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Abstract. We study finite groups that occur as combinatorial automorphism
groups or geometric symmetry groups of convex polytopes. When Γ is a sub-
group of the combinatorial automorphism group of a convex d-polytope, d ≥ 3,
then there exists a convex d-polytope related to the original polytope with
combinatorial automorphism group exactly Γ. When Γ is a subgroup of the
geometric symmetry group of a convex d-polytope, d ≥ 3, then there exists a
convex d-polytope related to the original polytope with both geometric symme-
try group and combinatorial automorphism group exactly Γ. These symmetry-
breaking results then are applied to show that for every abelian group Γ of
even order and every involution σ of Γ, there is a centrally symmetric convex
polytope with geometric symmetry group Γ such that σ corresponds to the
central symmetry.

1. Introduction

The study of convex polytopes is largely motivated by their symmetries. With
every convex polytope P are associated two finite groups: the (geometric) symme-
try group G(P ) consisting of the Euclidean isometries of the ambient space that
preserve P , and the (combinatorial) automorphism group Γ(P ) consisting of the
combinatorial symmetries of the face lattice of P . It is natural to ask about whether
or not the converse is true: is every finite group the symmetry group or automor-
phism group of a convex polytope?

For automorphism groups this question was answered positively by Schulte
and Williams [SW15], and later a simpler proof was found by Doignon [Doi18].
In this paper we are studying variations of this question with additional restrictions
imposed on the polytopes in question. We are particularly interested in centrally
symmetric convex polytopes in Euclidean d-space Ed. By definition these admit
the reflection in the origin, x !→ −x, as a geometric symmetry and thus have an
automorphism group (as well as symmetry group) that contains an involution. The
main motivation for this paper was to characterize the pairs (Γ,σ), consisting of
a finite group Γ and an involution σ in Γ, with the property that Γ is the auto-
morphism group of a centrally symmetric convex polytope such that σ corresponds
to the central symmetry. In Theorem 4.1 we show that every abelian group Γ of
even order has the desired property: for every involution σ in Γ there is a centrally
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symmetric polytope with automorphism group Γ such that σ acts like the central
symmetry.

Along the way we generalize the methods of [SW15] to establish the following
two symmetry-breaking results for arbitrary convex polytopes, which are applicable
in a wider context and are of independent interest. When Γ is a subgroup of the
automorphism group of some convex d-polytope Q, d ≥ 3, then there exists a
convex d-polytope P related to Q with automorphism group exactly Γ. When
Γ is a subgroup of the geometric symmetry group of some convex d-polytope Q,
d ≥ 3, then there exists a convex d-polytope P related to Q with both symmetry
group and automorphism group exactly Γ. Our symmetry-breaking constructions
are described in Section 3 and generalize to some extent to abstract polytopes (see
[MS02]). In Section 4 we investigate centrally symmetric polytopes. Finally, in
Section 5 we discuss some open problems and point to recent solutions.

The question of finding polytopes with prescribed automorphism group has
also been asked as motivated by representation theory, see [Lad16, BL18, FL18].
These articles study orbit polytopes, that is, convex hulls of single point orbits under
finite groups acting affinely on a real vector space. In this context it is natural to
additionally consider the “affine symmetry group” (sometimes also called the “affine
automorphism group”) of a convex polytope, consisting of all non-singular affine
transformations of the ambient space that preserve the polytope. As not every
finite group is the affine automorphism group of an orbit polytope, it seems that
symmetry-breaking processes as described here cannot be completely avoided to
settle the above problem.

The question whether or not a given group is the automorphism group or
symmetry group of a geometric, combinatorial, algebraic, or topological structure
of a specified kind has been studied quite extensively. For a recent article describing
the common characteristics of the approaches see the recent article [Jon18] by
Jones.

2. Basic Notions

We begin by recalling some basic definitions from the theory of convex and
abstract polytopes (see [Grü03, MS02, Zie95]).

An abstract polytope of rank d is a ranked poset P with the following properties.
The elements of P are called faces, and the possible face ranks are −1, 0, . . . , d. A
face is a j-face if its rank is j. Faces of ranks 0, 1 or d− 1 are also called vertices,
edges or facets of P, respectively. The poset P has a smallest face (of rank −1)
denoted F−1 and a largest face (of rank d) denoted Fd. Each flag (maximal totally
ordered subset) Φ of P contains exactly d + 2 faces, one for each rank j. Two
flags are said to be adjacent if they differ in just one face; they are j-adjacent if
this face has rank j. The poset P is strongly flag-connected, meaning that any
two flags Φ and Ψ can be joined by a sequence of flags Φ = Φ0,Φ1, ...,Φk = Ψ,
all containing Φ ∩Ψ, such that any two successive flags Φi−1 and Φi are adjacent.
Finally, P satisfies the diamond condition: whenever F ≤ G, with rank(F ) = j − 1
and rank(G) = j+1, there are exactly two faces H of rank j such that F ≤ H ≤ G.
Thus, for j = 0, . . . , d− 1, a flag of P has exactly one j-adjacent flag.

