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Abstract

6G technologies such as Massive MIMO, dense cells, innovative air interface multiplexing techniques, and ultra-high frequen-
cies stand to significantly benefit from significantly-increased amounts of computation at the base station. This position paper
surveys recent work the authors have undertaken to realize this vision on today’s Noisy Intermediate Scale Quantum devices,
illustrating possible system architectures to leverage the power of quantum devices for wireless networks. We sketch the state of the
art in quantum processing devices, offering insights into their current and future evolution, and updating our recent experimental
results with the most recent such devices, to give the reader a sense of the trajectory of performance improvements over the past
12-24 months.
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I. INTRODUCTION

AS wireless networks evolve through 5G, scaling up spectral density through the use of millimeter-wave frequency bands,
Massive MIMO, and dense cells, network designers are looking ahead to the 6G roadmap, anticipating an even more data

driven society where wireless brain-computer interfaces, extended reality, and connected robotics drive 6G networks to handle
data rates 10–1,000× greater than 5G [1]. To scale up spectral efficiency, designers will consider implementing techniques
such as ultra-massive MIMO arrays, innovative air interface multiplexing techniques, more robust forward error correction
coding, and even higher-density network deployments in wider bandwidths at higher carrier frequencies. As spectral efficiency
is scaled up, 6G system designers will strive to improve key performance indicators (KPIs) such as latency, reliability, and energy
efficiency of terminals and base-stations while also trying to not compromise one KPI to achieve another. The implementation
of algorithms for 6G to optimize data throughput, spectral efficiency, user density, reliability, and latency, operating in wider
bandwidths will lead to exponentially more computation than current 5G systems.

In the base station and cellular infrastructure, 5G RF modem signal processing is based on classical compute concepts which
are typically implemented in ASIC, FPGA and GPU/CPU fabrics. However, improvements in classical compute performance
are not advancing at an exponential rate as in past years, but are plateauing due to transistors reaching atomic limits [2]. Since
the design of efficient and fast computational structures is now competing with wireless communication as the most significant
challenge for many high-capacity wireless communication systems, it is doubtful that silicon will be able to implement the
high spectral performance, low latency, and high reliability optimization algorithms needed to achieve 6G’s KPIs.

Quantum computing is a potentially valuable tool to address future tradeoffs between performance, latency, and reliability
as the 6G roadmap evolves. If quantum computing enables optimal algorithms for heavy optimization problems that currently
bottleneck achievable network throughput, spectral efficiency could then benefit. The numerous hardware platforms capable
of quantum information processing could then combine with other scalable technologies such as millimeter wave and small
cells, further increasing spectral efficiency. Due to the linearity of quantum mechanics, quantum computing is fundamentally
constrained to rely on reversible operations, which dissipate no heat, except in the initialization and readout phase of the
computation. While noisy quantum computation has elements of irreversibility, in the long term quantum computation can in
principle reach arbitrarily low power consumption for computations that would be power-hungry if performed classically.

Over the last few years, due to advances in nanotechnology and engineering, real-world quantum computers have become
commercially available. For wireless networks, recent studies first made use of a quantum annealer, a certain type of analog
quantum computing processor, and showed promising results for a quantum-based Multiple Input Multiple Output (MIMO)
detector in centralized radio access networks (C-RAN) [3] and for a quantum-based Low Density Parity Check (LDPC) error
control decoding [4], providing guidance of how to make use of the machine and baseline performance metrics. In wireless
networks, there are representative optimization problems, including but not limited to the previously studied applications, which
suffer from well-known conventional trade-offs between throughput and complexity, where optimal solvers are known but very
difficult to practically implement considering available hardware and processing time limitations. We expect that overcoming
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Fig. 1: A quantum compute-enabled system architecture for next-generation 6G wireless networks.

practical issues of these optimization problems existing on current algorithms and/or computer architectures will lead to drastic
improvements in wireless communications and networks, achieving the optimal performance within short processing time and
thus enabling Ultra-Reliable Low-Latency Communications (URLLC) visioned in 5G wireless networks and beyond [5], making
investigation of quantum computing as a potential accelerator a compelling research objective. In our envisioned scenario shown
in Fig. 1, quantum processors will be co-located with C-RAN computational resources in a data center, partitioning the compute
roles for hundreds of base stations or Remote Radio Heads (RRH) connected via low-latency optical fiber, where quantum
computing will take care of heavy optimization processing that bottlenecks achievable throughput and latency, while classical
processors will take care of otherwise tractable processing. We believe that the C-RAN embedded quantum processors will
have optimized interfaces and information processing architecture to maximize wireless system performance.

