s, \mu)^{-1}$ be defined for given sets of frequency interpolation points $\sigma_1, \dots, \sigma_k \in \mathbb{C}$ and $s_1, \dots, s_\theta \in \mathbb{C}$, and the parameter interpolation point $\hat{\mu} \in \mathbb{M}$.*

(a) *If V is constructed such that*

$$\text{span}(V) \supseteq \text{span}([V_1, \dots, V_k]),$$

where

$$\begin{aligned} V_1 &= \mathcal{K}(\sigma_1, \hat{\mu})^{-1} \mathcal{B}(\sigma_1, \hat{\mu}) \text{ and} \\ V_j &= \mathcal{K}(\sigma_j, \hat{\mu})^{-1} \mathcal{N}(\sigma_{j-1}, \hat{\mu}) (I_m \otimes V_{j-1}), \end{aligned} \quad (11)$$

for $2 \leq j \leq k$, then the following interpolation conditions hold true:

$$G_j(\sigma_1, \dots, \sigma_j, \hat{\mu}) = \widehat{G}_j(\sigma_1, \dots, \sigma_j, \hat{\mu}), \quad (12)$$

for $j = 1, \dots, k$.

(b) *If W is constructed such that*

$$\text{span}(W) \supseteq \text{span}([W_1, \dots, W_\theta]),$$

where

$$W_1 = \mathcal{K}(\sigma_\theta, \hat{\mu})^{-H} \mathcal{C}(\sigma_\theta, \hat{\mu})^H \text{ and}$$

$$W_i = \mathcal{K}(\sigma_{\theta-i+1}, \hat{\mu})^{-H} \widetilde{\mathcal{N}}(\sigma_{\theta-i+1}, \hat{\mu})^H (I_m \otimes W_{i-1}),$$

for $2 \leq i \leq \theta$, then the following interpolation conditions hold true:

$$G_i(\sigma_{\theta-i+1}, \dots, \sigma_\theta, \hat{\mu}) = \widehat{G}_i(\sigma_{\theta-i+1}, \dots, \sigma_\theta, \hat{\mu}), \quad (13)$$

for $i = 1, \dots, \theta$.

(c) *Let V be constructed as in Part (a) and W as in Part (b). Then, in addition to (12) and (13), the interpolation conditions*

$$\begin{aligned} & G_{q+\eta}(\sigma_1, \dots, \sigma_q, \varsigma_{\theta-\eta+1}, \dots, \varsigma_\theta, \hat{\mu}) \\ &= \widehat{G}_{q+\eta}(\sigma_1, \dots, \sigma_q, \varsigma_{\theta-\eta+1}, \dots, \varsigma_\theta, \hat{\mu}), \\ & \text{hold for } 1 \leq q \leq k \text{ and } 1 \leq \eta \leq \theta. \end{aligned} \quad (14)$$

Proof. Given the fixed parameter $\hat{\mu} \in \mathbb{M}$, the matrix functions $\mathcal{C}(s, \hat{\mu}), \mathcal{K}(s, \hat{\mu}), \mathcal{N}(s, \hat{\mu})$ and $\mathcal{B}(s, \hat{\mu})$ can be viewed as the realization of a non-parametric bilinear system. Then, the interpolation conditions (12)–(14) can be considered as subsystem interpolation of a non-parametric bilinear system as these conditions do not involve any variation/sensitivity with respect to μ . Therefore, the subspace conditions in Benner et al. (2021, Theorem 8), for interpolating a non-parametric structured bilinear system, apply here as well, which are precisely the subspace conditions listed in Parts (a)–(c). However, to make the paper self-contained and the proof of Theorem 4 in Section 4 easier to follow, we will still prove Part (a) for $k = 2$. By induction over k , the rest of the result in (a) follows directly using the same arguments. Using (8), the second reduced-order transfer function is given by

$$\begin{aligned} \widehat{G}_2(\sigma_1, \sigma_2, \hat{\mu}) &= \widehat{\mathcal{C}}(\sigma_2, \hat{\mu}) \widehat{\mathcal{K}}(\sigma_2, \hat{\mu})^{-1} \widehat{\mathcal{N}}(\sigma_1, \hat{\mu}) \\ &\quad \times (I_m \otimes \widehat{\mathcal{K}}(\sigma_1, \hat{\mu})^{-1}) (I_m \otimes \widehat{\mathcal{B}}(\sigma_1, \hat{\mu})). \end{aligned}$$

We observe that with (6) it holds

$$\begin{aligned} & (I_m \otimes V) (I_m \otimes \widehat{\mathcal{K}}(\sigma_1, \hat{\mu})^{-1}) (I_m \otimes \widehat{\mathcal{B}}(\sigma_1, \hat{\mu})) \\ &= (I_m \otimes \underbrace{V \widehat{\mathcal{K}}(\sigma_1, \hat{\mu})^{-1} W^H \mathcal{K}(\sigma_1, \hat{\mu})}_{P_{V_1}}) \underbrace{\mathcal{K}(\sigma_1, \hat{\mu})^{-1} \mathcal{B}(\sigma_1, \hat{\mu})}_{V_1}), \end{aligned}$$

where P_{V_1} is a projector onto $\text{span}(V)$ and V_1 is as defined in (11). By construction, we have $\text{span}(V_1) \subseteq \text{span}(V)$; thus $P_{V_1} V_1 = V_1$ and, therefore

$$\begin{aligned} & (I_m \otimes V) (I_m \otimes \widehat{\mathcal{K}}(\sigma_1, \hat{\mu})^{-1}) (I_m \otimes \widehat{\mathcal{B}}(\sigma_1, \hat{\mu})) \\ &= (I_m \otimes \mathcal{K}(\sigma_1, \hat{\mu})^{-1}) (I_m \otimes \mathcal{B}(\sigma_1, \hat{\mu})). \end{aligned}$$

Then, \widehat{G}_2 can be written as

$$\widehat{G}_2(\sigma_1, \sigma_2, \hat{\mu}) = \mathcal{C}(\sigma_2, \hat{\mu}) V \widehat{\mathcal{K}}(\sigma_2, \hat{\mu})^{-1} W^H \mathcal{N}(\sigma_1, \hat{\mu}) (I_m \otimes V_1).$$