If F and G are faces with F ≤ G, then G/F := {H | F ≤ H ≤ G} is called a
section of P. This is a polytope in its own right. For a face F , we also call Fd/F
the co-face of P at F , or the vertex-figure of P at F if F is a vertex.
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The face lattice of a convex polytope is an example of an abstract polytope.
Recall that a convex polytope P is the convex hull of finitely many points in Eu-
clidean d-space Ed. A (proper) face of a convex d-polytope P is the intersection of
P with a supporting hyperplane of P ; the latter is a hyperplane H in Ed such that
P lies entirely in one of the two closed half-spaces bounded by H and has points in
common with H. The empty set ∅, and P itself, are also called (improper) faces of
P . The set of all (proper and improper) faces of a convex polytope P , ordered by
inclusion, forms a lattice called the face lattice of P . This is an abstract polytope,
of rank d if P has dimension d. The boundary complex of a convex d-polytope P ,
denoted bd(P ), is the set of all faces of P of rank less than d, partially ordered by
inclusion (see [Grü03, p. 40]); this complex tessellates the boundary ∂P of P and
is topologically a (d− 1)-sphere.

Recall that a convex d-polytope is called simple if all its vertices have valency
d, and simplicial if all its facets are (d− 1)-simplices.

Let P be a convex d-polytope. The (standard) barycentric subdivision of P is
the geometric simplicial complex of dimension d, whose d-simplices are precisely
the convex hulls of the centroids of the non-empty faces in a flag of P (see [Bay88],
[TGOR17, p. 642] or [MS02, Sect. 2C]). We use the term “barycentric subdivi-
sion” more broadly and allow the centroid of a face to be replaced by a relative
interior point of that face. Thus, a barycentric subdivision of P is a d-dimensional
geometric simplicial complex with one vertex in the relative interior of each non-
empty face of P , and with one d-dimensional simplex per flag of P , such that
the vertices of a d-simplex are precisely the relative interior points chosen in the
faces of the corresponding flag. Each barycentric subdivision of P is isomorphic
(as an abstract simplicial complex) to the order complex of the face lattice of P
(with the empty face removed); in particular, any two barycentric subdivisions are
isomorphic.

There is a similar notion of barycentric subdivision for the boundary complex of
a convex polytope. By C(P ) we denote the barycentric subdivision of the boundary
complex bd(P ) of P . This is a (d− 1)-dimensional simplicial complex.

The order complex of an abstract polytope P similarly can be viewed as a
“combinatorial barycentric subdivision” of P (see [MS02, Sect. 2C]).

The k-skeleton skelk(P) of an abstract polytope P is the poset consisting of all
proper faces of P of rank at most k (together with the induced partial order).

3. Preassigning symmetry groups

We begin this section with the following theorem about symmetry-breaking in
convex polytopes.

Theorem 3.1. Let d ≥ 3, let Q be a convex d-polytope with (combinatorial)
automorphism group Γ(Q), and let Γ be a subgroup of Γ(Q). Then there exists a
finite abstract d-polytope P with the following properties:
(a) Γ(P) = Γ.
(b) P is isomorphic to a face-to-face tessellation T of the (d − 1)-sphere Sd−1 by
spherical convex (d− 1)-polytopes.
(c) skeld−2(C(Q)) is a subcomplex of skeld−2(P).
(d) If Γ is a subgroup of the (geometric) symmetry group G(Q) of Q, then the
tessellation T on Sd−1 in part (b) can be chosen in such a way that G(T ) = Γ =
Γ(T ).
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First notice that the conclusion of the theorem above may fail for d = 2, since
the combinatorial automorphism group of a finite abstract 2-polytope (polygon) is
necessarily dihedral and so in particular cannot be cyclic. Hence we must require
d ≥ 3.

Proof. We begin with the second and third parts of the theorem, then settle
the first part, and later refine our arguments to settle the fourth part. Our strategy
is to refine the structure of the given convex polytope Q in such a way that all
automorphisms in Γ(Q) outside Γ are destroyed. The result will be a spherical ab-
stract polytope whose automorphism group is given by Γ. This symmetry-breaking
process is interesting in its own right.

Parts (b,c). Consider the (standard or any other) barycentric subdivision C(Q)
of the boundary complex bd(Q) of Q in d-space Ed. This is a simplicial (d − 1)-
complex that refines bd(Q) and is a realization of the order complex of bd(Q)
(see [MS02, Sect. 2C]). Its simplices correspond to the chains (totally ordered
subsets) in the poset bd(Q), with the chambers (maximal simplices) correspond-
ing to the flags of bd(Q); here, inclusion of simplex faces in C(Q) corresponds to
inclusion of chains in bd(Q). In particular, C(Q) has the structure of a labelled
simplicial complex, in which every simplex is labelled by the set of ranks of the
faces in the chain of bd(Q) represented by the simplex. Thus the vertices of C(Q)
can be labelled by 0, . . . , d − 1. The vertices of Q are exactly the vertices of C(Q)
with label 0. The vertices of each chamber are labelled 0, . . . , d−1 such that no two
vertices have the same label. Note that Γ(Q) and hence Γ act on C(Q) as groups of
automorphisms of a labelled simplicial complex (labels of simplices are preserved),
and that the action on the chambers is free.

