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Overcoming the conventional trade-off between throughput and bit error rate (BER) performance, versus computational complexity is
a long-term challenge for uplink Multiple-Input Multiple-Output (MIMO) detection in base station design for the cellular 5G New
Radio roadmap, as well as in next generation wireless local area networks. In this work, we present ParaMax, a MIMO detector
architecture that for the first time brings to bear physics-inspired parallel tempering algorithmic techniques [28, 50, 67] on this class of
problems. ParaMax can achieve near optimal maximum-likelihood (ML) throughput performance in the Large MIMO regime, Massive
MIMO systems where the base station has additional RF chains, to approach the number of base station antennas, in order to support
even more parallel spatial streams. ParaMax is able to achieve a near ML-BER performance up to 160 × 160 and 80 × 80 Large MIMO
for low-order modulations such as BPSK and QPSK, respectively, only requiring less than tens of processing elements. With respect to
Massive MIMO systems, in 12 × 24 MIMO with 16-QAM at SNR 16 dB, ParaMax achieves 330 Mbits/s near-optimal system throughput
with 4-8 processing elements per subcarrier, which is approximately 1.4× throughput than linear detector-based Massive MIMO
systems.
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1 INTRODUCTION

Multi-User Multiple-Input Multiple-Output (MU-MIMO) has proven an essential technique to maximize capacity in
many different kinds of wireless systems such as 802.11 wireless LAN and 5G New Radio cellular networks. In MU-MIMO,
the uplink receiver (i.e., an access point—AP—in a wireless LAN, or a base station—BS—in a cellular network) with
multiple antennas supports many users simultaneously by striping data over parallel streams (a technique known as
spatial multiplexing), and thus enables significantly higher data capacities. In an ideal world, the number of parallel
streams that MU-MIMO can support would be the lesser of the number of mobile users and the number of radios at the
base station, and overall system capacity would increase proportionally to the number of spatial streams.

In practice, however, the channel hardening phenomenon complicates this situation, in the following way. MU-MIMO
requires signal processing to disentangle the spatial streams from each other, a technique called MIMO detection. For a
base station with as many antennas as radio front ends, when the number of users approaches the number of base
station antennas, MIMO detection becomes extremely difficult resulting in poor performance for conventional linear
detection algorithms [76]: this is the Large MIMO regime that lies along the points where the number of users Nt equals
the number of base station antennas Nr , as depicted in Figure 1.1 For Large MIMO, there existmaximum-likelihood (ML)
exact solvers, that can achieve the lowest possible bit error rate and, therefore, restore a high throughput. Unfortunately,
these detection algorithms come at the expense of an exponential increase of the required computational resources as
MIMO size increases, eventually becoming infeasible for many users because of the processing time limits in wireless
1For simplicity, we call Nt × Nr MIMO regimes, “Large MIMO” when Nt = Nr , while “Massive MIMO” when Nt < Nr , regardless of Nt size.
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Fig. 1. Fundamental MIMO regimes in 5G New Radio and next generation local-area networks, and approximate feasibility of various
detection approaches.

systems. For example, at most three milliseconds of BS’s computation are available for both the 4G LTE uplink and
downlink [15, 76].

Massive MIMO systems such as LuMaMi and Lund (6-12 users, 100-128 BS antennas) [44, 59, 69], Argos (eight
users, 96 BS antennas) [62, 64], BigStation [76], Agora [18], and Samsung’s 5G base stations (16 users, 64 BS antennas)
[61] mitigate channel hardening in the following way. Since linear detectors such as Zero-Forcing (ZF) and Minimum

Mean-Squared Error (MMSE) can achieve near-ML performance when the wireless channel is well-conditioned, systems
that use many more base station antennas than users/spatial streams (i.e., Nr ≫ Nt for Nt × Nr MIMO) may offer
each base station radio a choice of one out of a number of antennas to use. This largely negates the effect of channel
hardening, but requires base station antennas numbering a sufficient factor greater than users (e.g. Nr ≥ 10Nt [8] or
Nr ≥ 4Nt for 16 users or below [62], while there is no proven rule-of-thumb of Nr /Nt that maximizes the spectral
efficiency [8]), as shown in Figure 1, to achieve the full throughput of Nt spatial streams. In addition, the deployment of
larger numbers of antennas eventually becomes challenging from a practical standpoint, most acutely in wireless local
area networks, but also in small, densely-deployed 5G base stations where form factors preclude excessive numbers of
antennas, and eventually in normal base stations where tower size faces practically limited.

In this paper, we take a complementary approach to Massive MIMO: we begin with a particular Massive MIMO
configuration in which the number of base station antennas is practically at its maximum, and then ask the question
how can performance be further improved via additional spatial streams? The answer lies in a fusion of two preceding
ideas: add radio chains at the Massive MIMO base station to equal the number of antennas, and at the same time,
utilize near-ML detection algorithms. This pushes us out towards the upper-right corner of the space in Figure 1
and maximizes computational complexity, yet offers the promise of the greatest spatial multiplexing gains, given our
practical constraint on base station antenna count.
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A shift to Physics-inspired approaches. Over the last few years, there has been a surge of interest in alternative
computation approaches to reduce the complexity of current detectors by leveraging algorithms that relate optimization
convergence to Physics principles. This interest is further accelerating in view of experimental initiatives featuring
hardware-native implementations of these approaches, using both quantum and classical physics-based computations [4,
13, 24, 25, 36, 38, 39]. One common aspect of these algorithms is that they frame the computational problem as an
energy minimization problem of a magnetic spin system, also known as the Ising spin model [32]. Beside being an
important model to understand the physics behind magnetic systems, any NP computational problem can be expressed
as the energy minimization of an appropriate Ising spin model [43] (that is, the Ising spin model is NP-Complete [74]).
In this regard, physics-inspired algorithms can be seen as parametric “black boxes” that accept an Ising spin problem as
input, and output the configuration with lowest associated energy. What distinguishes one algorithm from another is
the underlying mechanism used to find the global minimum, which corresponds to the ML optimal solution in MIMO
detection.

This paper presents the design and implementation of ParaMax, a soft MU-MIMO detector system for Large and
Massive MIMO networks that uses parallel tempering, a physics-inspired heuristic algorithm, on classical platforms.
ParaMax operates flexibly in parallel for any number of available processors, supporting fixed latency and highly-
scalable parallelism. We design the ParaMax Ising Solver (§4.1), a parallel tempering-based solver that is tailored for
MIMO detection, implemented as a fully classical algorithm that does not require any specific hardware, and integrate
it into the overall design of our system (§4.2). We also introduce a new algorithm (§4.2.2) to generate soft information
for heuristic detectors that enables a more reliable detection and decoding. The proposed algorithm utilizes heuristic
detection outputs and generates soft information, defined as the bitwise detection confidences that implicitly take
channel conditions and noise into consideration. To our best knowledge, this is the first application of parallel tempering
to wireless networks, and ParaMax is the first heuristic-based MIMO detector that demonstrates near-ML performance
for both very Large and Massive MIMO successfully.

