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Abstract— We develop a structure-preserving parametric
model reduction approach for linearized swing equations where
parametrization corresponds to variations in operating con-
ditions. We employ a global basis approach to develop the
parametric reduced model in which we concatenate the local
bases obtained via H2-based interpolatory model reduction.
The residue of the underlying dynamics corresponding to the
simple pole at zero varies with the parameters. Therefore, to
have bounded H2 and H∞ errors, the reduced model residue
for the pole at zero should match the original one over the
entire parameter domain. Our framework achieves this goal
by enriching the global basis based on a residue analysis. The
effectiveness of the proposed method is illustrated through two
numerical examples.

I. INTRODUCTION

Power networks are naturally modeled as second-order
dynamical systems [15], [25], [30], [33]. In the case of
large-scale networks, monitoring, analysis and control of
resulting second-order systems become exceedingly difficult
due to unmanageable computational demands. To tackle this
predicament, we apply model reduction in which the goal
is to construct a lower dimensional model that preserves the
physically meaningful second-order dynamics and provides
a high-fidelity approximation of the input/input behaviour.
There is a plethora of model reduction approaches for
second-order dynamical systems, see, e.g., [3], [13], [5], [34],
[26], [32], [14], for model reduction of general second-order
systems, and see, e.g., [23], [15], [16], [27], [38] with a focus
on network dynamics.

In this paper, we focus on parametrically varying power
networks where the parameter variations correspond to dif-
ferent operation conditions. This leads to the parametric
model reduction (PMOR) framework [8], [11], [19], [31].
The goal of PMOR is to find a parametric reduced model that
can approximate the original model with acceptable fidelity
over a wide range of parameters. PMOR eliminates the need
for performing a separate reduction at each parameter value
(operating condition) and therefore plays an important rule in
control, design, optimization and uncertainty quantification.

To form our parametric reduced-order structure-preserving
(second-order) power network model we employ a global
basis approach where the model reduction basis is con-
structed by concatenation of local bases for selected param-
eter samples. We obtain the local bases using second-order
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interpolatory H2-optimal methods [35], [36]. Since the full-
order dynamics has a pole at zero with a parametrically
varying residue, the parametric reduced model needs to retain
this residue in order to have bounded H2 and H∞ error
norms for whole parameter domain. Based on a detailed
residue analysis, we establish the subspace conditions on the
model reduction basis to guarantee this property and explain
the algorithmic implications.

The remainder of this paper is organized as follows:
Section II presents nonlinear model of the swing equations
as well as its corresponding non-parametric and paramet-
ric second-order linear approximations. In Section III, we
describe the parametric reduction method via interpolatory
model reduction bases. Section IV presents our main theoret-
ical results for subspace conditions to guarantee parametric
residue-matching together with computational details. Sec-
tion V illustrates the feasibility of our approach via numerical
examples followed by conclusions in Section VI.

II. NETWORK SWING MODEL

A power network can be represented by a connected graph
G = (V , E) with buses as nodes V = {1, . . . , n} and
transmission lines as edges E ⊆ V × V . Generally, a bus
can host different combinations of generators and loads, or
it may even be a simple junction node. Assume that each
bus hosts a generator. We can model the active power Pij
flowing from bus (node) i to bus j along the transmission
line (i, j) ∈ E as

Pij =
EiEj
χij

sin(δi − δj), (1)

where δi is the phase angle, Ei is the peak voltage magni-
tude, and χij > 0 is the line reactance. This model ignores
the line resistances. The swing equation for a single generator
i results from Newton’s second law and is given by

Miδ̈i +Diδ̇i = Pmechi − P eleci , i ∈ {1, . . . , n}, (2)

where Mi > 0 is the rotor moment of inertia, Di > 0 is
a damping constant, and Pmechi and P eleci are the input
mechanical power and output electrical power for the ith

generator, respectively. Combing (1) and (2) leads to the
swing equations of an electric power grid [12], [30], [33]

Miδ̈i +Diδ̇i +
∑
j∈Vi

EiEj
χij

sin(δi − δj) (3)

