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Abstract. A Helly-type theorem for diameter provides a bound on the di-

ameter of the intersection of a finite family of convex sets in Rd given some
information on the diameter of the intersection of all sufficiently small subfam-

ilies. We prove fractional and colorful versions of a longstanding conjecture

by Bárány, Katchalski, and Pach. We also show that a norm in Rd admits an
exact Helly-type theorem for diameter if and only if its unit ball is a polytope

and prove a colorful version for those that do. Finally, we prove Helly-type

theorems for the property of “containing k colinear integer points.”

1. Introduction

Helly’s theorem is one of the most prominent results on the intersection prop-
erties of families of convex sets [23, 33]. It says that if the intersection of every
d + 1 or fewer elements of a finite family of convex sets in Rd is nonempty, then
the intersection of the entire family is nonempty. This result has many extensions
and generalizations, including topological, colorful, and fractional variants (see, for
example, [3, 24] and the references therein).

Quantitative versions of Helly’s theorem guarantee that the intersection of a
family of convex sets is not just nonempty but “large” in some quantifiable sense.
Bárány, Katchalski, and Pach initiated this direction of research [8, 9] when they
proved that if the intersection of every 2d or fewer elements of a finite family of
convex sets in Rd has volume greater than or equal to 1, then the intersection of

the entire family has volume at least d−2d2 .
Naszódi [32] improved the guarantee of the volume in the intersection to d−2d,

mostly settling this volumetric variant. His approach, based on sparsification of
John decompositions of the identity, has been improved in several articles [12, 13,
16, 22, 25]. A constellation of related results that adjust the function measuring
the size of the intersection, the cardinality of the subfamily intersection, or the
guarantee in the conclusion have since been proven [18, 27, 34, 35, 37]. Bárány,
Katchalski, and Pach conjectured a Helly-type theorem for diameter as well, which
remains open.

Conjecture 1.1 (Bárány, Katchalski, Pach 1982 [8]). Let F be a finite family
of convex sets in Rd. If the intersection of every 2d or fewer members of F has
diameter greater than or equal to 1, then the intersection of F has diameter greater
than or equal to cd−1/2, for some absolute constant c > 0.

Bárány, Katchaslki, and Pach showed that the diameter of the intersection is at
least d−2d. Brazitikos [14] improved this to d−11/2, providing the first polynomial
bound on the diameter of the intersection, and Ivanov and Naszódi [26] recently
obtained a bound of (2d)−3. Brazitikos [13] also proved, under the hypothesis that
the intersections of subfamilies of size αd have diameter at least 1 (for some large
enough absolute constant α), that the intersection of the entire family has diameter
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at least cd−3/2 and strengthened the bound to cd−1/2 under the further assumption
that each set is centrally symmetric. Asymptotically optimal bounds are known for
much larger subfamily intersection sizes [37].

In this manuscript we prove several new Helly-type theorems for the diameter.
Our proof techniques are based on new parametrizations of these problems and do
not use properties of ellipsoids. The analytic tools we use are basic results about
volume concentration of balls in Rd.

Our first result proves that the colorful strengthening of Conjecture 1.1 holds for
at least a large subfamily.

Theorem 1.2. There exists a decreasing function γ : (0,
√

2) → (0, 1] such that

γ(c) → 1 as c → 0 and the following holds for every c ∈ (0,
√

2), α ∈ (0, 1], and

d ≥ 2. Let β = 1−
(
1−α ·γ(c)

)1/2d
. Assume that F1, . . . ,F2d are finite families of

convex sets in Rd and set N =
∏2d
i=1 |Fi|. If

⋂2d
i=1 Fi has diameter greater than or

equal to 1 for at least αN different 2d-tuples (Fi)
2d
i=1 with Fi ∈ Fi for each i, then

there exists an index k ∈ [2d] and a subfamily G ⊆ Fk such that |G| ≥ β|Fk| and
the diameter of

⋂
G is greater than or equal to cd−1/2.

We exclude the case d = 1 since the real line has an exact diameter Helly-type
theorem, while all higher dimensions do not. The function γ is related to volume
concentration properties of d-dimensional balls, and is described in Section 4.

The description “colorful,” which dates back to Lovász’s original colorful Helly
theorem [6], is derived from thinking of each family Fi as having a particular color.
Then, if the intersections of sufficiently many colorful collections (containing one
set of each color) have large diameter, there is a large monochromatic family whose
intersection has large diameter. Taking Fi = F for each i ∈ [2d] gives a traditional
fractional version of Conjecture 1.1. In this respect, the conjecture seems to be
an outlier among its peers: while the proof of many fractional Helly-type theorems
relies on the corresponding “standard” Helly-type theorem, in this case the standard
theorem appears more difficult.

