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Abstract—We prove, for the first time in the literature of
communication theory and machine learning, the equivalence
of joint maximum-likelihood (ML) optimal channel estimation
and data detection (JOCEDD) to the problem of finding the
L1-norm principal components of a real-valued data matrix.
Optimal algorithms for L1-norm principal component analysis
(PCA) are therefore direct solvers to the problem of interest, thus
the proposed JOCEDD approach requires a polynomial number
of operations. To avoid high computational costs incurred by
the exact calculation of optimal L1 principal components, we
implement an efficient bit flipping-based algorithm for L1-norm
PCA in a software-defined radio. In particular, we carry out
experiments with two radios that operate at Wi-Fi frequencies
in a multipath indoor radio environment and have no direct
line-of-sight. We apply L1-norm PCA for JOCEDD over short
frames that are transmitted over the single-input single-output
communication link. We compare the performance of supervised
data-aided channel estimation techniques versus JOCEDD in
terms of bit-error-rate and demonstrate the superiority of the
proposed approach across a wide range of signal-to-noise ratios.

Keywords—blind channel estimation, ML data detection, PCA,
L1-norm, software-defined radio testbed, IoT, streetscapes

I. INTRODUCTION

Urban and city planners currently work toward smart con-
nected streetscapes that are equipped with high throughput data
communication technologies to enable vehicular automation
and last-meter logistics, assist people with various disabilities
with wayfinding and other outdoor activities with the goal
to improve the operational quality of streets and cities. High
throughput data communication systems require high quality
maximum-likelihood (ML) type channel estimation techniques
to provide reliable data detection at the receiver, however joint
channel estimation and data detection over time varying, fast-
fading channels such as the ones often arising in streetscape
IoT is a challenging task.

The time-varying nature of the urban wireless channel
typically requires the use of frequent channel re-training at
the receiver, which in turn increases the data overhead due
to training/pilot signaling, thus reducing the system’s overall
spectral efficiency. Blind joint channel/data estimation tech-
niques [1] have received significant attention in the context

of spectrally efficient networking in challenging communica-
tion environments [2]–[5], as they eliminate the overhead of
training/pilot symbols at the cost of slower convergence and/or
lower estimation accuracy. Channel phase ambiguities are
however introduced. On the other hand, semi-blind estimation
methods [6] lie between training-based and blind estimation
approaches, require less computational complexity than blind
methods and fewer training symbols than training/pilot-based
methods, making them attractive for practical implementation.

The fact that channel knowledge is not used by blind
detectors renders them applicable even to degraded and fast-
fading channel conditions often encountered in streetscape
environments. Nevertheless, if the channel is unknown at
the receiver, single-symbol detection is no longer optimal.
Instead, the ML optimal blind detector takes the form of
a sequence detector and has exponential (in the sequence
length) complexity when implemented through a conventional
exhaustive search among all possible data sequences [7], [8].

Work in [9] describes a polynomial-complexity algorithm
for non-coherent physical-layer network coding of frequency-
shift-keying (FSK) signals in flat fading channels, while
complementary work in [10] shows that for Rayleigh fading
channels, optimal blind sequence detection of minimum-shift-
keying (MSK) modulated signals can be carried out with log-
linear complexity. Both [9] and [10] leverage the principles
of polynomial-complexity optimization [11], [12] and com-
plement efficient optimal noncoherent detection techniques
that have been developed for phase-shift-keying (PSK) [13],
pulse-amplitude modulation (PAM) or quadrature amplitude
modulation (QAM) [14].

