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STABILITY OF DISCRETE EMPIRICAL INTERPOLATION AND
GAPPY PROPER ORTHOGONAL DECOMPOSITION WITH
RANDOMIZED AND DETERMINISTIC SAMPLING POINTS\ast 

BENJAMIN PEHERSTORFER\dagger , ZLATKO DRMA\v C\ddagger , AND SERKAN GUGERCIN\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This work investigates the stability of (discrete) empirical interpolation for nonlinear
model reduction and state field approximation from measurements. Empirical interpolation derives
approximations from a few samples (measurements) via interpolation in low-dimensional spaces. It
has been observed that empirical interpolation can become unstable if the samples are perturbed
due to, e.g., noise, turbulence, and numerical inaccuracies. The main contribution of this work is a
probabilistic analysis that shows that stable approximations are obtained if samples are randomized
and if more samples than dimensions of the low-dimensional spaces are used. Oversampling, i.e.,
taking more sampling points than dimensions of the low-dimensional spaces, leads to approximations
via regression and is known under the name of gappy proper orthogonal decomposition. Building
on the insights of the probabilistic analysis, a deterministic sampling strategy is presented that
aims to achieve lower approximation errors with fewer points than randomized sampling by taking
information about the low-dimensional spaces into account. Numerical results of reconstructing
velocity fields from noisy measurements of combustion processes and model reduction in the presence
of noise demonstrate the instability of empirical interpolation and the stability of gappy proper
orthogonal decomposition with oversampling.
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1. Introduction. Model reduction seeks to construct reduced systems that pro-
vide accurate approximations of the solutions of large-scale systems of equations with
significantly reduced computational cost [7]. In projection-based model reduction,
the reduced systems are obtained via (Petrov--)Galerkin projection of the full-system
equations onto low-dimensional---reduced---subspaces of the high-dimensional solu-
tion spaces corresponding to the full systems. If the large-scale systems contain non-
linear equations, then projection of the full-system equations onto reduced spaces
typically is insufficient to obtain reduced systems that are computationally cheaper
to solve than the full systems, because the nonlinear terms entail computations with
costs that scale with the number of the degrees of freedom of the full system. The
empirical interpolation method (EIM) [6, 27, 28] and its discrete counterpart, the
discrete empirical interpolation method (DEIM) [14, 17], provide one solution to this
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problem by approximating the nonlinear terms of the nonlinear equations via sparse
sampling. The nonlinear terms are evaluated at a few interpolation points---sampling
points---and then all other components of the nonlinear terms are approximated via
interpolation in low-dimensional subspaces. However, approximations via (D)EIM
have been shown to suffer from instabilities in certain situations; see, e.g., [2, 21, 43].
Localization [19, 33] and adaptation [32, 34] of the low-dimensional subspaces have
been proposed as possible remedies. Another remedy that has been reported in the
literature, and that typically is easier to implement in practice than localization and
adaptation, is ``oversampling"" empirical interpolation so that the nonlinear terms are
approximated via regression rather than via interpolation, which goes under the name
of gappy proper orthogonal decomposition (GappyPOD) in the model reduction liter-
ature [2, 4, 11, 43, 45]. In this work, we consider the specific case where only noisy
samples---observations---of the nonlinear terms are available and where (D)EIM has
been shown to be unstable; see, e.g., [2]. We provide a probabilistic analysis that
shows that GappyPOD with randomized samples leads to stable approximations in
the presence of noise if more sampling points than basis vectors are used.

Approximations based on regression, rather than interpolation, have been inves-
tigated in the context of model reduction. Missing point estimation (MPE) [3, 4]
relies on GappyPOD [20] to approximate nonlinear terms in model reduction. Several
sampling point selection algorithms have been proposed for MPE and GappyPOD. The
work [42] formulates point selection as a sensor placement problem and proposes a
greedy approach to find an approximate solution. Detailed analyses of point selec-
tion for MPE, and screening approaches to speed up point selection, are provided
in [4]. The work by Zimmermann and Willcox [45] introduces a sampling strategy
for MPE that is based on approximating eigenvalues for selecting sampling points and
demonstrates that oversampling achieves higher accuracies in numerical experiments
in computational fluid dynamics than MPE without oversampling. We will arrive at a
special case of the approach presented in [45] via perturbation bounds on eigenvalues
introduced in [26]. Carlberg et al. [12, 13] introduce the Gauss--Newton with approx-
imated tensors (GNAT) method that is based on Petrov--Galerkin projection and ap-
proximates the nonlinear terms via low-cost least-squares problems as in GappyPOD.
The GNAT method and its performance based on regression has been investigated
in the thesis [11], where a greedy-based deterministic sampling strategy for selecting
sampling points has been proposed. Zhou [43] introduces a deterministic sampling
strategy for GappyPOD that exploits the dependency of the degrees of freedom of the
full system to select sampling points. Regression via GappyPOD is then applied to
multi-scale problems, where Zhou's sampling strategy with GappyPOD achieves lower
errors than DEIM via interpolation. The adaptive DEIM, which adapts the DEIM
space from sparse samples of the nonlinear terms, is based on regression [32, 34, 44],
even though regression is used for adaptation only and the nonlinear terms are ap-
proximated via interpolation once the DEIM interpolants have been adapted. Other
sampling strategies motivated by DEIM and GappyPOD are investigated by Manohar
et al. [29], who showed improvements for signal reconstruction [30, 38]. Greedy meth-
ods for sensor placement in the context of empirical interpolation are investigated
in [1, 8].

We consider GappyPOD in the specific setting where samples are polluted with
noise. Noise is here to be understood in general terms, including perturbations that
are typically modeled via random noise such as in turbulence; see, e.g., [36]. It has
been discussed in [2] that the L2 error of (D)EIM approximations can grow with the
dimension of the (D)EIM space in the presence of noise. The work [2] proposes taking
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more sampling points than the dimension of the (D)EIM space as a possible remedy
and demonstrates on numerical results that this gives more stable results than (D)EIM,
i.e., that the error does not increase with the (D)EIM dimension. We build on the vast
literature on GappyPOD and related methods [3, 4, 12, 13, 29, 43, 45]. Our contribu-
tion is a probabilistic analysis that proves that in expectation with high probability
GappyPOD with oversampling avoids the increase of the L2 error with the dimension
of the reduced space. For the analysis, we follow the work by Balzano, Recht, and
Nowak [5] and the work by Cohen, Davenport, and Leviatan [16] that provide approx-
imation results for least-squares approximations, which we apply to GappyPOD with
oversampling. Extensions to the work by Cohen, Davenport, and Leviatan [16] have
been introduced in [15, 31]. We then discuss a deterministic oversampling strategy
and demonstrate with numerical results that a lower error with GappyPOD is achieved
in the presence of noise compared to (D)EIM that interpolates the nonlinear terms.

The structure of the paper is as follows. Section 2 briefly reviews DEIM in the
context of model reduction and numerically demonstrates on a toy example that DEIM
approximations are unstable if the nonlinear function evaluations are polluted with
noise. Sections 3 and 4 analyze GappyPOD with randomized samples and prove that
oversampling avoids the stability issue in expectation with high probability. Section 5
introduces a deterministic sampling strategy, which is then shown to achieve more
accurate reduced models than (D)EIM in section 6.

2. Preliminaries and problem formulation. This section briefly reviews
(D)EIM for approximating the nonlinear terms in reduced models and for recovering
field data from few measurements and demonstrates, via an example, that (D)EIM
can become unstable in the presence of noise.

2.1. Model reduction with empirical interpolation. Consider a system of
parametrized nonlinear equations

(1) \bfitA \bfitx (\bfitxi ) + \bfitf (\bfitx (\bfitxi ); \bfitxi ) = 0 ,

where \bfitx (\bfitxi ) \in RN is the state, \bfitxi \in \scrD is a d-dimensional parameter in the parameter
domain \scrD , \bfitA \in RN\times N is a constant matrix, and \bfitf : RN \times \scrD \rightarrow RN is a nonlinear
function. Systems such as (1) typically arise after discretizing a PDE in the spatial
domain, in which case the matrix \bfitA corresponds to the linear operators of the un-
derlying PDE and the nonlinear function \bfitf to the nonlinear terms. In the following,
we are interested in situations where the dimension N \in N of the state \bfitx (\bfitxi ) is large,
which means that system (1) is potentially expensive to solve numerically, especially
if these simulations need to be repeated for many parameter samples in outer-loop
applications [35] such as optimization, uncertainty quantification, and control.

A common approach to constructing a reduced model of the full system (1) is to
use projection-based model reduction [7, 37]. Toward this goal, let the columns of
the matrix \bfitX = [\bfitx 1, . . . ,\bfitx M ] \in RN\times M be M snapshots derived from the parameter
samples \bfitxi 1, . . . , \bfitxi M \in \scrD such that \bfitx i = \bfitx (\bfitxi i) for i = 1, . . . ,M . Note that typically
M \leq N . Further, let \bfitV = [\bfitv 1, . . . , \bfitv r] \in RN\times r be an r-dimensional orthonormal
basis constructed from the snapshot matrix \bfitX . A common approach to obtaining \bfitV 
is to compute the singular value decomposition (SVD) of \bfitX and then to define \bfitV as
the leading r \leq M left-singular vectors, as done in proper orthogonal decomposition
(POD). Then, the POD-Galerkin reduced model is obtained via projection

(2) \~\bfitA \~\bfitx (\bfitxi ) + \bfitV T\bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ) = 0 ,

where \~\bfitA = \bfitV T\bfitA \bfitV is the reduced linear operator and \~\bfitx (\bfitxi ) \in Rr is the reduced state.
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Even though the reduced state \~\bfitx (\bfitxi ) is in the r-dimensional subspace, evaluation
of the reduced nonlinear term \bfitV T\bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ) in (2) still requires, first, lifting \~\bfitx (\bfitxi ) to
the full dimension N , evaluating the original nonlinear term in this original dimension,
and then projecting it down to the reduced dimension; thus, evaluating the reduced
model (2) still requires operations that scale with the dimension of the full model.
This is called the lifting bottleneck in model reduction.