As in the proof of [SW15, Theorem 1], a key step in the construction consists
of chamber replacement by complexes made up of Schlegel diagrams of convex poly-
topes. These complexes are inserted into the chambers of C(Q) in such a way that
the (d−2)-skeleton skeld−2(C(Q)) of C(Q) stays intact, unrefined. In fact, our proof
basically consists of adapting the proof of [SW15, Theorem 1] to the more general
situation at hand. (In the proof of that theorem, the corresponding subgroup Γ
acted simply vertex-transitively on a special convex d-polytope Q constructed from
a suitable permutation representation of Γ. In the present context, Q can be an
arbitrary d-polytope and Γ need not act vertex-transitively.)

The complexes inserted into the chambers are constructed in exactly the same
manner as in [SW15]. We will review the properties of these complexes below.
Each complex is built from a Schlegel diagram D of a d-crosspolytope supported
on a (d − 1)-dimensional simplex D with vertices u0, . . . , ud−1, by inserting affine
images of Schlegel diagrams of certain convex d-polytopes (the polytopes Ri and L
described below) into the (d − 1)-simplices of D that correspond to certain facets
of the d-crosspolytope. The resulting (d − 1)-dimensional complex, which as in
[SW15] is denoted RL, is also supported on D and has the boundary complex of
D as a subcomplex. The particular choice of the polytopes Ri and L is quite delicate
and is taken in such a way that the vertices u0, . . . , ud−1 of the outer simplex D
acquire very high valencies in RL compared with the vertices in the interior of D,
and that the valencies of these vertices in RL are integers “very far apart” from
each other. These conditions on the insertion process later prevent the existence
of unwanted automorphisms. In particular, RL itself will have no automorphism
other than the trivial automorphism.
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Before moving on to the actual chamber insertion process we briefly review
the construction and properties of the complexes RL. First recall that the Schlegel
diagram D of a d-crosspolytope consists of an outer (d−1)-simplexD, tiled in a face-
to-face manner by (d − 1)-simplices, the simplex tiles of D. Among these simplex
tiles is a central (d− 1)-simplex Z, corresponding to the facet of the crosspolytope
opposite to the facet defining D. The simplices D and Z have no vertices in
common. The simplex tiles of D adjacent to Z (i.e., intersecting Z in a common
facet) share precisely one vertex with D; conversely, every vertex u of D is a vertex
of precisely one simplex tile, Fu (say), that is adjacent to Z. In the course of
the construction we often require affine images of Schlegel diagrams supported on
(d − 1)-simplices. Clearly, any affine transformation that carries the supporting
(d − 1)-simplex of a Schlegel-diagram to another (d − 1)-simplex, also carries the
Schlegel diagram on the first simplex to a “diagram” on the second simplex (this
also is a Schlegel diagram of some polytope). This is true no matter how the vertices
of the first (d− 1)-simplex are assigned by the affine transformation to the vertices
of the second.

The next step is to modify D in such a way that the vertices in the outer
simplex D acquire very high valencies compared with those in the interior, and
that the valencies of the vertices of D are very far apart from each other. To
this end, consider the simplex tiles Fu0 , . . . , Fud−1

of D determined by the vertices
u0, . . . , ud−1 of D, and replace every simplex tile Fui

by an affine image of the
Schlegel diagram of a suitable convex d-polytope Ri. All vertices of this polytope
Ri, save one, have small valencies but the exceptional vertex (which is mapped to
ui) has valency given by a large integer mi to be determined. For example, for Ri

we could take the pyramid over a simple convex (d− 1)-polytope with mi vertices
and with at least one facet which is a simplex; then Ri itself has a simplex facet,
with the apex of Ri as a vertex of valency mi in Ri. Suppose Ri is a pyramid
of this kind. Then Ri admits a Schlegel diagram Ri whose outer (d − 1)-simplex
corresponds to a simplex facet of Ri containing the apex of Ri. In this diagram,
the outer vertex representing the apex has valency mi while all other vertices have
(small) valency d. Now take an affine transformation that maps the outer simplex
of Ri to the simplex tile Fui of D such that the vertex corresponding to the apex
is mapped to ui, and then insert the corresponding affine image of the Schlegel
diagram Ri into the simplex Fui

such that Fui
becomes the outer simplex. If this

procedure is performed for each i = 0, . . . , d− 1, the result is a (d− 1)-dimensional
complex R supported on D, in which each vertex ui of D has large valency, namely
mi + d− 1, while all vertices of R that are not vertices of D have small valencies.