Our experiments show that ParaMax achieves a constantly-increasing performance as the number of processing
elements increases. In the case of lower-order BPSK and QPSK modulations, very large MIMO of 160 × 160 and 80 × 80
respectively, can achieve near-ML performance for less than tens of processing elements, as depicted in Figure 2. With
respect to Massive MIMO systems, in 12 × 24 MIMO with 16-QAM modulation at SNR 16 dB, ParaMax achieves a
330 Mbits/s near-optimal system throughput with 4-8 processing elements (PEs) per subcarrier, approximately 1.4×
better throughput than linear detector-based Massive MIMO systems.

2 BACKGROUND

This section introduces background knowledge, indicating relevant literature. Sections 2.1 and 2.2 respectively explain
ParaMax’s algorithmic foundations, simulated annealing and parallel tempering. Section 2.3 describes the MU-MIMO
model and detection problem.

2.1 Simulated Annealing

Simulated annealing (SA) is a classical heuristic optimization technique typically used to find the state or configuration s
with the lowest energy of Ising spin problems, where s is a vector consisting of {s1, s2, · · · , sNV } spins, with each spins
si assuming the values {-1, +1}. In general, the energy objective function of Ising spin problems (also called Hamiltonian)
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Fig. 2. Summary of ParaMax’s feasible MIMO regimes (cf. Figure 1) and required processing element count NPE per subcarrier.

is represented as a quadratic cost function of the following form:

H(s) =
∑
i j

дi jsisj +
∑
i

fisi , (1)

with дi j ∈ R being (anti-)ferromagnetic couplings that indicate a preference of correlation (si = sj or si , sj ) between
two spins, and fi ∈ R local magnetic fields that individually act on si = ±1. Any optimization problem, including MIMO
detection, can in theory be translated to an Ising spin model by properly choosing the {дi j } and { fi } [43, 74].

Simulated Annealing (SA) Heuristic. SA is inspired by the physical process of annealing, where a metallic material is
slowly cooled from high temperature to eventually reach a molecular state or atomic configuration where the potential
energy of the material is minimized. SA numerically emulates this process in order to find the global optimum (or ground
state) of Eq. 1. To enable SA, it is necessary to simulate a thermal bath which imitates the cooling or annealing process
interacting with the Ising spin model. More precisely, the probability that a given spin-configuration s is explored by
the Ising spin system at a given inverse temperature β = 1/T follows the Gibbs distribution p(s) = exp[−βH(s)]/Z,
with Z usually called partition function [12, 21]. As the temperature T is lowered, the probability p(s) of finding a
state s with an energy larger than the minimum energy becomes exponentially lower. Therefore, sampling from the
low-temperature Gibbs distribution allows rapid detection of the spin configuration with the lowest energy with high
probability.

However, the calculation of the partition function Z, and thus p(s), is computationally challenging, particularly for
low temperatures. To avoid the direct calculation of the Gibbs distribution p(s), Metropolis et al. [50] proposed the use
of Markov chain processes to help the system emulate the annealing and heuristic exploration of configurations at a
given temperature. Specifically, they proposed a random process to “flip” a spin, with probability depending only on
temperature and the Hamiltonian (but not on Z), i.e.:

p(si → −si ) = min
{
1, e−β∆H

}
, (2)
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with ∆H the variation of energy once the spin si (∀i) is flipped for a given initial configuration. Hence, moves that
would eventually reduce the overall energy of the spin system are always accepted. Otherwise, there is a chance that
such spin flip is either accepted or rejected. Metropolis et al. showed that the spin system will eventually thermalize
to the corresponding temperature if the rejection rule in Eq. 2 (also called Metropolis updates or sweeps) is iteratively
applied. Therefore, it is in principle possible to find the lowest energy spin configuration and, consequently, the solution
to the original problem, by starting from a very large temperature and slowly decreasing it by iteratively applying the
rule in Eq. 2.

2.2 Parallel Tempering

SA guarantees that the spin system will eventually find the lowest energy spin configurations if the temperature is
lowered slowly enough. However, for hard optimization problems, it may require an exponentially long time. Indeed, a
rugged energy landscape “traps” the spin system in local minima which are hard to escape: parallel tempering [67]
helps the spin system escaping local minima and, therefore, thermalize faster at a low temperature. The basic principle
of parallel tempering is simple: instead of a a single spin system, different replicas are simulated in parallel, each with a
different temperature. After a certain amount of Metropolis updated, the temperatures of the two replicas r1 and r2 are
exchanged following the updating rule:

p(r1 ↔ r2) = min
{
1, e∆β∆H

}
, (3)

with ∆β and ∆H being the difference in the inverse of temperature and the difference in energies of the two replicas
respectively. As one can see, two temperatures are always exchanged if a replica at higher temperature has a lower
energy than a replica with a lower temperature. Otherwise, the exchange of the two temperatures is either accepted or
rejected accordingly to Eq. 3. In a variety of hard optimization problems, parallel tempering drastically speeds up the
thermalization of the spin system [37, 68, 78], including benchmark against quantum annealers [45–47].

2.3 MIMO Detection

The input and output relationship of a spatial multiplexing MIMO system (per subcarrier in OFDM systems [54]) with
Nt input antennas at user side (or Nt single-antenna users for simplicity) and Nr output antennas (Nt ≤ Nr ) with
NR radios (NR ≤ Nr ) at the receiver side is described as y = Hv̄ + n. With Nt ≤ NR (i.e., Nt × Nr MIMO with Nt

radio streams), here y ∈ CNr is the received vector perturbed by additive white Gaussian noise (AWGN) n ∈ CNr , H
∈ CNr×Nt is the wireless channel, and v̄ ∈ ONt is the transmitted set of Nt symbols with constellation O (e.g., 4-, 16-,
64-QAM), representing NV = Nt log2 |O| bits per channel use, with |O| the size of the modulation. MIMO detection
at the receiver side (AP or BS) is a technique to find a candidate solution v̂ ∈ ONt with an objective of detecting the
transmitted symbol vector (i.e., the objective is v̂ = v̄) based on the received signal y and estimated H. Pilot symbols
enable the estimation of H.

Maximum Likelihood Detection. Maximum likelihood detection (ML detection) is optimal in the sense that it mini-
mizes the error probability of the detection. It is defined as

v̂ = argmin
v∈ONt

∥y − Hv∥2 . (4)

The search set of v (i.e., the search space S ⊆ ONt ) is the set of possible solutions that the optimizer can take into
account. Each element v in the search space is a candidate solution with which the values of the ML objective function

D(v) = ∥y − Hv∥2 in Eq. 4 (i.e., Euclidean distances) are measured and compared with each other. The best candidate,
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with minimum value, becomes the ML solution v̂. Further, S is an indicator of complexity. In principle, the ML search
involves all possible candidates (i.e., S = ONt ) which makes the brute-force approach intractable for large MIMO sizes
with high-order modulations.
Sphere Decoder. The Sphere Decoder (SD) achieves optimal performance even with S ⊂ ONt by applying an adaptable
search constraint in a sequential manner [3, 17, 20, 70]. The SD transforms Eq. 4 into an equivalent tree search and
applies tree pruning, visiting fewer nodes and leaves without loss of optimality. However, since it is an exact algorithm
(i.e., achieves ML performance), the search space for SD is still exponentially large in the worst case [27]. Further,
because of its sequential nature, its processes cannot be fully parallelized and the complexity (latency) varies per
detection, which is not desirable for hardware implementation.