In the rest of this article we provide a brief tutorial on using currently available quantum computing technology, sometimes
referred as Noisy-Intermediate-Scale Quantum (NISQ) technology [6], to solve optimization problems in wireless networks,
present two case studies and relevant performance results from each, and share critical lessons learned, including challenges
and future directions for network designers and engineers.

II. NISQ ARCHITECTURES AND OPTIMIZATION ALGORITHMS

There are several models of quantum computation that can be implemented via an array of technologies. Classical computers
store and manipulate bits, whereas quantum computers use qubits, physical devices that can encode a combination of 0 and
1 bits simultaneously via quantum dynamics. A useful dichotomy to frame the current landscape is fault-tolerant approaches
to quantum computing vs. NISQ computing (digital or analog). Fault tolerant approaches require a level of control of the
quantum resources that is still far away from what technology can deliver in the next few years. For this reason, much of the
applied work in quantum computing has focused on co-design of hardware and software that, while not necessarily scalable,
could work in specific devices to deliver a quantum advantage in specific problems. NISQ processors that could be used to
address optimization problems today can be further classified into gate or annealing architectures.

A. Gate Model Processors

The design and implementation of current and near-term gate-based NISQ architectures are guided by the fault-tolerant
theoretical models that offer general computational functionality (universality) using programmable logic gates acting on
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Fig. 2: The general workflow of QA-based optimization in wireless networks.

qubits—in analogy with classical digital architectures. These devices implement several programmable gate-sets that can
represent a variety of algorithms. The most advanced platforms include superconducting, solid state chips by Google, IBM,
Intel, Rigetti Computing, IQM, Alibaba and atom-based systems by IonQ, Honeywell, ColdQuanta, AQT, QuEra, and Pasqal.
Calibrating these gates to enable controllable quantum dynamics with high-fidelity, requires close alignment of material
properties. Noise sources reduce the number of qubits that can be calibrated to perform gate operations. For instance, current
commercial superconducting architectures are limited by coherence times in the 10s of `s regime, allowing only tens of gate
operations on up to 10–50 qubits. Public design targets based on improvements in coherent materials, fabrication processing
and circuit design could enable thousands of gate operations on the order of 100–1000 qubits within the next 5 years. The
Quantum Alternating Operator Ansatz (QAOA) [7] algorithm is designed to leverage these advances to solve optimization
problems. This heuristic procedure consists of two alternating phases: an exploration step (mixing) and an exploitation step
(phase separation) where the operations of two phases depend on parameters that are set by leveraging statistics obtained in
real-time by operating the device as a neural network in the training phase. Analysis and modifications of the original QAOA
algorithm have been developed in order to leverage properties of current and near-term NISQ architectures. However, the most
advanced tests have been able to solve the MaxCut problem up to 23 nodes [8], a benchmark still far away from applications
of practical value.

B. Quantum annealers and Ising Machines

While the gate-model is motivated by abstractions from theoretical computer science, quantum annealing (QA) is inspired
by the adiabatic principle of quantum mechanics, a useful means to search for configurations in a high-dimensional energy
landscape that correspond to low energy states. To solve problems via annealers, computational problems are mapped on
to an optimization form in which the solution corresponds to a configuration of variables that specifies the location of the
minimum in a high-dimensional energy landscape. In current hardware, there are two equivalent mathematical forms to describe
the optimization problem, a Quadratic Unconstrained Binary Optimization (QUBO) problem or Ising model, depending on
whether the variables are encoded as bits ∈ {0, 1} or spins ∈ {−1, +1} respectively.1 Unlike the gate-based approach, the
computation is performed via a continuous process. QA hardware implements annealing algorithms for minimizing Ising
models. Problems are specified by prescribing a real-valued matrix of values where diagonal entries define the bias, denoted