An effective remedy to the lifting bottleneck is empirical interpolation [6, 14].
The goal is to find an accurate approximation \~\bfitf : Rn \times \scrD \rightarrow Rn to \bfitf that is compu-
tationally cheap to evaluate with cost independent of the dimension N . The empirical
interpolation approximant \~\bfitf has the form

(3) \~\bfitf (\~\bfitx (\bfitxi ); \bfitxi ) = \bfitU \bfitc (\~\bfitx (\bfitxi ); \bfitxi )

with \~\bfitx (\bfitxi ) \in Rn and where \bfitc (\~\bfitx (\bfitxi ); \bfitxi ) \in Rn are the coefficients of the linear com-
bination with the columns of \bfitU \in RN\times n, which form a basis of an n-dimensional
reduced space in which to approximate the function \bfitf with n \ll N . DEIM achieves
the approximation (3) by interpolating \bfitf at selected components. Let p1, . . . , pn \in 
\{ 1, . . . , N\} be the interpolation points (indices), i.e., \bfite Tpi

\bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ) = \bfite Tpi
\~\bfitf (\~\bfitx (\bfitxi ); \bfitxi )

for i = 1, 2, . . . , n, where \bfite i \in RN denotes the ith canonical unit vector. Let
\bfitP = [\bfite p1 , . . . , \bfite pn ] \in RN\times n be the corresponding interpolation points (index selec-

tion) matrix. Then, the interpolation conditions are \bfitP T\bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ) = \bfitP T \~\bfitf (\~\bfitx (\bfitxi ); \bfitxi ),
which, using (3), lead to

(4) \~\bfitf (\~\bfitx (\bfitxi ); \bfitxi ) = \bfitU \bfitc (\~\bfitx (\bfitxi ); \bfitxi ) = \bfitU (\bfitP T\bfitU ) - 1\bfitP T\bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ) ,

where \bfitc (\~\bfitx (\bfitxi ); \bfitxi ) = (\bfitP T\bfitU ) - 1\bfitP T\bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ). In (4), \~\bfitf is the DEIM approximation
of \bfitf .

The columns of \bfitU \in RN\times n are often taken as the POD basis of the nonlinear
snapshots \bfitf (\bfitx (\bfitxi 1); \bfitxi 1), . . . , \bfitf (\bfitx (\bfitxi M ); \bfitxi M ) with parameters \bfitxi 1, . . . , \bfitxi M \in \scrD . Note
that \bfitU is orthonormal. The choice of the selection operator \bfitP is motivated by the
error bound

(5) \| \bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ) - \~\bfitf (\~\bfitx (\bfitxi ); \bfitxi )\| 2 \leq 
\bigm\| \bigm\| (\bfitP T\bfitU ) - 1

\bigm\| \bigm\| 
2

\bigm\| \bigm\| (\bfitI  - \bfitU \bfitU T )\bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi )
\bigm\| \bigm\| 
2
,

where \| (\bfitI  - \bfitU \bfitU T )\bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi )\| 2 is the error due to the optimal approximation by
orthogonal projection; see [6, 14]. Therefore, the selection operator \bfitP should choose
indices such that \| (\bfitP T\bfitU ) - 1\| 2 is small. The DEIM algorithm [6, 14] performs a greedy
search to select the interpolation points. The QDEIM point selection algorithm [17, 18]
based on the rank-revealing QR factorization is an alternative to this greedy-based
point selection algorithms. Combining the DEIM approximation (4) with the POD-
Galerkin reduced model (2), we obtain the POD-DEIM-Galerkin reduced model

(6) \~\bfitA \~\bfitx (\bfitxi ) + \bfitV T\bfitU (\bfitP T\bfitU ) - 1\bfitP T\bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ) = 0 ,

where the N  - n components of \bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ) that are different from the interpolation
points p1, . . . , pn are approximated via empirical interpolation. Thus, the reduced
model (6) requires evaluating the nonlinear function \bfitf at only n components, which
typically leads to significant speedups compared to the POD-Galerkin reduced model
(2) that requires evaluating the function \bfitf at all N components.

2.2. State field approximation from few measurements. Another use case
of empirical interpolation and related methods, such as GappyPOD [20], is approxi-
mating state fields \bfitx : \scrD \rightarrow RN from a few spatial measurements [1, 2, 9, 42], where
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\bfitxi \in \scrD is a parameter that defines the field \bfitx (\bfitxi ). Let \bfitU \in RN\times n be the reduced
basis matrix constructed from snapshots \bfitx (\bfitxi 1), . . . ,\bfitx (\bfitxi M ) for \bfitxi 1, . . . , \bfitxi M \in \scrD via,
e.g., POD, and let \bfitP \in RN\times n be the interpolation points matrix derived from \bfitU 
with, e.g., the greedy algorithm [6, 14] and QDEIM [17, 18]. Given are the measure-
ments \bfitx P (\bfitxi ) = \bfitP T\bfitx (\bfitxi ) at the spatial coordinates corresponding to the components
selected by \bfitP of a field \bfitx (\bfitxi ) \in RN with parameter \bfitxi \in \scrD . The field \bfitx (\bfitxi ) is unknown
at all spatial coordinates except at the interpolation points given by \bfitP . The DEIM
approximation of \bfitx (\bfitxi ) is then given by \~\bfitx (\bfitxi ) = \bfitU (\bfitP T\bfitU ) - 1\bfitx P (\bfitxi ). For the ease of
presentation, we follow the notation introduced in subsection 2.1 for approximating
nonlinear terms for model reduction; however, all of what is presented in the follow-
ing directly applies to state field approximation as well. We will revisit state field
approximation in our numerical experiments in section 6.

2.3. Instability of empirical interpolation in the presence of noise. To
approximate \bfitf (\bfitV \~\bfitx (\bfitxi ); \bfitxi ) with DEIM in the reduced model (6), the function \bfitf is
evaluated (at least) at the components of \bfitV \~\bfitx (\bfitxi ) corresponding to the interpolation
points p1, . . . , pn, while all the other components are approximated via interpolation
in the reduced space spanned by the columns of the basis matrix \bfitU . We are interested
in the situation where the function evaluations of \bfitf at \bfitV \~\bfitx (\bfitxi ) are noisy, in which case
DEIM approximations can become unstable, as demonstrated in, e.g., [2].

Consider the parametrized nonlinear function

(7) \bfitf (\bfitx ; \xi ) = exp

\Biggl( 
 - (\bfitx  - \xi )

2

5\times 10 - 3

\Biggr) 
with the parameter \xi \in \scrD = [1, 3] \subset R. The components of \bfitx \in R8192 are the
equidistant points in \Omega = [ - 2\pi , 2\pi ]. Note that all operations in (7) are to be un-
derstood componentwise. Let \xi 1, . . . , \xi 2500 be the equidistant points in \scrD and let
\bfitf (\bfitx ; \xi 1), . . . , \bfitf (\bfitx ; \xi 2500) be the nonlinear snapshots to derive a DEIM interpolant \~\bfitf 
of \bfitf of dimension n with the reduced basis matrix \bfitU and the QDEIM interpola-
tion points matrix \bfitP . We now approximate the function \bfitf at the 2500 parameters
\xi \prime 1, . . . , \xi 

\prime 
2500 \in \scrD uniformly sampled in the domain \scrD . Note that the parameters

\xi \prime 1, . . . , \xi 
\prime 
2500 are different from the parameters \xi 1, . . . , \xi 2500 that were used to construct

the reduced space and the interpolation points matrix. The DEIM approximation \~\bfitf 
of \bfitf is

\~\bfitf (\bfitx ; \xi \prime i) = \bfitU (\bfitP T\bfitU ) - 1\bfitP T\bfitf (\bfitx ; \xi \prime i)

for i = 1, . . . , 2500. The averaged relative state error

(8)
1

2500

2500\sum 
i=1

\| \bfitf (\bfitx ; \xi \prime i) - \~\bfitf (\bfitx ; \xi \prime i)\| 2
\| \bfitf (\bfitx ; \xi \prime i)\| 2

versus the dimension n of the DEIM approximation is plotted in Figure 1(a). The
results indicate a fast decay of the DEIM approximation error with the dimension n.

Let us now consider noisy evaluations of the function \bfitf . Therefore, let \bfitepsilon be a
random vector that has, as components, independent zero-mean Gaussian random
variables with standard deviation \sigma = 10 - 4. Define

(9) \bfitf \bfitepsilon (\bfitx ; \xi ) = \bfitf (\bfitx ; \xi ) + \bfitepsilon 

so that the DEIM approximation using the noisy function evaluations (9) is

\~\bfitf \bfitepsilon (\bfitx ; \xi ) = \bfitU (\bfitP T\bfitU ) - 1\bfitP T\bfitf \bfitepsilon (\bfitx ; \xi ) .

D
ow

nl
oa

de
d 

10
/1

7/
21

 to
 4

5.
3.

12
4.

14
8 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



© 2020 Benjamin Peherstorfer, Serkan Gugercin, Zlatko Drmavc

A2842 B. PEHERSTORFER, Z. DRMA\v C, AND S. GUGERCIN

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

200 400 600 800 1000

re
l.
st
at
e
er
ro
r
(8
)

DEIM dimension n

QDEIM, noiseless

1e-04

1e-03

1e-02

1e-01

1e+00

200 400 600 800 1000

re
l.
st
at
e
er
ro
r
(1
0)

DEIM dimension n

QDEIM
rate

\surd 
n

(a) without noise (b) with noise

Fig. 1. The (D)EIM is sensitive to noise in the sparse samples of the nonlinear function. In
particular, the noise is amplified as the dimension n of the reduced space is increased. A rate of

\surd 
n

is numerically observed. Standard deviation of noise is 10 - 4.

The plot in Figure 1(b) shows the averaged relative state error

(10)
k\sum 

j=1

1

2500

2500\sum 
i=1

\| \bfitf (\bfitx ; \xi \prime i) - \~\bfitf \bfitepsilon j (\bfitx ; \xi 
\prime 
i)\| 2

\| \bfitf (\bfitx ; \xi \prime i)\| 2

for k = 10 replicates of the DEIM approximation \~\bfitf \bfitepsilon j that is derived from the noisy
function evaluations (9) with realization \bfitepsilon j of the noise. The error bars indicate the
minimum and maximum of the error over the replicates. Note that the error bars
are barely visible, which means the variation over the replicates is small. The results
indicate a stability issue of DEIM in this case of noisy function evaluations because
the error grows with the dimension n of the reduced space. The result illustrates an
error growth with a rate

\surd 
n with the dimension n. Similar observations are made

in [2].

Remark 2.1. The term ``instability"" has various meanings in numerical analysis.
In the following, the term ``instability"" refers to the specific phenomenon that the
DEIM approximation error \| \bfitf (\bfitx ; \bfitxi )  - \~\bfitf \bfitepsilon (\bfitx ; \bfitxi )\| 2 in the Euclidean norm grows with
the dimension n of the reduced space if noisy function evaluations (9) (or noisy mea-
surements in the context of state field approximation in subsection 2.2) are used; see
Figure 1(b).

3. Amplification of noise in DEIM. We provide an upper bound on the am-
plification of the noise in DEIM approximations, and a theoretical explanation of the
numerical observation in Figure 1(b). The bound (12), which we prove in the fol-
lowing, shows that the error cannot increase faster than with rate

\surd 
n, which is the

rate observed in Figure 1(b). We also provide a formula for the expected value of the
DEIM error vector and reveal the structure of the error ellipsoid. A bound similar to
(12) has been presented in [2].