In this work, we show that ML sequence detection of PSK-
modulated signals over multipath fading channels can be per-
formed with polynomial (in the sequence length) complexity
by proving that the problem of joint channel estimation and
data detection is equivalent to the problem of finding the
L1-norm principal component of a real-valued data matrix.
In particular, we focus on the special case of binary-PSK
(i.e. binary antipodal symbols) and prove that the problem
of ML-optimal joint channel estimation and data detection
can be rewritten as a real-valued maximum-projection-L1-PCA
problem [15]–[18]. In [15], we showed that the K L1-norm
principal components of a real-valued data matrix X ∈ R

D×N

(N data samples of D dimensions) can be exactly calculated
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with cost O(2NK). To avoid high computational costs incurred
by the exact calculation of optimal L1 principal components
over transmitted data frames with “big” data size (i.e. large N ),
we implement an efficient bit-flipping-based algorithm for L1-
norm PCA [18] and carry out experiments with two software-
defined radios in a multipath radio environment. In [18], we
showed that the cost of the bit flipping algorithm for the
calculation of the K < rank(X) L1 principal components of X
is O(NDmin{N,D}+N2K2(K2+rank(X))). We evaluate
the bit-error-rate (BER) of the link by applying L1-norm PCA
for JOCEDD over short frames transmitted over the single-
input single-output (SISO) channel. Both radios operate at Wi-
Fi frequencies and have no direct line-of-sight. The proposed
method outperforms supervised data-aided channel estimation
techniques and demonstrates superior BER performance in low
signal-to-noise ratio (SNR).

II. SYSTEM MODEL

We consider information symbol transmissions over a SISO
channel with M resolvable propagation paths. Each symbol
b [n] , n = 1, 2, . . . is drawn from a unit energy binary
constellation A and is modulated with an all-spectrum digital
waveform s(t) of duration T . The transmitted signal is written
as

x(t) ,
∑

n

√
Eb [n] s (t− nT ) ej2πfct+φ (1)

where E > 0 denotes the transmitted energy per symbol, φ is
the carrier phase offset, and fc denotes the carrier frequency.
The n-the transmitted symbol b[n] ∈ A is modulated by a
digitally coded waveform s(t) of duration T that is given by

s(t) ,

L∑

l=1

s [l] gTc
(t− lTc) (2)

where gTc
(·) is an square-root-raised cosine (SRRC) pulse of

duration Tc, so that T = LTc, and s ∈
{
± 1√

L

}L

is a unit-

norm binary antipodal code sequence of length L. Without
loss of generality, after carrier frequency demodulation, pulse-
matched filtering and sampling at the code rate Tc over the
multipath-extended bit period of LM = L + M − 1 chips,
the received signal vector y [n] ∈ C

LM at the receiver can be
written as

y [n] =
√
Eb [n]Hs+ n [n] , n = 1, 2, . . . (3)

where H ∈ C
LM×L is the multipath channel matrix between

the transmitter and receiver

H ,




h1 0 · · · 0 0
h2 h1 · · · 0 0
...

...
...

...
...

hM hM−1 0 0
0 hM 0 0
...

...
...

...
...

0 0 · · · hM hM−1

0 0 · · · 0 hM




(4)

with hm,m = 1, 2, . . . ,M , denoting an independent zero-
mean complex Gaussian random variable that models the

complex baseband channel coefficient of the m-th resolvable
path and n [n] models additive noise with a zero-mean white
Gaussian noise (AWGN) vector with autocorrelation matrix
E
[
nnH

]
= σ2ILM

.
After collecting N data vectors y [n] , n = 1, 2, . . . , N , the

received signal can be written in matrix form as

Y ,
√
EHsbT +N = ShbT +N ∈ C

LM×N (5)

where Y ∈ C
LM×N is the complex-valued received signal

matrix and N denotes an LM ×N Gaussian noise matrix. Yℜ
and Yℑ denote the real and imaginary parts of the received
signal matrix, respectively. We consider that S denotes an
LM × M (energy-including) code matrix that has the same
structure as H in (4) and is written as

S ,
√
E




s [1] 0
...

. . .

s [L] s [1]
. . .

...
0 s [L]



.

