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Abstract—In a multi-user system with multiple antennas at
the base station, precoding techniques in the downlink broadcast
channel allow users to detect their respective data in a non-
cooperative manner. Vector Perturbation Precoding (VPP) is a
non-linear variant of transmit-side channel inversion that per-
turbs user data to achieve full diversity order. While promising,
finding an optimal perturbation in VPP is known to be an
NP-hard problem, demanding heavy computational support at
the base station and limiting the feasibility of the approach to
small MIMO systems. This work proposes a radically different
processing architecture for the downlink VPP problem, one based
on Quantum Annealing (QA), to enable the applicability of VPP
to large MIMO systems. Our design reduces VPP to a quadratic
polynomial form amenable to QA, then refines the problem
coefficients to mitigate the adverse effects of QA hardware noise.
We evaluate our proposed QA based VPP (QAVP) technique on
a real Quantum Annealing device over a variety of design and
machine parameter settings. With existing hardware, QAVP can
achieve a BER of 10−4 with 100µs compute time, for a 6×6
MIMO system using 64 QAM modulation at 32 dB SNR.

Index Terms—Vector Perturbation, Downlink Precoding,
Quantum Computation, Quantum Annealing, Optimization

I. INTRODUCTION

Modern wireless networks are experiencing tremendous
growth in traffic loads at base stations, and hence to meet the
resulting computational and latency requirements, designers
continue to investigate new architectures and hardware for
today’s 5G and tomorrow’s 6G networks. A large component
of cellular baseband processing comprises of downlink data
traffic due to a significant rise in the popularity and usage of
video streaming platforms (e.g., Netflix). To meet the ever-
growing user demand, it is critical for the base stations to
enhance the quality of downlink data streams in terms of
throughput, error rate, and latency.

In a multi-user multiple-input multiple-output (MIMO)
downlink data transmission, precoding techniques can be used
to eliminate the effect of inter-user interference and allow users
to detect their respective data non-cooperatively, minimizing
error-rate and maximizing throughput. In this work, we focus
on Vector Perturbation Precoding (VPP) [1]. VPP is a widely
studied non-linear precoding technique that performs transmit-
side channel inversion over a perturbed user data vector
to reduce the transmit power scaling. Although VPP has
been shown to achieve better error performance compared
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to other precoding techniques (e.g., zero-forcing, Tomlinson-
Harashima Precoding [2]), finding an optimal perturbation for
user data in VPP is known to be NP-hard, making its imple-
mentation in massive/large MIMO systems to be infeasible.

A promising and cost-effective architecture to address the
increased computational burden of wireless networks is a
Centralized Radio Access Network (C-RAN) [3] architecture,
which aggregates the computationally-demanding processing
at many wireless base stations. Since baseband physical-layer
processing is highly time-critical and the required stream
of baseband signal samples has a high data-rate, this type
of C-RAN deployment imposes both latency and bandwidth
requirements on the interconnect between each base station
and the data center. Related studies to this end are investigating
quantum computation for solving networking problems in the
uplink: such as Channel coding [4] and ML detection [5].
However, investigating quantum computation for problems in
the downlink remains unexplored to the best of our knowledge.

In this paper, we propose a radically different processing
to the NP-hard VPP problem in the downlink: Quantum
Annealing based Vector Perturbation Precoding (QAVP). Our
proposed technique leverages recent advances in quantum
computational devices and applies them to the problem of
VPP. QAVP’s approach is to represent the VPP problem as an
optimization problem over a quadratic polynomial with binary
variables i.e., Quadratic Unconstrained Binary Optimization
(QUBO), which is an optimization form that a Quantum
Annealer (QA) machine takes as input, then refine the QUBO
coefficients to mitigate the adverse effects of QA hardware
noise and the process of mapping the polynomial onto the
physical QA qubit hardware topology. After these prepro-
cessing and embedding steps, QAVP uses a real Quantum
Annealing machine to solve the resultant QUBO problem
and then constructs the VPP perturbation from the solutions
returned by the QA machine. Our results show that, from the
standpoint of computation time, QAVP can outperform popular
encoding algorithms for large MIMO systems.

