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ABSTRACT

We consider the problem of detecting a change in an arbitrary vector process by examining the evolution of
calculated data subspaces. In our developments, both the data subspaces and the change identification criterion
are novel and founded in the theory of L1-norm principal-component analysis (PCA). The outcome is highly
accurate, rapid detection of change in streaming data that vastly outperforms conventional eigenvector subspace
methods (L2-norm PCA). In this paper, illustrations are offered in the context of artificial data and real elec-
troencephalography (EEG) and electromyography (EMG) data sequences.
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1. INTRODUCTION

Time series analysis describes the behavior of natural or man-made systems over time. In particular, the
behavior of a system can change over time due to external or internal causes.1 Change detection is the process
of identifying changes in the state of a system by observing the system at different times.2 Depending on the
nature of the system, image differencing, principal-component analysis,3–5 and post-classification comparison are
common methods used in detection of change.6

In this paper, we propose a new method to identify change in arbitrary vector processes by novel L1-norm
principal-component analysis and comparison of L1-norm subspaces. In particular, we introduce a new way to
measure the difference between subspaces that we call the "maximum left-right projection" (MLRP) criterion.
The broad purpose of conventional principal-component analysis (PCA) is to reduce the dimensionality of a
dataset consisting of a number of interrelated variables (coordinates), while retaining as much as possible of the
variation present in the dataset. This is achieved by summarizing the dataset in the form of a set of vectors,
principal components (PCs), which are orthogonal and ordered so that the first components retain most of the
variation present in all of the original dataset. In this context, conventionally, PCA uses the L2-norm based
singular-value decomposition of the data matrix. It is well understood by now that L2-norm PCA is sensitive
to outliers/changed data, so recently there has been significant interest in L1-norm based approaches.7,8 The
L1-norm gives one exponent lower weight than the L2-norm to data that are far away from the majority and
offers enhanced immunity against outliers and more accurate representation of the nominal data. In this work,
we use L1-PCA to identify where the point of change in a vector time series is. To do so, we split the sequence
into a “left" and “right" part, calculate their L1-norm subspaces and compare. Extensive experimentation with
both artificial and real time-series data shows extraordinary success and improvement against L2-norm detection
of change methods.
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The remainder of this paper is organized as follow. In Section 2 the proposed L1-norm principal-component
analysis method and the “maximum left-right projections" criterion are developed and presented. In Section 3
we extend our detection of change method to streaming data. In Section 4, the effectiveness of the proposed algo-
rithm is demonstrated through three experiments: Artificial multivariate Gaussian data, Electroencephalography
(EEG) eye-state detection data and robotic-control data. In Section 5 we draw some conclusion.

Notation Throughout this paper we denote by R and C the set of real and complex numbers, respectively.
Bold lowercase letters represent vectors and bold uppercase letters represent matrices. ℜ{(·)}, ℑ{(·)}, (·)∗, (·)T ,
and (·)H denote real part, imaginary part, complex conjugate, transpose, and conjugate transpose (Hermitian)
of the argument, respectively. 0m×n, 1m×n, and Im are the m × n all-zero, m × n all-one, and size-m identity
matrices; diag(·) is the diagonal matrix formed by the entries of the vector argument. For any A ∈ C

m×n, [A]i,j

denotes its (i, j)th entry, ‖A‖p

(

∑m
i=1

∑n
j=1 |[A]i,j |

p
)

1

p

is the pth entry-wise norm of A, span(A) represents the

vector subspace spanned by the columns of A, rank(A) is the dimension of span(A), and null(AT ) is the kernel
of span(A) (i.e., the nullspace of AT ).

2. DETECTION OF CHANGE BY L1-NORM PCA

We are given a sequence of N points in a D dimensional real space, x1, x2, . . . , xp, xp+1, . . . , xN , where xi ∈ R
D,

i = 1, 2, . . ., N. We assume that there is one point of change at i = p over the given data sequence where there is
a shift in the subspace manifestation of the data. Our objective is to detect the point of change p ∈ {2, 3, . . . ,
N-1}. We define a running variable l ∈ {2, 3, . . . , N-1} to split the data into two subsets, x1, x2, . . . , xl−1 and
xl , . . . , xN , as illustrated in Figure 1.

Figure 1: Visualization of left-right splitting operation by the running variable l ∈ {2, 3, ..., N − 1} for a data sequence of
length N .

We organize the data subset to the left of l in the form of a matrix XL(l) ∈ R
D×(l−1), that is XL(l) =

[x1,x2, . . . ,xl−1 ], and we define its low dimensional subspace QL(l) ∈ R
D×r1 of rank r1 calculated by

QL(l) = argmax
QTQ=Ir1

||XL(l)
T
Q||1. (1)

where ||A||1 =
∑

i,j |Ai,j | for any matrix A.

