QUANTITATIVE COMBINATORIAL GEOMETRY FOR
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ABSTRACT. We prove several exact quantitative versions of Helly’s and Tver-
berg’s theorems, which guarantee that a finite family of convex sets in R¢ has a
large intersection. Our results characterize conditions that are sufficient for the
intersection of a family of convex sets to contain a “witness set” which is large
under some concave or log-concave measure. The possible witness sets include
ellipsoids, zonotopes, and H-convex sets. Our results show that several new
optimization problems can be solved with algorithms for LP-type problems.
We obtain colorful and fractional variants of all our Helly-type theorems.
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1. INTRODUCTION

The study of the intersection patterns of convex sets is a substantial part of
combinatorial geometry. Helly’s theorem and Tverberg’s theorem are among the
best-known results of this area. Helly’s theorem says that given a finite family of
conver sets in RY, if every d + 1 or fewer sets have non-empty intersection, then
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the whole family has non-empty intersection [Hel23]. Tverberg’s theorem, on the
other hand, says that given (r —1)(d + 1) + 1 points in R?, there exists a partition
of them into r parts whose convex hulls intersect [Tve66]. Many generalizations
and extensions of Helly’s and Tverberg’s theorems have been proven, with classical
examples including colorful, topological, and integer versions for both theorems
[ADLS17, HW17, [BZ17, BS18|, [DLGMM19].

A particular family of generalizations of both theorems, called the quantitative
versions, give conditions that guarantee that the intersection of a family of convex
sets in R? is large. For example, we can ask for bounds on the volume of the
intersection of a family of convex sets.

Theorem (Bdrany, Katchalski, Pach 1982 [BKP82|). Let F be a finite family of
convez sets in R, If the intersection of every 2d or fewer sets in F has volume at
least one, then the volume of NF is at least a2,

We say that the theorem above is not exact since the conditions require volume
one, but the conclusion yields volume smaller than one. One can easily show that
we cannot expect to conclude that the volume of NF is at least one if d > 2, so
there is no exact Helly theorem for the volume. The lower bound for the volume of
NF has been improved recently. First by Naszédi, giving a bound of d—2¢(1+o(1))
[Nasi6] and then by Brazitikos, giving a bound of d(—3¢/2(+e(1) [Bral7]. If we
know that the intersection of subfamilies of larger cardinality, ad for some constant
a, have volume greater than or equal to one, Brazitikos showed that we can get a
lower bound of d=%+°() for the volume of NF [Bral7]. If one is willing to check
much larger subfamilies, it was shown that we can get a bound of 1—¢ on the volume
of NF if we know that the intersection of every ©(s~(?=1)/2) sets has volume at
least one [DLLHRSI7a].

Quantitative Tverberg theorems are much more recent, and there are several
interpretations of what the correct version should be. We consider versions as
in [Sobl6]. In those variations, we replace points by convex sets, and we seek a
partition of the family such that the intersection of the convex hulls of the parts
is large. As an analog for the Bardny-Katchalski-Pach theorem, we obtain the
following example, which we prove in Section[d The number of sets needed can be
reduced slightly if r is a prime power.

Theorem 1.0.1 (Tverberg for volume). Let r,d be positive integers and F be a
family of (r — 1) (d(dT%) + 1) + 1 sets of volume one in R®. Then, there exists a
partition of F into r parts Ay, ..., A, such that the volume of ﬂ;zl conv (UA;) is
at least d=7.

Quantitative Helly and Tverberg theorems have been proven for other continuous
functions, such as diameter or surface area [Bral6l, [Sob16l [RS17]. In both cases,
we have an unavoidable loss, similar to their volumetric versions. There are few
cases for which there is an ezact quantitative theorem, such as a Helly theorem for
inradius. However, that case follows directly from Helly for containing translates
of a set, which is a common exercise. A version of Tverberg for the inradius as
Theorem [1.0.1] also follows trivially from applying Tverberg’s theorem to the set of
centers of the incircles of the sets. Exact quantitative Helly and Tverberg theorems
have been proven for discrete functions over the convex sets, such as “the number
of points with integer coordinates in the set” [ABDLLI6, DLLHRSI7b, AGMP*17,
DLLHORPI17].

In this manuscript, we present new families of quantitative Helly and Tverberg
theorems that have exact versions for continuous functions. Most of our theorems
extend to colorful versions. The simplest way to state our results is that we can
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obtain exact quantitative theorems for continuous functions as long as we impose
conditions on the sets that witness the desired property. For example, we obtain
such theorems for the properties “containing ellipsoids of large volume” and “con-
taining zonotopes of large Gaussian measure”.

Quantitative Helly theorems can be considered as a bridge between combinato-
rial geometry and analytic convex geometry. The results of Naszédi and Brazitikos
show how they are related to the sparsification of John decompositions of the iden-
tity [Nas16l Bral7l Bral6]. The results of De Loera, La Haye, Rolnick, and Soberén
show how they are related to the theory of approximation of convex sets by poly-
topes [DLLHRSI7a]. The results of Rolnick and Soberén show how the colorful
versions are related to the analytic properties of “floating bodies” [RS17]. We con-
tinue this trend and show how our exact quantitative Helly theorems are related to
the study of concave functions and Minkowski sums. Some of our results use the
topological versions of Helly’s theorem and of Tverberg’s theorem in their proofs.
Topological methods have not been used before for quantitative variations.

Our results depend on two main components: the function we work with, and
the family of sets we use to witness that we achieve a desired value in the function.
The Helly numbers (i.e., the size of the subfamilies we must check) in our results
are determined by the dimension of the space of possible witness sets, and they are
often optimal. Our Tverberg theorems have a similar dependence. This gives an
intuitive idea of why the loss of volume is unavoidable in the Barany-Katchalski-
Pach theorem: the space of convex sets in R? has infinite dimension. We obtain
results for a wide range of functions. It’s important to note that just finding good
families of witness sets is not enough. Otherwise, we would be able to obtain exact
quantitative results for the diameter, as a segment always realizes it. This would
contradict the examples presented previously by the third author [Sobl6]. We do
obtain some exact quantitative results for the diameter under ¢;-norm instead of
f5-norm, which we discuss in sections and

Our results can be split into two groups:

e Results with a geometric proof. Several of our results can boil down
to standard combinatorial geometry theorems in higher-dimensional spaces.
For our parametrizations to work, we need strong conditions on the sets
that witness a large intersection. These results apply to a large family of
functions, which includes all log-concave measures in R%. Moreover, in the
cases that this framework applies, we get versions of almost every known
variation of Helly and Tverberg’s theorems, including quantitative (p, q)-
type results [AK92.

e Results with a topological proof. A simple contractibility argument al-
lows us to reduce many quantitative Helly-type results to Kalai and Meshu-
lam’s topological colorful Helly theorem [KMO05]. These results apply to
a broad family of possible witness sets, at the cost of a reduced family
of functions. The topological properties of the spaces of witness sets al-
low us to obtain smaller Helly numbers. The related Tverberg-type re-
sults can be proved with the topological version of Tverberg’s theorem
[BSS81l, 0za87, VoI96]. In those cases, we require some parameters to be
prime powers.

Both cases are general enough to contain the volume as the target function.
We show that the topological colorful Helly theorem by Kalai and Meshulam has
applications to purely geometric Helly-type problems. This had been observed
before for Carathéodory-type theorems [HK17]. We first prove all our Helly-type
results in sections |2/ and |3} Then, we show how the methods extend to Tverberg’s
theorem in Section @
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We present some volumetric Helly theorems in this section since they are the
easiest to compare with previous quantitative Helly theorems. First, let us introduce
matroids. There are plenty of equivalent definitions for matroids [OxI06]. Given a
finite set V' of vertices, we say a matroid or matroidal complex M on V is a family
of subsets of V' with three properties.

o e M.

e If AC Band B € M, then A€ M.

o If AAB € M and B has more elements than A, there exists an element
a € B\ A such that AU {a} € M.

We call the sets in M independent. For a subset V' C V', we denote by p(V') the
rank of V’, which is the cardinality of the largest independent set contained in V.

Theorem 1.0.2 (Matroid Helly for ellipsoids of volume one). Let M be a matroid
on a set V of vertices with rank function p. For each v in V, we are given a
convex set F, in R?. We know that for each set V' € M, there exists an ellipsoid
of volume one contained in Nyecy'F,. Then, there exists a set T C V such that
p(V\ 1) <d(d+3)/2 =1 and for which there exists an ellipsoid of volume one
contained in Nyer Fy.