We require one additional type of modification to complete the construction
of RL, now targeting the (d − 1)-simplex of R that was the central simplex of
D. Suppose L is any simplicial convex d-polytope. Then we let RL denote the
(d − 1)-dimensional complex supported on D, in which the central simplex has
been replaced by a suitable affine copy of a Schlegel diagram of L.

At this point of the construction we still have the choice of the parameters
m0, . . . ,md−1 and the polytopes L at our disposal. These will be chosen as we
move along and will depend on the given polytope Q.

The chamber insertion process for the polytope Q employs the action of Γ as a
group of label preserving automorphisms on the barycentric subdivision C(Q). For
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a chamber C of C(Q), we let o(C) denote the orbit of C under Γ in its action on
C(Q).

The chamber replacement now proceeds as follows. We first settle the choice of
the polytopes L. For each chamber orbit o(C) choose a simplicial convex d-polytope
Lo(C) in such a way that no two such polytopes have the same number of vertices.
Then, for any fixed choice of parameters m0, . . . ,md−1 (and associated complex R),
no two of the corresponding (d − 1)-dimensional complexes RLo(C) have the same
number of vertices, and thus no two complexes are combinatorially isomorphic.

In the final step of the chamber insertion process we first replace, for each
chamber orbit o(C), one of its chambers, C (say), by an affine copy of the corre-
sponding complex RLo(C) such that, for each i = 0, . . . , d− 1, the vertex ui of D is
mapped onto the vertex of C labelled i in C(Q). We then exploit Γ to carry this
new structure to all the other chambers in an orbit, and therefore to all chambers of
C(Q). Recall that Γ(Q), and hence Γ, acts freely and in a label preserving manner
on the chambers of C(Q) (flags of Q). More explicitly, if C ′ is a chamber in the
same orbit as C, that is, o(C ′) = o(C), we replace C ′ by an affine copy of the
complex RLo(C) that we used for C, such that, for each i = 0, . . . , d− 1, the vertex
ui of D is mapped onto the vertex of C ′ labelled i in C(Q). In short, with respect
to insertion of diagrams we treat C and C ′ in the same manner, and we can do
so without destroying the action of Γ because of the existence of label preserving
transfer maps from Γ between chambers in the same orbit under Γ. The resulting
(d − 1)-dimensional complex C′ is a refinement of C(Q) and has the full (d − 2)-
skeleton of C(Q) as a subcomplex, unrefined. In particular, C′ tiles the boundary
∂Q of Q and hence is topologically a (d− 1)-sphere. By construction, Γ acts on C′

as a group of automorphisms.
Clearly we may project the complex C′ radially onto any sphere about the

centroid of Q, and rescale the sphere (if need be) to obtain an isomorphic complex
T which tiles the unit sphere Sd−1 in a face-to-face manner by spherical convex
polytopes.

Finally, by adjoining suitable improper faces (of ranks −1 and d) to C′ we arrive
at a spherical abstract d-polytope, denoted P. Then the properties of P described
in parts (b) and (c) of the theorem are clear by construction. It remains to establish
parts (a) and (d).

Part (a). For the proof of part (a), a more subtle choice of the parameters
m0, . . . ,md−1 is needed to guarantee that the polytope P has the property that
Γ(P) = Γ. Suppose Q and C(Q) are as before. For a vertex u of C(Q), we let su
denote the number of chambers containing u, and note that this is just the number
of flags of Q containing the face of Q represented by u. If x is a vertex of any
complex S, we also write valS(x) for the valency of x in the edge graph (1-skeleton)
of S.

It is straightforward to compute the valencies of the vertices of P (or C′). The
valencies of the vertices of P in C(Q) depend on m0, . . . ,md−1, while those of the
vertices of P outside of C(Q) do not depend on m0, . . . ,md−1 but are bounded by
a constant depending on d and the polytopes Lo(C). The details are as follows. For
each i = 0, . . . , d − 1, each vertex x of C(Q) labelled i is the vertex labelled i in
every chamber that contains it, and therefore

(3.1) valP(x) = valC(Q)(x) + sxmi.
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If x is a vertex of the central simplex in the complex RLo(C) inserted into a chamber
C, then

valP(x) = 2(d− 1) + (valLo(C)
(x)− (d− 1)) = valLo(C)

(x) + d− 1.