Crucially, β → 1 as α→ 1 and c→ 0 in Theorem 1.2, so the size of the subfamily
can be arbitrarily close to that of the original set. The value of β is a consequence
of Bulavka, Goodarzi, and Tancer’s recent work on the colorful fractional Helly
theorem [15], which builds on research by Kalai [28,29]; Bárány, Fodor, Montejano,
Oliveros, and Pór [7]; and Kim [31].

We make no assumptions on the convex sets involved. The proof techniques
based on John ellipsoids have, for diameter Helly theorems, a loss factor on the
diameter at least as large as the Banach-Mazur distance between the intersection
of the family F and its John ellipsoid. This can be linear in the dimension d.
(The results of Fernández Vidal, Galicer, and Mrezbacher [22] show the factors
obtained if we interpolate between several results regarding John decompositions
of the identity.) We obtain estimates with a loss factor proportional to d1/2 by
first controlling the diameter in fixed directions and then using analytic aspects of
convex sets.

Theorem 1.2 suggests that it might be possible to extend the diameter conjecture
to a version that is both fractional and colorful.

Conjecture 1.3. There is an absolute constant c > 0 such that, for each d ≥ 2
and α ∈ (0, 1], there is a constant β > 0 that satisfies the following. Assume that

F1, . . . ,F2d are finite families of convex sets in Rd and set N =
∏2d
i=1 |Fi|. If⋂2d

i=1 Fi has diameter greater than or equal to 1 for at least αN different 2d-tuples
(Fi)

2d
i=1 with Fi ∈ Fi for each i, then there exists an index k ∈ [2d] and a subfamily

G ⊆ Fk such that |G| ≥ β|Fk| and the diameter of
⋂
G is greater than or equal to

cd−1/2. Furthermore, β → 1 as α→ 1 for each fixed d.
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Even the case α = 1 is open and interesting.
In another direction, any Helly-type theorem for diameter necessarily entails

some loss—it is not possible to conclude that intersection of the entire family has
diameter at least 1 even by checking arbitrarily large subfamilies [37]. Sarkar, Xue,
and Soberón [35] suggested that this may be a consequence of the norm used to
measure diameter, and that the `1 norm may give exact Helly-type diameter results.
We show that this is indeed the case.

Theorem 1.4. Let ρ be a norm in Rd whose unit ball is a polytope with k facets,
and let F be a finite family of convex sets in Rd. If the intersection of every kd
or fewer members of F has ρ-diameter greater than or equal to 1, then

⋂
F has

ρ-diameter greater than or equal to 1. Moreover, this statement is not true if kd is
replaced by kd− 1.

In particular, there is an exact diameter Helly-type theorem in the `1-norm,
although the intersection condition on subfamilies is necessarily exponential. We
present three proofs of Theorem 1.4, one of which implies a colorful version (see
Theorem 3.4). In Theorem 3.7, we prove that no other norm admits an exact
Helly-type theorem for diameter, thus characterizing the norms for which an exact
theorem is possible.

The particular case of the `∞ norm implies a different relaxation of Conjecture
1.1.

Corollary 1.5. Let F be a finite family of convex sets in Rd. If the intersection
of every 2d2 or fewer elements of F has diameter greater than or equal to 1, then⋂
F has diameter greater than or equal to d−1/2.

If we relax Conjecture 1.1 to checking subfamilies of quadratic cardinality in
the dimension, then an application of Nászodi’s method guarantees only that the
diameter of

⋂
F is at least d−1 (see, e.g., [22, Theorem 1.4]). To obtain a bound

of d−1/2, the method would require that each set be centrally symmetric.
Finally, we investigate a discrete analogue of diameter Helly-type theorems.

Doignon extended Helly’s theorem to the integer lattice [21], showing that if the
intersection of every 2d or fewer elements of a finite family of convex sets in Rd

contains an integer point, then the entire intersection also contains an integer point.
This result was proved independently by Bell [11] and by Scarf [36]. In most cases,
the aim of quantitative Helly-type theorems for the integer lattice is to bound the
number of integer points in the intersection of a family of convex sets [2, 4, 19,20].

Such work can be thought of as Helly-type theorems for “discrete volume”. We
think of a convex set as having large “discrete diameter” if it contains many colinear
integer points. In contrast to most continuous diameters, there is an exact Helly-
type theorem for discrete diameter.

Theorem 1.6. Let k be a positive integer and F be a finite family of convex sets
in Rd. If the intersection of every 4d or fewer elements of F contains k colinear
integer points, then

⋂
F contains k colinear integer points.