In this work, our goal is to jointly estimate the channel
vector h and transmitted symbols b by solving the following
least-squares (LS) problem

(hopt,bopt) = argmin
h∈C

M

b∈{±1}N

‖Y − ShbT ‖2F (6)

where ‖ · ‖2F denotes the Frobenius norm. The solution
(hopt,bopt) to the above LS problem is maximum-likelihood
(ML) optimal as long as N is a white Gaussian noise matrix.
We will show that the problem of interest is equivalent to
maximum-projection L1-norm principal-component analysis
(PCA) [15]–[18]. An immediate corollary that can be derived
due to the equivalence of both problems is the direct applica-
bility of methods that have been originally developed for L1-
norm PCA, to solve joint channel estimation and data detection
problems.

III. ML JOINT CHANNEL ESTIMATION AND DATA

DETECTION BY L1-NORM PCA

In this section, we present how the problem in (6) can be
transformed to an instance of the L1-norm PCA maximum-
projection problem and provide a summary of the developed
algorithm for polynomial time joint ML-optimal channel esti-
mation and data detection.

For a given symbol vector b, the ML-optimal estimation of
channel vector h ∈ C

M is given by

hopt(b) = argmin
h∈C

M

‖Y − ShbT ‖2F

= argmin
h∈C

M

‖Y‖2F + ‖ShbT ‖2F − 2ℜ
{
Tr

{
YHShbT

}}

= argmin
h∈C

M

NhHSTSh− 2ℜ
{
hHSTYb

}

= argmin
h∈C

M

‖
√
NSh− 1√

N
Yb‖22

=
1

N
(STS)−1STYb. (7)
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By substituting (7) to the objective function in (6), we can
rewrite the optimization problem as

minimize
h∈C

M

b∈{±1}N

‖Y − ShbT ‖2F ⇔ minimize
b∈{±1}N

‖Y −XbbT ‖2F (8)

where XLM×N , 1

N
PY and PLM×LM

, S(STS)−1ST . We
notice that P is the projection matrix of the span of the matrix
S. As any projection matrix, P satisfies the following property

PPH = P. (9)

By expanding the objective function of the problem in (8), and
using property (9) we get

‖Y −XbbT ‖2F = ‖Y‖2F +N‖Xb‖22 − 2bTℜ{YHX}b

= ‖Y‖2F − 1

N
bTYHPYb

= ‖Y‖2F − 1

N
bTℜ

{
YHPY

}
b.

Interestingly, the problem of interest in (8) is now rewritten
as an antipodal binary quadratic maximization1. By finding
bopt, we will get the ML-optimally detected bits at the receiver.
The matrix ℜ

{
YHPY

}
is real positive semi-definite and can

be written as ℜ
{
YHPY

}
= ỸT Ỹ where

Ỹ2LM×N ,

[
PℜYℜ −PℑYℑ
PℜYℑ +PℑYℜ

]
(10)

where Pℜ, Yℜ and Pℑ, Yℑ denote the real and imaginary parts
of matrices P and Y, respectively. In conclusion, the problem
in (8) can be written as

maximize
b∈{±1}N

‖Ỹb‖2. (11)

We can view the problem in (11) as the following equivalent
problem

maximize
b∈{±1}N , v∈R

2LM

vT Ỹb. (12)

which can be derived by leveraging the Cauchy-Schwarz
inequality, since, for any a,v ∈ R

N with ‖v‖2 = 1,
aTv ≤ ‖a‖2 with equality if and only if v = a‖a‖−1

2 . The
necessary and sufficient condition of equality couples the two
optimal vectors vopt and bopt by the following identity

vopt = ỸTbopt · ‖ỸTbopt‖−1

2 .

Lastly, we can rewrite (12) as

maximize
v∈R

2LM

‖ỸTv‖1.

This is attributed to a basic property of the L1-norm, which
is that for any a ∈ R

N and u ∈ {±1}N , aTu ≤ ‖a‖1 with
equality if and only if u = sgn (a). For a binary antipodal
symbol alphabet b[n] ∈ {±1}, n = 1, 2, . . . the optimal bit
vector bopt can be estimated by

bopt = sgn
(
ỸTvopt

)
. (13)

1Minimization with the negative sign becomes maximization.

Algorithm: ML-optimal joint channel estimation and data detec-
tion via L1-norm PCA.