II. VECTOR PERTURBATION PRECODING

We consider a general MIMO downlink scenario where a
base station equipped with Nt transmit antennas communicate
data streams with Nr (≤ Nt) single-antenna non-cooperative
users independently and simultaneously.
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In VPP, the user data symbol vector u ∈ CNr×1 is perturbed
by an integer vector v ∈ GNr×1. This maps the data symbols
to a wider constellation space, forming a perturbed transmit
vector, d = u + τv. Here, v is a vector of Gaussian integers1

and τ = 2( |cmax| + ∆/2) is a constant chosen to provide
symmetric decoding regions around the constellation points.
|cmax| is the magnitude of the largest constellation symbol
and ∆ is the spacing between the constellation symbols [6].
The perturbed vector d is then precoded with a precoder
matrix (P ∈ CNt×Nr ), where the choice of P inverts the
wireless channel H∈ CNr×Nt and reduces the effect of wide
range of eigenvalues of the channel coefficients [6]. The
precoder matrix P = HH(HHH)−1 is used in Zero Forcing
(ZF) precoding. The received symbol vector y corresponding
to the transmitted symbol vector x = Pd/

√
Pt is given by,

y =
1√
Pt
(HPd) + n (1)

where the scalar Pt = ‖Pd‖2 is the transmission power
scaling factor, which is assumed to be known at the receiver,
and n is wireless channel noise. The receiver decodes by
applying a modulo τ operation to the received signal y. The
transmission power scaling (Pt) causes noise amplification
during the decoding process. In order to minimize the trans-
mission power scaling, an optimal choice of the perturbation
vector (v?) that leads to the smallest Pt is computed as in [6]:

v? = arg min
v

∥∥∥HH(HHH)−1(u + τv)
∥∥∥2

. (2)

III. RELATED WORK

The Sphere encoder [6] builds on the Fincke and Pohst al-
gorithm [7] by expressing the precoding matrix P as P = QR
by QR decomposition, where Q is unitary and R is upper
triangular. It then performs a tree search, utilizing the upper
triangular structure and limiting the search to the points within
a hyper-sphere of a suitably chosen radius, and hence avoids
exhaustive search over all possibilities. This algorithm is very
similar to the Sphere decoder used for the MIMO receiver.
While Sphere encoder is much better than exhaustive search,
its expected complexity is still exponential. Park et al. [8]
provide an approximation to the VPP problem by minimizing
the real and imaginary parts of the VPP cost function sep-
arately. This reduces the complexity of VPP computation at
the cost of error performance. The Thresholded Sphere Search
algorithm [9] imposes an additional stopping criteria to Sphere
encoder algorithm [6] based on an SNR dependent threshold
heuristic. Another scheme for reducing the search space of
Sphere encoder is discussed in [10]. It restricts the values of
each perturbation to four possible values (two for real and
two for imaginary) and hence reducing the search space of the
Sphere encoder. Despite improvements in computation costs
over Sphere encoder, the search space of all these methods is
still exponential with respect to the MIMO size.

1The set of Gaussian integers G = Z + jZ consists of all complex numbers
whose real and imaginary parts are integers.

Several approximations for VPP (with polynomial com-
plexity) exist in literature. The Fixed Complexity Sphere
Encoder (FSE), adapts the Sphere encoder to have a lower
and fixed polynomial complexity by pruning a large number
of branches during the tree search but leads to degradation in
error performance [11]. Degree-2 Sparse Vector Perturbation
(D2VP), presented in [12], is a low complexity algorithm for
vector perturbation precoding. It reduces the complexity of
finding the VPP solution by assuming that only 2 elements of
the perturbation vector can be non-zero and then improves the
solution over multiple iterations.