Our proof also implies a colorful version of Theorem 1.6. Doignon’s theorem
shows that the size of the subfamilies in the hypothesis is necessarily exponential
in the dimension, but this size can be significantly reduced if it suffices to maintain
a bound on the diameter of a large subfamily of F .

Corollary 1.7. For every positive integer d and real number α ∈ (0, 1], there exists
a real number β = β(α, d) > 0 such that the following holds. Assume that F is a
finite family of convex sets in Rd and let k be a positive integer. If

⋂
H contains at

least k colinear integer points for at least α
( |F|

2d+1

)
subcollections H ⊆ F of 2d + 1
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sets, then there exists a subfamily G ⊆ F such that |G| ≥ β|F| whose intersection
contains k colinear integer points.

Since Doignon’s theorem is optimal, the proportion β(1, d) is necessarily strictly
less than 1.

We present the proof of Theorem 1.6 in Section 2. Our results for general norms
are collected in Section 3, and Section 4 contains the proof of Theorem 1.2. We
conclude in Section 5 by discussing additional aspects one of our key building blocks
(Theorem 3.1) and presenting some open questions.

2. Discrete diameter results

The proofs in this section employ similar methods to those of Sarkar, Xue, and
Soberón in [35], in which a suitable parametrization reduces quantitative Helly-type
theorems to standard Helly-type theorems in higher-dimensional spaces.

We denote the standard inner product in Rd by 〈·, ·〉.

Proof of Theorem 1.6. Let v ∈ Rd be a vector whose components are algebraically
independent. In particular, 〈v, z〉 6= 0 for every z ∈ Zd \ {0}. For every convex set
K ⊆ Rd, we define the set

S(K) =
{

(x, y) ∈ Rd ×Rd : x ∈ K, x+ (k − 1)y ∈ K, 〈v, y〉 > 0
}
,

which is convex and nonempty. Moreover, if x ∈ K, x+(k−1)y ∈ K, and 〈y, v〉 6= 0,
then either (x, y) ∈ S(K) or (x+ (k − 1)y,−y) ∈ S(K). Now consider the family

G = {S(K) : K ∈ F}.
The conditions of the theorem imply that the intersection of every 22d or fewer
sets in G contains a point of Z2d in their intersection. By Doignon’s theorem,

⋂
G

contains an integer point. If (x, y) is such a point, then y 6= 0 and the k colinear
integer points x, x+ y, . . . , x+ (k − 1)y are contained in every member of F . �

The proof above is quite malleable. For example, replacing Doignon’s theorem
with its colorful version (proved by De Loera, La Haye, Oliveros, and Roldán-
Pensado [17]) yields a colorful version of Theorem 1.6. To obtain Corollary 1.7, we
replace Doignon’s theorem by the following fractional version.

Theorem 2.1 (Bárány, Matoušek 2003 [10]). For every positive integer d and real
number α ∈ (0, 1] there exists a real number β = β(α, d) > 0 such that the following
is true. If F is a finite family of convex sets such that

⋂
H contains an integer point

for at least α
( |F|
d+1

)
subcollections H ⊆ F of d + 1 sets, then there is a subfamily

G ⊆ F with at least β|F| sets whose intersection contains an integer point.

It is unclear whether the number 4d in Theorem 1.6 is optimal. Since the case
k = 1 is Doignon’s theorem, 4d cannot be replaced by anything smaller than 2d.
The following construction, which generalizes a construction communicated by Gen-
nadiy Averkov for d = 2, improves the lower bound to d2d.

Claim 2.2. For each d ≥ 1, there exists a finite family F of convex sets in Rd such
that the intersection of any d2d − 1 sets in F contains three colinear integer points
but

⋂
F does not.

Proof. Let R ⊆ {0, 1, 2, 3}d be the collection of integer points where exactly one
coordinate is in {0, 3} and let Q = {1, 2}d. That is, Q ∪ R is the set of integer
points in the hypercube [0, 3]d that do not lie on its (d− 2)-skeleton. We define

F = {conv(Q ∪R \ {x}) : x ∈ R},
which is a collection of d2d sets. The intersection of any d2d − 1 sets in F contains
every point in Q and one point in R, so it contains 3 colinear integer points. But
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the integer points in
⋂
F are exactly those in Q, which does not contain 3 colinear

integer points. �

3. Diameter results for general norms

In this section, ρ represents a norm on Rd. The ρ-diameter of a compact set
K ⊆ Rd is

diamρ(K) = max{ρ(x− y) : x, y ∈ K}.
Given a vector v ∈ Rd \ {0}, the v-width of K is maxx,y∈K〈x − y, v〉. Suppose
K ⊆ Rd is a centrally symmetric polytope with k facets, and for each facet Li, let
vi be the vector such that {x ∈ Rd : 〈x, vi〉 = 1} is the hyperplane containing Li.
We assume that Li and L(k/2)+i are opposing facets, so v(k/2)+i = −vi. If K is the
unit ball of ρ, then

ρ(x) = max
1≤i≤k/2

|〈x, vi〉| (3.1)

for every x ∈ Rd.
The proof in Section 2 can be adapted to simplify the proof of a Helly-type

theorem for v-width by the second author [37].