To simplify the exposition, we drop the dependence on the state \bfitx and the param-
eter \bfitxi of \bfitf (\bfitx ; \bfitxi ) and abbreviate it as \bfitf (\bfitx ; \bfitxi ) = \bfitf . Similarly, the DEIM approximant
will be abbreviated as \~\bfitf . The noisy counterparts of \bfitf and \~\bfitf are \bfitf \bfitepsilon = \bfitf + \bfitepsilon and \~\bfitf \bfitepsilon ,
respectively, where \bfitepsilon is a zero-mean Gaussian vector with independent components
with standard deviation \bfitsigma = [\sigma 1, . . . , \sigma N ]T .

Lemma 3.1. Define the error of the DEIM approximation \~\bfitf \bfitepsilon from noisy function
evaluations as \bfitr \bfitepsilon = \bfitf  - \~\bfitf \bfitepsilon = \bfitf  - \bfitU (\bfitP T\bfitU ) - 1\bfitP T\bfitf \bfitepsilon and the error of the approxima-
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tion \~\bfitf with noise-free function evaluations as \bfitr = \bfitf  - \bfitU (\bfitP T\bfitU ) - 1\bfitP T\bfitf . Then, the
expected value of the error \bfitr \bfitepsilon corresponding to noisy function evaluations equals \bfitr ,
i.e., E\bfitepsilon [\bfitr \bfitepsilon ] = \bfitr , where the expectation is taken over the noise. The standard deviation
of \bfitr \bfitepsilon satisfies

(11) E\bfitepsilon [\| \bfitr \bfitepsilon  - E\bfitepsilon [\bfitr \bfitepsilon ]\| 2] \leq 
\sqrt{} 
E\bfitepsilon [\| \bfitr \bfitepsilon  - E\bfitepsilon [\bfitr \bfitepsilon ]\| 22] \leq 

\surd 
n\| (\bfitP T\bfitU ) - 1\| 2\| \bfitP T\bfitsigma \| \infty .

Thus, the error is bounded in expectation as

(12)
E\bfitepsilon 

\bigl[ 
\| \bfitf  - \bfitU (\bfitP T\bfitU ) - 1\bfitP T\bfitf \bfitepsilon \| 2

\bigr] 
\leq \| (\bfitP T\bfitU ) - 1\| 2

\bigl( 
\| \bfitf  - \bfitU \bfitU T\bfitf \| 2 +

\surd 
n\| \bfitP T\bfitsigma \| \infty 

\bigr) 
.

Proof. Using the linearity of the expectation, the error formula for the DEIM
projection, and the assumptions on the noise, namely, E\bfitepsilon [\bfitepsilon ] = 0, we obtain

E\bfitepsilon 

\bigl[ 
\bfitf  - \bfitU (\bfitP T\bfitU ) - 1\bfitP T\bfitf \bfitepsilon 

\bigr] 
= (\bfitI  - \bfitU (\bfitP T\bfitU ) - 1\bfitP T )\bfitf  - \bfitU (\bfitP T\bfitU ) - 1\bfitP TE\bfitepsilon [\bfitepsilon ](13)

= (\bfitI  - \bfitU (\bfitP T\bfitU ) - 1\bfitP T )\bfitf ,

which establishes E\bfitepsilon [\bfitr \bfitepsilon ] = \bfitr as claimed. The norm of \| E\bfitepsilon [\bfitr \bfitepsilon ]\| 2 is bounded as

(14)
\bigm\| \bigm\| E\bfitepsilon 

\bigl[ 
\bfitf  - \bfitU (\bfitP T\bfitU ) - 1\bfitP T\bfitf \bfitepsilon 

\bigr] \bigm\| \bigm\| 
2
\leq 
\bigm\| \bigm\| (\bfitP T\bfitU ) - 1

\bigm\| \bigm\| 
2

\bigm\| \bigm\| \bfitf  - \bfitU \bfitU T\bfitf 
\bigm\| \bigm\| 
2
,

which is the same upper bound as in (5) for the noise-free case. The covariance matrix
of the error \bfitr \bfitepsilon is

\bfitC = E\bfitepsilon 

\bigl[ 
\bfitU (\bfitP T\bfitU ) - 1\bfitP T \bfitepsilon \bfitepsilon T\bfitP (\bfitP T\bfitU ) - T\bfitU T

\bigr] 
= \bfitU (\bfitP T\bfitU ) - 1\bfitP T\Sigma 2\bfitP (\bfitP T\bfitU ) - T\bfitU T

= \bfitU (\bfitP T\bfitU ) - 1\Sigma 2
\bfitP (\bfitP T\bfitU ) - T\bfitU T ,(15)

where \Sigma 2
\bfitP = \bfitP T\Sigma 2\bfitP = diag(\sigma 2

pi
)ni=1 with \sigma pi

being the standard deviation of the pith
component of \bfitepsilon . The covariance \bfitC is positive semidefinite. Its nonzero eigenvalues
\lambda 2
i (that correspond to the invariant space spanned by \bfitU ) can be enumerated so that

\lambda 2
i = \sigma 2

pi
\vargamma 2
i , where

1

\| \bfitP T\bfitU \| 2
\leq \vargamma i \leq \| (\bfitP T\bfitU ) - 1\| 2, i = 1, . . . , n.

This is an application of the Ostrowski theorem [24, Theorem 4.5.9]; it identifies the
bounds of the amplification factors \vargamma i's of the corresponding standard deviations. The
spectral structure of \bfitC (and thus the error ellipsoid) can be explicitly revealed using
the SVD \Sigma  - 1

\bfitP (\bfitP T\bfitU ) = \Phi \Omega \Psi T (\Phi , \Psi orthogonal matrices of singular vectors, \Omega 
diagonal matrix of singular values), which yields \bfitC = (\bfitU \Psi )\Omega  - 2(\bfitU \Psi )T .

Next, of interest is the variance E\bfitepsilon [\| \bfitr \bfitepsilon  - E\bfitepsilon [\bfitr \bfitepsilon ]\| 22] of \bfitr \bfitepsilon , for which it follows that

E\bfitepsilon 

\bigl[ 
\| \bfitr \bfitepsilon  - E\bfitepsilon [\bfitr \bfitepsilon ]\| 22

\bigr] 
= Trace(\bfitC ) =

n\sum 
i=1

\sigma 2
pi
\vargamma 2
i \leq n\| (\bfitP T\bfitU ) - 1\| 22 max

i
\sigma 2
pi
,

which shows E\bfitepsilon 

\bigl[ 
\| \bfitr \bfitepsilon  - E\bfitepsilon [\bfitr \bfitepsilon ]\| 22

\bigr] 
\leq n\| \bfitP T\bfitsigma \| 2\infty \| (\bfitP T\bfitU ) - 1\| 22. In addition, by deploying

Jensen's inequality and taking square root, we obtain (11). Then, combining the above
estimates and the triangle inequality yields

E\bfitepsilon [\| \bfitr \bfitepsilon \| 2] \leq E\bfitepsilon [\| \bfitr \bfitepsilon  - E\bfitepsilon [\bfitr \bfitepsilon ]\| 2] + \| E\bfitepsilon [\bfitr \bfitepsilon ] \| 2
\leq \| (\bfitP T\bfitU ) - 1\| 2(\| \bfitf  - \bfitU \bfitU T\bfitf \| 2 +

\surd 
n\| \bfitP T\bfitsigma \| \infty ),

which proves (12).
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Remark 3.2. Lemma 3.1 assumes that the noise \bfitepsilon is a zero-mean Gaussian vector
with independent components. If \bfitepsilon does not have independent components, i.e.,
if the noise error covariance matrix \Sigma 2 is not diagonal, we can write the spectral
decomposition of its submatrix \Sigma 2

P = \bfitP T\Sigma 2\bfitP as \Sigma 2
P = \bfitW \bfitP \bfitD 2

\bfitP \bfitW T
\bfitP , where \bfitD \bfitP =

diag(\bfitd i)
n
i=1. Using this spectral decomposition, we replace (15) with

\bfitC = \bfitU ( \widetilde \bfitP T\bfitU ) - 1\bfitD 2
\bfitP ( \widetilde \bfitP T\bfitU ) - T\bfitU T ,

where \widetilde \bfitP = \bfitP \bfitW \bfitP . Since \bfitW \bfitP is an orthogonal matrix, \| \widetilde \bfitP T\bfitU \| 2 = \| \bfitP T\bfitU \| 2 and

\| ( \widetilde \bfitP T\bfitU ) - 1\| 2 = \| (\bfitP T\bfitU ) - 1\| 2. Then, the rest of the proof of Lemma 3.1 follows as

before by replacing \bfitP with \widetilde \bfitP , and \sigma pi
with \bfitd i for i = 1, . . . , n. Finally, the upper

bounds (11) and (12) hold true by replacing \bfitP T\bfitsigma with the vector [ \bfitd 1, . . . ,\bfitd n]
T
,

where now \bfitd 2
i 's are the variances along the principal components (eigenvectors of

\Sigma \bfitP ). Moreover, in both (11) and (12), the term
\surd 
n\| \bfitP T\bfitsigma \| \infty can be replaced with

\| \Sigma \bfitP \| F =
\sqrt{} 
\bfitd 2
1 + \cdot \cdot \cdot + \bfitd 2

n.

Corollary 3.3. If the selection operator \bfitP is based on the quasi-optimal point
selection introduced in [18, Lemma 2.1], then (11) and (12) hold with the bound

(16) \| (\bfitP T\bfitU ) - 1\| 2 \leq 
\sqrt{} 
1 + \eta 2n(N  - n),

where \eta \geq 1 is a tuning parameter.

Remark 3.4. Note how in (12), with increasing column dimension n of the matrix
\bfitU , the POD projection error \| \bfitf  - \bfitU \bfitU T\bfitf \| 2 monotonically decreases toward zero and,
at the same time, the norm of the sampling operator \| (\bfitP T\bfitU ) - 1\| 2 approaches one,
while the contribution of the noise grows as

\surd 
n\| \bfitP T\bfitsigma \| \infty , taking over the leading

term. The effect of the noise dominating the error is seen in Figure 1.

Remark 3.5. From Lemma 3.1, it follows that it is desirable that a DEIM selection
operator avoids components of \bfitf with noise with high variance. Such a strategy
may help slow the noise buildup. If we denote by \scrJ undesirable indices and set
\scrJ c = \{ 1, . . . , N\} \setminus \scrJ , then we can run the QDEIM selection on the submatrix \bfitU (\scrJ c, :);
for details we refer the reader to [17, section 3.].