The result above can be extended further. We present a generalization in The-
orem which is highly malleable. We use it to show variations of Theorem
1.0.2] in sections [3.1] and Those have different Helly numbers, depending on
restrictions to the space of ellipsoids considered. We also have versions for minimal
enclosing ellipsoids, or for taking the sum of the lengths of the axes instead of the
volume. If we pick a partition matroid in Theorem [I.0.2] we obtain the following
colorful version.

Corollary 1.0.3 (Colorful Helly for ellipsoids of volume one). Let n = @ and

Fi,...,Fn be finite families of convex sets in R?. Suppose that for every choice

e F, ..., F, € F,, their intersection contains an ellipsoid of volume one. Then,

there exists an index i € {1,...,n} such that NF; contains an ellipsoid of volume
d(d+3)

one. Moreover, if n = ==~ — 1, the conclusion of the theorem may fail.

Corollary has been proved by Damésdi [Dam17] using methods similar to
those shown by De Loera, La Haye, Oliveros, and Roldédn-Pensado [DLLHORP17].
The result above exemplifies why the name colorful is attributed to these variations,
as we can consider each F; as a family of sets painted with the same color. We have
not seen how the geometric methods of Damésdi can be extended to “colorings” by
matroidal complexes.

Theorem [1.0.2] implies a colorful Helly theorem for the volume similar to the
Barany-Katchalski-Pach theorem. Inscribed ellipsoids of maximal volume, called
John ellipsoids, have been studied extensively in classical convex geometry [Bal97].
In particular, for a convex set K C R¢ with non-empty interior whose John ellipsoid
£ is centered at the origin we have

ECK CdE.

This implies that vol(€) > d~¢ vol(K). We can use this fact in conjunction with
Corollary to prove a colorful Helly theorem for the volume. However, we can
get a stronger result. The following theorem is obtained by using Theorem [T.0.2] to
bootstrap the results by Brazitikos [Bral7].

Theorem 1.0.4. Let M be a matroid on a set V of vertices with rank function
p, and let d be a positive integer. For each v € V we are given a convex set F,
in R, We know that for each independent set V' C V of at most 2d vertices,
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Npev' Fy has volume at least one. Then, there exists a set T C V' of vertices such

that p(V \ 1) < @ — 1 and the volume of NyerF, is at least d(—34/2)(1+o(1))

Again, a more familiar statement comes from the application of the theorem
above to a particular partition matroid. This implies the following corollary, which
follows the style of Lovdsz’s colorful Helly theorem [Bar82).

Corollary 1.0.5. Let n = @ and Fi,...,Fpn be finite families of convex sets
in RY, considered as color classes. Suppose that for every choice F,. .., Fay of 2d
convex sets of different colors, their intersection has volume greater than or equal
to one. Then, there exists an indexi € {1,...,n} such that NF; has volume greater
than or equal to d—34/2—0(1)

Notice that if /; = --- = F,, we recover the best known bound for Helly’s
theorem for the volume [Bral7]. Intuitively, the colorful versions we could prove
previously dictate the number of color classes needed, yet the known “monochro-
matic” versions dictate the size of the subfamilies we need to check. We do not
know if the value of n in Corollary (or the value of p(V '\ 7) + 1 in Theorem
1.0.4) can be reduced from d(d + 3)/2 to 2d. If the volume obtained in the final
ellipsoid is allowed to be ~ d_3d2, it was recently shown by Damasdi, Foldvari, and
Naszddi that the number of color classes can be reduced to 3d [DFN21].

We also obtain quantitative Helly theorems for zonotopes and H-convex sets
instead of ellipsoids. We describe here one of the results for zonotopes. Given
directions vy,...,vp € R\ {0}, and p € R?, we say that a convex set K is a
zonotope centered at p with directions vq,...,v; if K is the Minkowski sum of k
segments with directions in vy, ..., v;. In other words, there exist ay,...,ar >0
such that

K=p+ ((qul) D (012’02) b...P (O[}C’Uk)),
where @ stands for the Minkowski sum.

Theorem 1.0.6. Let k > d be positive integers and vy, ..., vy be directions in R?.
Let F be a finite family of convex sets in R®. If the intersection of every k +d sets
in F contains a zonotope with directions vi,...,v; that has volume one, then NF
contains a zonotope with directions vy, ...,vr with volume one.

Since the proof of Theorem relies on a reduction to Helly’s theorem, we get
for free matroid, colorful, fractional, and (p, ¢) versions of the theorem above.

We discuss the fractional and (p, q) versions of our theorems in Section |5, along
with open problems and possible directions of research. In Section [2] we present
our Helly results that have geometric proofs, and in Section [3| we present our Helly
results that have topological proofs. In Section [ we present our Tverberg results.

2. HELLY RESULTS WITH A GEOMETRIC PROOF

The goal of this section is to present several quantitative Helly-type theorems
which can be reduced to a standard Helly theorem in higher dimensions. We can
achieve this when we have the following two ingredients.

e A class C of sets that is easy to parametrize. In most cases, we want
families that are closed under Minkowski sum: if A, B € C, then A® B € C.
However, we also present results for families of convex sets which are not
closed under Minkowski sum. The dimension of C as a topological space
with the Hausdorff metric is going to determine our Helly numbers. The
parametrization should give a convex structure to C.
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e A min-concave function f : C — R. We say that a function is min-
concave if f(AA 4+ (1 — A\)B) > min{f(4), f(B)} for all A,B € C and
A € [0,1]. The definition of convex combination AA + (1 — ) B depends on
our parametrization of C. In many cases it represents AA @ (1 — A) B, which

we refer to as a Minkowski convex combination of A and B.

We first present a very general Helly theorem. This result will work as a blueprint
for our results with geometric proofs. For some applications, we show how to reduce
the resulting Helly number.

Definition 1. We say that a family C of convex sets in R* has a Minkowski
parametrization in R' if there exist a convexr domain L C R' and a surjective
function D : L — C for which D(Aa + (1 — A\)b) = (AD(a)) ® ((1 — X\)D(b)) for all
a,be L and all X € [0,1].

With this, we can now state the following Helly-type theorem.

Theorem 2.0.1. Let C be a family of convex sets in R that has a Minkowski
parametrization in R!. Let f:C — R be a function such that f(AMA® (1 —\)B) >
min{ f(A), f(B)} for all A,B € C and A € [0,1]. Then, for any finite family F of
conver sets in R?, if the intersection of every | + 1 or fewer sets in F contains a
set K € C such that f(K) > 1, then NF contains a set K € C such that f(K) > 1.

Proof. Let D : L — C be the Minkowski parametrization of C, where L C R! is
convex. For each convex set K C R%, let S(K) = {A C C : f(A) > 1}. The
conditions on the parametrization imply that S(K) C R! is convex. Moreover, for
any family D of convex sets in R?,

S(ND) = () S(K).

KeD

Therefore, by applying Helly’s theorem to the family {S(K) : K € F} we obtain
the desired conclusion. O

We can immediately make two observations. First, we can apply almost any
generalization or extension of Helly’s theorem in R! and obtain new results in R<.
The proof method above gives quantitative colorful, fractional, and (p, ¢) theorems
in R?. The second observation is that, even though C is I-dimensional, the set
{C € C: f(C) = 1} is in general (I — 1)-dimensional. This makes it possible to
reduce the Helly number from [ + 1 to [ in several cases, even if f is not a linear
function on C. For some cases, such as zonotopes, we show the improvement in this
section. For other cases, such as ellipsoids, we require the topological proofs.

Let us mention two examples of functions to which we can apply our methods.

Example 2.0.2 (Log-concave measures). We say a measure p in R? is log-concave
if WAA® (1 —N)B) > u(A) u(B)=2, for any two Borel sets A, B and X € [0, 1].
There is a simple way to obtain log-concave functions [Bor'th]. It suffices to take a
log-concave density function p : R* — R* and consider

p(a) = [ v

There are abundant log-concave density functions p to choose from [SW14]. Com-
mon examples are p being constant (which gives i as the volume), p = e~%, where
1 is any convex function (which makes p a Gaussian measure if ¥(z) = ||z||?), or
p being a multivariate real stable polynomial (if we restrict our sets to the points in
R? with positive coordinates).
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Example 2.0.3 (Simultaneous approximation of convex sets by a single set). Given
two sets A, K C R%, and a positive real number €, we say that a translation of A
is an e-approzimation of K with center a € R if

a+ACK Ca+ (1+¢)A.

Notice that if A € [0,1] and A, B are e-approzimations of the same convex set K,
with centers a,b, respectively, then AA & (1 — X\)B is also an e-approximation of
K with center Aa + (1 — \)b. We say that a translation of A simultaneously e-
approzimates a family F of sets if there exists an a € R? such that the condition
above holds simultaneously for all K € F (i.e., we use the same translation vector
for all sets in F).