Theorem 3.1. Let v be a nonzero vector in Rd and F be a finite family of compact
convex sets in Rd. If the intersection of every 2d sets in F has v-width greater than
or equal to 1, then

⋂
F has v-width greater than or equal to 1.

Proof. For every convex set K ⊆ Rd, let

S(K) =
{

(x, y) ∈ Rd ×Rd : x ∈ K, x+ y ∈ K, 〈y, v〉 = 1
}
.

The set S(K) is convex and nonempty. Consider the set G = {S(K) : K ∈ F};
this family is contained in an affine subspace of dimension 2d− 1 by the condition
〈y, v〉 = 1. The hypothesis of the theorem implies that every 2d or fewer elements
of G intersect, so

⋂
G is nonempty by Helly’s theorem. If (x, y) ∈

⋂
G, then

x, x+ y ∈ F for every set F ∈ F , which shows that the v-width of
⋂
F is at least

1. �

The earlier proof of Theorem 3.1 does not use the parametrization above, but
instead relies on simple arguments of “sweeping hyperplanes”. While this technique
can be used to prove colorful or fractional versions, the fractional versions fall short
of optimal bounds [37].

In contrast, we can substitute the use of Helly’s theorem with almost any of its
generalizations in the proof above to obtain corresponding versions of Theorem 3.1.
For example, we can use the optimal colorful and fractional Helly theorem.

Theorem 3.2 (Bulavka, Goodrazi, Tancer 2020 [15]). For every positive integer d
and real number α ∈ (0, 1], the following holds with β = 1− (1−α)1/(d+1). Assume

that F1, . . . ,Fd+1 are finite families of convex set in Rd and set N =
∏d+1
i=1 |Fi|. If⋂d+1

i=1 Fi is not empty for at least αN different (d+ 1)-tuples (Fi)
d+1
i=1 with Fi ∈ Fi

for each i, then there exists an index k ∈ [d+ 1] and a subfamily G ⊆ Fk such that
|G| ≥ β|Fk| whose intersection is not empty.

We immediately obtain the following theorem.

Theorem 3.3. For every positive integer d and real number α ∈ (0, 1], the following
holds with β = 1 − (1 − α)1/2d for every nonzero vector v ∈ Rd. Assume that

F1, . . . ,F2d are finite families of convex sets in Rd and set N =
∏2d
i=1|Fi|. If⋂2d

i=1 Fi has v-width greater than or equal to 1 for at least αN different 2d-tuples
(Fi)

2d
i=1 with Fi ∈ Fi for each i, then there exists an index k ∈ [2d] and a subfamily

G ⊆ Fk such that |G| ≥ β|Fk| whose intersection has v-width greater than or equal
to 1.
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Two instances of theorem above were already known: one with β = α/2d and
F1 = · · · = F2d (fractional with a weaker constant), and one with β = α = 1
(colorful but not fractional) [37]. The explicit bound β = 1 − (1 − α)1/2d seems
out of reach of the earlier proof even for F1 = · · · = F2d. We discuss in Section 5
some additional consequences that cannot be obtained with the original proof of
Theorem 3.1. We now use the Helly-type theorem for v-width to prove a colorful
version of Theorem 1.4.

Theorem 3.4. Let ρ be a norm in Rd whose unit ball is a polytope with k facets,

and let F1, . . . ,Fkd be finite families of convex sets in Rd. If
⋂kd
i=1 Fi has ρ-diameter

at least 1 for every kd-tuple (Fi)
kd
i=1 such that Fi ∈ Fi for each i, then there exists

an index l ∈ [kd] such that
⋂
Fl has ρ-diameter at least 1. Moreover, the same

statement is not true if kd is replaced by kd− 1.

Proof. We prove the contrapositive. Assume that F1, . . . ,Fkd are finite families of
convex sets in Rd such that

⋂
Fi has ρ-diameter at most 1 for each i ∈ [kd]. We

want to find a colorful kd-tuple whose intersection has ρ-diameter at most 1.
Let P be the unit ball of ρ. For each facet Lj of P , let vj be the vector in Rd

such that 〈x, vj〉 = 1 for every x ∈ Lj . We choose a labelling of the facets so that
L(k/2)+j = −Lj for each j ∈ [k/2]. From the assumption on ρ-width of Fi and
equation (3.1), the vj-width of

⋂
Fi is at most 1 for each i ∈ [kd] and j ∈ [k/2].