Also, it holds that

$$\begin{aligned} & V \widehat{\mathcal{K}}(\sigma_2, \hat{\mu})^{-1} W^H \mathcal{N}(\sigma_1, \hat{\mu}) (I_m \otimes V_1) \\ &= \underbrace{V \widehat{\mathcal{K}}(\sigma_2, \hat{\mu})^{-1} W^H \mathcal{K}(\sigma_2, \hat{\mu})}_{P_{V_2}} \underbrace{\mathcal{K}(\sigma_2, \hat{\mu})^{-1} \mathcal{N}(\sigma_1, \hat{\mu}) (I_m \otimes V_1)}_{V_2} \\ &= \mathcal{K}(\sigma_2, \hat{\mu})^{-1} \mathcal{N}(\sigma_1, \hat{\mu}) (I_m \otimes V_1), \end{aligned}$$

using the fact that P_{V_2} is another projector onto $\text{span}(V)$ and that $\text{span}(V_2) \subseteq \text{span}(V)$. Inserting this last equality into the second reduced-order transfer function yields

$$\widehat{G}_2(\sigma_1, \sigma_2, \hat{\mu}) = G_2(\sigma_1, \sigma_2, \hat{\mu}).$$

Constructing further projectors onto $\text{span}(V)$ for higher-order transfer functions gives the result in (a). The result in Part (b) follows exactly the same way by using the Hermitian transposed matrix functions and constructing now projectors onto $\text{span}(W)$. Part (c) is then resulting from the application of both types of projectors onto $\text{span}(V)$ and $\text{span}(W)$. \square

In practice, one would construct the final basis matrices V and W via a rank-revealing orthogonalization of the concatenation, e.g., $[V_1, \dots, V_k]$. This could be done, for example, via a rank-revealing QR decomposition or SVD afterwards, or by a repeated re-orthogonalization process in every step after each computation of the next V_i . This yields basis matrices with orthonormal columns and reveals rank deficiency in the constructed matrices, leading to smaller subspace dimension and thus a smaller reduced order.

In Theorem 1, only function values are matched, i.e., the zeroth derivative. The following theorem extends these results to matching higher-order derivatives in the frequency arguments, i.e., to enforce Hermite interpolation conditions.

Theorem 2 (Hermite Matrix Interpolation). Let G be a parametric bilinear system, with its structured subsystem transfer functions G_k in (5) and \widehat{G} be the reduced-order parametric bilinear system, constructed as in (6) with its subsystem transfer functions \widehat{G}_k in (8). Let the matrix functions $\mathcal{C}(s, \mu), \mathcal{K}(s, \mu)^{-1}, \mathcal{N}(s, \mu), \mathcal{B}(s, \mu)$, and $\widehat{\mathcal{K}}(s, \mu)^{-1}$ be analytic for given sets of frequency interpolation points $\sigma_1, \dots, \sigma_k \in \mathbb{C}$ and $\varsigma_1, \dots, \varsigma_\theta \in \mathbb{C}$, and the parameter interpolation point $\hat{\mu} \in \mathbb{M}$.

(a) If V is constructed such that

$$\text{span}(V) \supseteq \text{span}([V_{1,0}, \dots, V_{k,\ell_k}]),$$

where

$$\begin{aligned} V_{1,j_1} &= \partial_{s^{j_1}} (\mathcal{K}^{-1} \mathcal{B})(\sigma_1, \hat{\mu}) \text{ and} \\ V_{q,j_q} &= \partial_{s^{j_q}} \mathcal{K}^{-1}(\sigma_q, \hat{\mu}) \\ &\quad \times \left(\prod_{j=1}^{q-2} \partial_{s^{j_{q-j}}} ((I_{m^{j-1}} \otimes \mathcal{N})(I_{m^j} \otimes \mathcal{K})) (\sigma_{q-j}, \hat{\mu}) \right) \\ &\quad \times \partial_{s^{\ell_1}} ((I_{m^{q-2}} \otimes \mathcal{N})(I_{m^{q-1}} \otimes \mathcal{K}) \\ &\quad \times (I_{m^{q-1}} \otimes \mathcal{B})) (\sigma_1, \hat{\mu}), \end{aligned}$$

for $2 \leq q \leq k$ and $0 \leq j_1 \leq \ell_1; 0 \leq j_q \leq \ell_q$, then the following interpolation conditions hold true:

$$\begin{aligned} & \partial_{s_1^{\ell_1} \dots s_{q-1}^{\ell_{q-1}} s_q^{j_q}} G_q(\sigma_1, \dots, \sigma_q, \hat{\mu}) \\ &= \partial_{s_1^{\ell_1} \dots s_{q-1}^{\ell_{q-1}} s_q^{j_q}} \widehat{G}_q(\sigma_1, \dots, \sigma_q, \hat{\mu}), \end{aligned} \quad (15)$$

for $q = 1, \dots, k$ and $j_q = 0, \dots, \ell_q$.

(b) If W is constructed such that

$$\text{span}(W) \supseteq \text{span}([W_{1,0}, \dots, W_{\theta,v_\theta}]),$$

where

$$\begin{aligned} W_{1,i_\theta} &= \partial_{s^{\ell_\theta}} (\mathcal{K}^{-H} \mathcal{C}^H)(\varsigma_\theta, \hat{\mu}) \text{ and} \\ W_{\eta, i_{\theta-\eta+1}} &= \partial_{s^{i_{\theta-\eta+1}}} (\mathcal{K}^{-H} \widetilde{\mathcal{N}}^H)(\varsigma_{\theta-\eta+1}, \hat{\mu}) \\ &\quad \times \left(\prod_{i=\theta-\eta+2}^{\theta-1} \partial_{s^{v_i}} (I_{m^{i-1}} \otimes \mathcal{K}^{-H} \widetilde{\mathcal{N}}^H)(\varsigma_i, \hat{\mu}) \right) \\ &\quad \times (I_{m^{\theta-1}} \otimes \partial_{s^{v_\theta}} (\mathcal{K}^{-H} \mathcal{C}^H)(\varsigma_\theta, \hat{\mu})), \end{aligned}$$

for $2 \leq \eta \leq \theta$ and $0 \leq i_\theta \leq v_\theta; 0 \leq i_{\theta-\eta+1} \leq v_{\theta-\eta+1}$, then the following interpolation conditions hold true:

$$\begin{aligned} & \partial_{s_1^{i_{\theta-\eta+1}} s_2^{v_{\theta-\eta+2}} \dots s_\theta^{v_\theta}} G_\eta(\varsigma_{\theta-\eta+1}, \dots, \varsigma_\theta, \hat{\mu}) \\ &= \partial_{s_1^{i_{\theta-\eta+1}} s_2^{v_{\theta-\eta+2}} \dots s_\theta^{v_\theta}} \widehat{G}_\eta(\varsigma_{\theta-\eta+1}, \dots, \varsigma_\theta, \hat{\mu}), \end{aligned} \quad (16)$$

for $\eta = 1, \dots, \theta$ and $i_{\theta-\eta+1} = 0, \dots, v_{\theta-\eta+1}$.