3 RELATED WORK

In this section we introduce related work on MIMO detection.
Parallel Sub-Optimal Architectures. These approaches divide the optimal SD tree search into parallel tasks in order
to make use of hardware containing many processing elements (PEs) such as a GPU or FPGA [31, 55], while search
algorithms become approximate. For these methods such as the Fixed-Complexity Sphere Decoder (FCSD) [5–7, 33]
and K-best SD [23, 42, 53, 79], S is a subset of ONt , so how to select S for comparing D(v) is a key factor. For instance,
the FCSD splits the SD tree of Nt levels into two separate search areas, one for full search (FS) and the other for greedy
search (GS). During the FS, the FCSD visits all nodes at the first Nf s levels and then switches to GS, where only one
child node with minimum partial Euclidean distance is explored for the remaining levels (Nt − Nf s ). This exploration
process can run in parallel.2 The FCSD results in S consisting of |O|Nf s candidate solutions. Here, Nf s is a controllable
positive integer parameter that trades off the FCSD’s detection performance with its computational complexity. Note
that the complexity of the FCSD (even with small Nf s ) is still larger than linear methods and the FCSD enables only
|O|Nf s parallel processes such as 16, 256, 4096 for 16-QAM with Nf s = 1, 2, 3, respectively (i.e., bounded complexity
but not flexible). ParaMax features flexible and scalable parallelism.
Heuristics for MIMO Detection. Heuristic approaches inspired by Biology or Combinatorial Optimization methods
such as genetic algorithms, reactive tabu search, and particle swarm optimization for MIMO detection exist [2, 29, 66],
but significant performance gains are not observed. Some studies have used analog quantum hardware platforms
[38, 39], but these are specialized platforms that not yet generally available. Other studies on Physics-inspired SA, Gibbs
distribution, and quantum search algorithm show feasibility to some extent [2, 9, 19, 22, 26], but lack comprehensive
evaluations for Large and Massive MIMO systems and comparisons against other state of the art detectors.

4 DESIGN

In this section, we describe the design of ParaMax: Section 4.1 introduces the key building block of ParaMax’s design,
a SA-parallel tempering solver. Section 4.2 describes the complete design of ParaMax. Section 4.3 then introduces
a refinement of ParaMax, 2R-ParaMax, which uses soft information to enhance performance at the cost of some
computational complexity. We evaluate both designs in Section 6.

4.1 ParaMax Ising Solver (PMIS)

The ParaMax Ising Solver (PMIS) is the main solver module in ParaMax. It is based on SA, featuring a parallel tempering
algorithm highly-tailored to optimize the Ising model of MIMO detection. PMIS is a completely classical algorithm that
2For the maximum effect of the algorithm, a channel ordering scheme is used to ensure users with poor channel are detected in the FS phase of the FCSD.



Physics-Inspired Heuristics for Soft MIMO Detection
in 5G New Radio and Beyond

Fig. 3. Metropolis Sweep analysis of the PMIS solving MIMO detection (16-QAM at 20 dB SNR): overview (left) varying user numbers
and detailed view (right).

does not require any specialized hardware for its implementation. It performs a local search by updating the spin values
of a given random initial configuration according to Eq. 2. Each replica is associated with a different temperature, and
temperatures may be exchanged according to the update rule in Eq. 3. Since the calculation of the energy associated
with each replica can be trivially reduced to matrix-vector and vector-vector multiplications, couplings дi j and local
fields fj of the Ising cost function H are stored as a matrix G and as a vector f respectively. Therefore, the calculation
of H , critical for the update rules in Eq. 2 and Eq. 3, is reduced to:

H(s) = s · [G · (s + 2f)] /2, (5)

with s the vector representing the spin configuration, where the factor 2 takes into account the symmetry of the matrix
G. During our implementation, PMIS is optimized to maximize the performance for operations involving NV ≲ 512
spin variables which cover up to 512, 256, and 128 single-antenna users with BPSK, QPSK, and 16-QAM modulations,
respectively. We provide further details on our PMIS implementation in Section 5.
Computational complexity. In MIMO detection, compute time complexity is a fundamental metric, along with BER
and network throughput. From Eq. 5, it is clear that complexity is proportional to the square of the number of spin
variables NV (= Nt log2 |O|). Therefore, recalling that every replica is independently updated, overall PMIS complexity
scales as N 2

V × Nrepl × Nsw , with Nrepl and Nsw the number of replicas and Metropolis sweeps, respectively.
Replicas and Metropolis Sweeps. To reduce the computational cost to the bare minimum, we have opted for a
“bang-bang” parallel tempering approach. That is, only two replicas are used (Nrepl = 2): one at very low temperature
and one at higher temperature: the replica at lower temperature acts as a greedy searcher while the replica at a higher
temperature acts as an observer. When the greedy searcher is stuck in a local minimum, the two replicas can exchange
roles (i.e., temperature) to resolve the bottleneck. While this has been successfully used in the context of quantum
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Fig. 4. Temperature range analysis of the PMIS solving MIMO detection for 20-user (16-QAM at 20 dB SNR).

annealing [77], ours is one of the first reports of a bang-bang parallel tempering schedule on a classical platform. To
choose the number of Metropolis sweeps (§2.1), we empirically examine different numbers of sweeps from one to 80
with 16-QAM in Figure 3 out of 20 instances and 10,000 PMIS runs per instance. Not surprisingly, we observe a trade-off
between latency (upper) and sampling quality (lower). We choose Nsw = 50 as an appropriate point that satisfies the
current LTE standard’s latency requirements.

Choice of temperature range. Unlike Nrepl and Nsw, the temperature range does not influence ParaMax’s complexity,
so we choose a PMIS temperature range where it achieves the highest probability of finding the ML solution (i.e., the
ground state). For benchmarks we select the values Tmin = 0.05 and Tmax = 0.06, which perform well, as shown in
Figure 4.

The foregoing description has described a single PMIS run. In ParaMax, multiple PMIS runs on multiple PEs in parallel,
one PMIS run per PE. Each PMIS run is independent from the others, accepting the Ising model H of the MIMO
detection as input, and outputting a candidate solution.

4.2 ParaMax Design

In this section we describe the complete ParaMax design (Figure 5). We describe the function of each block required for
MIMO detection in §4.2.1 and the soft output generator module in §4.2.2.

4.2.1 ParaMax Detection Algorithm. We assume the base station receives a signal perturbed by AWGN and estimates
the wireless channel as stated in Section 2.3.

1. ML-to-Ising Reduction. The procedure and the generalized formula of reducing the MIMO detection D(v) (=
∥y − Hv∥2 from Eq. 4) to the Ising formH(s) using the spin-to-symbol mapping were first introduced in [38]; our system
assumes the same mapping. In the mapping, NV spins represent all possible Nt symbol combinations (i.e., log2 |O|

spins for a possible symbol per user), so its ground state always corresponds to the ML solution.

