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ABSTRACT

As methods for detecting hidden data evolve, there exits an

ever increasing need to develop new steganographic solu-

tions. This paper introduces novel spread spectrum (SS) and

improved spread spectrum (ISS) multimedia data embedding

techniques using L1 principal component signatures. The

design presented performs well in terms of bit error rate and

the structural similarity index metric.

Index Terms— Steganography, spread-spectrum, L1

PCA, data hiding

1. INTRODUCTION

Steganography, data hiding, data embedding, and watermark-

ing are all variants of a similar problem. All four describe the

act of secretly embedding messages, signals, or other infor-

mation into various forms of multimedia. The secret message

is insterted into the original signal using some type of key or

signature.

As opposed to many watermarking or cryptography sys-

tems, steganography aims not only to securely embed the hid-

den message, but also to hide the act of embedding. For im-

ages, this means embedding the message without any percep-

tual change between the host and stego images. In addition

to being successfully hidden, the message must also be accu-

rately recovered at the system output.

There are many areas of data hiding research including

embedding procedure, key or signature design, as well as re-

ceiver/decoder selection. In general, embedding can be per-

formed in either the data or transfer domain. Spread spec-

trum steganography is typically executed in some transform

domain.

Cox et al. [1] originally introduced the concept of spread

spectrum steganography with two basic methods for inserting

the message, additive and multiplicative. Malvar and Flo-

rencio [2] improved additive spread spectrum by reducing

the interference caused by the host itself. Gkizeli et al. [4]

presented the optimal signature design for additive spread

spectrum and improved spread spectrum when recovering the

message using a maximum signal to interference plus noise

filter at the receiver.

The signature design from [4] is based on L2-norm princi-

pal component analysis (PCA). Since the introduction of op-

timal [5] and near optimal [6] L1 PCA solutions, there has

been a lot of interest in finding L1-norm PCA based solutions

to problems that have traditionally used L2-norm PCA. Sev-

eral applications potentially benefit from the outlier resistance

provided by switching from L2 to L1. An alternative signa-

ture design for spread spectrum steganography utilizing L1

PCA is developed in this paper.

2. SPREAD SPECTRUM EMBEDDING

The general spread spectrum embedding procedure for im-

ages begins with a host image H of dimension M1 × M2

pixels with values taken from alphabet M. For grayscale

images, the alphabet takes values from 0 to 255 (M =
{0, 1, . . . , 255}). The host image H ∈ MM1×M2 can be

viewed as a matrix of pixels. The matrix H is then divided

into N blocks of size m × m for the purpose of embedding

one bit per block. Next, a real two dimensional transform

is applied to each block Hn for n ∈ {1, . . . , N} so that

embedding can be carried out in a transform domain.

For image applications, the transform performed on each

block is typically the m×m 2D-DCT (discrete cosine trans-

form) that converts the matrix H from the data domain to fre-

quency domain. The 2D-DCT produces a matrix of frequency

coefficients arranged such that lower frequency coefficients

are toward the upper left quadrant and high frequency com-

ponents are in the lower right quadrant. Performing zigzag

scanning vectorization of each transformed m×m block pro-

vides a m2 × 1 vector spanning the low to high frequency

coefficients.

The resulting vectors (z1, z2, . . . , zN ) are concatenated

to create a transform coefficient matrix. The final host vec-

tor matrix XD×N is created by taking any row subset of the

previous matrix. It is common practice in data embedding to

remove the first row as it is the lowest frequency coefficient

(or DC component) and any change affects the original image
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the most. The secret message is to be hidden in the matrix

XD×N .

3. SIGNATURE DESIGN

The standard basic spread spectrum embedding scheme is

additive spread spectrum (SS). Information is embedded by

adding the positive amplitude normalized signature manipu-

lated message bits to the host in the presence of added white

Gaussian noise (AWGN) with variance σ2

n.

y = Abs+ x+ n (1)

where A > 0, b ∈ {±1}, ‖s‖2 = 1, and n ∼ N
`

0, σ2

nID
˘

.

The mean-squared distortion caused by the embedding oper-

ation (not the noise) is as follows.