Applying the contrapositive of the colorful version of Theorem 3.1 (Theorem 3.3
with α = 1) to the collection of 2d families F2(j−1)d+1, . . . ,F2jd implies that there

is a set Fi+2(j−1)d ∈ Fi+2(j−1)d for each i ∈ [2d] such that
⋂2d
i=1 F2(j−1)d+i has

vj-width less than or equal to 1.
Let G denote the family {F1, . . . , Fkd}. By construction, G has exactly one

element from each Fi. Its intersection
⋂
G has vj-width at most 1 for every j ∈

[k/2], so the ρ-diameter of
⋂
G is at most 1 by (3.1).

Now we prove optimality. Consider a set {x1, . . . , xk} of points in Rd such that
xi is in the relative interior of Li and xi = −x(k/2)+i. For each i ∈ [k/2], choose d
closed half-spaces such that

• each half-space contains every point in {xj}j 6=i,
• the intersection of the d half-spaces with Li is the singleton {xi}, and
• the intersection of any d−1 of them contains a point y such that 〈y, vi〉 > 1.

Let F be the collection all kd half-spaces. The intersection
⋂
F is contained in

P , so its ρ-diameter is at most 2. For any subset F ′ ⊆ F of size kd− 1, there is a
facet Li of P with at most d− 1 corresponding half-spaces in F ′. Therefore, there
exists a point x̃ ∈

⋂
F ′ outside of P such that the segment 0x̃ intersects Li. We can

choose x̃ close enough to xi so that the segment between −xi and x̃ has ρ-length
greater than 2. Therefore, the ρ-diameter

⋂
F ′ is greater than 2 for every subset

F ′ ⊆ F of size kd − 1, while the ρ-diameter of
⋂
F is at most 2. Taking Fi = F

for each i ∈ [kd− 1] shows the optimality of the parameter kd. �

Setting Fi = F for each i ∈ [kd] in Theorem 3.4 proves the Helly-type state-
ment in Theorem 1.4, and the proof the optimality of kd also carries over to the
monochromatic version.

Theorem 1.4 implies the following more general version of Corollary 1.5.

Theorem 3.5. Let p ≥ 1 and F be a finite family of convex sets in Rd. If the
intersection of every 2d2 or fewer sets in F has `p-diameter greater than or equal

to 1, then
⋂
F has `p-diameter greater than or equal to d−1/p.

Proof. A set in Rd with `p-diameter at least 1 has `∞-diameter at least d−1/p. Since
the unit ball in the `∞ norm is a polytope with 2d facets, we can employ Theorem
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1.4 to conclude that the `∞-diameter of
⋂
F is at least d−1/p. The `p-diameter of

F is at least d−1/p as well. �

The `1 norm is a useful lens with which to compare our results. Theorem 3.5 says
that we can bound the `1-diameter of

⋂
F by d−1 if we know that the intersection of

every 2d2 sets in F has `1-diameter greater than or equal to 1, whereas Theorem 1.4
says that we can bound the `1-diameter of

⋂
F by 1 if we know that the intersection

of every d2d in F sets has `1-diameter greater than or equal to 1. Neither of these
consequences implies the other.

We now present two additional proofs of the Helly-type statement in Theorem
1.4. The first proof uses the following lemma, in which the boundary of a set
K ⊆ Rd is denoted by ∂K.

Lemma 3.6. Let P ⊆ Rd be a centrally symmetric polytope with k facets and G be
a finite family of sets in R2d such that

(1) for every facet L of P and every K ∈ G, the intersection K ∩ (Rd × L) is
convex, and

(2) if x, y ∈ Rd, K ∈ G, and (x, y) ∈ K, then (x+ y,−y) ∈ K.

If the intersection of every kd or fewer sets in G contains a point in Rd× ∂P , then⋂
G contains a point in Rd × ∂P .