2. PMIS Parallel Processing. Each PMIS run samples an independent solution candidate (i.e., an Ising configuration
s). Since detection is based on a heuristic, a single PMIS run’s solution may not be optimal, and thus multiple runs
are required to form a set of candidate solutions, gradually increasing the probability of collecting the optimal ML
solution. Since each PMIS optimization run on a single PE completely independent of the others, ParaMax flexibly
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Fig. 5. Overview of ParaMax’s detection algorithm.

operates on any number of independent processing elements (NPE ), with highly scalable parallelism. The number of
available processing elements NPE is equal to the number of PMIS outputs that the ParaMax system can generate with
full parallelism.

3. Ising Solution Filter and Demapping. After all NPE PMIS parallel runs, the corresponding NPE outputs are
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Fig. 6. Equivalent representations of 1×1 QPSK detection: Euclidean distances D(v) in the I-Q plane (left), and Ising energies H(s)
(right). Shadings highlight likely solutions.

collected in a table of Ising spin configurations. Before further processing, the list is sorted in order of solution quality,
based on the Ising energy H(s) of each output. The Ising solution filter returns only the configuration ŝ with the
best (minimum) H(ŝ), which is equivalent to the wireless symbol v̂, i.e., v with the minimum D(v) (among candidate
solutions), after proper demapping (spins → symbols). Finally, v̂ is converted into NV MIMO detected bits.

4.2.2 Spinwise Soft Information Output. For most heuristics-based solvers, only the lowest-energy Ising configuration is
returned (regardless of how many times it occurs among NPE PMIS outputs) and any outputs other than it are discarded.
In ParaMax, however, we utilize all NPE PMIS outputs to generate soft information (i.e., detection confidences, for
each spin in a given configuration). In general, soft-output MIMO detectors’ soft values are utilized for iterative MIMO
detection or channel coding [6, 40, 41, 58]. In this work, we design the former (2R-ParaMax) in Section 4.3.

ParaMax collects candidate solutions from NPE independent PMIS runs. Among these, multiple occurrences of a
certain spin configuration (with agreeing spin variables) are very likely to be observed, which could be used to identify
spins easy (or hard) to detect (i.e. variables that are very likely to be assigned a certain value in the unknown optimal
ML solution). Figure 6 shows an illustrative example of detecting a received 1 × 1 QPSK signal y in two equivalent
representations, one in the I-Q plane with Euclidean distanceD (left), and the other with Ising energiesH (right). In this
example, the first spin variable s1 (corresponding to the symbol’s real part) is likely to be detected as +1 for most PMIS
runs, since the difference in Ising energy from all configurations that have s1 = +1 (resulting in H3 or H4 in Figure 6,
right) and s1 = −1 (resulting inH1 orH2 in Figure 6, right) is significant. The spin s1 is easy to detect compared to spin
s2 (corresponding to the symbol’s imaginary part). Multiple occurrences of PMIS runs agreeing on s1 = +1 indicate this,
while PMIS runs will disagree on the value of s2, because the two most frequent spin configurations’ energies (H3 and
H4) themselves disagree on the value of s2.

This phenomenon becomes even clearer for high-order modulations, since in 16-QAM or higher modulations, the
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Fig. 7. Mapping between four Ising spins (variables) to n-th user’s 16-QAM symbols (× symbols) on the constellation. Shading
denotes an inner quadrant. In this mapping, odd numbered spins are easier to detect than even numbered spins.

value of the spin coefficients in the Ising spin-to-symbol mapping varies across spins. For example, Figure 7 shows the
spin-to-symbol mapping of 16-QAM for the nth user, where the user’s possible symbol maps one-to-one with spins
s4n−3, . . . , s4n , that is vn = (2s4n−3 + s4n−2) + j(2q4n−1 + s4n ). Here, spins s4n−3 and s4n−1, the odd-numbered spins,
determine the symbol’s quadrant, while spins s4n−2 and s4n , the even-numbered spins, determine the symbol in the
given quadrant. Here, the odd-numbered spins for 16-QAM are in general easier to detect than the even-numbered
spins because of higher robustness to AWGN (detection reliability). Table 1 presents empirical spinwise error rates of
ParaMax for 8 × 8 16-QAM detection. These differences in robustness indicate that using ParaMax’s soft information
would be particularly helpful for further processing, similarly for unequal error protection (UEP) [10, 30, 48, 72, 73]).

Table 1. ParaMax’s spinwise error rate (conditioned on 103,850 incorrect outputs) for eight-user, 16-QAM MIMO detection.

Mean Spinwise Error Rate

Oven-numbered spins: Even-numbered spins:
4n − 3rd 4n − 1st 4n − 2nd 4nth
0.167 0.152 0.329 0.352

≈ Either/both: 0.32 ≈ Either/both: 0.68

Soft information computation. Based on the equivalence of of the I-Q and spin configuration representations, the
occurrence count of a given spin value for a certain spin sj across all PMIS outputs samples the distance of the symbol
corresponding to that spin’s value, and hence estimates that spin’s likelihood of correctness. More specifically, after
collecting NPE PMIS outputs sorted by Ising energies Hi (1 ≤ i ≤ Nu ), the system has Nu (Nu ≤ NPE ) unique outputs
with corresponding occurrence counts Oi (1 ≤ i ≤ Nu ). The detection confidenceCj of spin sj (1 ≤ j ≤ NV ) is defined as:

Cj =

(Nu∑
i=1

O
s ij=s

1
j

i ·

����Hi
H1

����) / (Nu∑
i=1

Oi ·

����Hi
H1

����) , (6)
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where O
s ij=s

1
j

i is a count of occurrences of the ith ranked configuration (defined in §2.1 on p. 3), only when the ith

configuration’s jth spin is equal to the first-ranked configuration’s jth spin (i.e.,O
s ij=s

1
j

i is eitherOi or zero). The spinwise
detection confidences Cj (0 < C ≤ 1.0) are the soft values ParaMax outputs in this step. Note that the reliability of each
Cj increases as the best observed Ising energy among the collected NPE outputs (H1) becomes closer to the unknown
ground state (of energy H ), which implies as NPE increases the quality of soft values improves.3 Similar algorithm is
introduced using quantum annealing [35], where only partial outputs are used.

4.3 2R-ParaMax: Iterative Soft Detection

We now introduce a method of using the soft information described in the prior section to enhance the operation of
ParaMax. We call this protocol 2R-ParaMax. The main idea is to iterate the PMIS block twice, once for generating soft
confidence information, and again to obtain a final detection result based on the confidences from the first iteration.
Intermediate processing between the first and second iterations functions pre-decision of spins with high detection
confidence. An error correction post-processing is applied at the end of the second round, both of which have linear
complexity. The end result is a more accurate MIMO detection result, at the expense of a modestly increased latency,
and so this might be employed for challenging wireless channels and/or large numbers of users. With reference to
Figure 5, the structure of 2R-ParaMax PMIS block is shown in Figure 8. This block is replacing the third block marked in
red of Figure 5. The other blocks are exactly the same as described in ParaMax. We also note that the soft information
generated by the second round can also be used for the channel decoding or further iterations of the algorithm.

Intermediate Pre-decision. The intermediate pre-decision module identifies those spins with a high detection con-
fidence (over a threshold Cth) from the first round of PMIS outputs in order to reduce the number of spin variables
involved in second-round of PMIS runs, simplifying second-round detection. That is, if the jth spin’s detection confidence
Cj ≥ Cth (1 ≤ j ≤ NV ), then we pre-decide the jth spin variable to be the value of the corresponding spin of the best
solution in the first round (i.e., s1j ).