= Pmechi − P loadi = Pneti , ∀i ∈ V ,

where the set Vi ∈ V refers to those buses connected to bus
i in G, P load corresponds to the portion of the electric power
consumed at bus i and Pneti is the net power input at bus i.
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Assuming small angle differences (δi− δj ' 0) and unity
voltage magnitudes (Ei = 1), we can rewrite (1) as

Pij ' bij(δi − δj), (4)

where bij = 1
χij

is the suseptance between the nodes (i, j) ∈
E . Define δ = [δ1, δ2, . . . , δn]T ∈ IRn. Then, the original
dynamics in (3) can be linearized as

Σ :=

{
Mδ̈(t) +Dδ̇(t) + Lδ(t) = Bu(t),

y(t) = Cδ(t),
(5)

where M = diag(M1,M2, . . . ,Mn) ∈ IRn×n and D =
diag(D1, D2, . . . , Dn) ∈ IRn×n are the diagonal matrices
of inertia and damping coefficients, and L ∈ IRn×n is the
susceptance Laplacian matrix (L = LT ≥ 0) whose (i, j)th
entry is given by

[L]i,j :=


−bij , if (i, j) ∈ E ,∑

(i,j)∈E bij , if j = i,
0, otherwise.

(6)

Moreover u = [Pnet1 . . . Pnetn ]T ∈ IRn, B ∈ IRn×n

is the identity matrix, and C ∈ IRq×n yields the output
of the system. By defining the new state variable x =
[δT δ̇T ]T ∈ IR2n, one can equivalently represent the second-
order dynamic (5) in its first-order form

ẋ = Ax+ Bu, y(t) = Cx (7)

with A =

[
0 I

−M−1L −M−1D

]
∈ IR(2n)×(2n), B =[

0
M−1B

]
∈ IR(2n)×n, and C =

[
C 0

]
∈ IRq×(2n),

where I ∈ IRn×n is the identity matrix. Due to the simple
zero eigenvalue of L, A has one eigenvalue at zero and
2n−1 eigenvalues in the left-half plane. Thus (5) is a stable
dynamical system, not asymptotically stable [15].

A. Linearized parametric model

In practice, the matrix L is not constant due to variations,
for example, in peak voltage magnitudes Ei, reactances, and
equilibria; see, e.g., [22]. Thus, to allow variations, in this
paper we will view Ei as a parameter that can vary and write
it simply as pi to obtain the parametric power network model

Miδ̈i(t; p)+Diδ̇i(t; p) +
∑
j∈νi

pipj
χij

sin(δi(t; p)− δj(t; p))

= Pneti , ∀i ∈ V (8)

with the corresponding linear model{
Mδ̈(t; p) +Dδ̇(t; p) + L(p)δ(t; p) = Bu(t),

y(t; p) = Cδ(t; p),
(9)

where p =
[
p1 p2 . . . pn

]T ∈ Ω ⊆ IRn is the parame-
ter vector, the matrix L(p) will now vary with p, and allows
for variation in operating conditions. The parametric matrix
L(p) can be written as

L(p) = PLP , (10)

where P = diag(p) = diag(p1, . . . , pn) ∈ IRn×n is diagonal
and L is as defined in (6). Note that pi = 1 for i = 1, . . . , n
recovers the non-parametric problem. We will allow pi’s vary
around this nominal value, i.e., pi ∈ (1−α, 1+α) where 0 <
α < 1; thus P stays invertible for every p ∈ Ω. Choosing,
e.g., α = 0.15, corresponds to allowing a 15% variation in
peak voltage magnitudues.

III. STRUCTURE-PRESERVING PARAMETRIC REDUCED
MODELS FOR LINEARIZED SWING EQUATIONS

We seek to develop a reduction framework such that
not only it preserves the structure, but also the parametric
reduced model serves with acceptable accuracy as a surrogate
model over diverse operating conditions. Since it is crucial
that the reduced model preserves the physically-meaningful
second-order structure, instead of transferring the second-
order dynamics to the first-order form, as in (7), and applying
model reduction there, we will directly reduce the second-
order dynamics (9). In other words, our goal is to find a
reduced parametric system

Mr δ̈r(t; p) +Dr δ̇r(t; p) + Lr(p)δr(t; p) = Bru(t)
yr(t; p) = Crδr(t; p),

(11)

where Mr, Lr(p), Dr ∈ IRr×r, B ∈ IRr×n and C ∈ IRq×r

with r � n such that the yr(t; p) ≈ y(t; p) for a wide range
of inputs u(t) over the parameter range of interest.