Let K be a convex set and £ > 0. If Cy denotes the bounded convex sets in R?
whose barycenter is at the origin, we can define a {0, 1}-function.

fKthdXCo%{O,].}

(@ A)H{l ifa+ACKCa+(14+¢)A

0 otherwise

The function above is min-concave with respect to the Minkowski sum because
support functions respect Minkowski convex combinations. In formal terms, if
h,(C) is the support function in direction v of a set C' and A € [0, 1], then

hoOVA @ (1 — A)B) = My (A) + (1 — Mho(B).

If we want to show that fx (-) is min-convave, it suffices to notice that fx(a, A) =
1 if and only if h,(a + A) < hy(K) for every direction v and use the linearity
mentioned above.

Let us show how this family of functions give exact quantitative Helly theorems,
even though they do not fit exactly into the framework of Theorem m (since we
have a different function for each convex set K).

Theorem 2.0.4. Let ¢ > 0 and C be a family of convex sets in R, that has a
Minkowski parametrization in R'. Suppose that for a finite family F of convex sets
in Re, for every subfamily F' of [4+d+1 or fewer sets of F there exists a translation
of a set in C that is a simultaneous e-approzimation for all sets in F'. Then, there
exists a translation of a set in C that is a simultaneous e-approrimation all sets in

F.

Proof. Let D : L — C be the Minkowski parametrization of C, where L C R! is
convex. Given K € F, let fx : RY x C — {0,1} be defined as above. For each
K e F,let S(K) ={(a,z) € R x R': fx(a, D(x)) = 1}. Since F C R? is convex,
then S(F) C R is also convex. Therefore, an application of Helly’s theorem in
R!*? gives us the desired result. O

If we are interested in Theorem for a particular family of convex sets, such
as axis-parallel boxes, it suffices to consider with C the axis-parallel boxes centered
at the origin, since the translation vector will be added afterward. This reduces
the Helly number obtained by d. Let us now analyze families of convex sets that
admit parametrizations that we can use in Theorem [2.0.1

2.1. Zonotopes and cylinders with fixed directions. Let vq,...,v; be fixed
directions in R?. For a vector m = (py,...,pa,1,-..,ar) € R¥4 where a; > 0
for all 1 <14 < k, we can consider the zonotope

Z(m) = p+ ((am) ® (C2v2) & ... 0 (akvk)),
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where p = (p1,...pq) € R% Then, not only is ‘the family of all zonotopes defined
this way closed under Minkowski sums, but Z(I) ® Z(m) = Z(I +m) for all [,m €
Rker.

If we apply Theorem to zonotopes and min-concave measures, we obtain a
Helly number of k+d-+1. We show how to reduce this number by one, by replacing
the simple parametrization in R**% to one in R*¥*7-1

Theorem 2.1.1. Let vy, ..., v be directions in R? and C be the family of zonotopes
with directions vy, . .., vy in R%. Let i be a min-concave measure in R?. Then, given
a finite family F of convex sets in Re, if the intersection of every k+d or fewer sets
in F contains a zonotope K € C such that u(K) > 1, then NF contains a zonotope
K € C such that u(K) > 1.

Proof. We modify a bit the proof of Theorem to fit this theorem. Given a
convex set F' in R?, we consider S(F) C R*¥+9~1 the set of points

k+d—
(p17---,pd,041,---70lk_1)GR+ !

such that a; > 0 fori =1,...,k—1 and the following condition holds. There exists
a value of « > 0 for which the zonotope

Z=p+ ((041111) @ (av2) @ ... D (ag—105—1) D (owk))

is contained in F and p(Z) > 1. We only have to show that S(F) is con-
vex. In order to do this, consider two points @ = (p1,...,pd,1,...,p_1),b =
(q1,---,qd, B1,s- - ., Pr_1) in S(F). They each have a value o, 3 such that (a, «), (b, 5)
describe zonotopes contained in F' with large p-measure. For A € [0, 1], consider
the zonotope described by (M@ + (1 — A\)b, A + (1 — A)3). This is a Minkowski
convex combination of the two zonotopes Z1, Zs described by (a, o), (B, B), respec-
tively, so it is contained in F. Moreover, by the min-concavity of p, we have that
since p(Z1) > 1 and p(Z3) > 1, then pu(AZ; @ (1 — A)Zz) > 1. Therefore, the first
k4 d — 1 coordinates representing AZ; @ (1 — \)Z2 describe a point of S(F), as we
wanted. (]

The reader may notice that the restriction of p1 = vol shows that Theorem [1.0.6]
is a corollary of Theorem[2.1.1] Moreover, the convexity of S(F) allows us to obtain
colorful, fractional, and (p, q) versions of Theorem m

If we take k = d and v1,...,v4 the canonical basis of RY, we obtain a Helly
theorem for axis-parallel boxes of volume one. It should be noted that recovering
volumetric Helly theorems for which the Helly number is 2d is of particular interest
since this is the Helly number in the classical results of Bardany, Katchalski, and
Pach [BKPS&2].

Example 2.1.2 (generalized zonotopes in R?). In the definition of a zonotope, we
can replace any term aivg by agTy, where Ty, is a convex set in some r-dimensional
subspace of R?. We call this a generalized zonotope. For convex sets and o, 3 > 0
we have
aTy @ BTy = (a+ B)Tk,

so the sets constructed this way are still closed under Minkowski sums. We do not
need to increase the Helly number beyond k + d for Helly-type theorems involving
generalized zonotopes.

As an example of a generalized zonotope, consider the generalized zonotopes in
R? of the form
P + (alvl D CtQTQ),
where v; is a direction in R* and 75 is a unit ball in a hyperplane orthogonal to
v1. These are parallel cylinders in R?. In the case d = 3, this gives us a Helly
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theorem for containing a vertical cylinder of volume one with Helly number five. A
direct application of Theorem [2:0.4] shows that if for every 6 sets of a finite family
of convex sets in R3 there exists a vertical cylinder such that one of its translates is
a simultaneous e-approximation of them, then there exists a vertical cylinder such
that one of its translates is an e-approrimation of the whole family.

2.2. Affine images of a fixed set. Consider the set
C={(a,A):aeR? Aisasymmetric d x d positive definite matrix}.

We can assign the linear structure of (a, A) as points in R 4+3)/2 to C. Let
K C R? be a set. Given a convex set M C R?, we also consider

Sk(M)={(a,A)eC:a+ AK C M}.

Gruber proved that for the case K = By, the unit ball in R?, and for any convex
set M C R?, the set S 5,(M) is convex [Gru08]. We can give a short one-line proof
of this fact for any K. For two points (a, A), and (b, B) in Sx (M), and X € [0, 1],
we have

Aat+(1=N)b]+[AA+(1-N)B]K C Ma+AK)&(1-\)(b+BEK) € AM&(1-\)M = M.

Therefore, Sk (M) is convex.

Notice that the family of sets of the form a + ABy with (a, A) € C parametrizes
all ellipsoids in R?. To see this, consider an ellipsoid centered at the origin, X By
where X is any non-singular matrix. We can find a polar decomposition of X =
AQ), where A is a symmetric positive definite matrix and @ is orthogonal. Then,
XB,; = AQB, = AB,.

Even though this is not a Minkowski parametrization of ellipsoids, the fact that
Sk (M) is convex is enough to prove an analog version of Theorem for min-
concave functions on symmetric matrices. Doing this is almost enough to prove
Corollary We need to consider the function det(A), which is log-concave in
P4, the space of positive definite d x d matrices. However, this application requires
the number of color classes to be n = @ + 1. In order to reduce the dimension
by one, we will use the topological methods of the next section. We have not found
a way to reduce this Helly number in a similar way to the proof of Theorem [2.1.1}
An advantage of this slightly weaker form of Corollary is that we do get a
(p, q) theorem for containing ellipsoids of volume one. We can, however, reduce the
dimension for other functions, as in the next theorem.

Theorem 2.2.1. Let F be a finite family of convex sets in RY. If the intersection
of every @ or fewer sets in F contains an ellipsoid whose sum of lengths of
principal axes is equal to one, then NF contains an ellipsoid whose sum of lengths
of principal azxes is equal to one.

Proof. We denote by tr(-) the trace function. For each K € F, let
1 ~
S(K) = {(a,A) ERIxPy: tr(Ad) =5, a+ABsC K}.