If x is a vertex of the copy of a polytope Ri inside a chamber C that is not a vertex
of C or of the central simplex inside C, then valP(x) = d. Finally, if x is a vertex
of the copy of Lo(C) in a chamber C that is not a vertex of the central simplex in
C, then valP(x) = valLo(C

(x), In particular, there exists a constant m (depending

on d and our choice of polytopes Lo(C)) such that

(3.2) valP(x) ≤ m

for all vertices x of P outside of C(Q).
The parameters mi are chosen inductively for i = d− 1, d− 2, . . . , 0, beginning

with md−1 := m where m is a fixed constant as in (3.2). Suppose for a moment
that a specific parameter value mi has been chosen and then substituted on the left
side of equation (3.1) to give certain integers, valC(Q)(x)+sxmi, representing vertex
valencies in P. In this situation we write ai and bi for the minimum or maximum
of these integers valC(Q)(x) + sxmi, respectively, taken over all vertices x in C(Q)
labelled i, as given in (3.1). Thus ai ≤ valC(Q)(x) + sxmi ≤ bi for each vertex x of
C(Q) labelled i. In particular, we trivially have m < ad−1 ≤ bd−1.

Proceeding inductively, we next choose md−2 in such a way that bd−1 < ad−2.
More generally, if j ≤ d− 1 and mj has already been chosen, we pick mj−1 in such
a way that bj < aj−1. At the final step when j = 1, we are choosing m0. Our
choice of m0, . . . ,md−1 then guarantees that

(3.3) m < ad−1 ≤ bd−1 < ad−2 ≤ bd−2 < . . . . . . < a1 ≤ b1 < a0 ≤ b0.

Now set Mi := [ai, bi] for each i, and observe that M0, . . . ,Md−1 are mutually
disjoint intervals.

We now are ready to prove part (a) of the theorem. We show that if the
parameters m0, . . . ,md−1 are chosen in such a way that (3.3) is satisfied, then
Γ(P) = Γ. Suppose m0, . . . ,md−1 are chosen such that (3.3) holds.

For the proof of part (a) we can mostly proceed as in [SW15], specifically
Lemma 2. By construction, Γ is a subgroup of Γ(P), so we only need to prove the
opposite inclusion. The initial steps of the proof are the same (almost word for
word) as those in [SW15, pp. 451-452]. To make the present paper reasonably
self-contained we reproduce here some of the arguments.

The first step is to show that every automorphism of P is induced by an au-
tomorphism of Q. Suppose γ is an automorphism of P. We want to show that
γ lies in Γ. The vertices of P corresponding to vertices of C(Q) have higher va-
lency than other vertices of P and hence must be permuted among each other by
γ. Thus γ maps vertices of C(Q) to vertices of C(Q). Moreover, by our choice of
m0, . . . ,md−1, the valency of each vertex of C(Q) labelled i lies in Mi for each i, and
the sets M0, . . . ,Md−1 are mutually disjoint. Hence γ must map vertices of C(Q)
labelled i to vertices of C(Q) labelled i, for each i. In particular, since the vertices of
C(Q) labelled 0 are precisely the vertices of Q, the vertices of Q must be permuted
by γ. Since the full (d − 2)-skeleton of C(Q) is an (unrefined) subcomplex of the
(d−1)-dimensional complex C′ and already contains all the information about C(Q)
(only the chambers need to be added to the (d−2)-skeleton to obtain C(Q)), it then
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follows that γ induces a label preserving automorphism of C(Q) mapping vertices
of Q to vertices of Q. Here it helps to bear in mind that C(Q) lies on a sphere.

We show that γ induces an automorphism γQ (say) of Q itself, and that γQ
determines γ uniquely. Since every face of the polytope Q is uniquely determined
by the set of flags of Q containing this face, it is clear that every vertex of C(Q) is
uniquely determined by the chambers of C(Q) containing this vertex. Now if F is
an i-face of Q and wF is the corresponding vertex labelled i in C(Q), then γ(wF )
is also a vertex labelled i in C(Q) and hence must corresponds to an i-face of Q.
This i-face is simply γ(F ). Note here that γ induces an isomorphism between the
vertex-stars of wF and γ(wF ) in C(Q); in particular, chambers of C(Q) containing
wF are mapped in a one-to-one and label preserving manner to chambers containing
γ(wF ).

It remains to show that γQ determines γ uniquely. To this end suppose γQ is the
identity map on Q. Then the automorphism induced by γ on C(Q), γC(Q) (say), is
also the identity map on C(Q), since the simplices in C(Q) just represent the chains
of the boundary complex of Q, such that vertices of C(Q) labelled i correspond to
faces of Q of rank i. With regards to chamber replacement in C(Q) by complexes
like RLo(C) , note that γ maps a complex like RLo(C) placed into a chamber, to a
similar such complex placed into the image chamber under γ. But since γ fixes
every face of a chamber of C(Q), which in a complex like RLo(C) becomes the outer
simplex, γ then must also fix the entire complex inserted into the chamber. This
follows from a simple connectedness argument. The outer simplex of a complex
RLo(C) can be joined to every tile in RLo(C) by a finite sequence of successively
adjacent tiles (successive tiles meet in a facet). Beginning with the outer simplex
on which γ is the identity map, we then can move along the sequence to show that
γ is also the identity map on every tile in the sequence. Hence γ is the identity
map on the entire complex C′ and therefore also on P.