Since M and D are symmetric positive definite, and
L(p) is symmetric positive semi-definite, one should preserve
these structures in the reduced model. We achieve this using
Galerkin projection: construct a model reduction basis V ∈
IRn×r and the reduced-order matrices in (11) using

Mr = V TMV, Dr = V TDV, Lr(p) = V TL(p)V, (12)

Br = V TB, and Cr = CV.

Accuracy of the structure-preserving reduced model (11)
with the form (12) clearly depends on the choice of V . We
describe this choice next.

A. Interpolatory model reduction bases

There are numerous ways to choose the model reduction
basis V for reducing parametric dynamical systems; see, for
example, [1], [8], [11], [19], [31] and the references therein.
For the parametric structured second-order dynamical sys-
tem (9), we will employ the structure-preserving parametric
interpolatory model reduction framework from [2], which
extended the interpolatory model reduction framework for
parametric systems [4] to the structured setting. For recent
extensions of structured interpolatory model reduction to
special classes of nonlinear systems, see [9], [10].

Transfer functions of the full-order parametric model (9)
and reduced one (11) are, respectively, given by

H(s, p) = C(s2M + sD + L(p))−1B, and (13)

Hr(s, p) = Cr(s
2Mr + sDr + Lr(p))

−1Br. (14)

Note that both H(s, p) and Hr(s, p) are q×n matrix-valued
rational functions in s. The goal, in parametric interpola-
tory model reduction, is to choose V such that Hr(s, p)

1825

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 18,2021 at 14:33:32 UTC from IEEE Xplore.  Restrictions apply. 



interpolates H(s, p) at selected points in the frequency s
and parameter p. Since H(s) is matrix-valued, one enforces
interpolation only along the selected directions: Let p(i) be
a parameter point of interest. And let {σ(i)

1 , . . . , σ
(i)
ri } ∈ IC

be the frequency interpolation points with the corresponding
tangent directions {b(i)1 , . . . , b

(i)
ri } ∈ ICn for the parame-

ter sample p(i). Assume we have m parameter samples
{p(1), . . . , p(m)}. Then, the goal is to construct V such that

H(σ
(i)
j , p(i))b

(i)
j = Hr(σ

(i)
j , p(i))b

(i)
j (15)

for j = 1, 2, . . . , ri and i = 1, 2, . . . ,m.
Define K(s, p) = s2M + sD+L(p). For i = 1, 2, . . . ,m,

construct the local interpolation basis V (i) ∈ ICn×ri corre-
sponding to the parameter sample p(i) using

V (i) = [K(σ
(i)
1 , p(i))−1Bb

(i)
1 , . . . ,K(σ(i)

ri , p
(i))−1Bb(i)ri ]

and concatenate the local bases to construct the global basis:

V = orth
([
V (1) V (2) . . . V (m)

])
∈ IRn×r, (16)

where “orth” refers to an orthogonal basis so that V TV = Ir.
Realness of V is guaranteed by choosing the interpolation
points and tangent directions in conjugate pairs. Then, the
reduced model (11) obtained as in (12) using V from (16)
satisfies the interpolation conditions (15); see [1], [2].

Quality of the reduced model will depend on the choice of
interpolation points and tangent directions. In this paper, we
choose them, and thus the local bases V (i), using interpola-
tory optimal H2 model reduction. In other words, for every
p(i), we construct the local basis V (i) to minimize/reduce
the H2-distance