Since the trace is a linear function, S(K) is a subset of a (@ — 1)—dimensional

affine subspace of R? x P4. Moreover, S(K) is convex. The lengths of the axes
of the ellipsoid a + AB, are twice the eigenvalues of A, so 2tr(A) is the sum of
the lengths of the axes of the ellipsoid. An application of Helly’s theorem in this

(@ — 1)—dimensional affine subspace of R? x P4 gives us the desired result. [
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3 - 3
FIGURE 1. The matrix A preserves the triangle T setwise, but

permutes the vertices. In the space of triangles, we cannot deform
T to AT by using triangles of constant area and contained in T

Some readers may find the condition in Section [2.2]of the matrices being positive
semidefinite unusual. However, we cannot remove it completely. Consider 7 to be
the set of triangles in the plane, and K be a particular area one triangle in the
plane. Then 7 can be parametrized as the family of sets of the form a + AK where
a € R? and A is a non-singular 2 x 2 matrix. However, the set Sa(K) C T that
represents triangles of area at least one which are contained in K consists of six
isolated points (one for each permutation of vertices). In order for Sa(K) to be
convex, or even just connected, we need some conditions on the matrices involved.
Figure [I] illustrates this argument.

2.3. H-convex sets. Let S7~! ¢ R? be the unit sphere. Given a family of direc-
tions H C S4~!, not contained in any closed half-sphere of S?~!, we consider all
half-spaces of the form {y : (y,h) < A} where h € H, X € R, and (-,-) stands for
the dot product. We refer to these halfspaces as H-halfspaces. We say that a set
Y C RY is H-convex if and only if it is the intersection of a set of H-halfspaces.
Boltyanski and Martini characterized the sets H for which H-convex sets are closed
under Minkowski sums [BM03].

HcS?

FIGURE 2. Two H-convex sets in the plane. Redundant half-
spaces are used as support hyperplanes.

The intuitive idea is to consider two different H-convex polytopes P and @ in
R?. For each 1 < k < d — 2, it is possible that a face in the k-dimensional skeleton
of P and a face in the (d — k — 1)-skeleton of @ get added to make a facet of P @ Q.
The condition of Boltyanski and Martini is that the direction orthogonal to this
new facet is contained in H, for all such possible directions. In the plane, any finite
set H C S! not contained in any closed half-circle gives a set of directions for which
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H-convex sets are closed under Minkowski sums. We avoid stating this condition
explicitly since we don’t use it directly.

Claim 2.3.1. Let H C S% ! be a finite set of directions for which H-convez sets
are closed under Minkowski sums. Then, the family C of H-convex sets admits a
Minkowski parametrization in RIF!.

Proof. Let H = {vi,...,vg|}. Any H-convex set K can be parametrized by a
vector (A1,...,A\gy)) € R such that \; = h,,(K). In other words, \; is the
support function of K in the direction v;. Notice that if vectors a,b parametrize
sets A and B and A € [0, 1], then the vector Aa+ (1—M\)b parametrizes AA® (1—\)B.
This is the Minkowski parametrization we wanted. O

We can apply Theorem [2.0.1] to families of H-convex sets as long as they are
closed under Minkowski sums. The Helly numbers will be |H| + 1. However, for
log-concave measures, we can again decrease the Helly number by one.

Theorem 2.3.2. Let H C S% ! be a finite set of directions for which H -convex
sets are closed under Minkowski sums. Let F be a finite family of convex sets in
R? and u be a log-concave measure. Suppose that the intersection of every |H| or
fewer sets in F contains an H-convez set of yu measure greater than or equal to one.
Then, NF contains an H-convez sets of p measure greater than or equal to one.

Proof. With the Minkowski parametrization in RI*| described above, we can con-
sider

S(F)={ (A1, \m-1) € RHI=1 . there exists A such that (A, .. A H|=1, )
represents an H-convex set that has p measure at least one and
is contained in F'}

An analogous argument to the one used in the proof of Theorem shows
that S(F) is convex, so the conclusion of the theorem follows.
O

As an example, we can consider H to be the set of directions of the form +e;
where e; is the i-element of the canonical basis. Then, H-convex sets are axis-
parallel boxes. We recover our Helly theorem for boxes with the same Helly number
as before, 2d.

Zonotopes and H-convex sets are both families of polytopes for finite sets H.
The Helly number for theorems regarding H-convex sets is the number of possible
facets such polytopes can have, while for zonotopes it’s the number of directions
in their 1-skeleton. In the plane, H-convex sets give us a much stronger result,
since we can have polytopes which are not centrally symmetric. Moreover, if in
R we have H = —H and we only seek centrally symmetric H-convex sets, we can
parametrize any H-convex set using d + |H|/2 parameters, thereby reducing the
Helly number.

3. HELLY RESULTS WITH A TOPOLOGICAL PROOF

Given a finite family F of sets, we can define N(F), the nerve complez of F, as
a simplicial complex with one vertex for each element of F, and include a face if
the corresponding vertices represent a subfamily with a non-empty intersection. A
large family of variations of Helly’s theorem relies on studying the nerve complex
of a family of sets. Understanding the topological properties of the sets in question
and their nerve complexes is often all that is needed to prove Helly-type theorems
[Tan13l, I[CAVGG14].
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Kalai and Meshulam proved a broad generalization of the colorful Helly theorem
for simplicial complexes which are d-Leray. We say a simplicial complex X is d-
Leray if the i-th reduced homology group I:IZ(Y) over Q vanishes for every induced
subcomplex Y of X and every i > d.

Theorem (Kalai, Meshulam 2005 [KMO05]). Let X be a d-Leray complezx on a set V.
of vertices. Let M be a matroidal complex on the same set V' of vertices with a rank
function p. If M C X then there exists a simplex T € X such that p(V \ 7) < d.

In most of our applications, we only use the case when M is a partition matroid.
In this matroid, we are given a partition V = Vg Valy--- |8 Vi and we declare
that a set L C U is independent in M if and only if |[L NV;| < 1. This makes the
rank function p(S) to be the number of indices ¢ such that SNV, # (. The classical
colorful variations of Helly appear if M is a partition matroid with kK =d + 1.

In order to apply Kalai and Meshulam’s Helly theorem, we need to construct
nerve complexes corresponding to quantitative intersections and bound their Leray
number. The topological spaces X we use are homeomorphic to open convex subsets
of n-dimensional Euclidean spaces, and so are n-Leray. The reader familiar with
this topics may observe that for our results, the application of Meshulam and Kalai
of their theorem to “good covers” of R" is sufficient. We expand on this reduction
in case it helps for the analysis of future quantitative Helly-type results.

The next ingredient we need is the classical nerve lemma, attributed to Borsuk
and Leray [Bor48| [Ler50].

Lemma 3.0.1 (Nerve lemma). Let F be a finite collection of open and contractible
subsets in a paracompact topological space X, whose union equals X. If every non-
empty intersection of sets in F is contractible, then N(JF) is homotopy equivalent
to UF.

3.1. Affine images revisited. As we saw in section the affine images of
a set K C R? given by symmetric positive-definite d x d matrices had a nice
parametrization. Consider

K =1{(a,A):a € R Ais asymmetric positive definite d x d matrix and det A = 1}.

d(d+3)
2

Notice that the dimension of this space is — 1. If we consider

K'={(a,A):a € R Aisa symmetric positive definite d x d matrix and tr A = 1}

we can observe that K and K’ are homeomorphic using the map

f: K=K
1
(CLA) — (a,trAA) .

The space of trace one positive definite matrices is the intersection of the trace
one matrices with the open convex cone of positive definite matrices. This implies

that K’ is an open convex set of a [d(d 4+ 3)/2 — 1]-dimensional Euclidean space.
Given K C R? an open set of volume one and M C R? a convex set, we define

Sx(M,vol=1)={(a,A) e K:a+ AK C M}.

Lemma 3.1.1. For K, K, and M defined as above, the set Six(M,vol = 1) is
either empty or contractible.

Proof. Let (a,A) € Skg(M,vol = 1) be fixed. We are going to explicitly give a
strong deformation retract of Sk (M,vol = 1) to {(a, A)}. Let (b, B) be any other
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element of Sk (M,vol = 1), and X € [0,1]. We define f)(b, B) € K as
Oy =M+ (1-)\)B
ecx=Aa+(1=X)b

1
16 B) = (c*’ (det C,\)l/dCA> '

We know from Section that ¢y + C\ K C M. Since the determinant is log-
concave in the space of symmetric positive-definite matrices, we have that

det Cy > det(A)* det(B)'~* = 1.