4. Stability of GappyPOD with randomized samples. Given the reduced
basis matrix \bfitU \in RN\times n, the DEIM selects n interpolation points, i.e., \bfitP T\bfitU is a
square matrix. In this section, we investigate oversampling in the sense that more
sampling points m > n than the dimension n of the reduced space spanned by the
columns of \bfitU are used. Taking more sampling points than the dimension of the space
goes by the name of gappy proper orthogonal decomposition, GappyPOD, which was
introduced in [20] and is used in the context for model reduction in [3, 4]. We now
show that with GappyPOD, the noise amplification that was observed in section 3 can
be avoided in expectation with high probability if sampling points are randomized
and if more sampling points than basis vectors are used.

4.1. GappyPOD. Consider p1, . . . , pm \in \{ 1, . . . , N\} , pairwise distinct sampling
points with m > n, i.e., the number of sampling points m is larger than the dimension
n of the space spanned by the columns of the basis matrix \bfitU . Then, the corresponding
GappyPOD approximation of \bfitf is

\^\bfitf = \bfitU (\bfitP T\bfitU )\dagger \bfitP T\bfitf ,

where \bfitM \dagger denotes the Moore--Penrose inverse of \bfitM , i.e., \bfitM \dagger =
\bigl( 
\bfitM T\bfitM 

\bigr)  - 1
\bfitM T , as-

suming \bfitM has linearly independent columns. In contrast to the DEIM approximation
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\~\bfitf in (4), the GappyPOD approximation \^\bfitf is obtained via regression and therefore
does not necessarily interpolate \bfitf at the sampling points p1, . . . , pm. In the case of
noise-free sampling, the error of the GappyPOD approximation in the Euclidean norm
satisfies (see, e.g., [45, Proposition 2.1])

(17) \| \bfitf  - \^\bfitf \| 2 \leq \| (\bfitP T\bfitU )\dagger \| 2\| \bfitf  - \bfitU \bfitU T\bfitf \| 2 ,

where \| (\bfitP T\bfitU )\dagger \| 2 quantifies the effect of the sampling points and \| \bfitf  - \bfitU \bfitU T\bfitf \| 2
relates to the approximation quality of the space spanned by \bfitU ; cf. the DEIM error
bound (5).

4.2. Probabilistic analysis of GappyPOD. We now investigate the error of
the GappyPOD approximation \^\bfitf when the sampling points p1, . . . , pm are selected
uniformly with replacement from \{ 1, . . . , N\} . Note that the following analysis is
developed for uniform sampling with replacement as in the work by Balzano, Recht,
and Nowak [5]. Parts of the following analysis are an application of the work by
Cohen, Davenport, and Leviatan [16].

To set up the analysis, we define the coherence of a subspace \scrU = span(\bfitU ) as

\mu (\scrU ) = N

n
max

i=1,...,N
\| \bfitu T

i \| 22 ,

where the columns of \bfitU \in RN\times n form an orthonormal basis for \scrU and \bfitu T
i is the

ith row of \bfitU ; see, e.g., [10, Definition 1.2]. Intuitively speaking, coherence measures
if there are certain coordinate directions that carry significantly more information
than other directions. Note that maxi=1,...,N \| \bfitu T

i \| 22 \geq n/N . The following result
from [5, Lemma 3] will be used in our analysis.

Lemma 4.1. Let the points p1, . . . , pm be uniformly sampled from \{ 1, . . . , N\} with
replacement and let \bfitP be the corresponding sampling points matrix. Moreover, let

\delta \in (0, 1] such that m \geq (8/3)n\mu (\scrU ) log(2n/\delta ) and set \gamma =
\sqrt{} 

8n\mu (\scrU )
3m log(2n/\delta ). Then\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \bigl( \bfitP T\bfitU 

\bigr) T \bigl( 
\bfitP T\bfitU 

\bigr) \Bigr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq N

(1 - \gamma )m

with probability at least 1 - \delta .

The following lemma states that \| (\bfitP T\bfitU )\dagger \| 2 can be bounded by a constant,
arbitrarily close to 1, with high probability if a sufficiently large number of sampling
points is used, which means that GappyPOD with randomized samples is well-posed
with high probability.

Lemma 4.2. Consider the same setup as in Lemma 4.1 and set \widehat \gamma =
\surd 
m\gamma . If m

is such that, for K \geq 1,

(18)
\surd 
m \geq 1

2
\widehat \gamma +

1

2

\sqrt{} \widehat \gamma 2 +
4N

K2
,

then

\| (\bfitP T\bfitU )\dagger \| 2 \leq K

with probability at least 1 - \delta .
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Proof. Since

\| (\bfitP T\bfitU )\dagger \| 2 =
1

\sigma min(\bfitP T\bfitU )
=

\sqrt{} 
1

\lambda min((\bfitP T\bfitU )T (\bfitP T\bfitU ))
=
\sqrt{} 

\| ((\bfitP T\bfitU )T (\bfitP T\bfitU )) - 1\| 2

holds, Lemma 4.1 yields that with probability at least 1  - \delta 

(19) \| (\bfitP T\bfitU )\dagger \| 2 \leq 

\sqrt{} 
N

(1 - \gamma )m
.

Then, the task is to choose m so that N/((1 - \gamma )m) \leq K2. To that end, set \widehat \gamma =
\surd 
m\gamma .

By the assumption of Lemma 4.1, \gamma \leq 1 and thus
\surd 
m \geq \widehat \gamma . The desired inequality

becomes

N \leq K2(m - 
\surd 
m\widehat \gamma ), i.e., K2x2  - K2\widehat \gamma x - N \geq 0, where x =

\surd 
m \geq \widehat \gamma .

The smaller root of the above parabola is negative and the larger one, then, provides
the desired lower bound (18).

The following bound will be helpful in establishing the main result.

Lemma 4.3. Consider the same setup as in Lemma 4.1. Let \bfitg \in RN , and let \alpha 
be the acute angle between \bfitg and the range of \bfitU . Then,

(20) EP

\Bigl[ \bigm\| \bigm\| \bigm\| (\bfitP T\bfitU )\dagger \bfitP T\bfitg 
\bigm\| \bigm\| \bigm\| 
2

\Bigr] 
\leq min

\Biggl\{ 
1\surd 
1 - \gamma 

,

\sqrt{} 
cos2 \alpha + n

m\mu (\scrU )
1 - \gamma 

\Biggr\} 
\| \bfitg \| 2

with probability at least 1  - \delta , where the expected value EP is with respect to the
uniform distribution of the sampling points.

Proof. We first apply submultiplicativity to obtain

(21)
\bigm\| \bigm\| \bigm\| (\bfitP T\bfitU )\dagger \bfitP T\bfitg 

\bigm\| \bigm\| \bigm\| 
2
\leq \| (\bfitP T\bfitU )\dagger \| 2\| \bfitP T\bfitg \| 2 .

Using (19) and Lemma 4.1, we have, with probability at least 1  - \delta , that

(22) EP

\Bigl[ \bigm\| \bigm\| \bigm\| (\bfitP T\bfitU )\dagger \bfitP T\bfitg 
\bigm\| \bigm\| \bigm\| 
2

\Bigr] 
\leq 

\sqrt{} 
N

(1 - \gamma )m
EP

\Bigl[ \bigm\| \bigm\| \bigm\| \bfitP T\bfitg 
\bigm\| \bigm\| \bigm\| 
2

\Bigr] 
.

Consider now the expected value EP [\| \bfitP T\bfitg \| 22] and note that we use the squared
Euclidean norm \| \cdot \| 22. Let gj denote the jth component of \bfitg for j = 1, . . . , N . Also
let Ipi=j denote the indicator function that is 1 if pi = j and 0 otherwise. Note that
the probability that pi = j is 1/N because a uniform distribution with replacement
is used for selecting the sampling points, and thus E[Ipi=j ] = 1/N . Then,

(23) EP

\Bigl[ \bigm\| \bigm\| \bfitP T\bfitg 
\bigm\| \bigm\| 2
2

\Bigr] 
= EP

\left[  m\sum 
i=1

N\sum 
j=1

g2j Ipi=j

\right]  =
m

N
\| \bfitg \| 22 .

Applying Jensen's inequality to (23) yields EP

\bigl[ \bigm\| \bigm\| \bfitP T\bfitg 
\bigm\| \bigm\| 
2

\bigr] 
\leq 
\sqrt{} 

m
N \| \bfitg \| 2 , which, com-

bined with (22), implies

(24) EP

\bigl[ \bigm\| \bigm\| (\bfitP T\bfitU )\dagger \bfitP T\bfitg 
\bigm\| \bigm\| 
2

\bigr] 
\leq 1\surd 

1 - \gamma 
\| \bfitg \| 2,
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proving the upper bound in (20) for the first input of the min function. To prove (20)
for the second input of the min function, we first apply submultiplicativity to obtain

(25) \| (\bfitP T\bfitU )\dagger \bfitP T\bfitg \| 2 \leq 
\bigm\| \bigm\| \bigm\| \bigl( (\bfitP T\bfitU )T (\bfitP T\bfitU )

\bigr)  - 1
\bigm\| \bigm\| \bigm\| 
2
\| (\bfitP T\bfitU )T\bfitP T\bfitg \| 2 .

With Lemma 4.1, we have, with probability at least 1  - \delta , that

EP

\Bigl[ \bigm\| \bigm\| \bigm\| \bigl( (\bfitP T\bfitU )T (\bfitP T\bfitU )
\bigr)  - 1
\bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| (\bfitP T\bfitU )T\bfitP T\bfitg 
\bigm\| \bigm\| 
2

\Bigr] 
(26)

\leq N

(1 - \gamma )m
EP

\Bigl[ \bigm\| \bigm\| \bigm\| (\bfitP T\bfitU )T\bfitP T\bfitg 
\bigm\| \bigm\| \bigm\| 
2

\Bigr] 
.

Let \langle \bfitv ,\bfitw \rangle 2 = \bfitv T\bfitw denote the Euclidean inner product and consider the expected
value EP [\| (\bfitP T\bfitU )T\bfitP T\bfitg \| 22]. Using the linearity of \langle \cdot , \cdot \rangle 2 and EP [\cdot ], we obtain

EP

\bigl[ \bigl\langle 
(\bfitP T\bfitU )T\bfitP T\bfitg , (\bfitP T\bfitU )T\bfitP T\bfitg 

\bigr\rangle 
2

\bigr] 
= EP

\left[  m\sum 
j=1

m\sum 
k=1

\Bigl\langle 
gpj

\bfitu T
pj
, gpk

\bfitu T
pk

\Bigr\rangle 
2

\right]  
= EP

\left[  m\sum 
j=1

m\sum 
k=1

\Biggl\langle 
N\sum 
\ell =1

g\ell \bfitu 
T
\ell Ipj=\ell ,

N\sum 
s=1

gs\bfitu 
T
s Ipk=s

\Biggr\rangle 
2

\right]  
=

m\sum 
j=1

m\sum 
k=1

N\sum 
\ell =1

N\sum 
s=1

g\ell gs
\bigl\langle 
\bfitu T
\ell ,\bfitu 

T
s

\bigr\rangle 
2
EP

\bigl[ 
Ipj=\ell Ipk=s

\bigr] 
.(27)

Note that, for k \not = j, by independence of the jth and the kth drawing with replacement

(28) EP

\bigl[ 
Ipj=\ell Ipk=s

\bigr] 
=

1

N2
.