IV. QUANTUM ANNEALING

Quantum Annealing (QA) is a heuristic approach that im-
plements in hardware a quantum computing algorithm inspired
by the Adiabatic Theorem of quantum mechanics [13]. The
method aims to find the lowest energy spin configuration
(solution) of the class of quadratic unconstrained binary
optimization (QUBO) problems in their equivalent Ising spec-
ification. The Ising form is described by:

E = ∑
i

hisi + ∑
i<j

Jijsisj (3)

where E is the energy, si is a solution variable, hi and
Jij are problem parameters called bias and coupler strength
respectively. QUBO form is obtained from Eq.3 by a simple
variable transformation (si −→ 2qi − 1), where si and qi
represent Ising and QUBO form variables respectively. Ising
form solution variables (si) take on values in {−1,+1}, and
QUBO form solution variables (qi) take on values in {0, 1}.
The equivalent QUBO form of Eq. 3 is described by:

E = ∑
i

fiqi + ∑
i<j

gijqiqj (4)

A. Primer: Quantum Annealers.

Quantum Annealers are specialized quantum computers, es-
sentially comprised of two types of resources: qubits (quantum
bits) and couplers, whose regular connectivity structure is
organized in unit cells. Fig. 1 shows the hardware structure of
the QA we adapt in this study, the D-Wave 2000Q (DW2Q)
quantum annealing machine. The QA device programs the
linear (i.e., biases) and quadratic (i.e., coupler strengths)
coefficients of Eq.3 onto qubits and couplers using controllable
inductive elements in proximity of superconducting Josephson
Junctions present on the chip [4].

Embedding. The process of mapping the problem at hand
onto the physical QA hardware topology follows the graph-
theory problem of graph minor embedding. We demonstrate
here the embedding process with an example Ising problem:

E = J12s1s2 + J13s1s3 + J23s2s3 (5)

The direct connectivity of this example problem is shown in
Fig.2(a). However a three-node complete connectivity graph
structure does not exist in the QA hardware (cf. Fig.1).
Hence the minor-embedding approach is to map one of the
problem variables in Fig.2(a) (e.g., s3) onto two physical
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Figure 1: The figure shows qubits (nodes) and couplers (edges) in
DW2Q QA hardware. Each group of eight qubits is called unit cell.

qubits (e.g., s3a and s3b) as Fig.2(b) shows, such that the
resulting connectivity can be realized on the QA hardware.
The couplers between the qubits s3a and s3b are tasked to
enforce these physical qubits to be correlated in order to end up
with the same value at the end of the annealing process. This
is implemented through a strong ferromagnetic interaction
energy called chain strength JF (see in Fig.2(b)).

Coefficient considerations. Today’s QA devices provide
support for bias values in [−2,+2] and coupler strength values
in [−2,+1] with a bit-precision guaranteed to 4–5 bits only.
Further, the QA introduces an analog machine noise distinct
from communication channel noise called intrinsic control
errors or ICE. ICE noise, a collection of errors caused by qubit
flux noise, susceptibility, among others [14], essentially alters
the problem coefficients (hi → hi ± δhi, Jij → Jij ± δJij).
Although the errors δhi and δJij are currently on the order
of 10−2, these may degrade the solution quality of some
problems in scenarios where ICE noise erases significant
information from the ground state of the input problem.

B. Annealing process

QA processors simulate systems in the transverse field
Ising model described by the time-dependent energy functional
(Hamiltonian):

H = −A(s)∑
i

σx
i + B(s)

{
∑

i
hiσ

z
i + ∑

i<j
Jijσ

z
i σz

j

}
(6)

where σx,z
i are spin operators (Pauli matrices) acting on the

ith qubit, hi and Jij are problem parameters, s (= t/ta) is called
annealing schedule where t is the time and ta is the annealing
time. A(s) and B(s) are two monotonic scaling signals in
the annealer such that at time t = 0, A(0) � B(0) ≈ 0
and at time t = ta, B(1) � A(1) ≈ 0. The annealing
algorithm initializes the system in the ground state of ∑i σx

i
where each qubit is in a superposition state 1√

2
(|0〉+ |1〉),

then adiabatically evolves this Hamiltonian from time t = 0
until t = ta (i.e., decreasing A(s) , increasing B(s)). The time-
dependent evolution described by the Schroedinger Equation
driven by these signals A and B is essentially the annealing
algorithm. While in real processor the dynamics is not ideal
but it is dominated by dissipative noise instead [15], the
expectations of the model still hold for the most part. The
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s3bs2
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JFJ12

J23
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J23

(a)	Problem	Connectivity (b)	Physical	QA	Connectivity

Figure 2: The figure demonstrates the embedding process of Eq. 5.
In the figure, (a) shows the direct problem connectivity of Eq. 5 and
(b) shows its physical connectivity on QA hardware.

process of optimizing a problem in the QA is called an anneal,
while the time taken for an anneal is called annealing time.