(dct Cx)l/d
Sk (M, vol = 1). Notice that this function is continuous on (b, B) and A, that it is
equal to (b, B) if A =0 and equal to (a, A) if A\ = 1. Therefore, it is the retract we
wanted. g

Therefore, ¢y + (%CA) K C ey + C\K C M. In other words, fy\(b,B) €

Now we are ready to prove a slightly stronger version of Theorem [1.0.2, We
denote the space of d X d positive definite symmetric matrices by Py.

Theorem 3.1.2. Let M be a matroid on a set V of vertices with rank function p,
and let K C RY be an open set of volume one. For each v in V, we are given an
open convex set F,, in R?. We know that for each set V! C V that is independent
in M, there exist a € R and A € Py such that det A =1 and a + AK C Nyey' F,.
Then, there exists a set T C V such that p(V \ 7) < d(d + 3)/2 — 1 and for which
there exist a € R* and A € Py such that det A =1 and a + AK C Nye, F,.

The theorem above has some additional flexibility. For example, the determinant
can be changed to other min-concave functions f on P;. The only additional
condition we require is that f is continuous and f(A) > f(aA) for 0 < a < 1, so the
shrinking argument works to prove contractibility. We describe the consequences
of using the determinant (which is log-concave) and the trace. These two functions
have a precise geometric meaning. The determinant of A is proportional to the
volume of ¢« + AK. If K is a ball, then the trace of A is proportional to the sum of
the lengths of the axes of the ellipsoid a + AK. However, there is a vast number of
known concave functions to choose from [Lie73, [And79) [Car10, [Hial3], which may
lead to interesting Helly-type theorems.

Proof. Let n = d(d+ 3)/2 — 1. For each v € V, we consider the set
G, = Sk (Fy,vol=1) C K.

Since F, is open, the set G, is open in K. Let X = N({G, : v € V}), which can
be considered as a simplicial complex on V. If V/ C V is a face of X, it means that
for G’ = {G, : v € V'} we have NG’ # (). This allows us to describe the intersection
as

NG’ = () Go= ) Sk(Fy,vol =1) = Sk (( N F) ,vol=1>.

veV’ veV/’ veV/’

Therefore, NG’ is contractible. This means we can apply the nerve lemma, and
N(G) is homotopy equivalent to UG. Moreover, the complex induced by V' is
homotopy equivalent to UG’, whose reduced homology groups vanish starting from
H,(-). Therefore, N(G) is n-Leray. Now we can apply the Kalai-Meshulam theorem
to N(G), giving us the desired result.

O
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The fact that Corollary is optimal also shows that theorems and
are optimal. Let us prove Corollary

Proof of Corollary[1.0.3. Upper bound. Notice that if By is a ball of volume 1,
then the set a + ABy where a € RY, A € P, parametrizes all ellipsoids in RZ.
The volume of the ellipsoid a + ABy is precisely det(A4). Let F = Fy U --- U Fy,
where sets are counted with multiplicity. The partition induced by the F; creates a
matroid structure on F. We can apply Theorem [1.0.2| and obtain the upper bound
of Corollary [T.0.3]

Lower bound. We show how to construct a family F of convex sets such

that NF does not contain an ellipsoid of volume greater than 1, but the intersection
d(d+3)

d(d+3)
2

of any =5 — 1 or fewer sets of F does contain an ellipsoid of volume strictly
greater than 1. The construction we made turned out to be the same as Damésdi’s
[Dam17], but we include it for completeness. If we take F; = --- = F,_1 = F and

scale everything appropriately, we have the desired counter-example.

It is known that for most convex sets, the number of contact points with its
John ellipsoid is precisely @ [Gru88| [Grull]. Let K be such a convex body.
By applying an appropriate affine transformation, we can assume that the John
ellipsoid of K is the volume one ball By centered at the origin. Let n = d(d + 3)/2
as before and consider uq,...,u, the contact points of K with B;. The classical
characterization of sets whose John ellipsoid is By is that there are non-negative

coefficients Aq,..., A\, such that

n

> Xi(ui @ ;) = Iaxa

i=1
Z )\ZUZ =0
i=1

The set of matrices of the form (u, 1) ® u, where ® denotes the tensor product, lies
in an n-dimensional affine space of the space of (d + 1) x d matrices. If we also
restrict u to be a unit vector, this makes the trace of u ® u to be equal to 1, so
(u,1) ® u is in an (n — 1)-dimensional affine space. Moreover, the trace shows that
> Ai = d. Therefore, we can modify the expression above to

(N 1
; ( d> (ui, 1) @u; = dJ.
The matrix J is a (d+1) X d matrix formed by a d x d identity matrix with an extra
row of zeros, and the expression above is a convex combination. This is consistent
with Carathéodory’s theorem: n elements are expected to be necessary to contain
the point (1/d)J in their convex hull if we choose them from an (n — 1)-dimensional
space. What Gruber’s results show is that this is often optimal: for most convex

sets the n-tuple {(u;,1) ®@u; : i =1,...,n} is critical, as none of its proper subsets
contains (1/d)J in its convex hull.
Now, given this n-tuple of contact points uy,...,u,, consider F the family of

halfspaces of the form {z : (z,u;) < 1} for each i. By the characterization of the
John ellipsoid, By is the maximal ellipsoid in NF. However, for any proper subset
F' C F, we have that NF’ has fewer contact points with By. For those contact
points u, the convex hull of the points (u, 1) ® u cannot contain (1/d).J, so By is not
the maximal ellipsoid of this set. Since By C NF’, we have that 7’ must contain
an ellipsoid of strictly larger volume. U

Now we are ready to prove Theorem
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Proof of Theorem[1.0.7, We are going to use Brazitikos’ volumetric Helly theorem
[BralT] for this proof. If one goes through the proof of Brazitikos’ result, he actually
proves that given a finite family F, if the intersection of every 2d of its sets has
volume at least one, then NF contains an ellipsoid of volume d(—34/2)(1+0(1) The
reason for this is that Brazitiko’s proof (which is a refinement of Naszodi’s original
proof) relies on the following idea. Given a finite family of convex sets F, consider
& the ellispsoid contained in (| F of maximal volume. Then, we can find an
ellipsoid & that contains the intersection of a subfamily F’ of F of size 2d and such
that vol &/ vol & is bounded above. Brazitikos’ theorem is obtained by noticing
that vol &/ vol & > vol((F')/vol((F). However, we can simply notice that we
also have the inequality vol £y/ vol & > vol(( F')/ vol(€1) to obtain the conclusion
above. We are going to use Brazitikos’ ellipsoid to our advantage.

If we take an independent set V', the condition of the theorem implies that the
intersection of every 2d of the convex sets represented by the vertices in V' has
volume greater than or equal to one. Therefore, N,y F, contains an ellipsoid of
volume d(—34/2)(1+o(1)) " Now we can apply Theorem and conclude that for
some set 7 with p(V \ 7) < d(d + 3)/2 — 1, we have that N, F, also contains an
ellipsoid of volume d(—34/2)(1+o(1)), O

3.2. Further variations and diameter results. In this subsection, we discuss
how we can modify the setting used in the topological proofs to obtain other vari-
ations of Helly’s theorem. We only describe standard Helly theorems, although
every theorem has a general matroid version. Most of these require minimal mod-
ifications to the arguments presented earlier. Recall that P; stands for the set of
symmetric positive definite matrices. In this subsection, the set F will always be a
finite family of convex sets in R¢.

Example 3.2.1 (Translates of a convex set). Instead of pairs (a, A) in R x Py,
consider only the pairs of the form (a,I), where I the identity matriz. The dimen-
sion of this space is equal to d. Let K be a fized set in RY. We consider again

S (M) ={(a,I):a € R a+ 1K C M}.
The arguments above re-prove the folklore theorem “If the intersection of every d+1
or fewer sets of F contains a translate of K, then NF contains a translate of K.

Of course, the identity matriz is superfluous in this case, but it shows how our
methods relate to this classical result.

The example above has the particular advantage that Sk (M) is easy to visualize.
If M =T + K for some convex set T, then Si (M) =T.

Example 3.2.2 (Axis-parallel ellipsoids). Instead of all pairs (a, A) in R? x Py,

consider only the pairs where A is a positive definite diagonal matrix. The resulting

space now has dimension 2d. We can apply the topological Helly theorem to the

family of sets

S(M) ={(a,A) :a € R, a+ ABy C M, A is a positive definite diagonal matriz, det(A) = 1}.

This shows that “If the intersection of every 2d or fewer sets of F contains an
ellipsoid of volume one with axes parallel to the canonical basis, so does NF”.

As pointed out by an anonymous referee, the result above can also be proved
using the methods of Section 2. For a positive definite diagonal d x d matrix A, let
z(A) be the vector with the first d — 1 of its diagonal matrices. Then, we define

So(M) = {(a,z(A)) € R**"1 : a+ABy C M,a € R%, A is a positive definite diagonal matrix, det(A) = 1}.