Proof. The general approach is similar to that of Radon’s proof of Helly’s theorem
[33]. We proceed by induction on |G|. If |G| ≤ kd, there is nothing to prove, so we
assume the result holds for all collections of convex sets with n ≥ kd members. Let
G = {K1, . . . ,Kn+1} be a collection of n + 1 convex sets in R2d that satisfies the
hypothesis of the lemma. The induction hypothesis implies that for each i ∈ [n+1]
there is a point (xi, yi) ∈

⋂
(G \Ki) such that yi ∈ ∂P . Grouping the facets of P by

opposing pairs, there must be a pair of facets L,−L whose union contains at least

n+ 1

k/2
> 2d

points in {yi}n+1
i=1 . By replacing (xi, yi) by (xi + yi,−yi) if necessary, the facet L

contains at least 2d+1 points in {yi}n+1
i=1 . Therefore Rd×L contains at least 2d+1

points in {(xi, yi)}n+1
i=1 . Since Rd × L is a (2d − 1)-dimensional affine subspace,

applying Radon’s lemma to these 2d+ 1 points yields a partition of them into two
sets A and B whose convex hulls intersect. Any point in conv(A) ∩ conv(B) is in⋂
G as well as Rd × L ⊆ Rd × ∂P . �

Second proof of Theorem 1.4. Let P be the unit ball of ρ. For each convex set
K ⊆ Rd, let

S(K) =
{

(x, y) ∈ Rd ×Rd : x ∈ K, x+ y ∈ K, ρ(y) = 1
}
.

The conditions of Theorem 1.4 ensure that we can apply Lemma 3.6 to the family
G = {S(K) : K ∈ F}. Given a point (x, y) ∈

⋂
G ∩ (Rd × ∂P ), every set in F

contains the segment between x and x+ y; since ρ(y) = 1, the ρ-diameter of
⋂
G is

at least 1. �

Our final proof of Theorem 1.4 relies on a limit argument.

Third proof of Theorem 1.4. We may assume without loss of generality that every
set in F is compact. We denote by Kn the n-fold product of the set K. Let
f : (Rd)k → R be defined by

f(x1, y1, . . . , xk/2, yk/2) =

k/2∑
i=1

〈yi − xi, vi〉.
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If a set K ⊆ Rd has ρ-diameter greater than or equal to 1, then it has vi-width
at least 1 for some i ∈ [k/2]. Therefore there exists a point x̄ ∈ Kk such that
f(x̄) ≥ 1. For each K ∈ F , consider the set

S(K) = {x̄ ∈ Kk : f(x̄) = 1},

which is convex and lies in an affine subspace of dimension kd− 1. An application
of Helly’s theorem implies that (

⋂
F)k contains a point ā1 with f(ā1) = 1.

Now consider the function g : (Rd)k → R defined by

g(x1, y1, . . . , xk/2, yk/2) = max
1≤i≤k/2

〈yi − xi, vi〉.

If g(ā1) = 1, we are done. Otherwise, equation (3.1) implies that that for each
kd-tuple F ′ ⊆ F , there are two points x, y ∈

⋂
F ′ and an index i ∈ [k/2] such that

〈y − x, vi〉 ≥ 1. Replacing the corresponding coordinates of ā1 by x, y, we obtain a

new point x̄ ∈ (
⋂
F ′)k such that f(x̄) ≥ 1 + (1− g(ā1)).

Bootstrapping the previous arguments, we can find a point ā2 ∈ (
⋂
F)

k
such

that f(ā2) = 2 − g(ā1). Iterating this argument creates a sequence (ān)∞n=1 in

(
⋂
F)

k
such that

f(ān) ≥ n−
n−1∑
i=1

g(āi)

for each n ∈ N. Let βn = max{g(ā1), . . . , g(ān)}. We have

βn ≥ g(ān) ≥ f(ān)

d
≥
n−

∑n−1
i=1 g(āi)

d
≥ n− (n− 1)βn

d
.

In other words, the ρ-diameter of
⋂
F is at least βn ≥ n/(d+n−1) for every n ≥ 1.

Taking the limit as n→∞ finishes the proof. �

The next result shows that there is no exact Helly-type theorem for diameter for
any norm whose unit ball is not a polytope.

Theorem 3.7. Let ρ be a norm in Rd whose unit ball is not a polytope. Then, for
every integer n there exists a finite family G of convex sets such that the intersection
of every n or fewer sets in G has ρ-diameter greater than or equal to 1, but the ρ-
diameter of

⋂
G is strictly less than 1.

Proof. Let P be the unit ball of ρ and F be the infinite family of closed containment-
minimal half-spaces that contain P . We parametrize F using the unit sphere Sd−1

by associating each vector x ∈ Sd−1 with the half-space Hx ∈ F whose bounding
hyperplane is perpendicular to it and that contains an infinite ray in the direction
of x. For any finite family F ′ ⊆ F , the unit ball P is strictly contained in

⋂
F ′, so

the ρ-diameter of
⋂
F ′ is strictly larger than 2.

We define a function f : (Sd−1)n → R by

f(x1, . . . , xn) = min

{
100, diamρ

( n⋂
i=1

Hxi

)}
.