Thus Γ(P) can be viewed as a subgroup of Γ(Q) containing Γ. The final step
consists of showing that Γ(P) = Γ. Here the arguments of [SW15, pp. 452-453]
need to be modified as follows.

Suppose that Γ is a proper subgroup of Γ(P). Then since Γ(Q) acts freely on
the chambers of C(Q), and Γ(P) is a subgroup of Γ(Q), the orbits of chambers C of
C(Q) under Γ(P) are strictly larger than those under Γ. In particular, there are two
different orbits o(C1) and o(C2) of chambers C1 and C2 under Γ, which lie in the
same orbit under Γ(P). Any automorphism γ of Γ(P) which maps a chamber C ′

1 in
o(C1) to a chamber C ′

2 in o(C2) induces an isomorphism between the corresponding
complexes RLo(C1) and RLo(C2) inserted into C ′

1 and C ′
2, respectively. However,

this is impossible, since the complexes RLo(C) are mutually non-isomorphic, by our
choice of the polytopes Lo(C). Thus Γ(P) = Γ. This completes the proof of part
(a) of the theorem.

Part (d). For the proof of part (d) we must further refine our arguments. So
let Γ be a subgroup of the geometric symmetry group G(Q) of Q. In this case we
choose the standard barycentric subdivision for C(Q) (with the vertices of C(Q) at
the centroids of the faces of Q). Then C(Q) is invariant under Γ, since geometric
symmetries of convex polytopes map face centroids to face centroids. Next we
proceed as before and replace, for each chamber orbit o(C) under Γ, one of its
chambers, C (say), by an affine copy of the corresponding complex RLo(C) such
that, for each i = 0, . . . , d − 1, the vertex ui of D is mapped onto the vertex of
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C labelled i. For the chamber replacement of the remaining chambers of C(Q) we
use as transfer maps the elements of Γ, which now are geometric symmetries of
C(Q). More explicitly, if C ′ is a chamber of C(Q) with o(C ′) = o(C), and γ is the
(unique, labeling preserving) symmetry that maps C to C ′, we replace C ′ by the
image of RLo(C) under γ. Then the overall structure is also invariant under Γ, and
the same holds for its (scaled) projected image T on Sd−1. Note that T cannot
acquire geometric symmetries which do not belong to Γ, since these would also
give combinatorial symmetries, which is impossible by part (a). This completes the
proof of (d). □

Our next theorem is based on Theorem 3.1 and deals with geometric symmetry
breaking results for convex polytopes.

Theorem 3.2. Let d ≥ 3, let Q be a convex d-polytope, and let Γ be a subgroup
of Γ(Q). The abstract polytope P of Theorem 3.1 may be realized by a convex d-
polytope P . Moreover, if Γ is a subgroup of G(Q), then P can be chosen in such a
way that G(P ) = Γ = Γ(P ).

Proof. The proof of the first statement is the same as the proof of [SW15,
Theorem 4.2]: first the complex C(Q) is realized by a convex d-polytope R, and then
all subsequent modifications to the boundary of R required for the construction of
P are achieved by gluing projective copies of convex polytopes to the facets of R
that are sufficiently thin in the direction of the outward facing normal to the facet.
The result is a convex d-polytope P .

The proof of the second statement is similar. First observe that R can be chosen
in such a way that Γ lies in G(R). In fact, the construction of R described in the
proof of [SW15, Lemma 3] respects symmetries and leads to a convex d-polytope
R whose symmetry group contains Γ as a subgroup. The chamber replacement
can again be realized by gluing thin projective copies of convex polytopes to facets
of R. Now this is done in two steps. First, we only glue copies to the facets of R
which correspond to chambers in a system of representatives for the chamber orbits
o(C) on C(Q) under Γ. Second, we use the symmetries in Γ to attach copies to the
remaining facets of R, such that facets of R equivalent under Γ receive projective
copies which are also equivalent under Γ. Bear in mind that the boundary complex
ofR has the structure of a labeled simplicial complex on which Γ acts freely in a label
preserving manner. If the projective copies used in the first step are sufficiently thin,
then the resulting structure is a convex d-polytope. By construction this polytope
is invariant under Γ. □

Parts of Theorem 3.1 hold more generally for finite abstract polytopes. With
a very similar proof we can establish the following theorem.

Theorem 3.3. Let d ≥ 3, let Q be a finite abstract d-polytope, and let Γ be a
subgroup of Γ(Q). Then there exists a finite abstract d-polytope P with the following
properties:
(a) Γ(P) = Γ.
(b) P is isomorphic to a face-to-face tessellation on the topological space |C(Q)| of
the order complex C(Q) of Q by topological copies of convex polytopes.
(c) skeld−2(C(Q)) is a subcomplex of skeld−2(P).
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4. Prescribing involutions as central symmetries

As an application of Theorem 3.2 we consider the following problem. Given a
finite group Γ and a subgroup Λ of Γ, can we find a convex polytope P such that

• Γ(P ) = Γ and
• Λ acts on P in a predetermined way?