V. DESIGN

Quantum Annealing based Vector Perturbation (QAVP) en-
visions a scenario where a Quantum Annealer (QA) machine
is co-located with a centralized data center for computational
processing in the C-RAN architecture [3] which allows for
low latency communication between base stations and the QA
machine. QAVP converts a VPP problem to a Quadratic Un-
constrained Binary Optimization (QUBO) problem, then fine-
tunes the QUBO problem coefficients to mitigate the adverse
effects of QA hardware noise and increase the probability of
finding the correct solution with QA. The fine-tuned QUBO is
next embedded onto the physical QA hardware (see Fig.1) for
running the problem. We conduct multiple anneals for a given
QUBO problem, where each anneal generates a candidate
solution bit-string for VPP. The QUBO solutions are converted
to perturbation vectors by inverting the transform described
in Eq. 7. Among these returned solutions, the solution that
minimizes the VPP objective function is chosen by the base
station. In scenarios where QAVP fails to find a solution
with lower transmit power scaling than Zero-Forcing (ZF)
precoding, the base station discards the QAVP solution and
uses ZF precoding instead of VPP.

The steps involved in QAVP computation, excluding embed-
ding and annealing, can be executed by the physical layer of
base station or can be offloaded to a server in close proximity
to QA machine. Fig. 3 illustrates a typical deployment scenario
for QAVP, where Nr users are receiving downlink data streams
from a base station with Nt antennas. We next demonstrate
QAVP’s QUBO formulation for the VPP problem, QAVP’s
pre-processing, and embedding considerations.

A. QAVP’s QUBO Formulation

The downlink VPP problem is to find an optimal perturba-
tion vector v? that minimizes the transmit power at the base
station, whose NP-hard objective function is represented in
Eq. 2. As the search objective in Eq.2 is over the vector v ∈
GNr×1, we construct each entry in v by a linear combination
of binary variables as follows.

Let qi denote the ith QUBO form solution variable, and let
ak + jbk be the kth entry in v, where ak and bk are integers.



Accepted article to appear in the proceedings of IEEE ICC ’21

Figure 3: A typical deployment scenario of QAVP. Nr users are
receiving downlink data streams from a base station with Nt antennas.

We design each ak and bk ∀k in an identical fashion using
t + 1 distinct solution variables as:

ak

/
bk =

t

∑
m=1

2m−1 · qm − 2t ∗ qt+1 (7)

Since all the solution variables (qi) are binary, this for-
mulation allows ak and bk to take all integer values in the
range [−2t, 2t − 1], where each integer corresponds to a
unique configuration of solution variables. The value of t
determines the search range of v. Yuen et al. [16] show
that perturbation values are most likely to be {−1, 0, 1}, and
hence t = 1 which allows perturbation values in the range
[−2, 1], is usually sufficient. We substitute the entries of v
with their corresponding solution variables into Eq.2 to obtain
the QAVP’s QUBO:

arg min
∀q

{
∑
∀i

fi(H, u)qi + ∑
∀i,j

gij(H, u)qiqj

}
(8)

where f and g are functions of MIMO channel matrix and
user data vector. The linear and quadratic coefficients obtained
from Eq. 8 can be programmed into the QA processor. The
computational complexities of the proposed QA technique
and the optimal case Sphere Encoder are O(e

√
Nu) [17] and

O(eNu) [18] respectively, where Nu is the number of users.
We next present our QUBO pre-processing considerations.

B. QAVP’s Pre-processing

Our pre-processing scheme aims to mitigate the adverse
effects of QA hardware ICE noise (§IV) by scaling and
eliminating minor QUBO coefficients. We note that a generic
QUBO form of Eq.4 can be equivalently expressed as:

E = ∑
i

fiqi + ∑
i<j

gijqiqj = qTQq (9)

where q = [q1, q2, ...]T , and Q is an upper triangular matrix
with Qij = fi (i = j), Qij = gij (i < j), Qij = 0 (i > j).
Let Qmax = maxi,j |Qij| be the maximum QUBO coefficient
value, Thigh and Tlow be our chosen upper and lower bounds
for the QUBO coefficient values. We define a scaleFactor as:

scaleFactor =


1 Qmax ≤ Thigh

Thigh

Qmax
Qmax > Thigh

, (10)
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Figure 4: QAVP’s pre-processing loss for different choices of Thigh
and Tlow, showing that Thigh = 6 is near-optimal and Tlow = −2
leads to negligible PPL.