Similarly, for the subset of data to the right of l, that is xl , xl+1 . . . , xN , we form the matrix XR(l) ∈
R

D×(N−(l−1)) and define its low dimensional subspace QR(l) ∈ R
D×r2 of rank r2 by

QR(l) = argmax
QTQ=Ir2

||XR(l)
TQ||1. (2)
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The r1 columns of QL and the r2 columns of QR in (1) and (2) are the so-called L1 principal components
of the data subsets. Exact calculation of the L1 principal components can be carried out optimally using
exhaustive search in exponential time,9 or polynomial time9 or suboptimally via the single-bit-flipping (SBF)
fast algorithm.10 In this work, in view of the computational requirements of our time-series analysis problem, we
use the bit-flipping algorithm because it is computationally faster. In particular, we set r1 = r2 = 1 in (1) and
(2) and use the bit-flipping algorithm to identify the first principal component only of the left and right data
sets. Subsequent components are calculated conditionally, orthogonal to the previous components. That is, by
successive orthogonal L1-PCA we calculate the first principal component qL(l) by (1) and qR(l) by (2) and then
we project the left and right datasets onto their corresponding orthogonal subspaces by

X⊥
L/R(l) =

(

ID − qL/R(l)q
T
L/R(l)

)

XL/R(l).

Then, we proceed recursively to calculate r1 − 1 additional L1-norm principal components for XL(l) and r2 − 1
additional L1-norm principal components for XR(l), for desired r1 and r2 values. The calculated PCs are
organized in final matrix form as QL(l) ∈ R

D×r1 and QR(l) ∈ R
D×r2 , respectively.

Subsequently, upon projection of the left and right subsets of the split data onto their respective bases, we
calculate vL(l) and vR(l), respectively, by

vL(l) = max
1<j<r1

l−1
∑

i=1

∣

∣

∣

(

XT
L(l)QL(l)

)

i,j

∣

∣

∣
, (3)

vR(l) = max
1<j<r2

N−(l−1)
∑

i=1

∣

∣

∣

(

XT
R(l)QR(l)

)

i,j

∣

∣

∣
(4)

where |·| indicates absolute value. After computation of the data projection metrics vL(l), vR(l), we declare the
point of change decision p̂ by our proposed maximum left-right projection criterion

p̂ = argmax
2≤l≤N−1

[vL(l) + vR(l)] . (5)

The overall algorithm is summarized in Fig. 2. The process can be easily generalized from detection of change
over of a block of data of size N to streaming data as we see in the following section.

3. STREAMING DATA

So far, we have seen the proposed L1-PCA detection of change method operating oven a static dataset. The
method can be directly generalized to operate on streaming data. In particular, there are two approaches that
we may follow.

3.1 Growing-Block model

Following the notation of Section II, for any given point l under investigation, we keep the left side of data
XL(l) = [x1,x2, . . . ,xl−1] constant in (1) and grow the right side of data XR(l) = [xl,xl+1, . . . ,xn] in (2) as
data come in. As n → ∞, the quality of the estimate of QR(l) improves and so does our final decision p̂ by (5).

To computationally improve the operation of the growing data-block model, we can introduce subspace
tracking to update QR(l) as new data come in, instead of calculating a new subspace from scratch everytime.
There are different ways to carry out subspace tracking and the one that we propose is the method in,11 with
the only difference that herein we just append data without any removal. We update the L1-norm subspace by

P
(k)
t = argmax

P∈RDXr,PTP=Ir

||(XtW
(k)
t )TP||1, k = 1, 2, ..., (6)

where k is the iteration index, r is the rank (number of PCs), Xt is the data set of interest, and W
(K)
t is the

data weighting operator at time t and iteration k.
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Algorithm: L1-PCA and Maximum Left-Right Projection criterion

Input: XDxN data matrix, l step size

1: Xleft ← X[1 : l − 1]
2: Xright ← X[l : N ]
3: for n = 2 : N/l
4: QL ← L1PCA_SUCC(Xleft)
5: QR ← L1PCA_SUCC(Xright)

6: vL = max
1<j<k

∑D

i=0

∣

∣

∣

(

XT
LQL

)

ij

∣

∣

∣

7: vR = max
1<j<k

∑D

i=0

∣

∣

∣

(

XT
RQR

)

ij

∣

∣

∣

8: l̂ = argmax [vL(l) + vR(l)]

Output: l̂

Function L1PCA_SUCC

Input: X data matrix, n number of orthogonal PCs

1: Q← L1PCA[X, 1]
2: for i = 2 : n
3: Xnew = [ID −QQT ]X
4: Qnew ← L1PCA[Xnew, 1]
5: Q(:, i)← [Qnew]

end for

Output: Q

Figure 2: L1-PCA algorithm for detecting a change in a vector process by L1-norm subspace comparisons.