D = E{‖Abs+ x− x‖2} = A2 (2)

Message bits are recovered at the receiver using a simple

matched filter.

b̂ = sign(sTy) (3)

To improve on the basic additive scheme, improved

spread spectrum (ISS) offers superior performance by re-

ducing the interference to the signal of interest (Abs) caused

by the host (x). The parameter λ is introduced to direct the

host interference removal.

y = Abs+ (ID − λssT )x+ n (4)

where A > 0, b ∈ {±1}, ‖s‖2 = 1, 0 < λ < 1, and n ∼
N

`

0, σ2

nID
˘

. Note that SS can be viewed as a special ISS

case for λ = 0. The distortion due only to the embedding

operation in the mean-squared sense for ISS is

D = E{‖Abs+(ID−λss
T )x−x‖2} = A2+λ2sTRxs (5)

where the autocorrelation Rx = E{xxT }. The λ that mini-

mizes the probability of error for any distortion level D is

λ =
sTRxs+ σ2

n +D −
b

psTRxs+ σ2
n +Dq

2
− 4sTRxsD

2sTRxs
(6)

Similar to SS, message bits can be recovered using a simple

matched filter.

b̂ = sign(sTy) (7)

The previous schemes, SS and ISS, typically utilize arbi-

trary signatures. When the signature is optimized to maxi-

mize the signal to interference plus noise ratio (SINR) filter

at the receiver, the performance dramatically improves. Find-

ing the optimal signature amounts to the eigenvalue decom-

position (EVD) of Rx where is eigenvector corresponding to

the smallest eigenvalue is that signature. The EVD of the

host autocorrelation matrix is equivalent to the singular value

decomposition (SVD) of the host matrix X in the L2-norm

sense. Another way to view the maxSINR optimal signature

design is as the solution to the following L2 norm principal

component analysis (PCA) problem.

sL2
= argmin

s∈RD×1, ‖s‖2=1

‖sTX‖2 (8)

In steganographic and PCA terms, finding the optimal signa-

ture is equivalent to finding the principal component that least

describes the host. The transition from the L2 norm problem

to a L1 norm signature design problem begins with a brute

force switch.

sL1
= argmin

s∈RD×1, ‖s‖2=1

‖sTX‖1 (9)

The above problem of finding the L1 principal component

that least describes the data has no known solution. Optimal

and suboptimal solutions do exist to the problem of finding

the L1 principal component that most describes the host data.

sL1
= argmax

s∈RD×1, ‖s‖2=1

‖sTX‖1 (10)

An iterative solution can be used to approximate the solution

to the original problem (9).

sL1
= argmax

s∈RD×1, ‖s‖2=1

‖sTX‖1 ←→ X = X− sL1
sTL1

X

(11)

The process involves finding the L1 principal component

that most describes the data, subtracting it from the data via

orthogonal projection, then repeating with the new data ma-

trix for some desired number of iterations.

Algorithm 1 L1 Signature Generation

1: Input: XD×N data matrix, K ≤ rank(X)
2: for k ← K do

3: b← findL1
`

X, sign([XTX]:,1)
˘

4: q = Xb/‖Xb‖2
5: X = X− qqTX

6: end for

7: Output: sL1
= q

The function findL1(·) can be any algorithm that calcu-

lates L1 principal components. The embedding scheme and

decoder equations are updated for the L1 signature. For the

SS scheme, the following equation describes the received sig-

nal.

y = AbsL1
+ x+ n (12)

Information bit recovery is performed using the maxSINR fil-

ter at the receiver.

b̂ = sign(wT
maxSINRy) (13)

where wmaxSINR = (Rx + σ2

nID)−1sL1
.
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Fig. 1: Fishing Boat (512 × 512 grayscale)

The improved spread spectrum scheme is also updated for

a L1 signature. Here the host influence removal is handled by

the parameter k.

y = AbsL1
+ (ID − ksL1

sL1

T )x+ n (14)

The maxSINR filter receiver is used to retrieve the embedded

information bits.