The minimum ensures that f is well-defined when
⋂n
i=1Hxi

is unbounded. The
function f is continuous, and f(x1, . . . , xn) > 2 for every n-tuple in (Sd−1)n. Since
the domain of f is compact, f attains a minimum value sn > 2.

Let ε = (sn − 2)/3. Standard results on approximation of convex sets by poly-
topes show that there exists a polytope Q such that P ⊂ Q ⊂ (1 + ε)P . In
particular, diamρ(Q) ≤ (1 + ε) diamρ(P ) = 2(1 + ε) < sn.

We define G ⊆ F to be the family of half-spaces in F whose bounding hyperplanes
are parallel to some facet of Q, scaled by a factor of 1/sn. The intersection of every
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n or fewer sets in G has ρ-diameter greater than or equal to 1. But
⋂
G ⊆ (1/sn)Q,

so its ρ-diameter is strictly less than 1. �

4. Diameter results for 2d-tuples

We combine Theorem 3.1 with volume concentration properties of balls to prove
Theorem 1.2. The properties described below can be found in Keith Ball’s exposi-
tory notes [5].

Let B be a ball centered at the origin, c > 0, and u be a unit vector. The c-cap
of B in the direction u is

C(B, c, u) = {x ∈ B : 〈x, u〉 ≥ c}.

For two unit vectors u and v, we have that v ∈ C(B, c, u) if and only if u ∈
C(B, c, v).

Let Bd be the unit ball in Rd, and let rd be the radius of a volume-one ball in
Rd. Asymptotically, rd ∼ d1/2/

√
2πe. For a fixed unit vector u and real number

x, the (d− 1)-dimensional volume of the intersection of rdBd with the hyperplane
{y ∈ Rd : 〈u, y〉 = x} converges to

√
e exp(−πex2) as d → ∞. In other words,

the volume of the region {y ∈ Rd : |〈y, u〉| < x} ∩ rdBd converges as d → ∞, and
converges to zero as x→ 0. For any fixed constant c, we define

γ(c) = inf
d≥2

vol

[
C

(
rdBd,

crd√
d
, u

)
∪ C

(
rdBd,

crd√
d
,−u

)]
(4.1)

=
1

vol (Bd)
inf
d≥2

vol

[
C

(
Bd,

c√
d
, u

)
∪ C

(
Bd,

c√
d
,−u

)]
(4.2)

This is the remaining volume of rdBd after removing a slab centered at the ori-
gin with width approximately 2c/

√
2πe (see Figure 1). From the discussion above,

γ(c) → 1 as c → 0. Equation (4.2) shows that γ(c) is the fraction of the vol-

ume of two opposite (cd−1/2)-caps in the unit sphere. If c <
√

2, the volume of
C
(
rdBd, crdd

−1/2, u
)

is strictly positive for each d ≥ 2 and tends to a positive limit

as d→∞. So γ(c) > 0 for every c ∈ (0,
√

2).

Proof of Theorem 1.2. Recall that N =
∏2d
i=1|Fi|. For each colorful collection F ′ =

(Fi)
2d
i=1 whose intersection has diameter greater than or equal to 1, assign a unit

vector uF ′ such that
⋂
F ′ contains a unit segment with direction uF ′ . Let G be

the collection of sets

C
(
Bd, cd

−1/2, uF ′

)
∪ C

(
Bd, cd

−1/2,−uF ′

)
where F ′ is a 2d-tuple of F whose intersection has diameter greater than or equal
to 1. Each such set covers at least a γ(c) fraction of the volume of the unit ball.
Therefore, the total volume covered amongst all sets in G is at least

γ(c) · αN.

Since
⋃
G does not contain the origin, there is a nonzero point x in the unit ball

covered at least γ(c) · αN times by G. Setting v = x/||x||, the set

C
(
Bd, cd

−1/2, v
)
∪ C

(
Bd, cd

−1/2,−v
)

contains at least γ(c) · αN different vectors uF ′ . Thus, the intersection of at least
γ(c) · αN different colorful 2d-tuples of F have v-width greater than or equal to
cd−1/2. An application of Theorem 3.3 finishes the proof. �
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2x

rdBd

Figure 1. The volume of the region in rdBd between two parallel
hyperplanes at distance x from the origin converges as d→∞.

5. Additional remarks

Kalai and Meshulam proved a topological extension of the colorful Helly theorem
[30] in which the conditions on the intersecting subfamilies of convex sets are given
by an arbitrary matroid. Their theorem is called “topological” because it is actually
a statement about simplicial complexes that satisfy certain topological properties;
in particular, the nerve complexes of convex sets satisfy these conditions. Given a
finite set V , a matroid or matroidal complex M on V is a family of subsets of V
with three properties:

• ∅ ∈M ,
• if A ⊆ B and B ∈M , then A ∈M , and
• if A,B ∈ M and |B| > |A|, then there exists an element a ∈ B \ A such

that A ∪ {a} ∈M .