After thus obtaining a pre-decided set of spin indices, the next step is to update the Ising form accordingly. For each
spin index k in F and for each Ising problem index i , we set f ′i = fi + дik · s1k , if i < k and f ′i = fi + дki · s

1
k , if i > k ,

and then remove fk , дik and дki . The result is a reduced Ising problem that contains N ′
V = NV − |F | spins only. Table 2

summarizes the average ratio of decided spins (|F |/NV ) and the success ratio (|FML |/|F |) of the pre-decision process.
Here, FML denotes an index group of spins where spins decided by the pre-decision process are exactly the same as
the corresponding spins in the ML solution. In 2R-ParaMax, we apply Cth ≥ 0.97, which ensures |FML |/|F | = 1.0
(for lower NPE , higher Cth applied). With the updated Ising form H ′ (with f ′ and д′ for N ′

V spins), we execute a
second round of PMIS to generate NPE outputs and then filter the best output consisting of N ′

V spins with minimum
Ising energy in terms of H ′. When the filtered configuration is combined with the pre-decided spins appropriately,
the full configuration consisting of NV spins can be restored and demapped into symbols. This full configuration is
further compared against the best PMIS outputs of the first round based on the original Ising formH . The final best
configuration is returned as 2R-ParaMax’s detection solution, which guarantees that 2R-ParaMax’s bare minimum
performance is ParaMax’s performance.
5 IMPLEMENTATION

We now describe our ParaMax implementation.

Computing Environments. CPU-based experiments are executed on an Intel i9-9820X at 3.30GHz with 20 cores,
3While ParaMax is an inherent soft-output MIMO detector, requiring simple computations, conventional soft-output MIMO detectors require additional
computations of exponential complexity, of log-likelihood ratio (LLR) for all coded bits to generate soft values at channel decoder [58, 65, 71].
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Fig. 8. Structure of 2R-ParaMax PMIS Block (cf. Figure 5’s third block in red). The other blocks in 2R-ParaMax are exactly the same
as ones in ParaMax.

Table 2. 2R-ParaMax’s intermediate pre-decision process tested for 5,000 different instances of 20 × 20 16-QAM detection at SNR
20 dB on NPE = 200.

Cth 0.91 0.93 0.95 0.97 0.99

|F |/NV 0.35 0.32 0.28 0.21 0.01
|FML |/|F | 0.97 0.99 1.0 1.0 1.0
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2,189 threads, and 126 GB RAM. GPU-based experiments are tested based on the CUDA (Compute Unified Device
Architecture [60]) 10.2 with GeForce RTX 2080 Ti of 4,352 CUDA cores and 68 streaming multiprocessors.

Wireless MIMO Channels. Both simulation-based and trace-driven real world wireless channels are used for our
experiments. In the case of the simulation-based channel, independent and identically distributed (i.i.d) Gaussian
channels with AWGN are synthesized for various SNR settings. For trace-driven channels, we use non-line of sight
wideband MIMO channel traces at 2.4 GHz, between 96 base station antennas (Nr ) and eight static users (Nt ), the
largest MU-MIMO dataset provided in Argos [63]. Among Nr = 96, we single out 8 to 32 (in steps of four) antennas
to test the most challenging MIMO regimes (e.g. Nt ≥ Nr /4). Since trace based channels include measured noise and
limited user numbers, we use synthesized channels, unless otherwise stated, in order to precisely control SNRs and
evaluate various MIMO regimes such as Nt > 8. Based on both channel settings, we generate large-scale Ising models
H of MIMO detection (100,000-1,000,000 random instances per scenario) in order to measure detection BER up to
(NV · total Insts)−1, approximately 10−7.

PMIS CPU-Implementation. While the front-end of our PMIS implementation is in Python, the core is completely
written in C++11 standard [34]. We assign only a single core and a single thread (a single PE) to the calculation of each
PMIS run by manually modifying the OpenMP [11, 14] and C++ parallelization settings. Furthemore, to maximize the
performance of PMIS (to satisfy limited processing time in wireless standards), the following innovations have been
implemented: (1) Use of static memory: Static allocation, unlike dynamic allocation, happens at global scope and
it is pre-populated when the library is loaded. Moreover, since the size of arrays is known in advance, compilers can
further optimize math operations on static arrays. (2) Parameter pack expansion: Loops in the matrix-matrix and
vector-matrix multiplications are the most expensive part in PMIS implementation. To further reduce the computational
cost, most of the critical loops are statically unrolled using features like the parameter pack expansion, introduced in
the C++11 standard. (3) Intel SIMD instructions: Most of the modern CPU architecture have intrinsic operations to
allow multiple operations on contiguous arrays of floats. In PMIS, we have used Intel SIMD instructions to vectorialize
operations like matrix-vector and vector-vector multiplications [56].

PMIS GPU-Implementation. The core design of CPU-ParaMax is based on a highly optimized C++ implementation
of SA. Therefore, the natural extension of ParaMax to GPU consists into the implementation of the core SA engine
to GPU. However, unlike CPUs, GPUs achieve the best performance for large arrays where multiple synchronous
operations are applied at the same time. Indeed, while GPUs have more cores than CPUs, each single GPU core is
typically much slower. Therefore, to maximize the performance of SA implemented on GPUs, we have designed a
GPU kernel based on the JAX/XLA language that updates multiple PMIS runs at the same time. More precisely, the
spin configuration s for a single PMIS run (in Eq. 5) is now extended to a matrix S (= sk ), with k corresponding to the
PMIS index. Since PMIS runs are completely independent from each other, sk (∀k) can be updated independently and
synchronously.

6 EVALUATION

In this section, we evaluate ParaMax in various aspects. Section 6.1 evaluates ParaMax’s detection latency against other
CPU- and GPU-based detectors. Section 6.2 illustrates sampling performance of ParaMax comparing against simulated
annealing and required the number of processing elements for ParaMax to achieve near-ML performance in both
Large and Massive MIMO. Section 6.3 and 6.4 show the ParaMax’s bit error rate and system throughput performance
respectively, compared against other state-of-the-art detectors in both Large and Massive MIMO.
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(a) Compute latency of fully-parallel full-blown C++ kernel CPU-ParaMax.

(b) Single Device: 9.3 TFLOP GPU-ParaMax vs 0.028 TFLOP CPU-ParaMax.

Fig. 9. ParaMax Detection Latency.

6.1 Detection Latency

Fully-Parallel Full-Blown ParaMax. Figure 9(a) shows the detection time of ParaMax as a function of NV (=
Nt log2 |O|) per channel use, where the background color coding indicates approximate feasibility for the wireless
standards (WLAN and LTE). As NV increases (i.e., Nt and/or modulation increases), computing time tends to scale as
N 2
V (cf. Nr does not affect NV and thus compute time). The available largest MIMO sizes that reach the borderline-limit

of acceptable detecting time in the LTE standards are 160 × Nr , 80 × Nr , 40 × Nr for BPSK, QPSK, 16-QAM modulation,
respectively. While slight variations of runtime are observed that can cause overall latency increase and hardware
synchronization issues, this can be resolved by an integrated system hardware since the origin of the variations is
caused related to our system by the kernel allocation of jobs and concurrent (unrelated) system processes. In general,
2R-ParaMax requires approximately 1.4 − 1.6× ParaMax latency.