‖H(·, p(i))−Hr(·, p(i))‖H2
= (17)( 1

2π

∫ ∞
−∞
‖H(ıω, p(i))−Hr(ıω, p

(i))‖2F dω
) 1

2

,

where ı2 = −1 and ‖ · ‖F denotes the Frobenius norm.
Optimal H2 model reduction is a heavily studied topic,
In the case of unstructured linear dynamical systems, i.e.,
Hr(s) = Cr(sIr −Ar)−1Br, the optimal reduced model in
the H2-norm is a bitangential Hermite interpolant to H(s) at
the mirror images of the reduced poles [2], [18]. The Iterative
Rational Krylov Algorithm (IRKA) [18] and it variants, e.g.,
[7], [20], [37], have been successfully applied in this setting
to construct optimal interpolation points and directions. Since
we require the reduced-model to have the second-order form,
we employ the structured version of IRKA, namely the
Second Order IRKA (SOR-IRKA) [35], [36] to construct the
local bases V (i). SOR-IRKA produces a reduced-model that
satisfies only a subset of optimal interpolation conditions at
the cost of preserving structure. Since the underlying system
has a pole at zero in our case, we will modify SOR-IRKA
further. This will be explained in detail in Section IV-B. For
other work on H2-based model reduction of second-order
systems, see, e.g., [6], [27], [38].

Remark 3.1: As opposed to developing locally optimal
H2 model reduction bases V (i) and concatenating them to

construct the global basis V , following [4] one could intro-
duce a composite error measure (L2 error in the parameter
space and H2 error in the frequency domain). Then, one
can try to construct V directly to minimize this composite
measure. We refer the reader to [4] and more recent works
[17], [21] in this direction for the unstructured setting.

IV. MATCHING THE PARAMETRIC RESIDUE
CORRESPONDING TO THE POLE AT ZERO

Since L(p) = PLP and L1 = 0 where 1 ∈ IRn×1 is the
vector of ones, we obtain L(p)P−11 = PL1 = 0. Therefore,
for every p ∈ Ω, L(p) has a simple zero eigenvalue with
the eigenvector υ = P−11, and consequently H(s, p) has a
simple pole at zero for every p. This means that H(s, p) is
not an H2-function. However, we can still perform an H2-
based model reduction on H(s, p) as long as we guarantee
that the error system, i.e., H(s, p)−Hr(s, p), stays an H2-
function for every p. This issue has been studied in the non-
parametric case. [15] achieves a bounded H2 error norm
in model reduction of second order networks where the
Galerkin projection is obtained via clustering techniques. In a
more recent work, [38] splits a non-parametric second order
network with proportional damping into an asymptotically
stable system and an average subsystem containing the zero
eigenvalue. Then, the asymptotically stable system is reduced
via interpolatory techniques and then re-combined with the
average system leads to a reduced model with bounded (and
small) H2 error. We also refer the reader to, e.g., [24], [27]–
[29] for the first-order dynamics case.

In reducing the parametric second-order model (9), we
need to enforce that Hr(s, p) retains the zero eigenvalue and
its parametric residue for every p ∈ Ω so that the error
stays bounded over the whole domain. Next, we establish
the subspace conditions on the model reduction basis V to
achieve this goal.

A. Subspace conditions for matching the parametric residue

For a given a parameter, the next result establishes the
conditions on V to match the residue at zero.

Theorem 4.1: Given the parametric full-order model (9),
let the parametric reduced model (11) be obtained as in (12).
Let p̂ ∈ Ω be a parameter of interest. Define P̂ = diag(p̂)
and υ̂ = P̂−11. Then for p̂ ∈ Ω, the reduced model
Hr(s, p̂) retains the simple pole of H(s, p̂) at zero and its
corresponding parameter-dependent residue if υ̂ ∈ span(V ).

Proof: First, we show that Lr(p̂) has a simple zero
eigenvalue. Using υ̂ ∈ span(V ), write V as V =

[
V1 υ̂

]
where V1 ∈ IRn×(r−1) and υ̂ /∈ span(V1). Then, using the
fact L(p̂)υ̂ = 0, we obtain

Lr(p̂) = V TL(p̂)V =

[
V T1 L(p̂)V1 0

0 0

]
. (18)

Since υ̂ /∈ span(V1), Lr(p̂) has only one simple zero
eigenvalue. Moreover, since M and D are positive definite
and model reduction is performed via a Galerkin projection
as in (12), all the other poles of Hr(s, p̂) have negative real
parts except for this simple pole at zero.
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Now we need to show that the parametrically varying
residues of H(s, p̂) and Hr(s, p̂) corresponding to the pole
at zero match. To find the residue of H(s, p̂), we follow
an analysis inspired by [15]. Transform the second-order
dynamic (9) to its equivalent first-order form