Now we can use (28) to split (27). For k \not = j, we obtain

m\sum 
j=1

m\sum 
k=1
k \not =j

N\sum 
\ell =1

N\sum 
s=1

g\ell gs
\bigl\langle 
\bfitu T
\ell ,\bfitu 

T
s

\bigr\rangle 
2

1

N2
=

m2  - m

N2
\langle \bfitU \bfitU T\bfitg , \bfitg \rangle 2 =

m2  - m

N2
\| \bfitU \bfitU T\bfitg \| 22.

The remaining terms with j = k contribute to (27) with

m\sum 
j=1

N\sum 
\ell =1

N\sum 
s=1

g\ell gs
\bigl\langle 
\bfitu T
\ell ,\bfitu 

T
s

\bigr\rangle 
2
EP

\bigl[ 
Ipj=\ell Ipj=s

\bigr] 
=

1

N

\left[  m\sum 
j=1

N\sum 
\ell =1

g2\ell \| \bfitu T
\ell \| 22

\right]  
=

m

N

N\sum 
\ell =1

g2\ell \| \bfitu T
\ell \| 22 ,

where we use EP [Ipj=\ell Ipj=s] = 1/N for s = \ell and 0 otherwise. Altogether, we have

EP

\Bigl[ \bigm\| \bigm\| (\bfitP T\bfitU )T\bfitP T\bfitg 
\bigm\| \bigm\| 2
2

\Bigr] 
=

m2  - m

N2
\| \bfitU \bfitU T\bfitg \| 22 +

m

N
\| diag(\bfitg )\bfitU \| 2F

\leq m2  - m

N2
\| \bfitU \bfitU T\bfitg \| 22 +

m

N

n

N
\mu (\scrU )\| \bfitg \| 22

\biggl( 
here

n

N
\mu (\scrU ) = max

\ell =1,...,N
\| \bfitu T

\ell \| 22
\biggr) 

=
m2  - m

N2
\| \bfitg \| 22cos2 \alpha +

m

N

n

N
\mu (\scrU )\| \bfitg \| 22 ,(29)
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where cos2 \alpha = \| \bfitU T\bfitg \| 22/\| \bfitg \| 22 and diag(\bfitg ) \in RN\times N is the diagonal matrix with the
components of \bfitg on its diagonal. Hence, applying Jensen's inequality to (29) and then
using (26) yields

EP

\bigl[ 
\| (\bfitP T\bfitU )\dagger \bfitP T\bfitg \| 2

\bigr] 
\leq \| \bfitg \| 2

1 - \gamma 

\sqrt{} 
cos2\alpha +

n

m
\mu (\scrU ) = \| \bfitg \| 2

1 - \gamma 

\sqrt{} 
cos2\alpha +

N

m
max

\ell =1,...,N
\| \bfitu T

\ell \| 22.

Combining this final inequality with (24) yields the desired result (20).

Remark 4.4. The min function in the upper bound (20) results from using two
different upper bounds for \| (\bfitP T\bfitU )\dagger \bfitP T\bfitg \| 2, one as in (21) and the other one as in
(25). The latter is employed by [5] for the special case where \bfitg is orthogonal to
the range of \bfitU . A technical calculation shows that while the first input in the min
function is expected to be the smaller of the two for small m, the second input is
expected to be the smaller one for large m.

Remark 4.5. If \bfitg is orthogonal to the range of \bfitU , in (20) the term cos\alpha = 0 and
the upper bound simplifies to

EP

\Bigl[ \bigm\| \bigm\| \bigm\| \bigl( \bfitP T\bfitU 
\bigr) \dagger 

\bfitP T\bfitg 
\bigm\| \bigm\| \bigm\| 
2

\Bigr] 
\leq min

\Biggl\{ 
1\surd 
1 - \gamma 

,

\sqrt{} 
n
m\mu (\scrU )
1 - \gamma 

\Biggr\} 
\| \bfitg \| 2.

Thus, Lemma 4.3 contains [5, Lemma 2] as a special case. Indeed, in this special case,
the expectation of (\bfitP T\bfitU )T\bfitP T\bfitg is zero because

EP

\bigl[ 
(\bfitP T\bfitU )T\bfitP T\bfitg 

\bigr] 
= EP

\left[  m\sum 
k=1

N\sum 
j=1

\bfitu T
j gjIpk=j

\right]  =
m

N
\bfitU T\bfitg = 0.

We now show that GappyPOD is robust with respect to noise in the sense that
increasing the number of sampling points m reduces the effect of the noise.

Theorem 4.6. Consider the same setup as in Lemmas 4.1 and 4.3. Define

(30) \zeta = min

\biggl\{ 
1\surd 
1 - \gamma 

,
1

1 - \gamma 

\sqrt{} 
n

m
\mu (\scrU )

\biggr\} 
.

Then,

(31) EP

\Bigl[ 
E\epsilon 

\Bigl[ 
\| \bfitf  - \^\bfitf \bfitepsilon \| 2

\Bigr] \Bigr] 
\leq (1 + \zeta ) \| \bfitf  - \bfitU \bfitU T\bfitf \| 2 +

\| \bfitsigma \| \infty 
(1 - \gamma )

\sqrt{} 
nN

m

with probability at least 1  - \delta , where the expectation EP is with respect to the dis-
tribution of the samples and E\epsilon with respect to the noise in \bfitf \bfitepsilon as defined in (9).

Proof. We split the error following the strategy of [16, Theorem 2]. With the
triangular inequality, we obtain

(32) EP

\Bigl[ 
E\epsilon 

\Bigl[ 
\| \bfitf  - \^\bfitf \bfitepsilon \| 2

\Bigr] \Bigr] 
\leq EP

\Bigl[ 
\| \bfitf  - \^\bfitf \| 2

\Bigr] 
+ EP

\bigl[ 
E\bfitepsilon 

\bigl[ 
\| \bfitU (\bfitP T\bfitU )\dagger \bfitP T \bfitepsilon \| 2

\bigr] \bigr] 
with \^\bfitf = \bfitU (\bfitP T\bfitU )\dagger \bfitP T\bfitf and \bfitf \bfitepsilon = \bfitf + \bfitepsilon .

To bound the first term on the right-hand side of the inequality (32), set \bfitg =
\bfitf  - \bfitU \bfitU T\bfitf . Similarly to the case in [14], it holds that

(33) \bfitf  - \^\bfitf = \bfitf  - \bfitU (\bfitP T\bfitU )\dagger \bfitP T\bfitf = \bfitg  - \bfitU (\bfitP T\bfitU )\dagger \bfitP T\bfitg ,
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where we used the fact that (\bfitP T\bfitU )\dagger \bfitP T\bfitU = \bfitI n with probability, at least, 1 - \delta . Note
that \bfitg = \bfitf  - \bfitU \bfitU T\bfitf is orthogonal to the range of \bfitU . Then, Lemma 4.3 implies that

(34) EP [\| \bfitU (\bfitP T\bfitU )\dagger \bfitP T\bfitg \| 2] \leq min

\Biggl\{ 
1\surd 
1 - \gamma 

,

\sqrt{} 
n
m\mu (\scrU )
1 - \gamma 

\Biggr\} 
\| \bfitg \| 2

with probability at least 1  - \delta . Then, (33) and the linearity of the expectation yield

(35) EP

\Bigl[ 
\| \bfitf  - \^\bfitf \| 2

\Bigr] 
\leq (1 + \zeta ) \| \bfitf  - \bfitU \bfitU T\bfitf \| 2,

where \zeta is as defined in (30). Now consider the second term on the right-hand side
of (32). Note that \bfitepsilon is not necessarily orthogonal to \bfitU , and therefore Remark 4.5
cannot be applied. We make the approximations

(36) EP

\bigl[ 
E\bfitepsilon 

\bigl[ 
\| \bfitU (\bfitP T\bfitU )\dagger \bfitP T \bfitepsilon \| 2

\bigr] \bigr] 
\leq N

(1 - \gamma )m
EP

\bigl[ 
E\bfitepsilon 

\bigl[ 
\| (\bfitP T\bfitU )T\bfitP T \bfitepsilon \| 2

\bigr] \bigr] 
,

which holds with probability at least 1 - \delta ; see (25) and (26) in the proof of Lemma 4.3.
Consider now EP [E\bfitepsilon [\| (\bfitP T\bfitU )T\bfitP T \bfitepsilon \| 22]]. With the same notation as in the proof of
Lemma 4.3, and building on the proof of [16, Theorem 3], we have

EP

\bigl[ 
E\bfitepsilon 

\bigl[ 
\| (\bfitP T\bfitU )T\bfitP T \bfitepsilon \| 22

\bigr] \bigr] 
= EP

\bigl[ 
E\bfitepsilon 

\bigl[ \bigl\langle 
(\bfitP T\bfitU )T\bfitP T \bfitepsilon , (\bfitP T\bfitU )T\bfitP T \bfitepsilon 

\bigr\rangle 
2

\bigr] \bigr] 
= EP

\left[  E\bfitepsilon 

\left[  \Biggl\langle m\sum 
i=1

\epsilon pi
\bfitu T
pi
,

m\sum 
j=1

\epsilon pj
\bfitu T
pj

\Biggr\rangle 
2

\right]  \right]  = EP

\left[  m\sum 
i=1

m\sum 
j=1

E\bfitepsilon 

\Bigl[ \Bigl\langle 
\epsilon pi

\bfitu T
pi
, \epsilon pj

\bfitu T
pj

\Bigr\rangle 
2

\Bigr] \right]  
= EP

\left[  m\sum 
i=1

m\sum 
j=1

E\bfitepsilon 

\Bigl[ 
\epsilon pi

\epsilon pj

\Bigl\langle 
\bfitu T
pi
,\bfitu T

pj

\Bigr\rangle 
2

\Bigr] \right]  = EP

\left[  m\sum 
i=1

m\sum 
j=1

E\bfitepsilon 

\bigl[ 
\epsilon pi

\epsilon pj

\bigr] \Bigl\langle 
\bfitu T
pi
,\bfitu T

pj

\Bigr\rangle 
2

\right]  
= EP

\Biggl[ 
m\sum 
i=1

E\bfitepsilon 

\bigl[ 
\epsilon 2pi

\bigr] \bigl\langle 
\bfitu T
pi
,\bfitu T

pi

\bigr\rangle 
2

\Biggr] 
(since \epsilon pi

and \epsilon pj
are independent for i \not = j)

= EP

\Biggl[ 
m\sum 
i=1

\sigma 2
pi

\bigl\langle 
\bfitu T
pi
,\bfitu T

pi

\bigr\rangle 
2

\Biggr] 
= EP

\left[  m\sum 
i=1

N\sum 
j=1

\sigma 2
j \| \bfitu T

j \| 22Ipi=j

\right]  =
m

N

N\sum 
j=1

\sigma 2
j \| \bfitu T

j \| 22 .