(c) Let V be constructed as in (a) and W as in (b). Then, in addition to (15) and (16), the interpolation conditions (17) hold for $j_q = 0, \dots, \ell_q; i_{\theta-\eta+1} = 0, \dots, v_{\theta-\eta+1}; 1 \leq q \leq k$ and $1 \leq \eta \leq \theta$.

$$\begin{aligned} & \partial_{s_1^{\ell_1} \dots s_{q-1}^{\ell_{q-1}} s_q^j s_{q+1}^{\ell_{q+1}} s_{q+2}^{\ell_{q+2}} \dots s_{q+\eta}^{\ell_{q+\eta}}} G_{q+\eta}(\sigma_1, \dots, \sigma_q, \sigma_{\theta-\eta+1}, \dots, \sigma_\theta, \hat{\mu}) \\ &= \partial_{s_1^{\ell_1} \dots s_{q-1}^{\ell_{q-1}} s_q^j s_{q+1}^{\ell_{q+1}} s_{q+2}^{\ell_{q+2}} \dots s_{q+\eta}^{\ell_{q+\eta}}} \widehat{G}_{q+\eta}(\sigma_1, \dots, \sigma_q, \sigma_{\theta-\eta+1}, \dots, \sigma_\theta, \hat{\mu}) \end{aligned} \quad (17)$$

Proof. As in [Theorem 1](#), all the interpolation conditions are for a fixed parameter $\hat{\mu} \in \mathbb{M}$, i.e., they can be proven using a similar construction of projectors onto suitable subspaces as in [Theorem 1](#). Therefore, the subspace conditions in [Benner et al. \(2021, Theorem 9\)](#) can be applied here, which are precisely the subspace conditions listed in [Theorem 2](#). \square

Remark 3. We note that the major computational cost stems from solving (sparse) linear systems of equations to construct the basis matrices V and W , as common to the interpolatory model reduction framework in general.

4. Matching parameter sensitivities

So far, the interpolation conditions enforced did not show variability with respect to the parameter μ . Even in the Hermite conditions matched in [Theorem 2](#), the matched derivatives (sensitivities) are with respect to the frequency points. This enabled us to directly employ the conditions and analysis from [Benner et al. \(2021\)](#). However, for parametric systems it is important to match the sensitivity with respect to the parameter variation as well. This is what we establish in the next result, extending similar results from linear dynamics in [Baur et al. \(2011\)](#) and unstructured bilinear dynamics in [Rodriguez et al. \(2018\)](#) to the new parametric structured framework. An important conclusion is that the parameter sensitivity is matched implicitly, i.e., without ever explicitly computing it. This is achieved by using the same set of frequency and parameter interpolation points for V and W .

Theorem 4 (Two-sided Matrix Interpolation). *Let G be a parametric bilinear system with its structured subsystem transfer functions G_k in (5) and \widehat{G} be the reduced-order parametric bilinear system, constructed as in (6) with its subsystem transfer functions \widehat{G}_k in (8). Let the matrix functions $C(s, \mu)$, $\mathcal{K}(s, \mu)^{-1}$, $\mathcal{N}(s, \mu)$, $\mathcal{B}(s, \mu)$, and $\widehat{\mathcal{K}}(s, \mu)^{-1}$ be analytic for a given set of frequency interpolation points $\sigma_1, \dots, \sigma_k \in \mathbb{C}$ and the parameter interpolation point $\hat{\mu} \in \mathbb{M}$.*

(a) *Let V be constructed as in [Theorem 1](#) Part (a) and W be constructed as in [Theorem 1](#) Part (b) with $\varsigma_i = \sigma_i$ for $i = 1, 2, \dots, k$. Then, in addition to (12)–(14) it holds*

$$\nabla G_k(\sigma_1, \dots, \sigma_k, \hat{\mu}) = \nabla \widehat{G}_k(\sigma_1, \dots, \sigma_k, \hat{\mu}). \quad (18)$$

(b) *Let V be constructed as in [Theorem 2](#) Part (a) and W be constructed as in [Theorem 2](#) Part (b) with $\varsigma_i = \sigma_i$ for $i = 1, 2, \dots, k$. Then, in addition to (15)–(17), it holds*

$$\begin{aligned} & \nabla \left(\partial_{s_1^{\ell_1} \dots s_k^{\ell_k}} G_k(\sigma_1, \dots, \sigma_k, \hat{\mu}) \right) \\ &= \nabla \left(\partial_{s_1^{\ell_1} \dots s_k^{\ell_k}} \widehat{G}_k(\sigma_1, \dots, \sigma_k, \hat{\mu}) \right). \end{aligned} \quad (19)$$

Proof. For brevity, we only prove (18). The proof of (19) follows analogously. As in the proof of [Theorem 1](#), we will construct appropriate projectors onto the projection spaces $\text{span}(V)$ or $\text{span}(W)$. In contrast to [Theorem 2](#), we now also interpolate the derivative with respect to the parameters. Using the product rule, the partial derivative of \widehat{G}_k with respect to a single parameter

entry μ_i , for $1 \leq i \leq d$, is given by

$$\begin{aligned} & \partial_{\mu_i} \widehat{G}_k(\sigma_1, \dots, \sigma_k, \hat{\mu}) \\ &= \sum_{\alpha \in \mathbb{A}} \left(\partial_{\mu_i^{\alpha_1}} \widehat{C}(\sigma_k, \hat{\mu}) \right) \left(\partial_{\mu_i^{\alpha_2}} \widehat{\mathcal{K}}^{-1}(\sigma_k, \hat{\mu}) \right) \\ & \quad \times \left(\prod_{j=1}^{k-1} (I_{m^{j-1}} \otimes \partial_{\mu_i^{\alpha_{2j+1}}} \widehat{\mathcal{N}}(\sigma_{k-j}, \hat{\mu})) \right. \\ & \quad \left. \times (I_{m^j} \otimes \partial_{\mu_i^{\alpha_{2j+2}}} \widehat{\mathcal{K}}^{-1}(\sigma_{k-j}, \hat{\mu})) \right) \\ & \quad \times (I_{m^{k-1}} \otimes \partial_{\mu_i^{\alpha_{2k+1}}} \widehat{\mathcal{B}}(\sigma_1, \hat{\mu})), \end{aligned} \quad (20)$$