1Since QUBO and Ising forms are equivalent and can be easily transformed into each other, we use both terms interchangeably in this article.
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Fig. 3: Mapping process of a QUBO problem onto the physical Chimera unit cell architecture featured in DW_2000Q.

by ℎ8 , for each variable configuration, and the off-diagonals define coupling strengths, denoted by �8 9 , correlating pairs of
variables. Each spin is encoded into a qubit and the biases and coupler strengths are programmed into the QA device using
on-chip control circuitry and the minimal energy configuration of spins is determined by evolving a transverse field Ising
model Hamiltonian, where the transverse field energy and problem energy together define the schedule of the annealer, which
represents annealing algorithms. Starting with the transverse field energy much greater than the problem energy, the annealing
algorithm initializes the system in a ground state of an initial Hamiltonian where each qubit is in a superposition state, then
gradually evolves this Hamiltonian by decreasing the transverse field energy and increasing the problem energy, such that
at the end of the anneal the problem energy is much greater than the transverse field energy. By driving the Hamiltonian
changes slowly enough, the annealing algorithm reaches the lowest energy configuration of spins corresponding to the input
problem with high probability. However, physical chips operate in noisy environments, noise sources such as thermal bath,
high-energy photons and electromagnetic cross talk, causing the performance to escape numerical or analytical predictions and
be determined in practice by a heuristic parameter setting procedure.

Companies such as D-Wave Systems and large, publicly funded federal, Japanese or EU consortia have developed annealer
machines. Moreover, the quantum annealer design has inspired similar hardware architectures that either exploit quantum
mechanical fluctuations as a minor resource or are purely inspired by the quantum analog dynamics. These Ising machines
include Optically Coherent Ising Machines (CIM) from NTT, digital annealers from Fujitsu, and simulated bifurcation machines
from Toshiba. The performance is determined by very different physics-based principles, but from an end-user perspective,
while the programming model is the same (QUBO), each architecture balances trade-offs between precision of inputs, graph
connectivity, and total number of variables. Some physics-inspired algorithms like simulated annealing can be immediately
implemented on classical computing platforms such as CPUs and GPUs [9].

Currently D-Wave provides around 5000 sparsely connected qubits whereas digital annealers operate with up to 8192 fully
connected variables at 16-bit precision and 4096 variables at 64-bit precision. A typical workflow of QA-based optimization
with some application examples in wireless networks is shown in Fig. 2. Most problems that are not natively defined as
a QUBO can be mapped to a QUBO via a penalty method, often requires high precision and several ancillary qubits to
represent the penalties as logical binary variables in a QUBO. Logical binary variables in the QUBO may need to be mapped
to multiple qubits to express the connections of the logical variables. If an architecture does not provide a fully-connected
graph topology, the logical QUBO must be mapped onto a physical architecture through a graph minor embedding. In Fig. 3
we demonstrate the process of embedding a QUBO problem into the Chimera topology (C16) of the D-Wave 2000Q quantum
annealer (DW_2000Q). To embed a dense problem into a sparse architecture graph, one must apply additional penalties to
chain qubits together via strong ferromagnetic couplings causing qubits to be strongly correlated (see dotted lines in Fig. 3).
The number of qubits that represent a logical variable is called the chain length of that variable. For instance, in Fig. 3 note
that the chain length of orange variable is two. In general, this embedding process can require many qubits and high precision
to couple them effectively, reducing the problem size and available precision to represent the coefficient matrix. For example,
DW_2000Q features 2,048 qubits and six couplers per qubit, and can implement at maximum a fully-connected graph of 64
variables. Embedding these maximum size cliques involve very long chains of qubits causing solution quality to suffer since
these long chains require high precision to couple and longer range coherent dynamics to co-tunnel.