Using the fact that
\sum N

j=1 \| \bfitu T
j \| 22 = \| \bfitU \| 2F = n, we obtain

EP

\Bigl[ 
E\bfitepsilon 

\Bigl[ \bigm\| \bigm\| (\bfitP T\bfitU )T\bfitP T \bfitepsilon 
\bigm\| \bigm\| 2
2

\Bigr] \Bigr] 
=

m

N

N\sum 
j=1

\sigma 2
j \| \bfitu T

j \| 22 \leq m

N
\| \bfitsigma \| 2\infty 

N\sum 
j=1

\| \bfitu T
j \| 22 =

mn

N
\| \bfitsigma \| 2\infty .

Applying Jensen's inequality together with (36) yields

EP

\bigl[ 
E\bfitepsilon 

\bigl[ \bigm\| \bigm\| \bfitU (\bfitP T\bfitU )\dagger \bfitP T \bfitepsilon 
\bigm\| \bigm\| 
2

\bigr] \bigr] 
\leq N

(1 - \gamma )m

\sqrt{} 
mn

N
\| \bfitsigma \| 2\infty =

\| \bfitsigma \| \infty 
(1 - \gamma )

\sqrt{} 
nN

m

with probability at least 1  - \delta . Combining this with (35) proves the theorem.
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Remark 4.7. Theorem 4.6 reveals that as m \rightarrow \infty (recall we perform uniform
sampling with replacement), the upper bound in (31) converges to the projection
error \| \bfitf  - \bfitU \bfitU T\bfitf \| 2. In the numerical results in section 6, rather than investigating
the asymptotic behavior as m \rightarrow \infty , we will typically keep the ratio n/m low by
increasing m with n and so preventing that the noise term in (31) dominates.

5. The GappyPOD+E deterministic sampling strategy. In this section, we
present a deterministic strategy that selects sampling points to reduce the quan-
tity \| (\bfitP T\bfitU )\dagger \| 2, which controls how sensitive the GappyPOD oblique projection is
to perturbations and noise; cf. subsection 2.3. While our probabilistic analysis in
section 4 shows that sampling points that are selected uniformly in \{ 1, . . . , N\} are
sufficient for GappyPOD to be robust with respect to noise, the number of uni-
formly selected sampling points that are required grows with, e.g., the coherence
\mu (\scrU ) of the space \scrU . The following deterministic selection strategy aims to achieve
robustness with fewer points than uniform sampling by taking information about the
space \scrU into account. We refer to the introduction for references to other sampling
strategies.

We propose the GappyPOD+E sampling algorithm that is based on lower bounds
of the smallest eigenvalues of certain structured matrix updates introduced in [26]
and that is a special case of the approach introduced by Zimmermann and Willcox
in [45]. The ``E"" in GappyPOD+E stands for ``eigenvector."" The goal of the Gappy-
POD+E sampling algorithm is to select points that minimize \| (\bfitP T\bfitU )\dagger \| 2. This min-
imization problem is equivalent to maximizing the smallest singular value of \bfitP T\bfitU 
because

\| (\bfitP T\bfitU )\dagger \| 2 = smax

\bigl( 
(\bfitP T\bfitU )\dagger 

\bigr) 
=

1

smin(\bfitP T\bfitU )
,

where smax(\bfitM ) and smin(\bfitM ) denote the largest and the smallest singular value of
the matrix \bfitM , respectively. The GappyPOD+E algorithm relies on lower bounds of
the smallest eigenvalues to select points that maximize smin(\bfitP 

T\bfitU ) by leveraging the
eigenvector corresponding to the smallest eigenvalue.

5.1. Singular values after symmetric rank-one updates. Consider the ba-
sis matrix \bfitU and the sampling points matrix1 \bfitP m that takesm \geq n samples. Consider
now the SVD of \bfitP T

m\bfitU \in Rm\times n

\bfitV m\Sigma m\bfitW T
m = \bfitP T

m\bfitU ,

where \bfitV m \in Rm\times n contains, as its columns, the left-singular vectors, the matrix

\Sigma m = diag[s
(m)
1 , . . . , s

(m)
n ] \in Rn\times n is a diagonal matrix with the singular values

s
(m)
1 , . . . , s

(m)
n , in descending order, and \bfitW m \in Rn\times n contains, as its columns, the

right-singular vectors. Note that we assume that \bfitP T
m\bfitU has full column rank in the

following, which can be ensured by initializing GappyPOD+E with, e.g., the QDEIM
interpolation points. If we add a sampling point, we obtain

\bfitP T
m+1\bfitU =

\biggl[ 
\bfitP T

m\bfitU 
\bfitu +

\biggr] 
\in Rm+1\times n ,

1Note that we have changed the notation slightly here and added the subscript ``m"" to \bfitP . This
will help distinguish the sampling points matrix when new indices are added.
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where \bfitu + \in R1\times n is the row of\bfitU that is selected by the new sampling point. Following
the work by Zimmermann and Willcox [45], the change of the singular values of \bfitP T

m\bfitU 
to \bfitP T

m+1\bfitU can be understood via a symmetric rank-one update. We have

\bfitP T
m+1\bfitU =

\biggl[ 
\bfitV m 0
0 1

\biggr] \biggl[ 
\Sigma m

\bfitu +\bfitW m

\biggr] 
\bfitW T

m .

The singular values of \bfitP T
m+1\bfitU are given by the square roots of the eigenvalues of

(\bfitP T
m+1\bfitU )T (\bfitP T

m+1\bfitU ), which we represent as

(\bfitP T
m+1\bfitU )T (\bfitP T

m+1\bfitU ) = \bfitW m

\bigl( 
\Sigma 2

m +\bfitW T
m\bfitu T

+\bfitu +\bfitW m

\bigr) 
\bfitW T

m .

Define \Lambda m+1 = \Sigma 2
m + \bfitW T

m\bfitu T
+\bfitu +\bfitW m. With \=\bfitu + = \bfitW T

m\bfitu T
+, we obtain \Lambda m+1 =

\Sigma 2
m + \=\bfitu + \=\bfitu T

+, which is a symmetric rank-one update to the diagonal matrix \Sigma 2
m. The

square roots of the eigenvalues of \Lambda m+1 are the singular values of \bfitP T
m+1\bfitU .

Let \lambda 
(m)
1 , . . . , \lambda 

(m)
n be the eigenvalues of \Sigma 2

m and let \lambda 
(m+1)
1 , . . . , \lambda 

(m+1)
n be the

eigenvalues of \Lambda m+1, both listed in descending order. Our goal is now to select a row

of \bfitU that maximizes the smallest eigenvalue \lambda 
(m+1)
n . From Weyl's theorem [40, 41]

we have that \lambda 
(m+1)
n \geq \lambda 

(m)
n , which shows that adding any sampling point will, at

least, not increase \| (\bfitP T
m+1\bfitU )\dagger \| 2 compared to \| (\bfitP T

m\bfitU )\dagger \| 2.

5.2. Lower bounds for eigenvalues of updated matrices. We now use the
results by Ipsen and Nadler in [26] to derive a heuristic strategy with the aim of
selecting sampling points that lead to a fast increase of the smallest eigenvalue, i.e.,
to a fast decrease of \| (\bfitP T

m\bfitU )\dagger \| 2.
Let g = \lambda 

(m)
n - 1  - \lambda 

(m)
n be the eigengap. Note that we need \lambda 

(m)
n - 1 > \lambda 

(m)
n in the

following. Let \bfitz 
(m)
n \in Rn be the eigenvector of \Sigma 2

m corresponding to the smallest

eigenvalue \lambda 
(m)
n , with \| \bfitz (m)

n \| 2 = 1. In our case \bfitz 
(m)
n is the nth canonical unit vector

of dimension n because \Sigma 2
m is diagonal with diagonal elements ordered descending.

Then, as shown in [26, Corollary 2.2],

(37) \lambda (m+1)
n \geq \lambda (m)

n +
1

2

\biggl( 
g + \| \=\bfitu +\| 22  - 

\sqrt{} 
(g + \| \=\bfitu +\| 22)

2  - 4g(\bfitz 
(m)
n

T \=\bfitu +)2
\biggr) 

.

Observe that the bound (37) depends on the eigenvector corresponding to the smallest
eigenvalue.

The bound (37) motivates us to add the rows of \bfitU that maximize

(38) g + \| \=\bfitu +\| 22  - 
\sqrt{} 
(g + \| \=\bfitu +\| 22)

2  - 4g(\bfitz 
(m)
n

T \=\bfitu +)2 .

The criterion (38) is related to the criteria developed in [45]. While we build on the
perturbation bounds introduced in [26], the authors of [45] directly derive criteria
that take the eigenvector \bfitz n corresponding to the smallest eigenvalue into account;
see [45, p. A2834] and [45, Remark 2, item 3]. In fact, the work [45] goes a step
further and also takes into account inner products with eigenvectors corresponding to
larger eigenvalues. We do not consider these additional steps discussed in [45] in the
following.

5.3. The GappyPOD+E algorithm. The GappyPOD+E sampling approach
that we consider is summarized in Algorithm 1. It iteratively selects new sampling
points that maximize (38) in a greedy fashion. In line 2 of Algorithm 1, the first n
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points are selected with QDEIM; see Listing 1. Then, for each point i = n+1, . . . ,m,
the SVD of \bfitP T

i \bfitU (which is U(p, :) in the notation used in Algorithm 1) is computed
to obtain the right-singular vectors as columns of the matrix \bfitW m. The eigengap g
is computed on line 6 in Algorithm 1. Then, \=\bfitU = \bfitW T

i \bfitU T is obtained on line 7 in
Algorithm 1. The bound (38) is then computed from \=\bfitU for each column \=\bfitu + in lines
8--9 and sorted descending on line 10. On line 9, it is exploited that the eigenvector

\bfitz 
(i)
n is the nth canonical unit vector of dimension n and so \bfitz 

(i)
n

T \=\bfitu + in (38) for column

\=\bfitu + of \=\bfitU is computed as \bfitz 
(i)
n

T \=\bfitu + = \bfitz 
(i)
n \bfitW T

i \bfitu T
+ = (\bfitw end

i )T\bfitu T
+, where \bfitw end

i is the
right-singular vector corresponding to the smallest singular value. This means that

(\bfitz 
(i)
n )T \=\bfitU is given by the last row of \=\bfitU (denoted as Ub(end, :) in Algorithm 1).