ẋ(t; p) = A(p)x(t; p) + Bu(t), y(t; p) = Cx(t; p),

where A(p) =

[
0 I

−M−1L(p) −M−1D

]
, B =

[
0

M−1B

]
,

and C =
[
C 0

]
. (19)

Let A(p) have the Jordan decomposition

A(p) = QΛQ−1 =
[
q1 Q2

] [0
Λ̄

] [
q̃T1
Q̃T2

]
, (20)

where the Jordan block Λ̄ ∈ IC(2n−1)×(2n−1) contains the
eigenvalues with negative real parts, and q1 ∈ IR2n and
q̃1 ∈ IR2n are, respectively, the right and left eigenvectors
corresponding to the zero eigenvalue such that

AT (p)q̃1 = 0, A(p)q1 = 0, q̃T1 q1 = 1. (21)

We note that this decomposition is parameter dependent but
to simplify the notation, we write, e.g., Q instead of Q(p).
At p = p̂, using L(p̂)υ̂ = 0, and (20) and (21), we obtain

q1 =

[
υ̂
0

]
and q̃1 =

1

αD

[
D̂υ̂
Mυ̂

]
, (22)

where αD = υ̂TDυ̂. Using (20), we write

H(s, p̂) = C(sI −A(p))−1B = CQ(sI − Λ)−1Q−1B

=
(Cq1)(q̃T1 B)

s
+ CQ2(sI − Λ̄)−1Q̃2B. (23)

Thus, φ0 = (Cq1)(q̃T1 B) is the residue of H(s, p̂) for the
pole at zero. Then, substituting q1 and q̃1 from (22), and C
and B from (19) into φ0 = (Cq1)(q̃T1 B) yields

φ0 = Cα−1D
[
υ̂υ̂TD υ̂υ̂TM

0 0

]
B = α−1D Cυ̂υ̂TB. (24)

Similarly, the residue of the reduced system Hr(s, p̂) corre-
sponding to the pole at zero is obtained as

φ0r = α−1DrCV V
T υ̂υ̂TV V TB, (25)

where αDr = υ̂TV DrV
T υ̂. Since V V T is an orthogonal

projector, if υ̂ ∈ span(V ), we have V V T υ̂ = υ̂,

αDr = υ̂TV DrV
T υ̂ = υ̂TV V TDV V T υ̂ = υ̂TDυ̂ = αD,

and thus φ0r = α−1DrCV V
T υ̂υ̂TV V TB = φ0.

Theorem 4.1 establishes that if υ̂ = P̂−11 ∈ span(V ), for
that parameter value p̂, the residues of H(s, p̂) and Hr(s, p̂)
match for the pole at s = 0. This means that

H(s, p̂)−Hr(s, p̂)

= C(sI −A(p̂))−1B − Cr(sI −Ar(p̂))−1Br

=
φ0
s

+Ha(s, p̂)−
(
φr0
s

+Har (s, p̂)

)
= Ha(s, p̂)−Har (s, p̂),

where Ha(s, p̂) = CQ2(sI − Λ̄)−1Q̃2B as in (23) and
Har (s, p̂) = CrQ2r (sI − Λ̄r)

−1Q̃2rBr are asymptotically
stable. Therefore, the error system is asymptotically stable
at p̂. We write this result as a corollary.

Corollary 4.1: Assume the set-up of Theorem 4.1. Then,
the error system H(s, p̂)−Hr(s, p̂) is asymptotically stable,
and has bounded H2 and H∞ norms.

B. Algorithmic Implications

Theorem 4.1 and Corollary 4.1 hint at how to construct
V so that the error system is asymptotically stable at a
parameter value of interest. As stated in Section III-A,
for the parameter samples p(i) for i = 1, . . . ,m, we will
construct the local bases V (i) via SOR-IRKA to have local
H2 optimality. However, we will modify SOR-IRKA by
taking into consideration that H(s, p) has a pole at zero for
every p, i.e., H(s, p) is not an H2 function. SOR-IRKA is
an iterative algorithm that corrects the interpolation points in
every step. Due to the pole at zero, SOR-IRKA will drive
one of the interpolation points to zero as it should so that
the pole and residue at zero are matched. This will require
computing the vector K(0, p(i))−1Bb

(i)
0 . However, due to the

pole at zero, K(0, p(i)) is not invertible. Therefore, inspired
by Theorem 4.1, in SOR-IRKA, we will replace this vector
with the zero eigenvector of L(p(i)) and thus the span of V (i)

will contain this eigenvector. Hence, once the global basis V
is constructed as in (16), Theorem 4.1 will guarantee that the
error system H(s, p)−Hr(s, p) is asymptotically stable for
the sampled parameter values p(i) for i = 1, . . . ,m.