Recent updates to QA architectures include a lower noise QA architecture (DW_2000Q_6) and a more connected architecture
Advantage_system1.1 that implements a Pegasus graph topology. Pegasus P(") contains an overall 24" (" − 1) qubits and
15 couplers per qubit, with native  4 and  6,6 subgraphs. With P16 being the current hardware scale, Advantage_system1.1
consists a total of 5,760 qubits. Practical challenges with today’s QA devices include embedding, precision, and additional
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overheads, which are well beyond pure computing time, along the lines of pre-processing (30–50 ms), programming (8–9 ms),
and readout times per anneal (100–300 `s).

III. QUANTUM COMPUTING FOR WIRELESS NETWORKS

In this section, we present two case studies, focusing on QA technologies due to the problem sizes and architectures available
today. While the general descriptions of processing on the QA hardware (Fig. 2) are introduced in the previous section, here
we investigate application-specific blocks with two wireless applications: MIMO detection and LDPC decoding. We review
the recent study and share critical lessons learned on important aspects of applying QA to each application including QUBO
formulation and embedding. For fault-tolerant approaches that require more advanced quantum processors that will be available
in the next few years, we refer the reader to the review [10].

A. Review: QA-enabled Multi-User MIMO Detection

Multi-User MIMO (MU-MIMO) employs spatial multiplexing to enable parallel spatial streams, and is considered one of
the most promising ways to increase wireless capacity. Thus MU-MIMO has featured in nearly every networking standard,
including cellular and local area networks. In MU-MIMO systems, the receiver must demultiplex mutually-interfering streams
in order to detect a signal for each user (MU-MIMO detection). Linear methods such as Zero-Forcing (ZF) and Minimum Mean
Square Error (MMSE) are commonly used, featuring low computational complexity. However, the detection performance rapidly
degrades as the number of user antennas approaches the number of receiver antennas where the wireless channel becomes
poorly-conditioned, which is critical since the MU-MIMO system generally needs to support more users at a time for higher
throughput. The Sphere Decoder (SD), which is an optimal Maximum Likelihood (ML) solver, improves detection performance
in these situations, but requires an exponentially-increasing amount of computation as the user number increases and thus the
SD cannot always satisfy processing time requirements.

Using QA to perform MIMO detection was initially studied on the DW_2000Q [3]. The work provided guidance of how to
apply QA for optimal ML MIMO detection, including a reduction method of the ML MIMO detection into QUBO formulation
and an embedding method. We summarize important observations and results with three different aspects:
• QUBO formulation. The key idea of the QUBO reduction introduced in the work is to find a linear mapping between

possible symbols and binary variables, and replace the symbols with this mapping in the ML objective function. Then
the norm expansion in the objective function results in a QUBO form. For the mapping, each symbol per user requires
log2 |O| logical binary variables, where |O| is the size of modulation, and thus #v = # · log2 |O| logical variable count is
required to support # users at a time. The generated QUBO does not include any constraint terms, so generalized forms
can be easily obtained, given |O| and # . Once the receiver estimates the wireless channel and receives the signal, input
coefficients can be immediately generated, since the required computation time and resources for the QUBO reduction
are insignificant. The QUBO form of the ML MIMO detection was also tested with classical heuristics on CPUs and
GPUs [9].

• Embedding. The generated QUBO of the ML MIMO detection is nearly fully connected; most QUBO coefficients are
non-zero. While the minor embedding itself is another NP problem, in the case of fully connected problems very efficient
direct embeddings called clique embedding [11] are known for many different architectures including Chimera and Pegasus.
This embedding method is straightforward and easily extended to advanced architectures with more connectivity. In the
case of Chimera structure, MIMO problems with up to #v = 64 can be embedded on C16 for the ML detection by this
method, requiring #v (d#v/4e + 1) qubits and d#v/4e + 1 chain lengths.