If M is convex, S3(M) is also convex. We can modify this example to prove the
following diameter Helly theorem version with boxes.
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Theorem 3.2.3 (Helly for box diameter). Let F be a finite family of convex sets
in R such that the intersection of every 2d or fewer contains an azis-parallel box
of diameter one. Then, NF contains an axis-parallel box of diameter d—'/2.

Proof. In Example replace By by an axis-parallel hypercube of side-length é,
and the determinant for the trace. The intersection of any 2d or fewer sets of our
family contains an axis-parallel box whose diameter is at least one. For this box the
sum of its side-lengths must also be at least one. Therefore, by our modification
of Example [3.2:2] NF must contain an axis-parallel box whose side-lengths add up
to one. A simple application of the arithmetic mean - quadratic mean inequality
shows that the diameter of this box is at least d—1/2. (]

We should note that O(d~'/2) is the Barany-Katchalski-Pach conjecture for
Helly’s theorem for the diameter if we know that the intersection of every 2d sets
has diameter greater than or equal to one [BKP82|. Brazitikos has confirmed the
conjecture for families of centrally symmetric sets [Bral6]. We just confirmed their
conjecture for diameters realized by axis-parallel boxes. We can also confirm it for
the “increasing” diameter. Given two vectors © = (z1,...,24),y = (Y1,-.-,Yd), We
say that x >y if x; > y; for all i € {1,2,...,d}. Given a compact set K C R?, we
define its increasing diameter as max{||z — y|| : © > y,2 € K,y € K}. The norm
used in this definition is the #/3-norm.

Theorem 3.2.4 (Helly for increasing diameter). Let F be a finite family of compact
convez sets in Re. If the intersection of every 2d of them has an increasing diameter
greater than or equal to one, then the increasing diameter of NF is greater than or
equal to d=1/2.

Proof. We modify Example again, but now we replace By by a segment in the
direction (1,...,1) of unit length in the 1-norm, and the determinant by the trace.
For any 2d or fewer sets of F, their intersection contains an increasing interval
of 2-norm equal to 1. Since the 1-norm of this interval must be at least one, we
can apply the resulting Helly theorem from the example and obtain an increasing
segment in NF of 1-norm equal to 1. Finally, the 2-norm of this interval is at least
d~1/2, as we wanted to prove. O

Theorems and are similar, yet neither seems to directly imply the
other. They do suggest that the issues for the quantitative theorems for the diam-
eter may be due to the norm selected.

Whenever we have a parametrization of a family of convex sets D : R! — C such
that D(x +y) = D(x) ® D(y), we also get a diameter Helly theorem. Let us give
as an example the result for H-convex sets.

Theorem 3.2.5 (Diameter Helly for H-convex sets). Let H C S9=1 be a finite set
of directions for which H-convex sets are closed under Minkowski sum. Let F be
a finite family of convex sets in RY. If the intersection of every |H| or fewer sets
of F contains an H-convex set of diameter greater than or equal to one, then NF
contains an H-convex set of diameter greater than or equal to |H|*1/2.

Proof. Given K € F, let
S(K) ={(M,.., \uj—1) € RFITL: there exists A such that (A1, ..., Ajgj—1,\)
represents an H-convex set contained in K of diameter at least one}

Since the diameter is not a concave function, S(K) may not be convex. However,
consider the family G = {conv(S(K)) : K € F}. If we apply Helly’s theorem to
G, we obtain a point p in its intersection. Let us show that, given a K € F, there
exists a value of A such that (p, \) represents an H-convex set of diameter at least
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|H|~'/? contained in K. The minimum value of A we obtain among all possible
K € F will give us the representation of the H-convex set we are looking for.

Take any set K € F. Since p € NG, we know that p € conv(S(K)). Therefore,
by Carathéodory’s theorem we have that p is the convex combination of |H| points
P10 of S(K), p= Z‘f:”l a;p;. For each p; there exists a value ; such that
(pi,v:) represents an H-convex set K; C K of diameter greater than or equal to
one. Therefore, Z‘Zzll a;(pi, i) represents an H-convex set K* C K.

Notice that if A, B are two sets in R?, then

diam(A ® B)? > diam(A)? 4 diam(B)?.
The inequality above follows easily for parallelograms. Since the diameter of a set
is realized by a segment, this shows that it holds for all sets. Therefore,
) |H]| |H|
diam(K*)? = diam (a1 K1 @ ... ® oqg K jpg))~ > Zdiam(aiKi)Q > Z o > |H|7h
i=1 i=1

0

The proof above also works with zonotopes, and the guarantee for diameter we
obtain in the end is (k + d)~'/2. In the case of axis-parallel boxes, Theorem
gives a slightly weaker bound than Theorem [3:2.3] However, it is only off by a
constant factor and applies to a much more general family of sets.

Example 3.2.6 (Central symmetry). Suppose every set in F is centrally symmetric
around the origin. Then, instead of pairs (a, A) in R x Py we only need to consider
pairs of the form (0,A). This reduces the dimension of the set of pairs (0, A) to
d(d + 1)/2. Therefore, if we only consider centrally symmetric sets in Theorem

the Helly number is reduced from d(d + 3)/2 to d(d +1)/2.

Example 3.2.7 (Flipping the containment). The equation M C a+ ABy is equiv-
alent to —A~*a+ A™'M C B;. We know that the set of all pairs (b, B) € R x Py
such that b+ BM C By is convexr. Moreover, if det(A) = 1, then det(A™!) = 1.
Therefore, in the space R x Py the diffeomorphism (a, A) — (—A~ta, A7) shows
that the set

{(a,A) : M C a+ ABy,det(A) = 1}
is contractible for each bounded set M C R,

The construction in the example above can be used as before to prove a version
of Theorem [T.0.2] and Corollary for enclosing ellipsoids. The proof is identical
to the one in the previous subsection with essentially the same proof. We state
below the flipped version of Corollary [1.0-3}

Theorem 3.2.8. Letn = d(d+3)/2 and let F1, ..., F, be finite families of bounded
sets in RY. Suppose that for every choice Fy € Fi, ..., F, € F, we have that U F
is contained in an ellipsoid of volume one. Then, there exists an index i such that
UF; is contained in an ellipsoid of volume one.

3.3. Algorithmic consequences. Most of our Helly-type results can be used to
produce efficient algorithms to solve optimization problems. Helly-type results
and their connection to LP-type problems (short for “linear programming” type
problems) have been used to design algorithms for a vast array of optimization
problems. Sharir and Welzl described a short list of conditions an LP-type problem
needs in order to have a randomized algorithm that solves it in expected linear
time in terms of the number of constraints [SW92]. Currently, there is a clear
hierarchy of LP-type problems and the algorithms to solve them have been improved
[GMRS08, [ADLS17].
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In addition to applying their framework to solve LP-problems, Sharir and Welzl
showed how it could be used to compute the largest volume ellipsoid contained in
the intersection of a family of n half-spaces in R¢, or the smallest volume ellipsoid
containing a family of n points in R?. Our methods prove that the same algorithms
can be used for a much wider family of functions and witness sets. For example,
consider the following two optimization results.

Theorem 3.3.1 (Largest-volume axis-parallel box in an intersection). Suppose
that we have an oracle that can determine the largest volume axis-parallel box in
the intersection of any 2d convex sets in R?. Then, given a family F of convex sets
in R, there is a randomized algorithm that finds the largest volume azis-parallel
boz in NF in expected O(|F|) calls to the oracle.

Theorem 3.3.2 (Best simultaneous approximation to a family of convex sets).
Suppose C is a family of convex sets in R? with a Minkowski parametrization in
R!. Let F be a finite family of convex sets in R®. Suppose there is an oracle that
can compute, for any l+d+1 closed convex sets, the smallest € > 0 such that there
ezists an element M of C with a translation that is a simultaneous e-approximation
for the 1 + d + 1 sets (if such € exists). Then, there is a randomized algorithm
that computes the smallest € > 0 such that there exists an element M of C with a
translation that is a simultaneous e-approzimation for F in expected O(|F|) calls
to the oracle.

The randomized dual-simplex algorithm of Sharir and Welzl is sufficient to prove
the two theorems above [SW92|. The algorithm for Theorem would look as
follows:

Algorithm 1 Finding the Largest Axis Parallel (A.P) Volume Box of Family

1: procedure LARGEST A.P VoLUME Box(Family F, Tuple T)

2 Order F randomly as Kj, ..., K|z where T' comes first.

3 Find the largest volume A.P box B in ﬂ?il K;.

4 for each K; € F do

5: Check B C K;.