We are particularly interested in the case where Λ = C2 and Λ is generated by
a central involution σ of Γ. We wish to find a polytope P such that σ acts on P
as a central symmetry; that is, abusing notation, σ(x) = −x for all x ∈ P . Thus
P would be centrally symmetric under the central symmetry σ. A positive answer
would give a centrally symmetric version of the results of [SW15]. Here we show
that the answer is always positive for finite abelian groups containing an involution,
that is, for abelian groups of even order.

Theorem 4.1. Let Γ be a finite abelian group of even order, and let σ be an
involution of Γ. Then there is a positive integer d and a centrally symmetric convex
d-polytope P in Ed, such that G(P ) = Γ(P ) = Γ and σ is realized as the central
symmetry of P , that is, σ(x) = −x for all x ∈ Ed.

Proof. Let us begin with the case where Γ is a cyclic group of even order with
generator γ. Thus Γ = C2m for some m ≥ 1, and σ = γm. We show that there
exists a polytope of the desired kind in dimension d = 4. Consider the action of Γ
as a group of isometries on E4, here viewed as complex 2-space C2 (with x ∈ E4

corresponding to (u, v) ∈ C2), defined by letting γ act as the mapping

(u, v) !→ (eπi/m u, eπi/m v).

Notice that for all x ∈ E4, ||γ(x)|| = ||x||. If we take a large enough finite set
of points S in S3 (a five-element subset S in general position suffices if m ≥ 3,
although one can do with less), then the convex hull of the orbit set

Γ·S := {ϕ(x) | ϕ ∈ Γ, x ∈ S}
is a convex 4-polytope Q such that Γ ≤ G(Q) and σ(x) = −x for all x ∈ Q.
We then apply the construction process underlying Theorem 3.2 to construct the
desired convex 4-polytope P . In other words, we get rid of all excess combinatorial
symmetries outside of Γ while preserving each element of Γ as a geometric symmetry
for P , including in particular the involution σ as the central symmetry for P . Thus
G(P ) = Γ = Γ(P ). This settles the case when Γ is cyclic. (Note that we cannot
work with E2 in place of E4 since the corresponding statement of Theorem 3.2 fails
to be true for n = 2.)

If Γ is abelian but not cyclic, then, by the fundamental theorem of abelian
groups, we can write Γ as a direct product of k + 1 abelian groups Γ = Γ1 × . . .×
Γk × Γk+1 for some k ≥ 1, so that

• Γ1, . . . ,Γk are cyclic and of even order, and
• σ = (σ1, . . . ,σk, 1), where σi is an involution in Γi for all 1 ≤ i ≤ k.

The idea is to manufacture a suitable polytope for each direct factor of Γ and then
combine these polytopes into a single polytope for Γ itself.

We know from the above that for each direct factor Γi, with 1 ≤ i ≤ k,
there is a centrally symmetric 4-polytope Pi in E4 such that G(Pi) = Γi = Γ(Pi)
and σi is the central symmetry for Pi. Consider the cartesian product polytope
P ′ := P1 × . . .× Pk in E4k, whose vertex set is the cartesian product of the vertex
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sets of the component polytopes. Clearly, P ′ is a centrally symmetric 4k-polytope,
and the direct product Γ′ := Γ1× . . .×Γk acts on P ′ as a group of symmetries such
that each factor Γi acts on the ambient 4-dimensional subspace of the component
polytope Pi. Under this action, (σ1, . . . ,σk) is the central symmetry for P ′.

For the last direct factor, Γk+1, we embed Γ′′ := Γk+1 into a symmetric group,
Sl+1 for some l, and then take a regular l-simplex P ′′ in El centered at the origin.
Then Γ′′ is a (generally proper) subgroup of G(P ′′) = Γ(P ′′) = Sl+1. Any excess
symmetries that P ′′ might have, will be trimmed at a later stage.

We now combine these polytopes. Set d := 4kl. Let V denote the set of points
in Ed = E4k ⊗ El of the form u ⊗ v, where u and v are vertices of P ′ and P ′′,
respectively, and ⊗ denotes the standard tensor product (given by u · vT if u and v
are viewed as column vectors). Then V is a centrally symmetric point set, since the
vertex set of P ′ is centrally symmetric and (−u)⊗ v = −u⊗ v. Hence the convex
hull of V in Ed is a centrally symmetric convex d-polytope P . Note that for the
central symmetry of P it is not required that P ′′ is centrally symmetric.

By construction, the actions of Γ′ on P ′ and Γ′′ on P ′′ induce an action of
Γ = Γ′ × Γ′′ on P as a group of geometric symmetries. Thus Γ is a subgroup
of G(P ). If we write the given involution σ of Γ in the form σ = (σ′,σ′′) with
σ′ = (σ1, . . . ,σk) ∈ Γ′ and σ′′ := 1 ∈ Γ′′, then under this action, σ maps each
vertex u ⊗ v of P to (−u) ⊗ v = −u ⊗ v and thus acts on P as central symmetry
−id, as desired.