• Detection performance. For low-order modulations such as BPSK (|O| = 2) and QPSK (|O| = 4), this QA-based MIMO
detector achieves promising detection performance, enabling Large MIMO with over 10 users, even assuming the same
number of users and receiver antennas (i.e., # × # MIMO). However, for 16-QAM (|O| = 16) or higher-modulations, the
detector does not perform well even with small number of users. The quality of sampling depends on the distribution of
possible values of the objective function, due to the presence of analog noise. Smaller gaps between the values, especially
between the ground state and second best candidate, result in worse sampling performance, and |O| affects that distribution
more critically than # . Furthermore, wireless channel noise makes the gaps smaller in general, so higher channel noise
leads to a worse sampling quality, and thus longer processing time, for the same detection performance.

B. Review: QA-enabled Decoding of Error Control Codes

Modern communication standards are increasingly utilizing LDPC codes for correcting bit-errors in data transmissions
because of their capacity-approaching error performance. With the immense progress in LDPC code construction, today’s
research is directed towards designing efficient hardware implementations for the computationally complex processing demands
of the decoder. LDPC codes are traditionally decoded via the iterative belief propagation (BP) algorithm. This approach is
highly attractive, allowing network designers to select several custom design parameters such as likelihood bit-precision,
iteration limit, and decoder parallelism, but requires critical trade-offs between decoder accuracy, throughput, and flexibility.
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As a result, practical LDPC decoders today are typically realized using partially-parallel architectures, with limited calculation
precision, implying that current silicon technology often does not fully exploit the potential of LDPC codes in practice.

One may circumvent these trade-offs altogether with the representation of the LDPC decoder as a QUBO problem. Flexible
decoders allow the communication system to dynamically adapt parity check matrices (PCMs) to time-varying transmission
conditions, such as decreasing the coding rate in high noise environments. As PCM considerations vary with time, a QUBO
decoding requires adjustments only in the values of the QUBO coefficients, implying that a QUBO decoding may be more
flexible than BP decoding which requires hardware reconfiguration to target different code structures. Furthermore, recent QA
implementations of LDPC decoders have shown to quantitatively outperform BP-based silicon FPGA implementations under
typical likelihood bit-precision and iteration limits [4], while further similar QA-based studies have found correct solutions
for LDPC decoding problems for which the BP algorithm does not converge for 1000 iterations [12]. Resembling a fully
parallel decoder, QUBO decoding approaches eschew the sequentially iterative nature of the BP algorithm, opening the door
to potentially accelerate decoding throughput. We next summarize the core ideas and future directions with QA-based LDPC
decoding [4]:
• QUBO formulation. To represent the LDPC decoder as a QUBO problem, the key idea is to construct two types of

cost penalty functions that: 1) Ensure the LDPC encoding conditions are satisfied (i.e., zero checksum). This is obtained
by encoding integer sum of bits (variables) in check constraints into even integers. 2) Ensure the decoder to select the
codeword with closest proximity to the received information (with wireless channel noise).

– Future directions. The encoding of the variable sum in the LDPC check constraints to even integers can take many
possible forms, with unary/binary encoding minimizing/maximizing the coefficient values and maximizing/minimizing
the number of additional QUBO variables respectively. The trade-off between the number of variables and coefficient
values determines the encoding form, and it can be chosen to best fit the available QA hardware in hand.

• Embedding. The graph of the LDPC decoder QUBO is sparse, and consists a particular repeating connectivity pattern
that depends on the check bit degrees of the LDPC code. Although heuristic embedding methods and clique embedding
can be used to map generic problem graphs onto QA hardware, it is possible for sparse problems to find more efficient
embedding designs. For instance, a custom embedding design for (2,3)-regular LDPC codes presented in an earlier study
makes use of the entire QA hardware [4]. The regular variable connectivity in the LDPC QUBO graph allows for flexible
extension of embedding patterns to different LDPC code block lengths.

– Future directions. A promising direction is to find the regularly repeating embedding patterns for check bit degrees
employed in practical protocol standards, to investigate the code block lengths the available QA hardware supports.
This will allow network designers to keep on track with the potential of QA hardware advances, and may further
motivate the designers of future quantum devices to tailor the hardware to the problem of interest.