Our approach is to first scale each entry in Q with the scale-
Factor, then eliminate coefficients below a chosen threshold
of 10Tlow . This scaling process is summarized below.
Step 1: Set Q← Q ∗ scaleFactor.
Step 2: For every i ≤ j, if Qij < 10Tlow then set Qij ← 0.

Let Qpre correspond to the QUBO obtained after this pre-
processing step. Let q?

pre = arg minq qTQpreq, and q? =

arg minq qTQq. We define a pre-processing loss (PPL) as:

PPL =
|(q∗T

preQq∗pre − q∗
T

Qq∗)|
|(q∗T Qq∗)|

(11)

PPL is used to quantify deterioration in the optimal value
of the VPP problem due to the modification of the original
QUBO problem. We see from Fig. 4 that PPL increases with
an increase in Tlow as a higher Tlow causes more coefficients
to be reduced to zero. We further observe that PPL reduces
initially with Thigh, and then becomes constant. While having a
high negative value for Tlow leads to low PPL, it makes it more
susceptible to QA ICE noise. The optimal choices for Thigh
and Tlow depend on the distribution of QUBO coefficients,
magnitude of QA ICE noise, and problem embedding. Our
empirical studies find that a Thigh = 6 and a Tlow = −2
obtains good solutions with the DW2Q QA.

C. QAVP’s Embedding and Parallelism.

We use a D-Wave’s heuristic algorithm described in
Ref. [19] and implemented in D-Wave MinorMiner software
libraries for mapping of QAVP’s QUBO design onto the QA
hardware. It is to note that multiple QUBOs or multiple
instances of a QUBO can be parallelly processed by mapping
different problems onto distinct physical locations in the QA
chip. For instance, QAVP for 7×7 MIMO system requires
approximately 200 qubits, implying that 9–10 such problems
can be simulataneously solved on the DW2Q QA with 2,048
qubits. The number of qubits in the QA hardware has been
steadily doubling each year and this trend is expected to
continue [4], with the latest 5,000 qubit chip just released
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Figure 5: Evaluation of the overall transmission power (Pt) am-
plitudes over various choices of |JF| at Ta = 100 µs and 10 dB
channel SNR. The plot shows that QAVP’s performance variance is
not significant for JF values above 0.4Jm.

at time of writing. While the evolution of QA technology
is currently at an early stage (2011-), future QA processors
with higher qubit counts will potentially increase the supported
parallelism for QAVP.

VI. EVALUATION

In this section, we first present microbenchmarks for QA
machine parameters. We then investigate QAVP’s end-to-
end error performance, comparing head-to-head against Zero
Forcing (ZF) and Fixed Complexity Sphere Encoder (FSE)
algorithms. The DW2Q QA system performance is majorly
affected by the choice of annealing time (Ta), number of
anneals (Na), and chain strengths (JF). Recall that number
of anneals (Na) refers to the number of times annealing
process is repeated for each QUBO problem. Our evaluation
methodology is as follows: we obtain the VPP solutions
from the QA (DW2Q), and use these solutions to simulate
an end-to-end downlink data transmission on a trace-driven
MIMO simulator (implemented in MATLAB). We simulate
data transmission over Rayleigh fading wireless channels and
empirically measure the BER corresponding to different users.

A. Effect of Chain Strength (JF)

We evaluate QAVP’s performance over an 10× 8 MIMO
system with 20 QAVP problem instances. Our channel matrix
H is random Rayleigh fading, modulation scheme is BPSK,
and wireless channel noise is Gaussian. Let Jm be the maxi-
mum coupler strength value of our QUBO problem at hand.