where \mathbb{A} denotes the set of all columns of the identity matrix of size $2k + 1$. In other words, (20) is a sum of $2k + 1$ terms where each term corresponds to the vector α taking a value from this set of columns. Therefore, in each term only a single matrix function is differentiated. We will show that every single term in the sum (20) matches the same term in the full-order model, thus, summed together, proving the desired interpolation property (18). Consider, e.g., the second term in (20), i.e., the term in which α is the second column of the identity matrix: $\alpha = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \dots \ \alpha_{2k+1}]^T = [0 \ 1 \ 0 \ \dots \ 0]^T$. Denote the corresponding term by $\widehat{\mathcal{H}}_2$. Then,

$$\begin{aligned} \widehat{\mathcal{H}}_2 &:= \widehat{C}(\sigma_k, \hat{\mu}) \left(\partial_{\mu_i} \widehat{\mathcal{K}}^{-1}(\sigma_k, \hat{\mu}) \right) \\ & \quad \times \left(\prod_{j=1}^{k-1} (I_{m^{j-1}} \otimes \widehat{\mathcal{N}}(\sigma_{k-j}, \hat{\mu})) \right. \\ & \quad \left. \times (I_{m^j} \otimes \widehat{\mathcal{K}}(\sigma_{k-j}, \hat{\mu})^{-1}) \right) (I_{m^{k-1}} \otimes \widehat{\mathcal{B}}(\sigma_1, \hat{\mu})). \end{aligned}$$

The derivative of the inverse appearing in $\widehat{\mathcal{H}}_2$ is given by

$$\partial_{\mu_i} \widehat{\mathcal{K}}^{-1}(\sigma_k, \hat{\mu}) = -\widehat{\mathcal{K}}(\sigma_k, \hat{\mu})^{-1} \left(\partial_{\mu_i} \widehat{\mathcal{K}}(\sigma_k, \hat{\mu}) \right) \widehat{\mathcal{K}}(\sigma_k, \hat{\mu})^{-1}.$$

Therefore, $\widehat{\mathcal{H}}_2$ can be rewritten as

$$\begin{aligned} \widehat{\mathcal{H}}_2 &= -\widehat{C}(\sigma_k, \hat{\mu}) \widehat{\mathcal{K}}(\sigma_k, \hat{\mu})^{-1} \left(\partial_{\mu_i} \widehat{\mathcal{K}}(\sigma_k, \hat{\mu}) \right) \widehat{\mathcal{K}}(\sigma_k, \hat{\mu})^{-1} \\ & \quad \times \left(\prod_{j=1}^{k-1} (I_{m^{j-1}} \otimes \widehat{\mathcal{N}}(\sigma_{k-j}, \hat{\mu})) \right. \\ & \quad \left. \times (I_{m^j} \otimes \widehat{\mathcal{K}}(\sigma_{k-j}, \hat{\mu})^{-1}) \right) (I_{m^{k-1}} \otimes \widehat{\mathcal{B}}(\sigma_1, \hat{\mu})) \\ &=: -\widehat{W}_1^H \left(\partial_{\mu_i} \widehat{\mathcal{K}}(\sigma_k, \hat{\mu}) \right) \widehat{V}_k. \end{aligned}$$

Noting that the model reduction matrix V is constructed as in [Theorem 1](#), we obtain

$$V \widehat{V}_k = \underbrace{V \widehat{\mathcal{K}}(\sigma_k, \hat{\mu})^{-1} W^H \mathcal{K}(\sigma_k, \hat{\mu}) V_k}_{P_{V_k}} = V_k,$$

where P_{V_k} is a projector onto $\text{span}(V)$. Similarly, we have

$$W \widehat{W}_1 = \underbrace{W \widehat{\mathcal{K}}(\sigma_k, \hat{\mu})^{-H} V^H \mathcal{K}(\sigma_k, \hat{\mu})^H}_{P_{W_1}} \underbrace{\mathcal{K}(\sigma_k, \hat{\mu})^{-H} \mathcal{C}(\sigma_k, \hat{\mu})^H}_{W_1} = W_1,$$

with P_{W_1} a projector onto $\text{span}(W)$. Using those two identities, we obtain

$$\widehat{\mathcal{H}}_2 = -\widehat{W}_1^H W^H \left(\partial_{\mu_i} \mathcal{K}(\sigma_k, \hat{\mu}) \right) V \widehat{V}_k = -W_1^H \left(\partial_{\mu_i} \mathcal{K}(\sigma_k, \hat{\mu}) \right) V_k,$$

i.e., $\widehat{\mathcal{H}}_2$ is identical to the term using the original matrix functions. Since the same technique can be used for all other α values

corresponding the other columns in the set \mathbb{A} , we obtain, for all $1 \leq i \leq d$,

$$\partial_{\mu_i} \widehat{G}_k(\sigma_1, \dots, \sigma_k, \hat{\mu}) = \partial_{\mu_i} G_k(\sigma_1, \dots, \sigma_k, \hat{\mu}). \quad (21)$$

Interpolation of the partial derivatives with respect to the frequency parameters follows by using the fixed parameter $\hat{\mu}$ in Benner et al. (2021, Corollary 2). Together with (21), this proves (18). \square

Remark 5. Theorem 4 shows how to match the parameter sensitivity implicitly without ever computing this quantity. Matching parameter sensitivities is important, especially in the setting of optimization and design. These results can be extended to match the parameter Hessian as well; compare to Rodriguez et al. (2018). However, we skip those details for brevity.