To use Hr(s, p) for an unsampled parameter value p̂ and
to still guarantee bounded error, we compute υ̂ = P̂−11,
construct the new basis V̂ =

[
V υ̂

]
, and obtain Hr(s, p̂)

as in (12), now using V̂ . Theorem 4.1 will then guarantee a
bounded error at p̂ as well.

The reduction step (12) does not need to be applied from
scratch for every new p̂. For the new basis V̂ , consider M̂r :

M̂r = V̂ TMV̂ =

[
V TMV V TMυ̂
υ̂TMV υ̂TMυ̂

]
. The terms V TMV ,

V TM and MV are calculated only once in the offline stage
using V , and only the vector Mv̂ needs computing for a new
parameter p̂. The situation is similar for the other reduced
quantities except for L̂r(p) due to the nonaffine parametriza-
tion of L(p) = PLP . An affine parametric approximation of
L(p) to allow efficient online computations, via, for example,
DEIM [11], will be studied in a future work.

C. Smaller number of parameters

Now we assume that L(p) is parametrized with a smaller
number of parameters. Let p = [p1 p2 · · · pν ]T ∈ Ων ⊆ IRν

and consider the parametrization

L(p) = PLP with P = diag(p1In1
, . . . , pνInν ), (26)

where n1 + · · ·+ nν = n and ν < n. This can be viewed as
some of the peak voltage magnitudes Ei varying together.
This structure will drastically simplify the algorithmic con-
siderations from Section IV-B. In (26) we can also set some
pi’s to 1 to allow variations only in a subset set Ei’s.
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Proposition 4.1: Consider the parametrization in (26). Let
0q ∈ IRq denote the zero vector and define

ek =
[
0Tn1+···+nk−1

1Tnk 0Tnk+1+···+nν
]T ∈ IRn (27)

for k = 1, 2, . . . , ν. If {e1, e2, . . . , eν} ∈ span(V ), then
Hr(s, p) retains the simple pole at zero and its corresponding
parameter-dependent residue of H(s, p) for every p ∈ Ων .

Proof: For any p̂ ∈ Ων , υ̂ =
[ 1
p1
1n1 · · · 1

pν
1nν

]T
is the eigenvector of L(p̂) corresponding to the zero eigen-
value. Note that υ̂ = 1

p1
e1 + · · · + 1

pν
eν . Therefore, if

{e1, e2, . . . , eν} ∈ span(V ), we have υ̂ ∈ span(V ) for every
p̂ ∈ Ων and the desired result follows from Theorem 4.1.

Proposition 4.1 shows that for the parametrization (26),
adding ν vectors to span(V ) suffices to match the residue at
s = 0 for every p ∈ Ων and augmenting the basis by a new
vector for a given p̂ as in Section IV-B is no longer necessary.
A fixed global basis V satisfying {e1, e2, . . . , eν} ∈ span(V )
does the job for every p ∈ Ων . Note that one needs ν to be
modest so that the reduced dimension stays modest.

1) Algorithmic details for implementing Proposition 4.1:
The global basis V in Proposition 4.1 can result from
any model reduction method of choice. As long as the
vectors {e1, . . . , eν} are added to its span, the result will
hold. We will form V as in (16) where the local bases
result from the modified implementation of SOR-IRKA as
described in Section IV-B. Given the parameter samples
p(i) for i = 1, . . . ,m, let υ(i) denote the eigenvector of
L(p(i)) corresponding to the zero eigenvalue. Our SOR-
IRKA implementation will provide that {υ(1), . . . , υ(m)} ∈
span(V ). As shown in the proof of Proposition 4.1, for any
p̂ ∈ Ων , υ̂ = P̂−11 is spanned by ν vectors. We will choose
m ≥ ν different parameter samples, obtaining a linearly
independent set {υ(1), . . . , υ(m)}. Since these vectors are in
the span of V , we will automatically satisfy the subspace
condition in Proposition 4.1. Therefore, our construction of
V via modified SOR-IRKA with m ≥ ν parameter samples
will guarantee bounded H2 and H∞ error for every p ∈
Ων (including the unsampled parameters) without explicitly
adding the vectors {e1, . . . , eν} to the reduction basis V .