The point corresponding to the column of \=\bfitU (row of \bfitU ) with the largest value
(38) is added as a sampling point and the procedure is repeated. Each iteration in
GappyPOD+E requires performing an SVD of a small matrix whose size grows with the
reduced dimension n and the number of sampling points. Each SVD is in \scrO (n2m) (for
m > n). Thus, selecting m points with GappyPOD+E is in \scrO (n2m2). Note that the
sampling point selection is performed during the construction of the reduced model
in the offline phase.

The GappyPOD+E algorithm returns points that are not necessarily nested with
respect to the dimension of the DEIM basis: Consider a basis matrix \bfitU n with n
columns and the corresponding set \scrP n of m > n points selected by GappyPOD+E. Let
now \bfitU n+1 be a basis matrix with n + 1 columns where the first n columns coincide
with the columns of \bfitU n and let \scrP n+1 be the set of at least m points selected with
GappyPOD+E. Then, it is possible that \scrP n \not \subset \scrP n+1, which is in contrast to, e.g.,
the greedy EIM algorithm [6], for which \scrP n \subset \scrP n+1 holds if n and n + 1 points are
selected, respectively. Nestedness of points is a desired property in situations where
one wants to, for example, rapidly and adaptively select the number of DEIM basis
vectors and sampling points without running the sampling algorithm from scratch.
One such situation is in model reduction when the dimension of the DEIM space is
selected during the online phase. One option to avoid running GappyPOD+E during
the online phase in this situation is to precompute GappyPOD+E sampling points for
a range of dimensions of the DEIM space and to store them during the offline phase,
which might require a large amount of memory. In the online phase, the precomputed
points can be quickly loaded depending on the basis dimension that is selected online,
instead of running GappyPOD+E during the online phase.

6. Numerical results. This section compares the stability of DEIM and Gappy-
POD with randomized and deterministic sampling algorithms on numerical examples.
Subsection 6.1 revisits the toy example from subsection 2.3 and demonstrates that
GappyPOD provides stable approximations compared to DEIM. Subsection 6.2 approx-
imates velocity fields from noisy measurements of single-injector combustion processes
following the procedure introduced in [9, 42]. Subsection 6.3 demonstrates the effect
of taking more sampling points than basis vectors on a diffusion-reaction problem,
where GappyPOD provides stable approximations in contrast to DEIM.

6.1. Synthetic example. Let us revisit the synthetic example introduced in
subsection 2.3. We use the same setup as before but now approximate the noisy func-
tion with GappyPOD that takes more sampling points than basis vectors. We compare
our GappyPOD+E sampling strategy to three sampling strategies from the literature.
First, there is GappyPOD+R, which takes the first n sampling points with QDEIM and
the subsequent m - n sampling points uniform randomly with replacement. Thus, the
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Algorithm 1 Sampling points selection with GappyPOD+E (MATLAB notation).

1: function [ p ] = gpode( U, m )

2: [\~, \~, p] = qr(U', 'vector ');
3: p = p(1: size(U, 2))';
4: for i=length(p)+1:m

5: [\~, S, W] = svd(U(p, :), 0);

6: g = S(end -1, end -1).\^2 - S(end , end)\^2;

7: Ub = W'*U';
8: r = g + sum(Ub.\^2, 1);

9: r = r-sqrt((g+sum(Ub.\^2,1)).\^2-4*g*Ub(end , :).\^2);

10: [\~, I] = sort(r, 'descend ');
11: e = 1;

12: while any(I(e) == p)

13: e = e + 1;

14: end

15: p(end + 1) = I(e);

16: end

17: end

``R"" in GappyPOD+R stands for ``random."" Second, the strategy GappyPOD+L takes
the first n points with QDEIM and the subsequent m  - n points based on leverages
scores as described in, e.g., [3, section V.B]. Thus, the ``L"" in GappyPOD+L stands
for ``leverage scores."" Third, with GappyPOD+D we denote the sampling strategy
introduced in [13, Algorithm 4] that selects m > n sampling points by extending the
DEIM greedy algorithm [6, 14]. Thus, the ``D"" in GappyPOD+D stands for ``DEIM
greedy."" The number of sampling points is set to m = 2n in case of GappyPOD in
the following. We perform 10 replicates of the experiments and compute the error
as defined in (10). The results in Figure 2(a) indicate that GappyPOD with more
sampling points than basis vectors avoids the unstable behavior obtained with DEIM,
as suggested by our analysis presented in section 4. All sampling algorithms perform
well in this example, with GappyPOD+E, GappyPOD+L, GappyPOD+D achieving the
lowest errors. Similar results are obtained for \sigma \in \{ 10 - 5, . . . , 10 - 8\} in this example
as shown in Figure 2(b)--(e). Note that the error decays linearly with \sigma as long as
the noise limits the overall accuracy rather than the projection error, as indicated by
Theorem 4.6. The error bars in Figure 2 show the minimum and maximum of the er-
ror over the 10 replicates. Except for GappyPOD+R in Figure 2(a) near n = 1000, the
error bars are barely visible in the plots, which indicates that even small perturbations
due to noise lead to unstable behavior in QDEIM.

Figure 3(a) compares the orthogonal projection error of the noisy data,

(39)
k\sum 

j=1

1

2500

2500\sum 
i=1

\| \bfitf (\bfitx ; \xi \prime i) - \bfitU \bfitU T\bfitf \bfitepsilon j (\bfitx ; \xi 
\prime 
i)\| 2

\| \bfitf (\bfitx ; \xi \prime i)\| 2
,

to error (10) of QDEIM and GappyPOD+R. Note that the projection error (39) grows
with the dimension n since the Gaussian random noise vector can be better and better
approximated in the subspace spanned by the columns of \bfitU as the dimension n is
increased. Figure 3(b) shows that if the dimension n = 500 is fixed and the number
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Fig. 2. Synthetic example: GappyPOD with more sampling points than basis vectors shows
stable behavior and avoids the amplification of the error with a rate

\surd 
n as observed in the QDEIM

approximation. All sampling strategies for GappyPOD give stable approximations in this example.

of sampling points m is increased, then the error (10) of GappyPOD+R decays with a
rate

\sqrt{} 
1/m to the projection error of noiseless data, i.e.,

(40)
k\sum 

j=1

1

2500

2500\sum 
i=1

\| \bfitf (\bfitx ; \xi \prime i) - \bfitU \bfitU T\bfitf (\bfitx ; \xi \prime i)\| 2
\| \bfitf (\bfitx ; \xi \prime i)\| 2

,

which is below machine precision in this example for n = 500. The results shown
in Figure 3(b) are in alignment with Theorem 4.6, which states that the error of
GappyPOD with uniform sampling with replacement converges with rate

\sqrt{} 
1/m to

the projection error.
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Fig. 3. Plot (a) shows the projection error (39) of noisy data with standard deviation \sigma = 10 - 4.
The projection error (39) grows with the space dimension n because the Gaussian random noise
vector can be more accurately approximated in the space as the dimension is increased. Plot (b)

indicates that the error (10) of GappyPOD+R converges with a rate
\sqrt{} 

1/m to the projection error
of noiseless data (40) for a fixed dimension; cf. Theorem 4.6. The projection error of noiseless data
is below machine precision in this example.

6.2. Velocity field approximations from noisy measurements of single-
injector combustion process. We consider velocity field approximations from
noisy measurements of the single-injector combustion process described in detail
in [39]. The combustion model follows the implementation of the General Equa-
tion and Mesh Solver (GEMS) code [23, 25] developed by Purdue University. The
domain of the setup of [39] is shown in Figure 4. Fuel and oxidizer are input with
constant mass flow rates of 5.0kg

s and 0.37kg
s , respectively. The fuel is composed of

gaseous methane and the oxidizer is 42\% gaseous O2 and 58\% gaseous H2O. Details
of the physics of the problem setup are described in [25].

To generate snapshot data, the GEMS code is used to simulate the system for
0.7ms with a time step size of \delta t = 10 - 7. The simulation leads to 7000 snapshots
\bfitx (t1), . . . ,\bfitx (t7000) \in R77046 at 7000 time points t1, . . . , t7000. The snapshots are of
length 77046 (there are 38523 spatial discretization points) and contain the velocity in
the x and y directions. The basis matrix \bfitU is derived with POD from the snapshots,
where every fourth snapshot is skipped and kept as a test snapshot. Thus, the basis
matrix is constructed from 5250 snapshots that are the columns of \bfitX and the 1750
test snapshots are ignored during construction of the basis matrix and collected as
columns in \bfitX (test). The test snapshots are polluted with zero-mean Gaussian noise
with standard deviation \sigma = 1.7 and \sigma = 3.4, respectively, and collected in the
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Fig. 4. Combustion: Geometry of combustion chamber; see [23, 25] for details.
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noisy test snapshot matrix \bfitX 
(test)
\bfitepsilon . A standard deviation of \sigma = 1.7 corresponds to

about 0.5\% noise with respect to the mean of the snapshot matrix. Correspondingly,
\sigma = 3.4 means that about 1\% noise is added to the test snapshots. Figure 5(a) shows
for \sigma = 3.4 the relative state error

(41)
10\sum 
j=1

\bigm\| \bigm\| \bigm\| \bfitX (test)  - \bfitU (\bfitP T\bfitU )\dagger \bfitP T\bfitX 
(test)
\bfitepsilon j

\bigm\| \bigm\| \bigm\| 
F

\| \bfitX (test)\| F

over j = 1, . . . , 10 replicates of noise \bfitepsilon j . The matrix \bfitP is derived from QDEIM
with m = n and from GappyPOD+D, GappyPOD+L, GappyPOD+R, GappyPOD+E,
respectively, with m = 2n, i.e., twice as many sampling points as number of basis
vectors. Figure 5(a) shows the growth of the error (41) for QDEIM, which uses the
same number of sampling points as basis vectors. In contrast, taking more sampling
points than basis vectors with GappyPOD yields a stable approximation. All sampling
strategies help to reduce the error (41) significantly, where GappyPOD+E achieves
the lowest error in this example. Error bars show the minimum and the maximum
of the error over the replicates. The error bars are barely visible in Figure 5(a),
which indicates that small perturbations can lead to unstable behavior in QDEIM and
that GappyPOD with more sampling points than basis vectors robustly gives stable
approximations. Similar results are obtained for \sigma = 1.7 in Figure 5(b). Figure 5(c)
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(a) std. deviation \sigma = 3.4 (about 1\% noise)
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Fig. 5. Combustion: The plots in this figure show that approximating the velocity field of the
single-injector combustion process considered in this example from noisy measurements suffers from
the instability described in section 2.3 if QDEIM is used with the same number of sampling points as
the dimension of the reduced space. In contrast, GappyPOD with various sampling strategies yields
stable approximations, i.e., avoids the growth with rate

\surd 
n with the dimension n of the reduced

space. GappyPOD+E achieves the lowest error in this example.
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shows that the norm of the sampling operator \| (\bfitP T\bfitU )\dagger \| 2 is lowest for GappyPOD+E,
which is in agreement with the results in Figures 5(a) and 5(b).