6 if B¢ K; then

7 Find the largest volume A.P box B’ in ﬂ?il K;NK;.

8 Let B be the 2d-tuple whose maximal volume A.P box is B’.
9 B = Largest Volume Box({ K7, ..., K;},B)

10: return B

The validity of our Helly theorems implies the expected running time of the
algorithms. Our Helly theorems bound the combinatorial dimension of the associ-
ated optimization problems (2d and I 4+ d + 1, respectively). Of course, most of our
Helly-type theorems yield an analogous linear-time algorithm for their associated
optimization problem. We stress that we have only described the dependence of
the algorithms in terms of |F|. For more recent algorithms applicable to LP-type
problems and their dependence on the combinatorial dimension of the problem, we
recommend the discussion of the subject by Géartner et al. and by Amenta et al.
[ADLS17, IGMRSO08].

4. QUANTITATIVE TVERBERG RESULTS

4.1. Results using Tverberg’s theorem. In order to obtain a general Tverberg
theorem, similar in spirit to Theorem we require slightly different conditions.
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Suppose that C is a family of sets in R? parametrized by points in R!, by a some
function D : R! — C. We need that for every F' C R/,

D(conv F) C conv(UD(F)).

If D is a Minkowski parametrization, the condition above comes for free. To
observe this, notice that for any two sets A, B in R? we have that

J (M &1 -XB) C conv(AUB).
A€[0,1]

Theorem 4.1.1. Let C be a family of convex sets in RY, and D : R! — C be
a surjective function. Suppose that for every set F C R! we have D(conv F) C
conv(UD(F)). Let f : C — R be such that f o D : R' — R is min-concave. Then,
the following statement is true.

Given a family F C C of cardinality (r —1)(I+ 1)+ 1 such that f(K) > 1 for all
K € F, there exists a partition of F into r sets Ay, ..., A, such that

f hconv(UAj) > 1.

Jj=1

Proof. For each K € F, consider a point k& € R! such that D(k) = K. Then,
applying Tverberg’s theorem to the family of points in R! generated this way gives
us the desired result. O

We can apply almost any variation of Tverberg’s theorem to Theorem
including the colorful Tverberg theorem or the versions with tolerance [BSIS|
DLGMM19]. Let us describe some examples of families of convex sets for which
Theorem applies. If we apply Theorem to the parametrization of el-
lipsoids described in Section and f(-) is the volume, we obtain the following
theorem, which directly implies Theorem [1.0.1

Theorem 4.1.2 (Tverberg for ellipsoids of volume one). Let F be a family of
(r—1) (w + 1) +1 ellipsoids of volume one in R%. Then, there exists a partition
of F into r parts Ai,..., A, such that ﬂ;:l conv (UA;) contains an ellipsoid of

volume one.

The dimension of the space in Theorem can be reduced for zonotopes and
H-convex sets exactly as in the proofs of Theorem [2.1.1] and Theorem [2.3.2] by
hiding one coordinate. For zonotopes, we obtain the following result.

Theorem 4.1.3 (Tverberg for zonotopes). Let k > d be positive integers and
V1, ..,V be directions in RY. Given a family F of (r—1)(k+d)+1 zonotopes with

directions vy, . .., vk, each of volume at least one, there exists a partition of F into
r parts Ay, ..., A, such that N;_;(conv(UA;)) contains a zonotopes with directions
v1,...,V% of volume at least one.

For the case k = d, in which our zonotopes are axis-parallel boxes, the results
above requires 2(r—1)d+1 boxes, which is linear in both d and r. The previous tech-
niques used to obtain quantitative Tverberg theorems [Sob16l [RS17, [DLLHRS17D]
give much larger dependence on the dimension. Those results rely on obtaining a
Tverberg-type theorem from a centerpoint theorem, whose bounds follow from a
quantitative Helly theorem. Those quantitative Helly theorems have volume losses
which carry through to the Tverberg results.

In some cases, such as for ellipsoids centered at the origin, we can reduce the
number of sets that Theorem requires.
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Theorem 4.1.4 (Tverberg for ellipsoids centered at the origin). Let r, d be positive

integers. Given a set F of (r — 1)@ +1 ellipsoids of volume one in RY centered

at the origin, there exists a partition of F into r sets Ay,..., A, such that

m conv (UA)

j=1
contains an ellipsoid of volume one centered at the origin.

Proof. We use a slightly different parametrization of ellipsoids than the one used
in the proof of Theorem [3.1.2] Let S; be the space of symmetric positive definite
matrices whose sum of entries is equal to one. Notice that Sy is an affine subspace
of the cone Py of symmetric positive definite matrices. The set S; has dimension
@ — 1, so we can consider it as a real vector space.

Given a convex set M C R?, let us consider

S*(M){Aesd: (WA)BdCM}-

Let us show that S*(M) is convex. Notice that since the parametrization was
modified, so does the meaning of convex combinations. Let A € [0,1] and A, B €
S*(M). Consider

1
S —
det(A)/d"
1
=——— B
det(B)1/d™"
s=det(4)Y9\,  and
t = det(B)Y4(1 - \).

/

B/

We want to show that AA + (1 — A\)B € S*(M). We can rewrite the matrix by
noticing that AA + (1 — \)B = sA’ + tB’. Therefore, we want to show that
1
det(sA’ + tB')t/d
We know that A’By; C M and B'By; C M, so s%rt(sA’ +tB')By C M. Now, it
remains to use the log-concavity of the determinant to show the following inequality.

1 1
det(sA" +tB)Vd " (s+1)det(($35)A’ + (35)B') /4
B 1 1
= (s +t)det(A")s/d(s+1) det(B)/dls+t) 54 ¢
Therefore, \A+(1—A)B € S*(M), and the problem reduces to Tverberg’s theorem
on S,. [l

(sA' +tB'YBy C M.

If the ellipsoids are no longer centered at the origin, the argument above fails to
show that S*(M) is convex. In the next subsection we use the topological version of
Tverberg’s theorem to get around this problem. The theorem above does, however,
imply the following alternative Tverberg theorem for the volume.

Theorem 4.1.5 (Tverberg for the volume of centrally symmetric sets). Let r,d be
positive integers. If we are given a family F of (r — 1)d(dT+1) +1 centrally symmetric
convez sets of volume one, each centered at the origin, there exists a partition of F
into r parts Aq, ..., A. such that the volume of ﬂ;zl conv(UA;) is at least =2,
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Proof. In order to prove the Tverberg theorem above, the only additional fact we
need is that for a centrally symmetric convex set K with John Ellipsoid £, we have

ECKCVAE.

Once combined with Theorem [L.1.4] we obtain the desired conclusion. O

An application of the same parametrization as in Theorem gives the fol-
lowing Tverberg-type result. We say a segment is increasing if its endpoints z,y
satisfy x > y or y > x, with the partial order considered in Section [3.2]

Theorem 4.1.6 (Tverberg for increasing segments). Given a family of 2(r—1)d+1
increasing segments in RY, each with £1-norm equal to one, there exists a partition of
the family into r parts A, ..., A, such that ﬂ§:1 conv(UA;) contains an increasing
segment with {1-norm equal to one.

Since there are 2471 different diagonals in a hypercube, the result above gives
an exact Tverberg theorem for #; norm.

Corollary 4.1.7 (Exact Tverberg for ¢; diameter). Let F be a family of (r —
1)24d + 1 segments in R?, each with £1-norm equal to one. Then, there erists a
partition of the family into v parts A1, ..., A, such that ﬂ;zl conv(UA;) contains
a segment of £1-norm equal to one.

We do not know if the dependence of d in the corollary above must be exponential
in the dimension. It does imply a version for the standard Euclidean norm, where
the conclusion guarantees a segment of length d—1/2.

4.2. Results using the topological Tverberg theorem. The topological Tver-
berg theorem states the following.

Theorem (Topological Tverberg [BSSRI, (0za87, NVoI96]). Let r be a prime power,
d be a positive integer, N = (r — 1)(d + 1), and Ay be an N-dimensional simplex.
Then, for every continuous function f : An — R?, there exist r points x1,. .., x,
in pairwise vertez-disjoint faces of An such that f(x1) =+ = f(z,).

Tverberg’s original theorem theorem is the case for affine functions f. The
requirement that r is a prime power is necessary for the topological version [MW15]
Frilb, BZ17]. As is usual with applications of the topological Tverberg theorem, it
is not clear if the counterexamples when r is not a prime power can arise from the
functions we construct below.