b̂ = sign(wT
maxSINRy) (15)

where wmaxSINR = [(ID−ksL1
sL1

T )Rx(ID−ksL1
sL1

T )+
σ2

nID]−1sL1
and the parameter k is of the same form as (6).

k =
sL1

TRxsL1
+ σ2

n +D

2sL1

TRxsL1

−

b

(sL1

TRxsL1
+ σ2

n +D)
2
− 4sL1

TRxsL1
D

2sL1

TRxsL1

(16)

4. EXPERIMENTAL STUDIES

The following studies are performed on the 512 × 512
grayscale Fishing Boat image (Figure 1) from the USC-SIPI

image database [8].

The near optimal single bit flipping (SBF) algorithm [6]

is used in each iteration of the proposed signature design al-

gorithm to find the L1 principal component. For result com-

parison with the L2 signature, the L1 signature generation al-

gorithm is executed for D iterations.

The simulation studies presented in this paper compare

the performance of the SS and ISS schemes for arbitrary, L2,

and L1 signatures. Figure 2 shows the resulting image for

each scheme with embedding distortion D = 20 dB, noise

variance σ2

n = 3 dB, and 4096 embedded bits. In all cases,

the data hiding is not perceptible to the human eye.

(a) SS (b) L2 SS (c) L1 SS

(d) ISS (e) L2 ISS (f) L1 ISS

Fig. 2: Fishing Boat with 4096 Embedded Information Bits

at D = 20dB and AWGN σ2

n = 3dB
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Fig. 3: Fishing Boat for 8x8 Block Size

In typical image applications the 2D-DCT uses a block

size of 8×8. For a 512×512 grayscale image, this amounts to

embedding 4096 information bits. By comparison, only 1024

bits are embedded in the same image for 16 × 16 2D-DCT

block size. The Figures 3 and 4 show the bit error rate (BER)

curves under each scheme for a range of distortion values D.

The L1 signature design achieves a BER near that of the

optimally designed L2 for SS and ISS. Both the L1 and L2

signatures have much lower bit error rate than arbitrary sig-

natures. For 16 × 16 block size and higher distortion, the L1

signature is superior for the fishing boat image.

While previous work has focused on comparing signature

performance using BER curves, it is not the only important

metric. A strictly numerical method for determining the de-

gree of similarity between the embedded image and the host
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Fig. 4: Fishing Boat for 16x16 Block Size

is the structural similarity (SSIM) index [7], which is based

on luminance (l), contrast (c), and structure (s). They are

defined, respectively, by the local mean, variance, and covari-

ance of the images (µx, µy, σx, σy, σxy).

SSIM(x, y) =
“

l(x, y)α · c(x, y)β · s(x, y)γ
‰

(17)

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1

c(xy) =
2σxσy + c2
σ2
x + σ2

y + c2

s(x, y) =
σxy + c3
σxσy + c3

(18)

Constants c1 = (k1L)
2 and c2 = (k2L)

2 are stabiliza-

tion variables where k1 ≪ 1, k2 ≪ 1, and L is pixel

value dynamic range. Parameters have default values of

α = β = γ = 1 and c3 =
c2
2

.

Table 1 contains SSIM values for the Fishing Boat image.

The L1 signature has equal or greater SSIM values than the

L2 signature, providing further support for the proposed new

method.

Table 1: SSIM Values for Fishing Boat with 4096 Embedded

Bits, 8× 8 DCT, and AWGN σ2

n = 3dB

D L2 SS L2 ISS L1 SS L1 ISS

0 0.988455 0.988459 0.988457 0.988459

5 0.988273 0.988288 0.988277 0.988288

10 0.987676 0.987718 0.987680 0.987732

15 0.985789 0.985856 0.985792 0.985873

20 0.979898 0.979983 0.979919 0.979989

5. CONCLUSION

The spread-spectrum signature design proposed in this paper

is an important alternative steganographic solution. As theL2

solution was optimized for BER performance, no other signa-

ture design should be able to outperform based on that metric.

The simulation studies performed confirm that the proposed

solution approaches the optimal BERL2 performance while

achieving superior SSIM results.
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