Remark 6. All the results in Theorems 1, 2 and 4 are formulated for a single parameter interpolation point $\hat{\mu} \in \mathbb{M}$. However, the results directly extend to interpolation at multiple parameter sampling points $\hat{\mu}^{(1)}, \dots, \hat{\mu}^{(q)} \in \mathbb{M}$ by constructing the projection spaces for every parameter sample and then concatenating the resulting spaces into a single global projection space. As example, consider the task of interpolating

$$\begin{aligned} G_1(\sigma_1, \hat{\mu}^{(1)}), \quad G_2(\sigma_1, \sigma_2, \hat{\mu}^{(1)}), \\ G_1(\sigma_3, \hat{\mu}^{(2)}), \quad G_2(\sigma_3, \sigma_4, \hat{\mu}^{(2)}), \end{aligned} \quad (22)$$

with the four frequency points $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ and the two parameter points $\hat{\mu}^{(1)}, \hat{\mu}^{(2)}$. Using Theorem 1 Part (a), we can construct basis matrices $V^{(1)}, V^{(2)}$ for the interpolation in either $\hat{\mu}^{(1)}$ or $\hat{\mu}^{(2)}$, respectively. The construction of a reduced-order model that satisfies all interpolation conditions (22) is then given by constructing V such that

$$\text{span}(V) \supseteq \text{span}([V^{(1)}, V^{(2)}]).$$

Remark 7. The results simplify drastically for single-input/single-output (SISO) systems. In that case, the multivariate transfer functions corresponding to bilinear systems (5) can be written without Kronecker products as

$$\begin{aligned} G_k(s_1, \dots, s_k, \mu) = & C(s_k, \mu) \mathcal{K}(s_k, \mu)^{-1} \\ & \times \left(\prod_{j=1}^{k-1} \mathcal{N}(s_{k-j}, \mu) \mathcal{K}(s_{k-j}, \mu)^{-1} \right) B(s_1, \mu), \end{aligned}$$

and the construction of the corresponding projection spaces simplifies such that no Kronecker products are involved anymore.

5. Numerical examples

We illustrate the analysis with two benchmark examples. The experiments reported here have been executed on a machine with 2 Intel(R) Xeon(R) Silver 4110 CPU processors running at 2.10 GHz and equipped with 192 GB total main memory. The computer is run on CentOS Linux release 7.5.1804 (Core) with MATLAB 9.7.0.1190202 (R2019b).

5.1. Parametric bilinear time-delay system

In the first example from Gosea et al. (2019), we consider a time-delayed heated rod modeled by a one-dimensional heat equation

$$\partial_t v(\zeta, t) = \partial_\zeta^2 v(\zeta, t) + a_1(\zeta) v(\zeta, t) + a_2(\zeta) v(\zeta, t-1) + u(t),$$

with homogeneous Dirichlet boundary conditions. We parameterize the diffusivity using the coefficients

$$a_1 = -\mu \sin(\zeta) \text{ and } a_2 = \mu \sin(\zeta), \text{ for } \mu \in [1, 10].$$

The non-parametric example in Gosea et al. (2019) is recovered for $\mu = 2$. After a spatial discretization, we obtain a parametric bilinear system of the form

$$\begin{aligned} \dot{x}(t) &= (A_0 - \mu A_d)x(t) + \mu A_d x(t-1) + Nx(t)u(t) + Bu(t), \\ y(t) &= Cx(t), \end{aligned}$$

with $m = p = 1$ and $n = 5000$. In our structured parametric setting, this model corresponds to the matrix functions

$$\begin{aligned} \mathcal{K}(s, \mu) &= sE - (A_0 - \mu A_d) - \mu e^{-s} A_d, \\ \mathcal{B}(s, \mu) &= B, \quad \mathcal{N}(s, \mu) = N, \text{ and } \mathcal{C}(s, \mu) = C. \end{aligned}$$

The reduced-order model is constructed via Theorem 4 Part (a) with the frequency sampling points $\{\pm 10^{-4}i, \pm 10^4i\}$ and the parameter sampling points $\{1, 5.5, 10\}$ for the first two transfer functions. By construction, the reduced-order model has the same parametric time-delay structure as the original one, where the reduced matrices are given by

$$\begin{aligned} \widehat{E} &= W^H E V, \quad \widehat{A}_0 = W^H A_0 V, \quad \widehat{A}_d = W^H A_d V, \\ \widehat{N} &= W^H N V, \quad \widehat{B} = W^H B, \quad \widehat{C} = C V, \end{aligned}$$

using the orthogonal truncation matrices V and W . The reduced-order system has the state-space dimension $r = 24$.

Fig. 1(a) shows the relative time response error in the output, given by

$$\text{err}_{1,t}(t, \mu) := \frac{|y(t; \mu) - \hat{y}(t; \mu)|}{|y(t; \mu)|},$$

for $t \in [0, 10]$ and $\mu \in [1, 10]$, using the same test input signal as in Gosea et al. (2019), namely, $u(t) = 0.05 (\cos(10t) + \cos(5t))$. The maximum error in the time and parameter domain is

$$\max_{\mu \in [1, 10]} \left(\max_{t \in [0, 10]} \text{err}_{1,t}(t, \mu) \right) \approx 9.993 \cdot 10^{-6},$$

illustrating a high-fidelity parametric reduced model over the full parameter domain. Fig. 1(b) depicts the relative error in the first transfer function over the parameter range, computed as

$$\text{err}_{1,f}(\omega_1, \mu) := \frac{|G_1(\omega_1 i, \mu) - \widehat{G}_1(\omega_1 i, \mu)|}{|G_1(\omega_1 i, \mu)|},$$

where $\omega_1 \in [10^{-4}, 10^4]$ and $\mu \in [1, 10]$. As for the time domain error, we computed the maximum error to be

$$\max_{\mu \in [1, 10]} \left(\max_{\omega_1 \in [10^{-4}, 10^4]} \text{err}_{1,f}(\omega_1, \mu) \right) \approx 7.002 \cdot 10^{-6},$$

showing the accuracy of the parametric reduced model in the frequency domain as well. We computed the maximum relative error in the second transfer function $G_2(s_1, s_2, \mu)$ as well to obtain

$$\max_{\mu \in [1, 10]} \left(\max_{\omega_1, \omega_2 \in [10^{-4}, 10^4]} \text{err}_{1,f}(\omega_1, \omega_2, \mu) \right) \approx 6.657 \cdot 10^{-4},$$

where

$$\text{err}_{1,f}(\omega_1, \omega_2, \mu) := \frac{|G_2(\omega_1 i, \omega_2 i, \mu) - \widehat{G}_2(\omega_1 i, \omega_2 i, \mu)|}{|G_2(\omega_1 i, \omega_2 i, \mu)|}.$$

All these results show that the structure-preserving parametric reduced-order model is an accurate approximation of the original system over the full parameter domain.