Theorem 4.2.1. Let r be a prime power, and d be a positive integer. Then, given
a family F of (r— 1)@ +1 ellipsoids of volume one, there exists a partition of F
into v parts A1, ..., A, such that ﬂ§:1 conv(UA;) contains an ellipsoid of volume
one.

Proof. Notice that the set Qg4 of symmetric positive definite matrices with determi-
nant one and the set Sy of symmetric positive definite matrices with sum of entries
equal to one are homeomorphic. It suffices to consider

Sq — Qa Q4 — S
1 1

Ay —— 4 B — B
™ det(A)1/d = sum(B)

In the expression above, sum(B) denotes the sum of the entries of B. Since Sy
can be identified with R¥(4+1)/2=1 5o can Qy.
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Now, given k points (aj, A1), ..., (ar, Ax) in R% x Q4 and Ay, ..., A the coeffi-
cients of a convex combination, we can construct

k
Cc = E /\iai
i=1

k
C* =) Nd;
i=1
1
€= Geucmya

If M is a convex set and a; + A;Bg C M for all i, then c+ C* By C M. However,
since the determinant is log-concave in the space of positive definite matrices, we

have that
k k
i=1 i=1

Therefore, ¢ + CBy C M. We consider the pair (¢, C') to represent the convex
combination of the points (a;, A;) with coeflicients A;, for i =1,... k.

Now, given our family of ellipsoids F, we can associate to each of them a point
in RY x Q4 = RUI+3)/2=1 For every point ¢ € RY x Qq, let D(q) be the ellispoid
in R? represented by this pair. Let N = (r — 1)@. The points generated on
R? x Q, can be considered as a function from the vertices of Ay to R x Q.
We can extend this to a function f : Ay — R? x Qg as described above in the
construction of (¢, C'). Notice that this function is continuous. Moreover, given
vertices v1,...,vr of Ax and coefficients Ay,..., Ay of a convex combination, the

considerations above show that

k k
D (f (Z )\ivl)) C conv <U D(f(vz))> .
i=1 i=1

Therefore, if we apply the topological Tverberg theorem to the points generated
in RY x Qg, the partition induced on our ellipsoids satisfies the conditions we
wanted. (]

*

If we apply the colorful Tverberg theorem of Blagojevi¢, Matschke, and Ziegler
[BMZ15, BMZ11] instead of the topological Tverberg theorem in the argument
above, we obtain the quantitative version of the colorful Tverberg theorem.

Theorem 4.2.2 (Colorful Tverberg for ellipsoids). Let r + 1 be a prime number,
and d be a positive integer. Then, given d(d + 3)/2 families F1, ..., Fyat3)/2 of v
ellipsoids of volume one each, there exists a partition of their union into r parts

A, ... Ay such that ();_, conv(UA;) contains an ellipsoid of volume one and such
that each A; contains exactly one ellipsoid from each F; fori=1,...,r and j =
1,...,d(d+3)/2.

5. FINAL REMARKS AND OPEN PROBLEMS

We have mentioned that our geometric Helly-type results have (p, ¢)-type ana-
logues. We present one for ellipsoids to illustrate the meaning of these generaliza-
tions clearly.

Theorem 5.0.1. Let p,q,d be positive integers such that p > q > d(d + 3)/2.
Then, there exists a value ¢ = ¢(p,q,d) such that the following holds. Let F be a
finite family of convex sets in R, each of which contains an ellipsoid of volume
one. Suppose that for every choice of p sets of F, there exists q of them whose
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intersection contains an ellipsoid of volume one. Then, there exists c ellipsoids of
volume one such that every set in F contains at least one of them.

5.1. Computational aspects of the Banach-Mazur distance. Let K, M be
two convex sets and € be a positive real number. Consider

BM(K,M,e) = {(a,A) e R x Py:a+AK C M Ca+ (1+¢)AK}

This is closely related to the Banach-Mazur distance, but includes the additional
point a.

Problem. Let K,M C R? be conver sets and ¢ > 0. Determine if the set
BM(K,M,e) is necessarily contractible.

If we only require the condition a + AK C M, the set BM (K, M,e) would be
convex. If we only require the condition M C a+ (1+¢)AK, the set BM (K, M, ¢)
would be contractible. We don’t know if the intersection of these two sets is always
contractible. A positive answer would imply analogues of Theorem for the
Banach-Mazur metric and simultaneous approximation of a family of sets by a
single ellipsoid.

5.2. Fractional Helly theorems. Recently, Holmsen proved that fractional Helly
theorems, which generalize Katchalski and Liu’s classical result [KL79], are a purely
combinatorial consequence of the colorful version of Helly’s theorem [Hol19]. There-
fore, by applying his results directly to our colorful theorems we obtain results such
as the following:

Theorem 5.2.1 (Fractional Helly for ellipsoids of volume one). For every positive
real number «, there exists a 8 > 0 that depends only on o and d such that the
following holds. Letn = d(d+3)/2, and F be a finite family of convex sets in R?. If
there are at least a(li‘) subfamilies G C F of size n whose intersection contains an
ellipsoid of volume one, then there exists a subfamily F' C F such that |F'| > B|F|
and whose intersection contains an ellipsoid of volume one.

The use of Holmsen’s result is necessary with our methods if we are interested in
checking [d(d+3)/2]-tuples, as we use the topological reductions from Section[3] (i.e.,
for a convex set K C R? we consider the family of ellipsoids of volume 1 contained
in K, which is a contractible set of a [d(d+3)/2 — 1]-dimensional topological space).
However, if we consider for each convex set K C R? the set of ellipsoids of volume
at least one contained in K, this is a convex subset of R44+3)/2 Therefore, we can
obtain much sharper estimates on [ if we use the optimal bounds known for this
theorem [Kal84] [Eck85] at the cost of checking subfamilies of size @ + 1. The
result above implies the following fractional Helly theorem for the volume.

Theorem 5.2.2 (Fractional Helly for the volume). For every positive real number
a, there exists a B > 0 that depends only on a and d such that the following holds.
Let n = d(d + 3)/2, and F be a finite family of convex sets in R®. If there are at
least a(‘il) subfamilies G C F of size n whose intersection has volume greater than

or equal to one, then there exists a subfamily F' C F such that |F'| > B|F| and
whose intersection has volume greater than or equal to d—.

Problem. Does Theorem [5.2.2 hold with n = 2d? The volume in the conclusion
may need to be relazed to d=°? for some constant ¢ > 0.

It is not even clear to us that the fractional Helly theorems for the volume must
have a loss factor. In other words, for n large enough, yet only dependent on d, it
could be the case that in Theorem we can conclude that vol(NF’) > 1.
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5.3. Further restrictions on the sets. Classical variations of Helly’s theorem
on different sets mean that we replace the convexity condition on the family. For
example, Helly’s theorem for boxes in RY means that we seek to guarantee that
a family of parallel boxes intersects. For this case, it is sufficient to check that
every pair of boxes intersects: the Helly number is two. The possible intersection
structure of families of boxes is well understood [Eck88] [Eck91].

In contrast, our results for boxes have Helly number 2d, which is optimal. The
key difference is that we seek to contain boxes of certain volume, instead of restrict-
ing the sets themselves. This can also be noted in the difference of our results for
H-convex sets and the Helly theorems by Boltyanski and Martini [BMO03].

However, it is natural to ask if the exact quantitative Helly theorems can be
improved if we restrict the family F further. For example, if F is a family of
parallel boxes, if the intersection of every 2d or fewer sets of F of them contains an
ellipsoid of volume one, then so does the intersection of all of them. This can be
seen because the volume ratio between a box and its John ellipsoid is constant, so
the theorem boils down to our quantitative theorem for volume of boxes.

The arguments above show that our results can be improved by imposing con-
ditions on the sets. It does not seem evident which properties of the sets of F and
those of the witness sets can be combined to give improved Helly numbers.

5.4. Optimality of quantitative Helly and Tverberg theorems. For Tver-
berg theorems, it is not clear if the results we obtain are optimal. For example,
determining the optimal dependence of the dimension on our volumetric and diam-
eter Tverberg theorems is of particular interest.

In our volumetric Helly theorems, such as Corollary we do not know the
optimal number of color classes. It is possible that it is 2d, which would give
an honest colorful version of the optimal bounds of the Barany-Katchalski-Pach
theorem.

Our methods lift our families of sets in R? to a convex set in a higher dimension,
R!. However, not every convex set in R! can be obtained by this construction. For
instance, consider Example [3.2.1] The set of possible translating vectors a in the
construction of Sk (M) is the Minkowski difference of M and K. If the sets of
convex sets we can obtain as Sk (M) is restricted, it is likely that their intersection
patterns will satisfy additional properties and improve some of our results.
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