CPU- vs GPU-ParaMax Comparison. Figure 9(b) shows the comparison of compute time between the XLA kernel
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(compiled for both CPU and GPU) and the original C++ kernel. The runtime for the C++ kernel has been obtained by
computing the average runtime for a single PMIS run and then projected for multiple PMIS runs. XLA (Accelerated
Linear Algebra) is a domain-specific compiler for linear algebra that can be compiled and optimized separately for either
CPU or GPU. As one can see, for a sufficiently large number of parallel PMIS runs, while the kernel runtime compiled
for CPUs have a consistent runtime with the full-blown C++ implementation of ParaMax, the kernel compiled for GPUs
shows a speed-up, where total PMIS runs can be defined as NPE multiplied by the number of subcarriers (NSC ). While
GPU-ParaMax can achieve speed-up for over hundreds of PMIS runs, it cannot satisfy time requirements for standards.
Recall that current GPUs are not designed to make full use of resources for small-size systems (i.e., few PMIS runs). Thus
we also extrapolate its performance to estimate what we could achieve in GPU without these limitations. Note that
unlike on CPUs where a single core can be used to carry out any calculation, GPU cores are designed to work in concert
to manipulate large block of data in parallel, and users cannot assign specific resources to a certain computation [31].
Therefore, we define a single PE for GPU-ParaMax as the extrapolation of a single PMIS run from large number of PMIS
runs. In 5G New Radio, this extrapolation becomes more reasonable (while still being approximate), since 5G systems
will support over three thousands of subcarriers, and slightly more time4 (4 ms) than LTE (3 ms) will be allowed for
enhanced mobile broadband (eMBB) [1, 18, 76] (cf. 1 ms for 5G Ultra-Reliable Low-Latency Communication (URLLC)).
20-user MIMO (16-QAM) ZF-SIC ParaMax FCSD

Nf s=2 Nf s=3 Nf s=4
Parallelism # ×

Flexible
162 163 164

Required NPE 1 256 4,096 65,536

La
te
nc

y
[u
s] CPU 25 357 405 5,821 93,714

GPU 83,861 extr. 31 319 378 1,841
CPU CPU GPU GPU GPU

Min time 25 357 319 378 1,841
Table 3. Available number of parallel processes, required NPE for fully parallel processing, and average detection runtime of various
MIMO detectors both on CPU and GPU. ParaMax’s compute time is for a single PMIS run on a single PE (i.e., fully-parallel ParaMax)
and GPU-ParaMax reports extrapolated compute time.

Comparison against Conventional Detectors.We compare ParaMax latency against various detectors implemented
on the MIMOPACK library [57], which is one of the fastest open-source MIMO detector implementations based on the
(CUDA) C programming. The results for 20-user 16-QAM are summarized in Table 3. In the case of the zero-forcing
successive interference cancellation (ZF-SIC or V-BLAST with ordering scheme) [75], while its complexity is slightly
higher than linear detectors such as ZF and MMSE, compute time is still few tens of microseconds. However, their
computations (both ZF and ZF-SIC) are not appropriate for parallel processing, causing extra overheads such as job
scheduling and data transition among computing resources. In the case of the FCSD, we consider three different Nf s

that trade-offs the FCSD’s detection performance with its complexity. As long as the available number of PEs is large
enough to allow full parallelism (|O|Nf s ≤ total PEs), the compute time remains in a few hundreds of microseconds,
satisfying LTE requirements.

6.2 Heuristic Detection Sampling

For ParaMax, we can report the expected number of sampling repetitions to reach ML-performance, which can be
computed using the probability of obtaining the ML-solution in one sample of a given MIMO detection scenario (i.e.,
MIMO size, modulation, and SNR), averaged across the problem distribution (PML) [47]. Since PML cannot be determined
a priori by theoretical means, we obtain it through empirical evaluation of statistically significant 1,000,000 PMIS runs
4Available compute time is for all BS-processing including channel decoding.
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across 100 detection instances per scenario. In order to compute this average probability, we use the ML-solutions
found by expensive runs of the Sphere Decoder. Since each run is independent, the probability for ParaMax’s to find
the optimal ML-solution:

P(ParaMaxML) = 1 − (1 − PML)
NPE . (7)

Inverting Eq. 7, we can obtain the required number of PMIS repetitions (samples) to achieve the ML-detection with a
target probability PT(ParaMaxML) as:

required NPE =
log(1 − PT(ParaMaxML))

log(1 − PML)
. (8)

In Figure 10(c),5 we plot PML and corresponding required NPE for different PT(ParaMaxML).
Very Large MIMO with Low-Order Modulations. Figure 10(a) plots PML as a function of N × N Large MIMO
detection with different heuristic-based detectors (SA, ParaMax, and 2R-ParaMax) for various NV and modulations.
Surprisingly, for the BPSK and QPSK modulations, all tested heuristic detectors achieve PML ≈ 1.0, which implies
nearly all PMIS runs successfully reach the ML-solution. For ParaMax and 2R-ParaMax, this tendency is observed up to
NV = 512 while we plot here only up to NV = 128 to save space. Only a few processing elements are enough to perform
ML-detection up to 512 × 512MIMO with BPSK and 256 × 256MIMO with QPSK. While ParaMax becomes currently
unpractical at around NV = 160 (Figure 9), this MIMO size and its requirement for optimal detection is promising
for city-scale Internet of Things (IoT) applications envisioned in 5G networks or beyond. Those scenarios will handle
hundreds or thousands of devices per BS with low-order modulations [49, 51, 52], and may accept longer processing
time than ordinary data communications.
From Large to Massive MIMO with 16-QAM. In the case of 16-QAM in Figure 10(a), PML notably drops as NV
increases for all heuristic-based detectors and we observe higher PML for 2R-ParaMax, ParaMax, and SA. Given that
Large MIMO detection with high-order modulations is a challenging problem in general, we add more receiver antennas
(Nr ) to see the impact of Nr /Nt ratio on PML. Figure 10(b) shows this relationship for various user numbers for different
SNRs. As Nr /Nt increases (i.e, from Large MIMO to Massive MIMO), PML rapidly increases and then is converged to
1.0. While PML for larger number of users (Nt ) at lower SNRs tends to increase slower, PML ≈ 10−2 can still be achieved
around Nr /Nt = 2, where the required NPE for ML-detection is around 1,000 (see Figure 10(c), where we summarize
the applicability of ParaMax). We observed that the trace-driven channel with noise shows better performance (faster
convergence than 20 dB SNR).
6.3 Bit Error Rate (BER) Performance

This section presents ParaMax’s detection BER. Recall that NPE is the number of processing elements (PEs) assigned to
ParaMax per subcarrier, where each PE performs a PMIS run. Since we assume fully-parallel ParaMax for minimum
detection latency, NPE is also equal to the number of PMIS runs. Note that regardless of computing platforms (CPU,
GPU, or FPGA), the detection performance (BER and throughput) as a function of NPE is the same, as long as they can
satisfy limited time requirements supporting all subcarriers (unless there exists a serious precision issue), while the
definition of a single PE and total available PEs per device can vary depending on platforms and/or implementation
details. In the next subsection (Sec 6.4), we evaluate ParaMax on multi-subcarrier systems, considering its detection
latency, available parallelism, available compute time in wireless standards, and impact of forward error control (FEC).
Overview: BER from Massive to Large MIMO. Figure 11 shows BER performance in various MIMO regimes with
5Note that the formulas hold also for any non-parallel iterative method with independent sampling, where NPE is simply the number of required
repetitions.
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(a) Average probability of finding the ML-solution per run (PML).

