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Abstract—Studying and monitoring plankton distribution is vital
for global climate and environment protection as they are the
most elementary part of oceanic eco-systems. However, the
conventional methods and techniques used for understanding the
planktons are slow and lacks precision and therefore, in modern
day scientific and engineering implementations, Convolutional
Neural Networks is extensively used in deep learning and ma-
chine learning applications as it outperforms traditional manual
approach. Dynamic nature of oceans make it very challenging
to monitor these microscopic organisms. Our approach here is
to generate a powerful automated plankton recognition system
to autonomously identify them and improve the D-CNN for
classification of the Plankton holographic imagery curated with
the method of Data Conformity Evaluation. The performance of
D-CNN classifier is improved by various hyper-parameter tuning,
regularization techniques and appending meta-data. Conformity
evaluation is based on a matric that’s calculated on a continuously
refined sequence of calculated L;-norm tensor subspaces of the
Plankton images. We note that our classifier performs accurately
where our results improve performances from contemporary
Deep Learning classifier alone.

Index Terms—Autonomous Classification, D-CNN, Data Confor-
mity, L1-PCA HOLOCAM.

I. INTRODUCTION

In recent years, large public image repositories such as Ima-
geNet [1] and emerging high-performance graphics processing
units (GPUs) accelerated the adoption of deep neural networks
(DNNs) as means to carry out visual object detection for
several applications including gesture recognition, web search,
medical and aerial imaging, to name a few. In particular,
deep convolutional neural networks (D-CNNs) [2], [3] are
used extensively to improve accuracy in large-scale image
classification systems. When neural networks train on noisy
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or mislabeled data, they often (over-)fit to the noise measure-
ments and faulty labels, which leads to significant performance
degradation. In this paper, we consider a new method based on
L1-norm principal-component analysis (PCA) to improve the
quality of labeled data sets that are used for training a custom
version of the D-CNN described in [2] known as miniVGG [4].
We test experimentally the classification accuracy of miniVGG
using imagery acquired from a novel submersible microscopic
holographic imaging system known as the HOLOCAM [5].
Specifically, we consider a three way tensor data set gen-
erated from the fixed size (128 x 128) grayscale subscenes
from the HOLOCAM images, which are pre-categorized into
corresponding classes of plankton by human domain experts.
The conformity of the tensor data per class is evaluated
through iterative projections on robust, high-confidence data
characterizations per class that are returned by L1-norm tensor
subspaces [6]-[9]. Non-conforming tensor slabs are likely to
be contaminated by excessive noise or examples mislabeled
due to mistakes made during data entry and are automatically
removed from the data set. In this work, we conduct experi-
ments with four classes of plankton (see Fig. 1a). Each class
is contaminated with images of background scenery as well
as images of other plankton species (Fig. 1b). We show that
L1-norm tensor-conformity curation of the data identifies and
removes inappropriate class instances from the training set and
drastically improves/restores the classification accuracy of the
miniVGG.

II. PROBLEM FORMULATION

In situ digital imaging technologies are fast emerging as im-
portant means of recording spatial and temporal distributions
of plankton in the ocean. In particular, digital holography is
a promising technique that provides 3-D spatial distributions
of particles and plankton within a given sample volume. We
have obtained a large training data set consisting of subscenes
of holographic imagery captured in situ using the HOLOCAM
[5], a submersible digital holographic imaging system.
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Fig. 1: (a) Examples of images of plankton for the four classes; (b) Examples of mislabeled images.