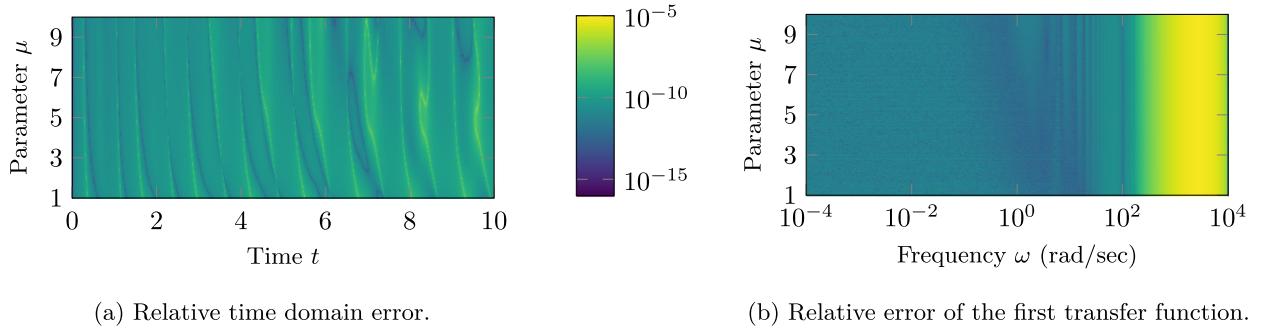


Fig. 1. Relative errors for the time-delay system.

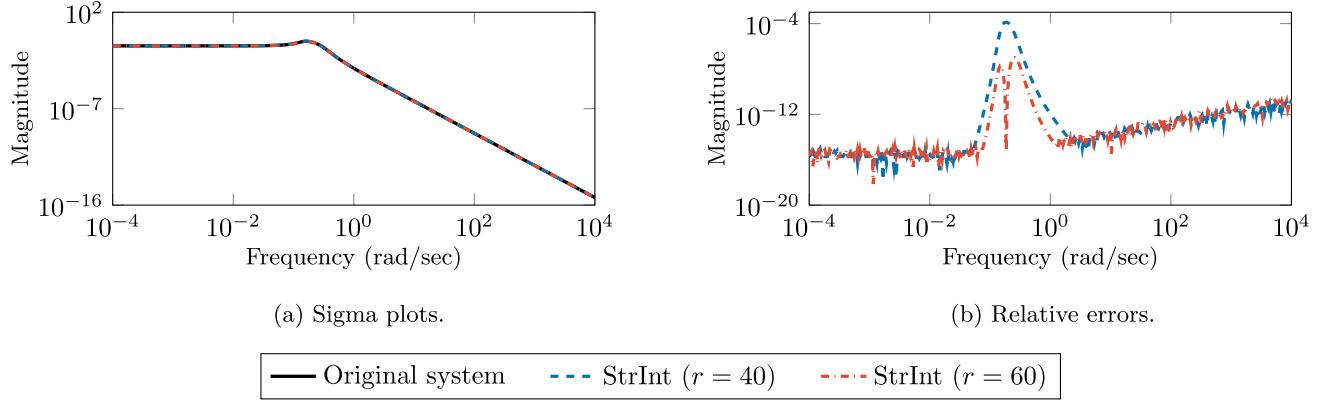


Fig. 2. First transfer functions for the damped mass-spring system.

5.2. Parametric bilinear mechanical system

As second example, we consider a parametrized version of the multi-input/multi-output damped mass-spring system from Benner et al. (2021), a special case of the model (1), given by

$$M\ddot{x}(t; \mu) + D\dot{x}(t; \mu) + Kx(t; \mu) = B_u u(t)$$

$$+ \mu_1 N_{p,1} x(t) u_1(t) + \mu_2 N_{p,2} x(t) u_2(t),$$

$$y(t; \mu) = C_p x(t; \mu) \dot{x}(t; \mu),$$

where $\mu = (\mu_1, \mu_2)$ is the parameter entering through the bilinear terms and all the other matrices are exactly as in Benner et al. (2021), except for C_p , which we set as $C_p = [e_2, e_{n-3}]^T$, where e_j denotes the j th column of the n -dimensional identity matrix. We have then $n = 1000$ masses, $m = 2$ inputs and $p = 2$ outputs. The parameter set is $\mathbb{M} = [0, 1] \times [0, 1]$. Note that for $\mu = (0, 0)$, the system becomes linear as the bilinear terms are multiplied with 0. In our setting, this parametric bilinear model corresponds to

$$\mathcal{K}(s, \mu) = s^2 M + s D + K, \quad \mathcal{B}(s, \mu) = B_u,$$

$$\mathcal{N}(s, \mu) = [\mu_1 N_{p,1}, \quad \mu_2 N_{p,2}], \text{ and } \mathcal{C}(s, \mu) = C_p.$$

Two reduced-order models are constructed via Theorem 1 to illustrate, on the one hand, the qualitative behavior of the structure-preserving reduced-order models, and, on the other hand, the effect of interpolation point selection. For the first reduced-order model, the interpolation points $\{\pm 10^{-4}i, \pm 10^4i\}$ are used in the frequency domain for the first two transfer function levels and combined with $\{(0, 1), (1, 0)\}$ in the parameter domain. To preserve the structural properties, such as positive definiteness of the mass, damping and stiffness matrices, we use a one-sided projection, i.e., we choose $W = V$. Since the first transfer function (the linear term) is independent of the parameter, some of the vectors in the construction of V are redundant and

have been removed, yielding a structured parametric reduced-order model with $r = 40$. The reduced-order system matrices are then given by

$$\begin{aligned} \widehat{M} &= V^H M V, & \widehat{D} &= V^H D V, & \widehat{K} &= V^H K V, \\ \widehat{N}_{p,1} &= V^H N_{p,1} V, & \widehat{N}_{p,2} &= V^H N_{p,2} V, \\ \widehat{B}_u &= V^H B_u, & \widehat{C}_p &= C_p V, \end{aligned}$$

with the orthogonal truncation matrix V .