(b) Impact of Nr /Nt ratios (from Large to Massive MIMO).

(c) Required NPE for ParaMax to perform near-ML detection.

Fig. 10. Detection Sampling Evaluation. Figure 10(a) plots PML for three heuristic-based detectors (colors) varying modulations
(hatch patterns), SNRs, and NV . Figure 10(b) shows impact of Nr /Nt (from 1 to 4, from Large to Massive MIMO) on ParaMax’s
PML for different Nt user numbers (colors) and SNRs (hatch patterns). Figure 10(c) plots relationship between PML and NPE for ML
performance with various PT(ParaMaxML). Approximate MIMO feasibility of ParaMax is provided for two blocks of high PML.
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(a) 8-user and 12-user MIMO: BER as a function SNRs.

(b) 12-user MIMO: BER as a function of Nr /Nt ratio.

Fig. 11. (Overview) BER from Massive to Large MIMO. Comparisons of detection BER in Large and Massive MIMO for various
detectors across MIMO regimes and/or SNRs with 16-QAM.
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(a) 12-user Large MIMO: BER as a function of NPE varying SNRs.

(b) 12-user Massive MIMO: BER as a function of NPE at SNR 16 dB.

(c) 128 × 128 Very Large MIMO with QPSK modulation.

Fig. 12. (Detailed View) BER as a function of NPE . Comparisons of measured BER for various MIMO regimes and detectors
with 16-QAM (Fig. 12(a),12(b)) and QPSK (Fig. 12(c)) modulation.
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16-QAM. We consider ParaMax and 2R-ParaMax with 16 and 256 PEs, comparing them against other detectors such
as ZF (linear), SA (heuristic), FCSD (tree search-based), and optimal SD (ML), where SA and FCSD (with channel
ordering [16]) are comparison schemes of parallel architecture-based detectors. As expected, linear-based ZF, which
requires high Nr /Nt ratio for proper detection, performs poorly as the regime goes from Massive MIMO to Large
MIMO (upper to lower in Figure 11(a)) and with more users (left to right in Figure 11(a)), showing several orders of
magnitude worse BER performance against the other detectors, particularly at high SNRs. In the case of the parallel
architecture-based detectors, it is observed that for the same PEs, ParaMax and 2R-ParaMax outperform SA and FCSD
detectors in all MIMO regimes and SNRs tested except that in 12 × 12 MIMO at high SNRs, FCSD outperforms ParaMax
and 2R-ParaMax when with 16 PEs. However, 2R-ParaMax reaches lower BER than FCSDwhen with 256 PEs. Figure 11(b)
plots BER with 16-QAM as a function Nr /Nt ratio with smaller NPE such as 2, 8, and 16. For low Nr /Nt ratios, parallel
architecture-based detectors even with 2 PEs can obtain lower BER than ZF. As the ratio increases, all detectors achieve
better BER for the same NPE , but more PEs are required to beat ZF.

Detailed View: BER as a function of NPE . We evaluate BER as a function of NPE for 12-user Large and Massive
MIMO in Figure 12 to show the detailed performance comparison. Note that ZF is not suitable for parallelization,
so it achieves the same performance, regardless of the number of PEs. Figure 12(a) presents BER for 12 × 12 Large
MIMO (Nr = Nt ) with 16-QAM at various SNRs. ParaMax can support any number of PEs and approach the optimal
performance as NPE increases (i.e., fine parallelism granularity), while the FCSD requires at least 16 PEs to operate the
fully-parallel algorithm for the minimum Nf s , and the FCSD with NPE=161 performs equivalently until NPE reaches
162 (i.e., no gain between 16 PEs and 256 PEs). Figure 12(b) focuses on Massive MIMO (Nr ≥ Nt ), showing the impact
of Nr /Nt ratio on both BER and NPE . Higher ratios (upper to lower in Figure 12(b)) lead to lower BER for the same PEs
and smaller NPE for the near-ML BER, especially compared against 12 × 12 Large MIMO (Figure 12(a)). Precisely, to
reach the near-ML BER at SNR 16 dB for 12 users, 12-BS antenna MIMO requires around 60 PEs, 18-BS antenna MIMO
requires 18 PEs, and 48-BS antenna MIMO requires only 5 PEs. Compared to SA and FCSD, ParaMax’s BER drops more
rapidly as NPE increases for any Nr /Nt ratios. For example, to reach BER ≈ 2 · 10−4 at 12 × 24 MIMO, where the FCSD
and SA requires (over) 16 PEs, ParaMax requires 6 PEs.

We also test 128-user Very Large MIMO with the QPSK modulation in Figure 12(c). As analyzed in Figure 10(a),
we observe that very small NPE can result in BER convergence for the QPSK, which is very likely the optimal BER,
although we cannot evaluate SD because of extremely high complexity. At SNR 16 dB, ParaMax achieves over five orders
of magnitude better BER than SA at 2 PEs and over six orders of magnitude better than FCSD at 4 PEs. Furthermore,
the FCSD with thousands of PEs (i.e., with high Nf s ) cannot even reach the ParaMax’s performance with a single PE.

6.4 System Throughput Performance

This section evaluates throughput on multi-subcarrier systems. While detection BER is a fundamental metric for MIMO
detection, the detector of the lowest BER does not necessarily imply the best throughput scheme, since real-world
wireless systems include FEC techniques for error correction at the channel decoder under MIMO detector. Further,
since the systems support many subcarriers with limited compute time, the required total computing resources to
support them is another important metric for evaluation.

We first consider a WLAN wireless system with 64 OFDM subcarriers with 1/2 rate convolutional coding, where
optimal achievable (ML-based) throughput on the system has been measured via over-the-air experiments in [31].
We translate the measured detection BER into the corresponding convolutional code-applied BER (i.e., coded BER).
Among the provided data we select achievable optimal throughput for 8 × 8 MIMO and 12 × 12 MIMO at SNR 21.6 dB
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(a) Varying SNRs for 8 × 16 MIMO.

(b) Varying Nr for 12-user MIMO at SNR 16dB.

(c) Achievable gain (vs ZF) for the same number of subcarriers (NSC ).

Fig. 13. System Throughput of Massive MIMO in WLAN. Achievable system throughput comparisons of various detectors as a
function of NPE with 16-QAM in different scenarios (varying MIMO sizes or SNRs) for minimum detection latency.
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(a) Maximum number of subcarriers (NSC ) supported per millisecond.

(b) Best throughput scheme for various MIMO/SNR regimes: 12-user MIMO with 16-QAM (left) and 128-user MIMO QPSK (right).