To acquire images, the HOLOCAM is lowered into the water
column a rate of 4-6 cm/s from an anchored ship in order
to observe zooplankton and phytoplankton colonies in their
natural environment. The holographic data are extensively
processed in three major steps: background subtraction, re-
construction, and image plane consolidation. A mean image
is computed for each HOLOCAM cast and that mean is sub-
tracted from each hologram within that cast. This effectively
eliminates imaging artifacts and nonuniformities associated
with variations in background intensity. Next, the hologram is
reconstructed at varying depths using the Fresnel diffraction
formula [10] at incremental steps of 500 pum, resulting in
70 planes per image, where particles at a particular depth
come into focus at the given plane, generating a 3-D spatial
distribution of particles within the sample volume. Finally,
a composite “flattened” image is generated such that every
particle in a given hologram is presented at an optimal depth
where it is in focus. These 2D images are 2048 x 2048 pixels
in size at a spatial resolution of 4.59 pm/pixel [11], [12].
Tens of thousands of images are processed and reconstructed.
From these, four commonly seen classes of plankton are iden-
tified either to class, sub-class or species level as: (1) Cope-
pod; (2) an unknown thin elongated diatom chain, denoted
as “Diatom sp.”; (3) Chaetoceros debilis; and (4) Ditylum
brightwelli. Both Chaetoceros debilis and Ditylum brightwelli
are diatoms which have a distinct enough morphology to be
identifiable to a species level. Upon identification within the
large flattened image, the holographic image is cropped to 128
x 128 pixels (~ 588 x 588 pum) centered on the organism of
interest. This process produced 907 images of C. debilis, 1236
images of Diatom sp., 1407 images of Ditylum brightwelli,
and 728 images of copepods. Copepods are not as plentiful
in the data but have a very distinctive body shape. In order
to produce a sufficient number of copepod images, copepods
were also identified from an additional dataset with a lower
spatial resolution. The images from the lower resolution set (at
4.68 pm/pixel) were interpolated to a 4.59 pim/pixel resolution,
which is the resolution of the diatom images.

In a case where the organism is larger than the 128 x 128 pixel
window at 4.59 pm/pixel resolution, centering the window in
the middle of the organism may not show a representative

Fig. 2: Training data selection window on copepods that are too large
to fit in the 128 x 128 window. The left image highlights the caudal
ramus and the right image focuses on the long antennae.

sample of the unique shape of that organism. To solve this
issue, a window containing an identifying characteristic of the
organism is selected. A window selection for a large copepod
would contain characteristic features such as long antennae or
the caudal ramus (a pair of tail-like spiny protrusions). This is
shown in Fig. 2. This allows the neural network to be trained
on the characteristic features of each plankton type, even if
some samples are too large to fit in their entirety in the 128
x 128 pixel window.

A total of N = 4278 subscenes that contain these plankton
from the HOLOCAM images are manually annotated (as
shown in Fig. la. The examples of images per class i,
i = 1,2,3,4, are organized in a three way tensor X; €
R128x128XN: VWe test and demonstrate for the first time in
the literature the application of novel tensor data conformity
evaluation tools [6]-[9] on &}, i = 1,2,3,4, to improve the
training and classification accuracy of CNNs for autonomous
plankton classification.

III. SYSTEM DESCRIPTION

We assess the quality of labeled plankton images for each
of the four classes by first calculating robust subspace repre-
sentations along each tensor dimension by means of L1-norm
tensor PCA [6]-[9]. Projecting tensor data on the calculated
L1-norm subspaces produces a soft score in the [0, 1] range,
which measures the pixel-wise conformity of the entire tensor
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for each class. The conformity of each image is calculated by
averaging the pixel-wise conformity along each 2-D image.
Images with high score are highlighted as non-conforming.
Removing inappropriate class instances from the training set
by a thresholding operation leads to improvements in the
quality of data, which drastically increases the classification
accuracy of supervised learning models. In this work, we
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Fig. 3: D-CNN Architecture.

Layers Output Size
Input 128x128x1
Conv2D (32 filters) 128x128x32
Activation (ReLU) 128x128x32
Batch normalization 128x128x32
Conv2D (32 filters) 128x128x32
Activation (RelU) 128x128x32
Batch Normalization 128x128x32
Max-Pooling (2x2) 64x64x32
Dropout (0.25) 64x64x32
Conv2D(64 filters) 64x64x64
Activation (ReLU) 64x64x64
Batch Normalization 64x64x64
Conv2D (64 filters) 64x64x64
Activation (RelLU) 64x64x64
Batch Normalization 64x64x64
Max-Pooling (2x2) 32x32x64
Dropout (0.25) 32x32x64
Fully Connected/Dense (512) 512
Activation (ReLU) 512
Batch Normalization 512
Dropout (0.5) 512
Fully Connected (Classes) Classes
Softmax Classes

Fig. 4: D-CNN Architecture Layers & Outputs.