In the final step, if P has any extra symmetries outside of Γ (as will usually
be the case), we can trim them down using Theorem 3.2. This finally produces the
desired centrally symmetric polytope. □

For cyclic groups (of even order), the construction underlying Theorem 4.1
produced convex polytopes in dimension 4. The reader might wonder if a suitable
geometric representation of these groups in 3-space E3 can not also give a convex 3-
polytope. As the following theorem shows, the answer is negative for many abelian
groups. Dimension 4 is optimal in many cases.

Theorem 4.2. If Γ = C4m = 〈γ〉 for some m ≥ 1, and σ := γ2m, then there is
no centrally symmetric 3-polytope P in E3 such that Γ(P ) = Γ and σ is realized as
the central symmetry of P .

Proof. Suppose to the contrary that such a 3-polytope P exists. Then, since
∂P is homeomorphic to S2, we can view Γ as a group of homeomorphisms of S2.
In particular, λ := γm is a homeomorphism of S2 with λ2 = σ = − id and thus its
topological degree must be positive. On the other hand, the topological degree of
the homeomorphism − id of the k-sphere Sk is (−1)k+1, which is −1 when k = 2.
This leaves no possibility for the topological degree of λ. Thus P cannot exist (and
dimension 4 is optimal if Γ = C4m and σ := γ2m). □

Note that if in Theorem 4.2 we had insisted on achieving G(P ) = Γ (rather
than Γ(P ) = Γ), we could have argued similarly by using the determinant of linear
mappings (rather than the topological degree of homeomorphisms) to rule out the
existence of P . In fact, the determinant of λ2 would have to be positive, but the
central inversion − id has determinant −1 in dimension 3.

On the other hand, for cyclic groups of the form Γ = C2m = 〈γ〉 with m odd,
and σ := γm, we can indeed find a convex 3-polytope in E3 such that Γ(P ) = Γ
and σ is realized as the central symmetry of P . This can be obtained as follows.
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Consider a bipyramid P ′ in E3 over a regular 2m-gon in the xy-plane centered at
the origin o, where the two apices lie symmetrically on the z-axis on different sides
of the xy-plane. Clearly, P ′ is invariant under the rotatory reflection γ of order 2m
which is the product of the rotation by π/m about the z-axis and the reflection
in the xy-plane. Thus C2m = 〈γ〉 ≤ G(P ′) and γm = − id. Note that G(P ′) is
strictly larger than C2m, since it also contains the reflection in the xy-plane but
C2m does not. (In fact, G(P ′) ∼= D2m × C2.) Thus P ′ itself does not have the
required properties. However, a simple application of Theorem 3.2 allows us to
find a polytope P by getting rid of the additional symmetries while preserving the
action of C2m. Alternatively, we can construct a polytope P directly from P ′ by
attaching sufficiently thin pyramids to the facets of P ′ in one facet orbit of P ′ under
C2m.

5. Some open problems

Our previous discussion invites a number of open problems concerning the di-
mension of polytopes with preassigned symmetry groups or automorphism groups.
Usually, given the group Γ the interest is in finding polytopes of small dimen-
sion realizing Γ. After the first version of this manuscript was uploaded to public
repositories, independently of our work the three open questions below have been
answered affirmatively [CLS19]. We present the questions here since they may
lead to more directions of research.

For a finite group Γ, we define the (combinatorial) convex polytope dimension
of Γ, denoted cpd(Γ), as the smallest dimension d for which there exists a convex
d-polytope P whose combinatorial automorphism group is Γ, that is, Γ(P ) = Γ.
Note that the results of [SW15, Doi18] are saying that for every finite group Γ,
we have cpd(Γ) < ∞.

Similarly, the geometric convex polytope dimension of Γ, denoted gcpd(Γ), is
defined to be the smallest dimension d for which there is a convex d-polytope P
whose geometric symmetry group is Γ, that is, G(P ) = Γ. The results of [Doi18]
also imply gcpd(Γ) < ∞.

Open Question 1. For each n, is there a finite group Γn such that cpd(Γn) ≥ n?

Open Question 2. For each n, is there a finite group Γn such that gcpd(Γn) ≥ n?

Open Question 3. Does Theorem 4.1 hold for non-abelian groups Γ and
central involutions σ of Γ? In other words, given a finite group Γ of even order and
a central involution σ of Γ, is there a centrally symmetric convex polytope P with
G(P ) = Γ(P ) = Γ such that σ is realized as the central symmetry − id of P?

Note that the proof of Theorem 4.1 carries over to finite groups of the form
Γ = Γ1×Γ2 where Γ1 is abelian, and central involutions of Γ of the form σ = (σ1, 1)
where σ1 is a central involution of Γ1.
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