In Fig. 5 we investigate the sensitivity of chain strengths |JF|
over the overall transmission power Pt. For this evaluation,
we set a high annealing time of 100 µs and a moderate
SNR of 10 dB to ensure minimal disturbance from the time
limit and the channel SNR respectively. We observe that the
performance of QAVP varies with JF and that the sensitivity
of QAVP performance beyond |JF| = 0.4Jm is not significant.
The average Pt is much higher for |JF| < 0.4Jm, and the
variance in performance of QAVP is barely distinguishable
for higher values of |JF| > 0.4Jm. While the optimal value of
JF depends on the parameters of the system (e.g., modulation
and MIMO size), we empirically determine that |JF| = 1.2Jm
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is the optimal setting for 6× 6 and 12× 12 MIMO systems
with 64 QAM modulation scheme.

B. Effect of Anneal Time (Ta)

Another critical QA parameter that affects the QAVP per-
formance is the anneal time (Ta), along with its associated
number of anneals (Na). We heretofore quantify the QA
performance with the total compute time: Ta × Na. Fig. 6
compares the BER performance of FSE, ZF and QAVP, and
Fig. 7 reports the BER performance of QAVP at different QA
compute times, for a Nt = 6, Nr = 6 MIMO system with 64
QAM modulation, for various choices of Ta and Na.

We first observe in Fig. 6 that a higher anneal time leads to
better BER performance from QA. Although a higher anneal
time allows QA to return better quality solutions, it increases
the communication latency (due to a higher computation time)
as Fig. 7 depicts. The tradeoff between BER performance
and anneal time represents a fundamental design problem in
QAVP. We observe from Figs. 6 and 7 that QAVP achieves an
acceptable BER with a low anneal time of Ta = 10µs, while
keeping the computation time lower by an order of magnitude.

C. End-to-end BER performance

In this section, we consider a large 12× 12 MIMO system
with Rayleigh fading channel, White Gaussian noise, and 64
QAM modulation. Fig. 8 reports results (with |JF| = 1.2Jm,
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Figure 8: Downlink multi-user 12× 12 MIMO: BER and throughput
performance. We compare the BER performance of QAVP against
FSE and ZF. We set |JF| = 1.2Jm, Ta = 299µs and Na = 104.

Ta = 299 µs, Na = 104) for mean BER and normalized
throughput (ratio of achieved to maximum possible through-
put), with packets size of 1500 bytes, for uncoded data
transmission. We observe from Fig. 8 that QAVP outperforms
ZF and FSE by achieving a 1–2 orders of magnitude lower
BER at Eb/N0 of 27dB. We see from the throughput curves
that QAVP achieves a 3 dB gain over FSE and around 6 dB
gain over ZF. It is to note that a 12×12 MIMO system with
VPP, using theoretically optimal Sphere Encoder, is practically
infeasible due to its high computational complexity.

VII. CONCLUSION

In this paper we propose QAVP, a novel technique that
performs Vector Perturbation Precoding using Quantum An-
nealing. We evaluate QAVP on a real DW2Q QA device over a
variety of machine parameters. Our studies show that for large
MIMO systems, if the analysis is restricted to computation
time, QAVP can outperform practically feasible state-of-the-art
techniques like FSE and ZF algorithms for VPP. While prior
work investigates QA technology for problems in the uplink
[4], [5], our studies investigate its potential in the downlink.
Our analysis disregards the engineering and system integration
overheads of currently available commercial QA systems (e.g.
latency, programming time and thermalization times between
the runs), since they can be optimized heavily if the system is
built for a specific application deployment. Nevertheless, the
techniques we propose in this work, in the more distant future,
may enable the applicability of VPP to large MIMO systems
by exploiting stronger QA devices and parallelism.

A. Future Work

Our work has several possible improvements along the
lines of QUBO pre-processing, problem embedding, and QA
machine parameter selection. It is of interest to further refine
our pre-processing step to optimize the QUBO representation
based on the embedding of the problem. Further, a more
sophisticated tuning and selection of QA parameters such as
chain strengths and annealing times can potentially improve
the QAVP performance. Porting our model to other alternative
emerging Ising-model related technologies such as quantum-
inspired algorithms, reverse quantum annealing, and quantum-
classical hybrid approaches is also a potential work direction.
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