evaluate experimentally, the impact of applying tensor confor-
mity evaluation to the HOLOCAM data on the classification
accuracy of a customized version of VGG —a typical CNN
architecture widely used in computer vision also known as
miniVGG [4]. Convolutional Neural Networks (CNNSs) are a
category of neural networks designed for image recognition
and classification. Convolutional Neural Networks apply a
network of hierarchical filter to the grid of pixels in a manner
inspired by Hubel and Weisel’s experiments of visual cortex’s
response on visual signal [13]. The filters are then convolved
against the input image, i.e., performing element-wise multi-
plication between the filter and the region of the image that

it covers for every possible region in the image. MiniVGG
has two units of CONV-CONV-POOL blocks followed by a
set of FC-FC layers, where CONV, POOL and FC denote
convolution, max-pooling, and fully-connected dense layers,
respectively. SOFTMAX activation follows FC layers for
multi-class plankton classification. The network layers are
shown in Fig. 3. The POOL block is also known as Max-
Pooling layer which, also called as subsampling or down
sampling, reduces the dimensionality of each feature map by
picking up the maximum number in a 2x2 matrices of feature
map. It makes the system, invariant to transformations, transla-
tions and distortions. Activation Functions such as softmax are
used to introduce nonlinearity to the system. The numerical
calculations complexity can be seen in Fig. 4

IV. PROPOSED METHODOLOGY

We consider 4 three-way tensors X; € RIZ8x128xNi y —
1,2,3,4 each containing N; grayscale subscenes from the
HOLOCAM images. Our goal is to use a pre-processing
tool called data conformity evaluation [8], [9] to find miss-
classified or anomalous images inside the datasets. Data con-
formity evaluation converts the original tensor data to a new
tensor of the exact same dimensions, where each new tensor
entry measures the conformity of that entry with respect to all
other data points. The conformity metric will take values from
the [0, 1] set of real numbers, with conformity values close
to 1 indicating “misbehaving” data points, and values close
to 0 corresponding to nominal data points. This is achieved,
by utilizing iteratively refined L;-norm (absolute-error) data
subspaces [6]-[9], [14]. Detection of non-conforming data
entries enables the identification of contaminated data slabs.
With respect to the cth data tensor, we first unfold the tensor
along its columns (rearrange the columns), creating a data
matrix X ) € R¥28<128Ni and we calculate the r; L1-

norm principal components Q\”) € R!28x™ by solving the
following maximization problem [15], [16]

(0) _

1=

argmax
QGRIZS Xry
QTQ:I'r'l

XZ0Q|, M

The resulting basis describes accurately the subspace spanned
by the columns of the original tensor X that contain nominal
data. Columns that are contaminated with anomalous data are
not spanned by the resulting basis vectors. The conformity
of the data columns is computed by projecting each column
[Xcv(l)}:,il ;i1 = 1,2,...,128N; on the calculated subspace

(10) as

1 0) ~(0)
dil), = HQE Q" [Xem).,

1
)2 Vi, =1,2,...,128N.,.
)

is an anomalous

Large dg}gl values are expected if [X. 1)), ;.

data vector and small dg?l values if [XC»(l)]; ;, 1s a nominal

data vector. After the calculation of the projection of each
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column on the subspace, the conformity values are converted
to a tensor ngl) € R128x128xNe

T
ngl) = tensorization ([dﬁ, e dﬂzBNJ ® 1i28x 128N, , 1)
3)

where 1128128, stands for an all-ones matrix of dimension
128 x 128N, and the fensorization(-) operation converts
the matrix unfolding to the original three-mode tensor form
(reverting the unfolding process). The tensor W((:ll) contains
the conformity values corresponding to each column of the
original tensor X’. We repeat the above process for the rest
of the modes of the original data tensor, and calculate the
conformity tensors WSQ) and ngg We calculate the final
conformity tensor ng) by combining the above calculated
tensors in an additive fashion as well as normalizing the tensor
so that each element is in the [0, 1] range

22:1 akWSﬁ — min (Zi:l aka:,li)

max (Zizl akWS,z) — min (Zzzl O"“WSID
“4)
where ag, a, a3 € RT, Zz=1 oy = 1 correspond to weights
for each mode of the tensor that model the weighting of
the corresponding dimension of the original tensor. The final
conformity tensor Wﬁl) enables element-wise conformity of
the original tensor data. The data conformity values can be
iteratively refined until numerical convergence of the data
conformity tensor W),
In order to identify slabs that are contaminated by anomalous
or miss-classified images, we calculate the mean data confor-
mity value per slab as

w =

1 128 128
e = T8 2 2o W = 12 e )

Slabs with high conformity values contain contaminated im-
ages, while low-conformity slabs contain nominal images. We
choose to remove slabs with conformity value ., above a
pre-defined threshold £ cuiof from the received tensor A7,
resulting in a new tensor X’ € R'28x128XNe \where N < N,
The new tensor X’ contains only images that are not anoma-
lous, which results in better classification performance.