Next, we investigate the first transfer function of this reduced-order model in Fig. 2. For most frequencies, the relative error, computed by

$$\text{err}_{2,f}(\omega_1) := \frac{\|G_1(\omega_1 i) - \widehat{G}_1(\omega_1 i)\|_2}{\|G(\omega_1 i)\|_2},$$

over the frequency range $\omega_1 \in [10^{-4}, 10^4]$, is at machine precision except for a bump in the middle, where the transfer function behavior changes. To reduce the error in this region, we construct a second reduced-order model by adding an additional frequency interpolation point where the first reduced-order model attains its maximum error, around the frequency $\pm 1.85i$. The second reduced-order model has the order $r = 60$.

Fig. 2 illustrates the expected error behavior. The interpolation is numerically exact in the additional interpolation point and, additionally, has a significantly reduced error in the surrounding region. For a more detailed comparison, we have computed the maximum errors in frequency and time domain, which are provided in Table 1, with

$$\text{err}_{2,t}(\mu) := \max_{j \in \{1, 2\}} \left(\max_{t \in [0, 100]} \frac{|y_j(\cdot; \mu) - \widehat{y}_j(\cdot; \mu)|}{|y_j(\cdot; \mu)|} \right),$$

Table 1

Maximum errors for the damped mass-spring system.

	StrInt ($r = 40$)	StrInt ($r = 60$)
$\max_{\mu} \text{err}_{2,t}(\mu)$	2.7665e-3	8.3947e-6
$\max_{\omega_1} \text{err}_{2,f}(\omega_1)$	1.3407e-4	9.9974e-8
$\max_{\mu, \omega_1, \omega_2} \text{err}_{2,f}(\omega_1, \omega_1, \mu)$	1.4242e-3	9.1448e-6

for the time simulations using the input signal $u(t) = [\sin(200t) + 200, -\cos(200t) - 200]^T$, and

$$\text{err}_{2,f}(\omega_1, \omega_1, \mu) := \frac{\|G_2(\omega_1 i, \omega_2 i, \mu) - \widehat{G}_2(\omega_1 i, \omega_2 i, \mu)\|_2}{\|G_2(\omega_1 i, \omega_2 i, \mu)\|_2},$$

for the second transfer functions with $\omega_1, \omega_2 \in [10^{-4}, 10^{+4}]$ and $\mu \in [0, 1]^2$. In both frequency and time domains, the errors of the larger reduced-order model with the additional interpolation point are significantly smaller than for the smaller reduced system. This suggests that a greedy procedure based on an error estimator, and selecting the next interpolation point based on minimizing the error with respect to the estimator as suggested for linear parametric time-invariant systems in Feng and Benner (2019) will be a promising future research direction.

6. Conclusions

We have presented a structure-preserving interpolation framework for model order reduction of parametric bilinear systems. We have established the subspace conditions to enforce interpolation both in the frequency and parameter domains. Two numerical examples illustrate that the approach is well suited for efficient structure-preserving model order reduction of parametric bilinear systems. The presented approach covers arbitrary parameter dependencies of the system as well as more system structures than shown in the examples.

An important open question is the appropriate choice of interpolation points in the frequency as well as the parameter domains to minimize the approximation error in some appropriate measure. In the parametric linear system case, this problem can be solved using error estimators in a greedy interpolation point selection. But for parametric bilinear systems, such error estimators are not yet developed. Preservation of stability in the structured parametric bilinear reduced-order model is another important avenue to investigate. While there are some special structures where stability can be preserved, this is a topic of future research for the general bilinear structure we considered in this paper.

Acknowledgments

Benner and Werner were supported by the German Research Foundation (DFG) Research Training Group 2297 “MathCoRe”, Magdeburg. Gugercin was supported in parts by National Science Foundation, USA under Grant No. DMS-1720257 and DMS-1819110. Part of this material is based upon work supported by the National Science Foundation, USA under Grant No. DMS-1439786 and by the Simons Foundation Grant, USA No. 507536 while Gugercin and Benner were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the “Model and dimension reduction in uncertain and dynamic systems” program.

References

Al-Baiyat, S., Farag, A. S., & Bettayeb, M. (1993). Transient approximation of a bilinear two-area interconnected power system. *Electric Power Systems Research*, 26(1), 11–19.

Antoulas, A. C., Beattie, C. A., & Gugercin, S. (2010). Interpolatory model reduction of large-scale dynamical systems. In J. Mohammadpour, & K. M. Grigoriadis (Eds.), *Efficient modeling and control of large-scale systems* (pp. 3–58). Springer US.

Antoulas, A. C., Beattie, C. A., & Gugercin, S. (2020). *Computational science & engineering, Interpolatory methods for model reduction*. Philadelphia, PA: Society for Industrial and Applied Mathematics.

Antoulas, A. C., Gosea, I. V., & Ionita, A. C. (2016). Model reduction of bilinear systems in the loewner framework. *SIAM Journal on Scientific Computing*, 38(5), B889–B916.

Bai, Z., & Skoogh, D. (2006). A projection method for model reduction of bilinear dynamical systems. *Linear Algebra and its Applications*, 415(2–3), 406–425.

Baur, U., Beattie, C. A., Benner, P., & Gugercin, S. (2011). Interpolatory projection methods for parameterized model reduction. *SIAM Journal on Scientific Computing*, 33(5), 2489–2518.

Baur, U., Benner, P., & Feng, L. (2014). Model order reduction for linear and nonlinear systems: A system-theoretic perspective. *Archives of Computational Methods in Engineering*, 21(4), 331–358.

Beattie, C. A., & Gugercin, S. (2009). Interpolatory projection methods for structure-preserving model reduction. *Systems & Control Letters*, 58(3), 225–232.

Benner, P., & Breiten, T. (2011). On H_2 -model reduction of linear parameter-varying systems. *Proceedings in Applied Mathematics & Mechanics*, 11(1), 805–806.

Benner, P., & Breiten, T. (2012). Interpolation-based H_2 -model reduction of bilinear control systems. *SIAM Journal on Matrix Analysis and Applications*, 33(3), 859–885.

Benner, P., Cohen, A., Ohlberger, M., & Willcox, K. (Eds.). (2017). *Computational science & engineering, Model reduction and approximation: Theory and algorithms*. Philadelphia, PA: SIAM Publications.

Benner, P., & Damm, T. (2011). Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. *SIAM Journal on Control and Optimization*, 49(2), 686–711.