Input: Observation data matrix YLM×N and code s ∈ {±1/
√
L}L.

1: Use the known code s to build S and P.

2: Calculate the matrix Ỹ as per (10).

3: Calculate v
opt, the L1-norm PC of matrix Ỹ by [18].

4: Calculate b
opt, the ML-optimal bits as per (13).

5: Calculate h
opt, the ML-optimal channel estimates as per (7).

Output: (hopt,bopt) the solution pair to (6)

Fig. 1. The proposed algorithm for joint ML-optimal channel estimation and
data detection from the complex-valued received signal matrix Y ∈ CLM×N .
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Fig. 2. BER vs. estimated pre-detection SNR at the receiver.

Fig. 1 presents the pseudo-algorithm for the proposed ML-
optimal joint channel estimation and data detection method
via L1-norm PCA.

IV. EXPERIMENTAL SETUP AND RESULTS

We implement and evaluate the proposed algorithm for joint
ML-optimal channel estimation and data detection in terms of
BER performance in a software-defined radio testbed with two
USRP N210s. Both USRPs are interfaced to SBX 400-4400
daughtercards, which allow operation at a carrier frequency of
fc = 2.485 GHz. Experiments are carried out indoors in a
multipath radio environment in a laboratory. Software-defined
radios are positioned such that there is no direct line-of-sight
between the two radios. We consider an M -tap channel to
model multipath propagation with M = 2 paths. We use
GNU Radio software to control and collect data from the two
USRPs. More specifically, we develop GNU Radio out-of-tree
signal processing software blocks that implement a spread-
spectrum transmitter and receiver and use spreading codes of
length L = 8 and use SRRC pulses of duration Tc = 4 µs
to shape each chip. We consider frame-based transmissions
of N = 1024 Binary Phase Shift Keying (BPSK)-modulated
symbols per frame. More information regarding the transmitter
and receiver architecture can be found in [19], [20]. At the
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software-defined radio receiver of this paper we implement
and test for the first time algorithms [16], [17] for L1-
norm principal component analysis to evaluate the proposed
algorithm for joint ML-optimal channel estimation and data
detection in terms of BER performance.

We consider a total of 10000 frame transmissions by chang-
ing the transmission energy of each frame in every 2000
frame transmissions at the software-defined radio transmitter.
We test 5 different transmit energy settings and calculate the
BER of each transmitted frame by applying the proposed
algorithm for joint ML-optimal channel estimation and data
detection (as described in Fig. 1). We implement the efficient
L1-norm PCA bit flipping algorithm (as described in [18])
and calculate the L1-norm principal component of matrix

Ỹ (step 3 of the algorithm in Fig. 1) by considering only
the information-bearing part of each frame (i.e. N = 576
symbols). Subsequently, we acquire ML-optimal estimates of
the channel and payload bits by following the steps 4 and 5
of the algorithm in Fig. 1.

We estimate the pre-detection SNR at the software-defined
radio receiver as

SNR =
‖Sĥ(b̂)T ‖2F

‖Y − Sĥ(b̂)T ‖2F
(14)

where ĥ is the acquired channel estimate and b̂ the estimated
payload bits. Fig. 2 depicts the BER versus the estimated
pre-detection SNR at the receiver (calculated from (14)) and
compares the performance of the proposed algorithm for joint
channel estimation and data detection to supervised data-aided
channel estimation algorithms based on channel-sounding and
on pilot/training data [19], [20] for a wide range of SNRs (8-17
dB). We observe that the proposed approach achieves superior
BER performance, particularly in low SNR.

V. CONCLUSIONS

In this paper, we consider the fundamental problem of
joint ML-optimal channel estimation and data detection. We
prove, for the first time in the communication theory and
machine learning literature, the connection of this problem to
real-valued L1-norm principal component analysis. In future
work, we plan to evaluate the performance of the proposed
approach in realistic streetscape IoT and congested spectrum
environments by leveraging NSF PAWR platforms.
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