V. EXPERIMENTS

The D-CNN runs on Ubuntu OS on a graphics processing
unit (GPU) NVIDIA RTX-2070. We implement the D-CNN
in Python using Tensorflow 2.0/Keras that runs on the CUDA
framework. The D-CNN runs for 10 distinct instances of the
network Training experiments. For each instance of the D-
CNN, we split the data into “training” and‘“‘test” data according
to the following ratio: 80 : 20. The “test” data is never seen by
the D-CNN classifier during it’s training process. The number
of samples used for the experiments is 4278 of size 128
x 128 gray pixels. The Keras ImageDataGenerator class in
python is used to artificially expand the size of the training
data set and to increase the generalizability of our classifier.

These augmented images are the modified forms of the original
images by applying simple geometric transforms such as
random translations like shifting horizontally and vertically
by a factor of 0.1, random rotations of +20 degrees, changes
in scale, shearing by 0.2, zoomed by uniformly sampling in
the range [0.8, 1.2]. Applying some of these transformations to
an input image changes its appearance slightly, but it does not
change the class label — thereby making data augmentation a
natural method to apply to deep learning for computer vision
tasks. The data augmentation was limited to just reproducing
two random transformed copies of each images in order to
avoid over-fitting. Additionally, the labels for the images were
“one-hot encoded” as it does a better job in prediction by not
assigning values to labels.

1) Model Tuning - Hyperparameters: Hyperparameters play
a significant role in controlling the classifier to train as
accurately as possible. This particular model comprises of
two blocks of layers each comprising of a set of two con-
volution layers along with dropout layers. Fluctuations of
certain hyperparameters such as batch size, number of epochs
per iterations and learning rate schedulers were deployed to
bring out the best tentative hyperparameter combinations for
accurate classification. An epoch is a measure of the number
times the network has seen a training sample in order to update
the classifier weights. An epoch can comprise of one or more
batches. Batch size is a hyperparameter specific to network
training which can be defined as the amount of individual
training samples that the classifier take in batches to perform
in one epoch. Batch size of value 128 is used in the network.
Learning rate scheduler is an optimization hyperparameter
that optimizes the learning rate based on specified criteria.
The criteria used in the network is reduction of learning rate
by 20% after every 10 epochs.

2) Model Tuning - Regularization: Regularization is a method
to help the model learn better in order to improve model
performance to predict an unseen data. One such technique
that’s quite common in practice is “dropout regularization”
which can be defined as the percentage of drops in “dropout
layer”. Dropout specifies the probability at which outputs
of the layer are dropped out randomly, or inversely, the
probability at which outputs of the layer are randomly retained.
There are three dropouts layers in the architecture with differ-
ent percentages. Data Augmentation is another regularization
technique that’s been discussed earlier.

Chaetoceros
- 0.38 10.27 3.35 20

Copepod 0 5.96 0.21 60

Ditylum 1 40
prightwoni 021 0.25 0.18

. 120
Diatomsp.  1.49 0 3.39

0
Chaetoceros  Copepod  Ditylum  piatom sp.
debilis brightwelli

Fig. 5: Classification Error Rate on “pure” plankton data (N = 4278).
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(a) Classification Error Rate on Contamination A.
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(b) Improvement seen on Cleaning the Contamination A.

Fig. 6

A. Experiment 1: No Contamination

The first experiment is performed on the N = 3417 (“train-
ings” images = 80% of total images) “pure plankton images”
comprising of 724 images of C. debilis, 967 images of Diatom
sp., 1090 images of Ditylum brightwelli, and 636 images
of copepods. These “training” examples of plankton images
per class are further split into (75%) and (25%) for training
and validation purposes in the D-CNN network. After tuning
the model’s hyperparameters and performing regularization
techniques, the training loss of 2-10~2 and validation accuracy
of 93% is achieved over 100 to 125 epochs. The loss function
that is generally used for optimizing classification models,
one such as above, is the “categorical cross entropy loss”.
Cross-entropy is a measure from field of information theory
for finding the difference between two probability distributions
for a given random variable or set of events. The interpretation
of how well the model is doing is based on the loss that
is calculated and summed on training and validation. Fig. 5
shows the performance of the D-CNN classifier on the four
classes of plankton (a.k.a pure plankton data) on the “test”
data averaged over 10 distinct “training-testing” experiments.
The elements of the confusion matrix are the summed result
of the individual elements of the individual confusion matrices
across all distinct training-testing instances and divided by the
total number of distinct instances.