• Directions for higher-order optimization. It is also possible to design LDPC decoder as a higher order optimization
(Polynomial Unconstrained Binary Optimization or PUBO) problem for decoding with minimal number of problem
variables, by mapping bits in LDPC check constraints to Ising problem variables (0 −→ −1 and 1 −→ +1). The sign of
the product of the Ising variables (in a given check constraint) determines if the LDPC check-sum encoding condition is
satisfied. Although practical machines that optimize PUBO problems are currently not available, a future possibility may
arise, while PUBO forms can be reduced to QUBO forms by existing quadratization penalty methods.

IV. NEXT STEPS FOR QA FOR WIRELESS NETWORKS

Along with the previously seen practical challenges, many open problems remain as well for network designers, directly
related to pure QA computation performance. In wireless networks, there exist many potential applications that could achieve
benefits from the use of QA computation. In this regard, their QUBO formulations and embedding techniques need to be
optimized, considering the impact of noises and sparse connectivity on the device, which is a general open problem in the
field. While we introduce some possible examples with two specific case studies in this article, more applications (e.g.,
downlink precoding [13]) and/or further advanced QUBO formulations and embedding methods should be considered and
studied towards expected performances in 6G. Furthermore, potential next steps in the area include studies that continue and
elaborate the head-to-head error-rate and throughput comparison of QA against silicon implementations [4] under similar
wireless network parameters. While the impact of silicon hardware parameters such as bit-precision, clock frequency, and
routing designs have been well investigated, we here discuss free QA parameters and advanced annealing techniques to boost
performance.
• Pre-processing of coefficients. QA devices introduce an analog machine noise called ICE or intrinsic control error into

the input problem. ICE noise may degrade the solution quality of problems with narrow energy gaps, nevertheless pre-
processing and tuning the coefficient values typically help mitigate the adverse effects ICE noise. Particular to wireless
networks, optimization problems involving wireless channel matrices generally result in wide spread of coefficient values,
with very low and very high values. Eliminating or pruning such extreme coefficients after the problem embedding
potentially mitigates the effect of ICE noise and tailors the coefficients into supported limits.
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• Hybrid computation. There has been a surge of interest in hybrid classical-quantum computation structures, which may
improve performance by leveraging the advantages of both classical and quantum computing resources [14]. For example,
Reverse Annealing (RA), a variation of QA, naturally provides an opportunity of hybridization, where it begins annealing
from a given classical configuration for refined search. Earlier studies evaluated a hybrid prototype based on RA to ascertain
feasibility and compare against fully-quantum designs for QA-based MIMO detection [15]. The key result obtained is that
RA initiated from the solution of classical solvers is able to improve performance over solely QA computation in terms
of processing time, even with the simplest classical solver that frequently fails to obtain the ground state, but takes nearly
negligible compute time.

• Parameter setting. Many interdependent free parameters related to embedding and annealing schedule influence the QA
sampling performance and the processing time. However, it is challenging to find the best parameter settings, since there
is no theoretical guidance that applies to noisy QA machines. Several orders of magnitude performance gap is observed
between the optimized and median best settings for all the instances tested by QA-based MIMO detection and LDPC
decoding, implying that the choice of machine parameters is critical to performance. Efforts such as applying neural
networks to estimate the best parameter setting are currently underway, but to our best knowledge, no significant progress
has been reported so far.
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TABLE I: The MIMO sizes and LDPC code block lengths up to which the respective QA hardware can support. P24 and P30
are extended versions of the Pegasus topology.

QA hardware graph Qubits Couplers MIMO detection (users # × #) LDPC decoding (block length)
BPSK QPSK 16-QAM 64-QAM (2, 3)-regular [4]

Chimera C16 2048 6016 64 32 16 10 420
Pegasus P16 5640 40,484 180 90 45 30 1175
Pegasus P24 13,064 95,204 276 138 69 46 2720
Pegasus P30 20,648 151,364 348 174 87 58 4300

V. ILLUSTRATIVE RESULTS

In this section, we evaluate QA-based MIMO detection and LDPC decoding problems using three different QA devices: the
DW_2000Q (C16 topology), DW_2000Q_6 (C16 topology and low-noise), and Advantage_system1.1 (P16 topology and state-
of-the-art). These early results on new platforms consider Time-to-Solution (TTS) as the figure of merit for the computation,
though our earlier work has measured bit error rate as well. TTS (99 percent) represents the time required to obtain the ground
state (solution) of input problem with 99 percent probability. To focus on achievable gains with hardware, we conduct our
experiments without channel noise present in wireless systems.