3.2 Sliding window model

For simplicity in operation and to maintain a constant computational load, we may consider instead a sliding
window model. In this case, as we add new data to right data set XR, we remove the same amount of data
from the beginning of the left data set XL to maintain a total data set size of N , which makes the operation a
sliding window of length N that moves along the data stream. Certainly, the quality of decision making by (5)
is formally a function of the window length N and so is the overall computational complexity. In any case, the
point of change has to be inside the window.

4. EXPERIMENTAL STUDIES

Using the algorithmic procedures described in Sections 2 and 3, success has been achieved in detecting the point
of change in synthetic data and real-time based data experiments that we carried out. Below, we give a description
of the experiments and their respective results.

4.1 Multivariate Gaussian Data

We generate a sequence of N =200, (D = 4)-dimensional Gaussian vectors x1, x2, . . . , x100, . . . , x200, xi ∈ R
D,

i = 1, . . . , 200. In particular,

xi ∼ N (0,R1), i = 1, . . . , 100,

and
xi ∼ N (0,R2), i = 101, . . . , 200,

that is, there is a change in the autocorrelation matrix from
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R1 =









16 −12 −12 −16
−12 25 1 −4
−12 1 17 14
−16 −4 14 57









to

R2 =









30 40 50 60
40 54 68 82
50 68 86 104
60 82 104 126









at time i = 101. Our objective is to identify the time of change using the proposed L1-norm method and the
proposed maximum left-right projection criterion. In Fig. 3, we plot the decision matrix vL(l)+vR(l) in (5) with
step size ∆l = 25. Fig. 3(a) shows our findings when L1-PCA is deployed, while Fig. 3(b) deploys L2-PCA.
It is pleasing to see not only the accuracy of the proposed method in Fig. 3(a), but also the sharpness of the
proposed decision criterion.

(a) L1-PCA (b) L2-PCA
Figure 3: Gaussian data sequence example of N = 200 points with time of change of autocorrelation matrix at l = 100
(Part (a) proposed L1-PCA subspace calculation; Part (b) conventional L2-PCA subspace calculation)

4.2 EEG Eye-State Detection

Next, we apply our algorithm to a real biomedical dataset. EEG is a recording of the electrical activity of the
brain from the scalp. The dataset14 consists of 14 EEG values (14 electrodes) of a subject with closed or open
eyes. The duration of the measurements is 117 seconds. The ground truth of the eye state is detected via a
camera during the EEG measurement and added to the file.

Our goal is to detect the point where the person changes state from closed eyes to open or vice versa without
using the camera information∗. We take a part of the dataset (N = 767) where there is one change and we use
it as our data matrix. The true change of state is at l = 465, so we expect to see a maximum there. As we can
see in Fig. 4, we have a clear maximum at exactly l = 465 under L1-PCA (Fig. 4(a)) but not under L2-PCA
(Fig. 4(b)).

4.3 Robotic Control Data

We consider an electromyography (EMG) lower limb dataset in.14 EMG is the study of muscle function through
analysis of the electrical signals emanated during muscular contractions. The subjects in this dataset undergo
three movements to analyze the behavior associated with the knee, gait, leg extension from a sitting position, and

∗Before applying our algorithm, we pre-process the raw EEG signals using EEGlab.15
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(a) L1-PCA (b) L2-PCA
Figure 4: EEG eye-state dataset: Fourteen (D = 14) EEG channels to detect a change in eye-state of a subject (eyes
open) that happens at time l = 465 over a data record of N = 767 points.

flexion of the leg up. The acquisition process was conducted with four electrodes, vastus medialis, semitendinosus,
biceps femoris and rectus femoris, plus a goniometer at the knee (D = 5). In our analysis, two exercises were
considered in our detection of change method: sitting and standing. We attempt to find when a person changes
from sitting to standing or vice versa. Our data record has size N = 1986 and the time change of state happens
at l = 994. In Fig. 5(a), we observe the sharp success of the proposed L1-PCA scheme (while L2-PCA fails, see
Fig. 5(b)).

(a) L1-PCA (b) L2-PCA
Figure 5: EMG lower-limb dataset: D = 5 data channels to detect change of state (sitting/standing) that occurs at time
l = 994 over N = 1986 time points.

5. CONCLUSIONS

We presented a novel algorithm to carry out detection of change in vector processes using successive orthogonal
L1-PCA subspace calculation and a new subspace comparison metric that we called maximum left-right projection
criterion. The algorithm was applied to synthetic and real datasets and returned at all times values of high
discrimination value and accuracy.
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