B. Experiment 2: Contamination A

A next step taken in this approach is by considering the
data that is randomly contaminated by the images from the
remaining three classes individually. The 25% of the images
from each class is replaced by the images from the other
three classes (among the four considered classes of “pure

plankton”). Experiment is performed on the N = 3417
images, also known as “25% contaminated plankton images:
Contamination A”. The dataset comprises of 724 images in C.
debilis class, 741 images in Diatom sp. class, 1090 images in
Ditylum brightwelli class, and 636 images in copepods class
with each class being 25% contaminated. These “training”
examples of plankton images per class are further split into
(75%) and (25%) for training and validation purposes in the
D-CNN by the network.

After tuning the model’s hyperparameters and performing
regularization techniques for training, the classification error
rate is calculated for each distinct instance. Fig. 6a shows the
class-confusion matrix of the D-CNN on this contaminated
data. These contaminated “training” data (/N = 3417 images)
are cleaned by the proposed methodology of L1-PCA faulty-
data removal using the data conformity method which spits
out the anomalous images which are not conforming with the
“pure” images from that particular class. The classifier re-runs
the whole process on this cleaned data. This cleaning process
results in 547 images in C. debilis class, 967 images in Diatom
sp. class, 861 images in Ditylum brightwelli class, and 441
images in copepods class. Fig. 6b shows the classification error
rate of the “cleaned” data averaged over 10 distinct instances
of “training-testing” experiments. The “true” label and the
“predicted” label of the confusion matrices are represented
by vertical and horizontal axes of the figures, respectively.

Chaetoceros
il 17.31 714 80
Copepod | (0.89 11.92 0.68 |60
Ditylum 40
brightwelli 2.48 1.52
. ‘ 20
Diatomsp. | 3 59 0.31 7.42 5
Chaetoceros  Copepod  Ditylum  Diatom sp.
debilis brightwelli
(a) Classification Error Rate on Contamination B.
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debilis ‘ ‘ ' 80
Copepod 0.07 8.77 0.14 60
Ditylum 40
brgheweni 046 0.25 0.46
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Diatom sp. | 1.49 0 5.12
1o

Chaetoceros
debilis

Ditylum
brightwelli

Copepod Diatom sp.

(b) Improvement seen on Cleaning the Contamination B

Fig. 7

C. Experiment 3: Contamination B

This experiment is a another method of contamination of the
“pure images” wherein we purposefully contaminate it by
using the images from “null class” and “other classes” (Fig. 1
(b)). Each class under interest consists of 25% contamination.
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Experiment is performed on a total of N = 3417 images, also
known as “25% contaminated plankton images: Contamination
B”. The dataset comprises of 724 images in C. debilis class,
741 images in Diatom sp. class, 1090 images in Ditylum
brightwelli class, and 581 images in copepods class with each
class being 25% contaminated. These “training” examples of
plankton images per class are further split into (75%) and
(25%) for training and validation purposes in the D-CNN
by the network. After tuning the model’s hyperparameters
and performing regularization techniques for training, the
classification error rate is calculated for each distinct instance.
These contaminated images are sent through the proposed L1-
PCA Faulty removal algorithm, which returns the clean data
as a result. D-CNN is re-run on this clean data for 10 distinct
instances of “training-testing”. Fig. 7a and 7b depict the class-
confusion matrix performance averaged over 10 iterations for
the “25% contaminated plankton images: contamination B”,
and the data set “cleaned” after L1-PCA faulty-data removal,
respectively.

The “true” label and the “predicted” label of the confusion
matrices are represented by vertical and horizontal axes of the
figures, respectively. The improvement in classification error
rate is clearly seen comparing Fig. 7b against Fig. 7a, and
both against the baseline of ground-truth training in Fig. 5.

CONCLUSION

We evaluate training data set curation method is a novel
method of curating the data which were possibly contaminated
(by human/machine error) by using our Data Conformity
method. Apart from this, the results show that few convolution
layers, when their hyper-parameters tuned up appropriately,
yield accurate classifications. The accuracy-improving tech-
niques applied to this dataset are not only applicable to
automated plankton classification but can also be applied to
any other type of imagery-based dataset.
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