A. MIMO Detection

In the case of MIMO detection, the ground state corresponds to the ML solution. Fig. 4 plots TTS performance as a function
of MIMO size # with QPSK modulation, where data points report each channel use instance and lines report the median across
many instances. It is observed that compared to Chimera-based annealers, the Pegasus-based Advantage_system1.1 achieves
results that scale better with the MIMO size, thus improving TTS with smaller variances of performance across instances,
obtaining approximate 1000× median gains at # = 20. For Chimera-based annealers, while the DW_2000Q_6 is able to achieve
2–10× reduced processing time compared against the baseline DW_2000Q at some points, no dramatic gain is observed in
general.

B. LDPC Decoding

In the case of LDPC decoding, the ground state corresponds to the decoded codeword. Our evaluation of the QA LDPC
decoder is on the same aforementioned machines. In Fig. 5 (left), we compare TTS performance for multiple randomly chosen
problem instances of (3b, 3c)-regular LDPC codes, where 3b and 3c are bit and check node degrees of the code respectively.
The data points in the figure represent individual problem instances, the boxes’ lower/upper whiskers and quartiles represent
10Cℎ/90Cℎ and 25Cℎ/75Cℎ percentiles respectively, and horizontal lines inside the boxes are medians. We first observe in Fig. 5
(left) that TTS is less than 100 `B for most of the problems solved on both the DW_2000Q_6 and Advantage_system1.1, and
that gains in TTS increase with increase in problem size, reaching up to a 10× TTS gain for 80-variable problems when they
are solved on the Advantage_system1.1 QA hardware.

C. Discussion

In order to understand these performance gains, we investigate how chain lengths are distributed in the embedded problems.
The clique embedding used in MIMO detection has typically the same chain lengths for all problem variables as shown in
Fig. 4 (insert), and the heuristic embedding used in LDPC decoding consists of different chain lengths across variables as
in Fig. 5 (right). To leverage the advantage of sparseness in the LDPC QUBO (i.e., solving problems with more variables),
we opt for heuristic embedding over clique embedding for LDPC decoding. The P16 topology allows for significantly lower
chain lengths than those of C16 due to its denser qubit connectivity. This reduction in chain lengths decreases the chance of
embedding failures (i.e., broken chains) and reduces the accumulated ICE noise of qubits (due to fewer used qubits), which
both point to the performance advantage the P16 topology offers. Indeed, similar performance is achieved for similar chain
lengths with fewer variables, for example # ≈ 14 (Chimera) and # ≈ 28 (Pegasus) MIMO sizes. Table I outlines the maximum
supported MIMO size at different modulations, and the maximum supported LDPC code block lengths, on the previous (C16),
current (P16), and predicted future (P24, P30) QA processor topologies.

VI. CONCLUSION

This work describes several opportunities and challenges in applying quantum computation techniques for problems in
wireless networks. While we focus our analysis on existing QA technology in our case studies due to the problem sizes that
can be solved on the architectures available today, we have provided an overview of the anticipated future benefits quantum
technology may enable for 6G wireless networks, and foreshadow how the computation structures on today’s architectures may
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generalize to the broader set of quantum platforms that we anticipate will be available in the next five to ten years. To see
how advances in QA technology benefit wireless systems, we implement in hardware two computationally demanding wireless
uplink problems, MIMO detection and LDPC decoding, on different real-world quantum annealers. Our results show that a
state-of-the-art QA machine requires significantly less time to reach the sought solution compared to previous QA processors.
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Fig. 1: A quantum compute-enabled system architecture for next-generation 6G wireless networks.
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