Benner, P., Gugercin, S., & Werner, S. W. R. (2021). Structure-preserving interpolation of bilinear control systems. *Advances in Computational Mathematics*, 47(3), 43.

Breiten, T., & Damm, T. (2010). Krylov subspace methods for model order reduction of bilinear control systems. *Systems & Control Letters*, 59(8), 443–450.

Carleman, T. (1932). Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires. *Acta Mathematica*, 59, 63–87.

Condon, M., & Ivanov, R. (2007). Krylov subspaces from bilinear representations of nonlinear systems. *COMPEL - International Journal for Computation and Mathematics in Electrical and Electronic Engineering*, 26(2), 399–406.

Feng, L., & Benner, P. (2019). A new error estimator for reduced-order modeling of linear parametric systems. *IEEE Transactions on Microwave Theory and Techniques*, 67(12), 4848–4859.

Flagg, G. M., & Gugercin, S. (2015). Multipoint Volterra series interpolation and H_2 optimal model reduction of bilinear systems. *SIAM Journal on Matrix Analysis and Applications*, 36(2), 549–579.

Gosea, I. V., Pontes Duff, I., Benner, P., & Antoulas, A. C. (2019). Model order reduction of bilinear time-delay systems. In *18th European control conference* (pp. 2289–2294).

Hsu, C. S., Desai, U. B., & Crawley, C. A. (1983). Realization algorithms and approximation methods of bilinear systems. In *The 22nd IEEE conference on decision and control* (pp. 783–788).

Hu, H. Y., & Wang, Z. H. (2002). *Dynamics of controlled mechanical systems with delayed feedback*. Berlin, Heidelberg: Springer-Verlag.

Mohler, R. R. (1973). *Mathematics in science and engineering: vol. 106, Bilinear control processes: With applications to engineering, ecology and medicine*. New York, London: Academic Press.

Ou, Y. (2010). *Optimal control of a class of nonlinear parabolic PDE systems arising in fusion plasma current profile dynamics* (Ph.D. thesis), Bethlehem, Pennsylvania, USA: Lehigh University.

Quarteroni, A., & Rozza, G. (2014). *MS&A – Modeling, simulation and applications: vol. 9, Reduced order methods for modeling and computational reduction*. Cham: Springer International Publishing.

Rodriguez, A. C., Gugercin, S., & Bogaard, J. (2018). Interpolatory model reduction of parameterized bilinear dynamical systems. *Advances in Computational Mathematics*, 44(6), 1887–1916.

Rugh, W. J. (1981). *Nonlinear system theory: The Volterra/Wiener approach*. Baltimore: The Johns Hopkins University Press.

Saputra, J., Saragih, R., & Handayani, D. (2019). Robust H_∞ controller for bilinear system to minimize HIV concentration in blood plasma. *Journal of Physics: Conference Series*, 1245, Article 012055.

Scarciotti, G., & Astolfi, A. (2017). Nonlinear model reduction by moment matching. *Foundations and Trends® in Systems and Control*, 4(3–4), 224–409.

Schilders, W. H. A., van der Vorst, H. A., & Rommes, J. (2008). *Mathematics in industry (MATHINDUSTRY): vol. 13, Model order reduction: Theory, research aspects and applications*. Berlin, Heidelberg: Springer-Verlag.

Zhang, L., & Lam, J. (2002). On H_2 model reduction of bilinear systems. *IFAC Automatica*, 38(2), 205–216.

Peter Benner received the Diploma in mathematics from the RWTH Aachen University, Aachen, Germany, in 1993. From 1993 to 1997, he worked toward the Ph.D. at the University of Kansas, Lawrence, KS, USA, and the TU Chemnitz-Zwickau, Germany, where he received the Ph.D. in Mathematics in February 1997. In 2001, he obtained the Habilitation (Venia Legendi) in Mathematics from the University of Bremen, Germany. He was an Assistant Professor with the University of Bremen, Germany, from 1997 to 2001. After spending a term as Visiting Associate Professor with the TU Hamburg-Harburg, Germany, he was a Lecturer in Mathematics with the TU Berlin, Germany, from 2001 to 2003. Since 2003, he has been a Professor for Mathematics in Industry and Technology with the TU Chemnitz. In 2010, he was appointed as one of the four Directors of the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany. Since 2011, he has also been an Honorary Professor with the Otto-von-Guericke University of Magdeburg, Germany. He is a SIAM Fellow (Class of 2017).

His research interests include scientific computing, numerical mathematics, systems theory, and optimal control. A particular emphasis has been on applying methods from numerical linear algebra and matrix theory in systems and control theory. Recent research focuses on numerical methods for optimal control of systems modeled by evolution equations (PDEs, DAEs, SPDEs), model order reduction, preconditioning in optimal control and UQ problems, and Krylov subspace methods for structured or quadratic eigenproblems. Research in all these areas is accompanied by the development of algorithms and mathematical software suitable for modern and high-performance computer architectures.

Serkan Gugercin is a professor of Mathematics at Virginia Tech. He holds the Class of 1950 Professorship. He is also a core faculty member and a Deputy Director in the Division of Computational Modeling and Data Analytics. In 1992, he received his B.S. degree in Electrical and Electronics Engineering from Middle East Technical University, Ankara, Turkey; and his M.S. and Ph.D. degrees in Electrical Engineering from Rice University, in 1999 and 2003, respectively. His primary research interests are model reduction, data-driven modeling, numerical linear algebra, approximation theory, and systems and control theory.

Dr. Gugercin received the Ralph Budd Award for Research in Engineering from Rice University in 2003 for the best doctoral thesis in the School of Engineering; Teaching Award from Jacobs University Bremen, in 2003; the National Science Foundation Early CAREER Award in Computational and Applied Mathematics in 2007; and the Alexander von Humboldt Research Fellowship in 2016. He is currently serving as an Associate Editor for SIAM Journal on Scientific Computing, and Systems and Control Letters.

Steffen W.R. Werner finished his master studies in mathematics at the Otto von Guericke University Magdeburg, Germany, in 2016. Thereafter, he joined the Computational Methods in Systems and Control Theory group at the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany, where he is working on his Ph.D. about the application of structure-preserving model order reduction methods for mechanical systems. His main research interests are model order reduction, numerical linear algebra, scientific computing, and mathematical software.