V. NUMERICAL RESULTS

We use a linearized model of 2736-bus Polish network
[39] with n = 2736. We focus on a single-input single-
output model with B = CT = [1 0 · · · 0]T ∈ IRn×1

and allow 15% variation in peak voltage magnitudes, i.e.,
0.85 ≤ pi ≤ 1.15 in L(p). Recall that pi = 1 corresponds to
the non-parametric unity voltage magnitude case (Ei = 1).

A. Case 1: two parameters

We consider a parametrization with ν = 2 parameters p1
and p2 as P = diag(p1In2 , p2I

n
2

). We pick two random
samples, namely p(1) = [0.9572 0.93399]T and p(2) =
[1.0304 0.9522]T , and apply the modified SOR-IRKA to
obtain local bases V (1) ∈ IRn×20 and V (2) ∈ IRn×20. An
orthogonalization of [V (1) V (2)] leads to the global basis
V ∈ IRn×40, thus a reduced model Hr(s, p) with r = 40.

Fig. 1. Example V-A: Relative H∞ error over the parameter domain

Due to Proposition 4.1 and the discussion in Section IV-
C.1, Hr(s, p) matches the residue at s = 0 and provides
bounded H2 and H∞ error throughout the whole domain
[p1, p2] ∈ Ω2 = [0.85 1.15] × [0.85 1.15]. To illustrate the
accuracy of Hr(s, p), in Figure 1 we show the relative H∞
error over the full parameter space. As the figure illustrates,
the structure-preserving reduced model Hr(s, p) is a high
fidelity approximation to H(s, p) over the full parameter
space with a maximum relative error less than 1.5× 10−2.

B. Case 2: four parameters

We now consider the four parameter case, p1, p2, p3 and p4
such that P = diag(p1In4 , p2I

n
4
, p3In4 , p4I

n
4

). We randomly
pick four parameter sample sets:

Sample set p1 p2 p3 p4
p(1) 1.0967 0.8541 0.9399 0.887
p(2) 0.9399 0.9146 1.0377 1.0459
p(3) 0.9522 1.0713 0.9399 0.9572
p(4) 1.0801 0.9399 1.0377 1.1029

Using these samples, we apply the modified SOR-IRKA to
obtain the local bases V (i) ∈ IRn×20; i = {1, 2, 3, 4} and a
parametric reduced model of order r = 80 (V ∈ IRn×80).
As in the previous example, the reduced model guarantees
bounded error over the whole parameter space. To show the
approximation quality, we pick 200 random samples in the
four-dimensional parameter space, and depict the resulting
relative H∞ error in Figure 2, showing a maximum relative
error less than 10−2 over this sample set.

VI. CONCLUSIONS AND FUTURE WORK

We have developed a structure-preserving parametric
model reduction approach for linearized swing equations
using a global basis framework and interpolatory H2 model
reduction. We have established the subspace conditions for
the reduction basis so that the error system is an H2 and H∞
function over the entire parameter space. Two examples have
been used to illustrate the the efficiency of our approach.

Any efficient parameter selection methodology can be
incorporated into our framework and will be considered in
future work together with the recent composite H2 × L2-
optimal basis constructions [17], [21]. The nonlinear
parametric setting is also an important topic to consider.
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[21] M. Hund, P. Mlinarić, and J. Saak. An H2⊗L2-optimal model order
reduction approach for parametric linear time-invariant systems. Proc.
Appl. Math. Mech., 18(1):e201800084, 2018.

[22] T. Ishizaki, A. Chakrabortty, and J. Imura. Graph-theoretic analysis
of power systems. Proceedings of the IEEE, 106(5):931–952, 2018.

[23] T. Ishizaki and J. Imura. Clustered model reduction of interconnected
second-order systems. Nonlinear Theory and Its Applications, IEICE,
6(1):26–37, 2015.
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