We call the sets in M independent. For a subset V ′ ⊆ V we denote by ρ(V ′) the
rank of V ′, which is the cardinality of the largest independent set contained in V ′.
A direct application of Kalai and Meshulam’s main result in our proof of Theorem
3.1 yields the following theorem.

Theorem 5.1. Let M be a matroid on a finite set V with rank function ρ, and let
v be a non-zero vector in Rd. For each x ∈ V , let Fx be a convex set in Rd. If the
v-width of

⋂
x∈V ′ Fx is at least 1 for each set V ′ ∈M , then there exists a set τ ⊆ V

such that ρ(V \ τ) ≤ 2d− 1 for which
⋂
x∈τ Fx has v-width at least 1.

As an example, consider M to be a partition matroid with rank 2d. In this case,
the vertices are split into 2d pairwise disjoint subsets: V = V1 ∪ · · · ∪V2d. A subset
V ′ ⊆ V is independent if an only if it contains at most one element from each Vi.

Using this matroid in Theorem 5.1 implies the colorful version of Theorem 3.1
(i.e., the case α = 1 for Theorem 3.3). It is unclear what a “fractional and topologi-
cal” Helly theorem would mean, but the theorem above indicates that there should
be a topological Helly for the diameter.
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Conjecture 5.2. There exists an absolute constant c > 0 such that the following
statement holds. Let M be a matroid on a finite set V with rank function ρ and for
each x ∈ V , let Fx be a convex set in Rd. If the diameter of

⋂
x∈V ′ Fx is at least 1

for each set V ′ ∈M , then there exists a set τ ⊆ V such that ρ(V \ τ) ≤ 2d− 1 for
which

⋂
x∈τ Fx has diameter at least cd−1/2.

If true, the conjecture above would imply the Bárány, Katchalski, Pach conjec-
ture. We prove a weaker version of this conjecture.

Theorem 5.3. Let M be a matroid on a finite set V with rank function ρ. For
each x ∈ V , let Fx be a convex set in Rd. If the diameter of

⋂
x∈V ′ Fx is at least 1

for each set V ′ ∈M , then there exists a set τ ⊆ V such that ρ(V \ τ) ≤ d(d+3)
2 − 1

for which
⋂
x∈τ Fx has diameter at least d−1.

Proof. Let Pd be the set of d×d positive semidefinite matrices whose trace is equal

to 1. The dimension of this space is d(d+1)
2 − 1. For each convex set K ⊆ Rd, let

S(K) = {(a,A) ∈ Rd × Pd : a+ (1/2)ABd ⊆ K} ⊆ R[d(d+3)/2]−1.

Notice that S(K) is convex. Also, the diameter of a + (1/2)ABd is equal to the
largest eigenvalue of A. We now apply the topological Helly theorem to the family
of sets {S(Fx) : x ∈ V }. This implies that there exists a set τ ⊆ V such that

ρ(V \ τ) ≤ d(d+3)
2 − 1 and

⋂
x∈τ Fx contains an ellipsoid of the form a+ (1/2)ABd

for some a ∈ Rd and A ∈ Pd. The trace of A is equal to 1, so its largest eigenvalue
is at least 1/d. In other words, the diameter of the ellipsoid is at least 1/d. �

Other results that follow from similar parametrizations of ellipsoids can be found
in [35]. Even though this result falls short of the conjecture mentioned, it implies the
bounds which are a direct consequence of John’s theorem (see, e.g., the discussion
after Theorem 1.4 of [22]). For example, suppose F is a finite family of convex sets

in which the intersection of any d(d+3)
2 of its members has diameter at least 1. We

define a matroid M that has d(d+3)
2 vertices corresponding to each set in F and

declare a set of vertices independent if its cardinality is at most d(d+3)
2 . Theorem 5.3

implies that the diameter of the intersection of the whole family is at least d−1.
It would be interesting to see extensions of v-width and diameter results in

further directions. For example, Adiprasito, Bárány, Mustafa, and Terpai [1] intro-
duced versions of Carathéodory’s, Helly’s, and Tverberg’s theorems whose conclu-
sions are independent of the ambient dimension. What might versions of Helly’s
theorem for v-width and diameter look like within this framework?
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[25] Grigory Ivanov and Márton Naszódi, Functional John ellipsoids, 2020. arXiv:2006.09934v2

[math.FA].
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