6.3. Diffusion-reaction problem with nonlinear reaction term. We now
demonstrate the stability of GappyPOD and DEIM on a reduced model of a diffusion-
reaction problem. The example demonstrates that instabilities in the DEIM approxi-
mations can lead to unstable reduced models, which can be avoided with GappyPOD
if more sampling points than basis vectors are used.

6.3.1. Problem setup. Let \Omega = (0, 1)2 \subset R2 and \scrD = [ - \pi /2, \pi /2]\times [1, 5] and
consider the PDE

(42)  - \Delta u(\bfitomega ; \bfitxi ) + f(u(\bfitomega ; \bfitxi ); \bfitxi ) = 100 sin(2\pi \omega 1) sin(2\pi \omega 2) , \bfitomega \in \Omega ,

where \bfitomega = [\omega 1, \omega 2]
T is the spatial coordinate, u : \Omega \times \scrD \rightarrow R is the solution function,

and f : R\times \scrD \rightarrow R is a nonlinear function

f(u; \bfitxi ) = (0.1 sin(\xi 1) + 2) exp( - 2.7\xi 21)(exp(\xi 2u1.8) - 1)

with parameter \bfitxi = [\xi 1, \xi 2]
T \in \scrD . The PDE (42) is closed with homogeneous Dirichlet

boundary conditions. This example is a modification of the example considered in [22].
We discretize (42) with a second-order finite difference scheme on an equidistant

mesh with mesh width h = 1/255 in \Omega , which leads to the state dimension N = 65536.
The system of nonlinear equations is solved with Newton's method. We derive a
reduced model from 1600 snapshots corresponding to a 40\times 40 grid of parameter values
in the domain \scrD . The grid is equidistant in the first direction and logarithmically
equidistant in the second direction. The basis matrix \bfitV is constructed with POD.
The POD dimension is chosen as r = 50. The nonlinear term is approximated with
empirical interpolation, with more details to follow below. The reduced model is
tested on parameters corresponding to the 9\times 9 grid in \scrD that is linearly equidistant
in the first direction and logarithmically equidistant in the second direction. The full-
model states corresponding to the test parameters are collected in the test snapshot
matrix \bfitX (test) \in RN\times 81.

6.3.2. Results. We compare reduced models that differ in the way the non-
linear term is approximated. With ``QDEIM"" we denote the reduced models that
approximate the nonlinear terms with QDEIM, which takes m = n sampling points.
Reduced models that approximate the nonlinear term with GappyPOD are denoted
as ``GappyPOD+D,"" ``GappyPOD+R,"" ``GappyPOD+L,"" and ``GappyPOD+E,"" respec-
tively, depending on which sampling strategy is used.

Figure 6 compares the norm of the sampling operators for m = 4n and m = 8n for
dimensions n \in \{ 50, . . . , 400\} . GappyPOD+E provides the sampling operator with the
lowest norm in this example. We first run the reduced models for the test parameters
without adding noise and collect the corresponding states as columns in the matrix
\~\bfitX (S) \in Rr\times 81 where S is either QDEIM, GappyPOD+D, GappyPOD+L, GappyPOD+R,
or GappyPOD+E. The averaged relative state error

(43)
\| \bfitX  - \bfitV \~\bfitX (S)\| F

\| \bfitX \| F

is shown in Figure 7(a) for an oversampling factor m/n = 4 and in Figure 7(b)
for m/n = 8 for S either QDEIM, GappyPOD+D, GappyPOD+L, GappyPOD+R, or
GappyPOD+E. QDEIM as well as GappyPOD with all sampling strategies achieve
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(a) m = 4n (factor 4 oversampling) (b) m = 8n (factor 8 oversampling)

Fig. 6. Diffusion reaction example: The sampling operators derived with GappyPOD+E achieves
the lowest norm \| (\bfitP T\bfitU )\dagger \| 2 in this example.
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Fig. 7. Diffusion reaction example: Without noise, QDEIM and GappyPOD show stable behavior
in this example. Note that the dimension r of the POD space is fixed and therefore the curves level
off even if the dimension n of the reduced space spanned by the columns of \bfitU is increased.

stable approximations in the sense described in section 2.3, i.e., the error (43) does
not grow with the dimension n of the reduced space.

We now run the reduced models for the test parameters and perturb the nonlinear
function evaluations f with zero-mean Gaussian noise and standard deviation \sigma >
0. We repeat this process k = 10 times and collect the states of a reduced model

corresponding to the test parameters as columns in \~\bfitX 
(S)
i \in Rr\times 81 for i = 1, . . . , k.

Then, the averaged relative state error

(44)
k\sum 

i=1

\| \bfitX  - \bfitV \~\bfitX 
(S)
i \| F

\| \bfitX \| F

is reported in the following for each reduced model. Figure 8 compares the error (44)
for reduced models based on QDEIM, GappyPOD+D, GappyPOD+L, GappyPOD+R,
and GappyPOD+E. The standard deviation of the noise is \sigma = 10 - 2 and the over-
sampling factor is 4, i.e., m = 4n. The growth of the error (44) with rate

\surd 
n

can be observed for QDEIM in Figure 8. Similarly, the reduced models based on
GappyPOD+D seem unstable because the corresponding errors grow with a rate of
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Fig. 8. Diffusion reaction example with noise: Approximating the nonlinear terms in this
example with QDEIM leads to unstable behavior, which is indicated in this plot with a growth with
rate

\surd 
n. GappyPOD with more sampling points than basis vectors leads to stable reduced models

with sampling strategies GappyPOD+E and GappyPOD+R in this example. Standard deviation of
noise is \sigma = 10 - 2 and oversampling factor is m/n = 4.

\surd 
n too. In contrast, GappyPOD+E and GappyPOD+R give stable reduced models,

where the error does not increase with the dimension n of the reduced space spanned
by the columns of \bfitU . The curves plotted in Figure 8 are shown in Figure 11 in the
appendix with error bars that indicate the minimum and maximum errors over the
k = 10 replicates. The sampling points selected with GappyPOD+L lead to models
with poor performance in this example even though the growth of the error with rate\surd 
n cannot be observed in the plot in Figure 8. However, the error bars shown in

Figure 11 for GappyPOD+L are larger than for the other sampling algorithms, which
indicates that there is strong variability in the approximation error achieved with
GappyPOD+L in this example. The strong variability with respect to accuracy of the
selected points might hide the growth of the error. Figure 9 compares GappyPOD+E
with QDEIM and GappyPOD+D for oversampling factors m/n = 4 and m/n = 8 and
standard deviations \sigma \in \{ 10 - 2, 10 - 3, 10 - 4\} . The error bars show the minimum and
maximum errors over the k = 10 replicates. In all cases, GappyPOD+E leads to a
stable reduced model in the sense that the error does not grow with the dimension n
of the DEIM space, whereas QDEIM and GappyPOD+D show unstable behavior and
a growth of the error with rate

\surd 
n.

Consider now Figure 10 that shows results for POD dimension r = 9, which is
lower than dimension r = 50 used previously. The POD space of dimension r = 9
preserves about 99.9\% of the energy, a typical threshold used in model reduction;
cf. [7, section 3.1.1]. Note that the energy is

\sum r
i=1 \zeta 

2
i

\big/ \sum N
i=1 \zeta 

2
i , where \zeta 1, . . . , \zeta N

are the singular values of the snapshot matrix in descending order. The standard
deviation of the noise is set to \sigma = 10 - 1 and \sigma = 10 - 2, respectively. The mean over
10 runs is shown in Figure 10. Similar behavior in terms of error as for higher POD
dimensions is observed. Plot (c) in Figure 10 shows a detail of (a) and indicates that
the approximations based on GappyPOD+R and GappyPOD+E have less oscillatory
error than approximations obtained with QDEIM, GappyPOD+L, and GappyPOD+D
for DEIM dimensions n between 5 and 50 in this example.

Remark 6.1. We comment on the problem setup. In this example, we considered
nonlinear function evaluations that are perturbed with noise. We might encounter
such a situation if, for example, parameters of the nonlinear function first need to be
estimated from data via a Bayesian approach that introduces noise into the function
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Fig. 9. Diffusion reaction example: Taking more sampling points than basis vectors with Gap-
pyPOD+E leads to stable reduced models in this example. In contrast, reduced models based on
QDEIM and GappyPOD+D exhibit instabilities in the sense of section 2.3, which is indicated by the
growth of the error with the rate

\surd 
n. Error bars show the minimum and maximum errors over 10

replicates.

evaluations used in the reduced model. Our analysis does not cover deterministic
approximation errors stemming from, e.g., relaxed tolerances of iterative solvers, and
thus it remains future work to show if our analysis applies to such general types of
noise as well.
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Fig. 10. Diffusion reaction example: The plots show that GappyPOD+E and GappyPOD+R
achieve smaller errors than QDEIM also for a lower POD dimension n = 9 in this example. Notice
in the detail of plot (a) shown in (c) that GappyPOD+R and GappyPOD+E show less oscillatory
error behavior than QDEIM, GappyPOD+L, and GappyPOD+D for DEIM dimensions r between 5
and 50.

7. Conclusions. Empirical interpolation is widely used for approximating non-
linear terms in reduced models and for recovering state fields from few spatial mea-
surements; however, stability issues have been observed in presence of noise and
other perturbations. Our probabilistic analysis shows that the particular instability
that arises due to perturbations such as noise can be provably avoided by employing
GappyPOD and taking more sampling points than dimensions of the reduced space.
Numerical results demonstrated that instabilities in DEIM can lead to a loss of accu-
racy in the reduced model outputs and that GappyPOD with randomized and deter-
ministic sampling strategies gives stabler approximations. The proposed deterministic
sampling strategy aims to keep the number of required samples low and so directly
affects the practical performance of the approximations.

Appendix A. Additional listing and figure.

Listing 1
Selecting interpolation points with QDEIM [17] (MATLAB code).

1: function [ q ] = qdeim( U, m )

2: n = size(U, 2);

3: [\~, \~, q] = qr(U', 'vector ');
4: q = q(1:n) ';
5: end
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Fig. 11. Diffusion reaction example: Approximating the nonlinear terms in this example with
QDEIM leads to unstable behavior, which is indicated in this plot with a growth with rate

\surd 
n.

GappyPOD with more sampling points than basis vectors leads to stable reduced models with sampling
strategies GappyPOD+E and GappyPOD+R in this example. Standard deviation of noise is \sigma = 10 - 2

and oversampling factor is m/n = 4.
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