Fig. 14. Projection to 5G Systems.Fig 14(a) shows maximum number of subcarriers that ParaMax can support as a function of
total available PEs on computing devices. Fig 14(b) presents the estimated best-throughput detectors for various regimes, supporting
5G target NSC , on a CPU platform with ten state-of-the-art 128-core CPUs (total PEs ≈ 103). Here, ParaMax’s NPE ≤ 4.

as a baseline throughput, assuming the coded BER of optimal Sphere Decoder (SD) we test at the same scenario (i.e.,
same MIMO size and SNR) is close to their optimal coded BER. We compute the achievable optimal throughput for
various scenarios, considering SNR and optimal Frame Error Rate (FER) difference (ratio) against the baseline, for the
frame size of 1500-byte and FER obtained from our coded BER. Then we compute throughput of various detectors
considering FER difference between SD and corresponding detectors at each scenario. In WLAN scenarios, we maintain
the minimum detection latency. For this, the system is expected to have total PEs of NPE × (NSC = 64) on a computing
platform, where NSC is the number of subcarriers. For example, for ParaMax to support 2 PMIS runs (i.e., 2 PEs) per
subcarrier, a single state-of-the-art CPU (with 128 cores) is enough, while multiple CPUs are required to support more
PEs per subcarrier. Since MIMO detection is completely independent across subcarriers, ParaMax’s job scheduling and
allocation for multiple devices are quite straightforward.
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Figure 13 shows throughput comparison against ZF and FCSD for various scenarios in Massive MIMO. Figure 13(a)
demonstrates the impact of SNRs for the given MIMO size. While for ParaMax and 2R-ParaMax, 8 PEs (per subcarrier)
are enough to reach the optimal performance for all tested SNRs, ZF could not reach the optimal performance except
over SNR 20 dB including trace-driven channel and noise. Figure 13(b) shows the impact of Nr /Nt ratio varying
receiver antenna numbers Nr at fixed SNR 16 dB. As seen in the previous section, less PEs are required at high Nr /Nt

ratios to achieve the near-ML performance. We observe that for the same scenarios, even less PEs are required to
achieve the near-optimal “throughput” performance (Figure 13(b)) than to achieve the near-optimal “BER” performance
(Figure 12(b)) because of the impact of FEC. Figure 13(c) plots ParaMax’s throughput gains versus ZF for various Nr /Nt

ratios and SNRs. The high gains are achieved at low SNRs and/or low Nr /Nt ratios. These throughput gains can be
generalized to any NSC (even at different standards with slight modifications), as long as both schemes can support all
subcarriers satisfying the corresponding limited compute time requirement.

In general, cellular-networked systems, such as 4G or 5G systems, support many more subcarriers, allowing more
compute time than WLAN. To project the throughput performance onto 5G scenarios, we plot the maximum NSC

that can be supported per millisecond with 5G target, as a function of total available PEs on a computing platform,
considering detector’s latency and parallelism based on assigned PEs per subcarrier in Figure 14(a) (we report GPU-
ParaMax based on extrapolated data, as discussed in section 6.1). The figure implies how many computing resources
are required to support 5G systems. A ZF-based system can support 5G target NSC even with a single state-of-the-art
128-core CPU due to its short latency and minimum PE usage. In the case of ParaMax, tens of CPUs are required to
support 2 PEs per subcarrier and hundreds for 16 PEs.

Furthermore, we predict the best throughput scheme (ZF vs. ParaMax) for various MIMO regimes and SNRs, assuming
a computing platform with ten CPUs in Figure 14(b) (left) for 12-user 16-QAM and Figure 14(b) (right) for 128-user
QPSK based on achievable ParaMax throughput gains (vs ZF), although 128-user QPSK MIMO is currently unpractical
(Figure 9). For gain ≈ 1.0, we report the ZF as the best scheme since it takes less compute time, while we report
challenging regimes where ZF does not perform well and ParaMax requires at least several tens of PEs per subcarrier
for the near-ML performance. We observe that ParaMax enables many challenging regimes of ZF (i.e., low Nr/Nt ratio
and/or low SNRs) by assigning reasonably more PEs.6 In the case of the QPSK, at Nr/Nt = 2 (relatively small ratio),
ZF can outperform ParaMax at some SNRs, but for this, 256-BS antennas are required to support 128 users, which
is the double size Nr of the-state-of-the arts. Of course, ParaMax requires more computing resources (10-100×) than
ZF, but the trend at emerging system-on-chip architectures with more and more PEs, as well as C-RAN architectures
promisingly envisioned in 5G, support the direction of massively parallel architectures-based designs requiring low
interaction among PEs.

7 DISCUSSION

In this section, we investigate several challenges and opportunities of ParaMax that are likely to further advance the
system.

Fully-optimized and adaptive ParaMax. Considering that parallel tempering-related parameters are selected within
a challenging scenario (16-QAM) in Section 4.1, ParaMax could be fully-optimized for many different scenarios based
on given user numbers, Nr /Nt ratios, SNRs, modulation sizes, available total PEs, and/or wireless standards. Moreover

6Advanced FEC schemes such as LDPC and Polar codes that are applied in 5G systems can enable the near-ML performance with ZF for more MIMO
regimes and SNRs. However, even more users and lower SNRs will keep bringing out the same scenarios, where ParaMax outperforms ZF, due to the
fundamental detection BER gap.
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there is a well known trade-off between number of sweeps (latency) and required NPE for near-ML performance
(compute resources) that could be explored (e.g., for 5G URLLC).

Higher-order modulations. As modulation size increases, ParaMax’s detection is degraded rapidly and becomes not
operable for Large MIMO with high-order modulations such as 64-QAM or higher, requiring over 103 PEs even for 4× 4
Large MIMO to achieve near ML-performance. For Massive MIMO, it is expected that even higher Nr /Nt ratios than
16-QAM are required. Perhaps, more replicas or Metropolis sweeps ease the problem along with further optimization
on ParaMax’s free-parameters related to parallel tempering such as temperature range for PMIS tuning. However, these
gains will be obtained at the expense of longer latency. An implementation of ParaMax on dedicated hardware might
improve the performance and reduce the computational cost order further.

Compatibility with specialized hardware. ParaMax does not require any specific hardware. However, another
important aspect of ParaMax is that it is immediately compatible with future implementations that aim to deploy
programmable specialized hardware (for Physics-based algorithms) designed to optimize problems in the Ising form
including quantum devices such as quantum annealers [38] and gate-model quantum computers running the QAOA
algorithm [24], as well as novel paradigm of classical calculation such as Optical Coherent Ising Machines [25],
CMOS-based annealers [4] and Oscillator-based platforms [13].

8 CONCLUSION

In this work, we present ParaMax, a soft MU-MIMO detector system for Large and Massive MIMO networks that
first makes use of parallel tempering for MIMO detection. Our performance evaluation shows that ParaMax enables
currently-challenging MIMO regimes for commonly-used linear detectors, achieving the near-ML performance by
assigning reasonably more compute resources. ParaMax also outperforms conventional parallel architecture-based
detectors such as FCSD and SA-based detectors, requiring less processing elements to achieve the near-ML performance.
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