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A phenomenological model is proposed to describe the deformation and orientation
dynamics of finite-sized bubbles in both quiescent and turbulent aqueous media.
This model extends and generalizes a previous work that is limited to only the
viscous deformation of neutrally buoyant droplets, conducted by Maffettone & Minale
(J. Non-Newtonian Fluid Mech., vol. 78, 1998, pp. 227–241), into a high Reynolds number
regime where the bubble deformation is dominated by flow inertia. By deliberately
dividing flow inertia into contributions from the slip velocity and velocity gradients,
a new formulation for bubble deformation is constructed and validated against two
experiments designed to capture the deformation and orientation dynamics of bubbles
simultaneously with two types of surrounding flows. The relative importance of each
deformation mechanism is measured by its respective dimensionless coefficient, which can
be isolated and evaluated independently through several experimental constraints without
multi-variable fitting, and the results agree with the model predictions well. The acquired
coefficients imply that bubbles reorient through body rotation as they rise in water at
rest but through deformation along a different direction in turbulence. Finally, we provide
suggestions on how to implement the proposed framework for characterizing the dynamics
of deformable bubbles/drops in simulations.
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1. Introduction

The deformation and breakup of gas bubbles and oil droplets in turbulent water are
ubiquitous in nature, from bubble-mediated gas transfer in the ocean (Wanninkhof &
McGillis 1999) to the fragmentation and dispersion of an oil spill (Delvigne 1988; Yang
et al. 2015). Despite advances made in the field of multiphase flows and droplet-laden
turbulence (Risso 2018; Elghobashi 2019; Mathai, Lohse & Sun 2020), our understanding
of these problems is still limited due to the complex nonlinear interactions between two
phases across a deformable interface and the manifestation of these interactions across
multiple length and time scales in turbulence. Unlike rigid objects, the geometries of
deformable objects have nearly infinite degrees of freedom.
The deformation of the dispersed phase is sensitive to many parameters. Other than

the size, it is primarily determined by the competition between the intensity of local
inertial/viscous stresses and surface tension. In a regime where the viscous stress
dominates, Taylor (1932, 1934) showed that the droplet deformation is determined by the
capillary number Ca = μcGD/σ , where μc is the viscosity of the carrier fluid, G is the
local shear rate around the droplet, D is the droplet diameter, and σ is the surface tension
coefficient. The larger the value of Ca, the more intense the flow shear rate; when Ca
surpasses a critical value (Cacr), the drop breaks. In addition to the drop deformation,
the orientation dynamics of drops is also closely associated with the local shear
rate.
To capture both the deformation and orientation dynamics of drops in viscous shear

flows, Maffettone & Minale (1998) developed a model (the MnM model, hereafter) to
characterize the dynamics of a single neutrally buoyant drop immersed in an infinite
medium with a generic flow field. In particular, this model assumes ellipsoidal drop shapes
based on experimental observations (Guido & Villone 1998) and numerical simulations
(Kennedy, Pozrikidis & Skalak 1994). The MnM model is well suited for characterizing
drop shape and orientation in simple shear (Guido & Villone 1998), planar and uniaxial
elongational flows, as well as the linear combinations of these basic flows (Bentley & Leal
1986). The agreement can be extended to Ca that is not far from Cacr, as long as the
nonlinear effect remains small.
For drops deforming in viscous shear flows, there are two main assumptions: (i) the

relative motion between the centre of mass of the drops with the surrounding flows is
negligible compared with the drop deformation. This can be accomplished by matching
the density of both phases (ii) the viscous shear stress is more important than the dynamic
pressure exerted by the surrounding moving fluid. For both assumptions to hold, one needs
only to make sure that the drop-based Reynolds number Reb = usD/νc is smaller than one.
In Reb, νc is the kinematic viscosity of the carrier phase, and us is the magnitude of the
drop slip velocity with respect to the surrounding flow.
Unlike drops, gas bubbles tend to have a large density difference with the surrounding

liquid. One such canonical problem is the rise motion of finite-sized bubbles in water at
rest. In this case, Reb ranges from O(102) to O(103) (Magnaudet & Eames 2000), so the
viscous stress (μcG) becomes less important than the dynamic pressure exerted on the
bubble interface due to their buoyant rising motion (�ρgD), and Ca is consequently much
smaller than the Eötvös number Eo = �ρgD2/σ , where �ρ = ρc − ρd is the density
difference between the dispersed phase (ρd) and the carrier phase (ρc), and g is the
gravitational constant. Moore (1965) developed a simple model to link the bubble aspect
ratio α to Eo for small Eo close to 1, and extended it to larger Eo by employing the potential
flow method. It was found that a maximum α of 6 could be achieved for Eo close to 3.745,
beyond which symmetric deformation could be attained.
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In many papers discussing the bubble deformation due to their rise motion, the
dimensionless number often used is the Weber number: We = ρcu2D/σ . One can see
that We ≈ Eo if the bubble rise velocity u ≈ √

gD. However, in turbulence, when the
slip velocity between bubbles and surrounding flows is not solely driven by the bubble
rise velocity, these two dimensionless numbers are no longer the same. To draw a clear
distinction, Eo will be used only to represent the bubble deformation by buoyancy,
whereas We is reserved for characterizing the deformation driven by turbulence in this
paper. In addition, the problem depends on other dimensionless numbers, such as the
Galilei number: Ga = gD3/ν2 (similar to Reynolds number) or the Morton number:
Mo ≡ Eo3/Ga4. The Morton number is a constant for a given gas–liquid system. Rising
bubbles exhibit a wide range of behaviours depending on the exact values in the phase
diagram of Eo and Ga (Tripathi, Sahu & Govindarajan 2015). In this paper, we consider
only air bubbles rising in quiescent water withGa larger than Eo. For this regime, although
the bubble shape is not axisymmetric, it is still close to an ellipsoid without exhibiting
complex topological changes, such as skirted, spherical cap bubbles, that no linear model
can capture.
In turbulence, the problem can be roughly categorized based on the drop/bubble size,

in either the dissipative range (D � η) or the inertial range (η � D � L), where η and L
are the Kolmogorov and integral length scales, respectively. For a small neutrally buoyant
drop that responds to only the local and instantaneous flow, its centre-of-mass (CoM)
motion can be integrated based on the Maxey–Riley equation. The drop shape, if assumed
to be an ellipsoid, can be solved based on the MnM model (Maffettone & Minale 1998).
Although the MnM model was originally proposed to describe the drop deformation in
viscous shear flows, it is still valid to use in turbulence for calculating the deformation
of infinitesimal drops, which are primarily driven by the local viscous shear stresses.
This framework has been utilized to study the drop deformation in homogeneous and
isotropic turbulence by Biferale, Meneveau & Verzicco (2014) and in a Taylor–Couette
system by Spandan, Lohse & Verzicco (2016). Such an approach enables the simultaneous
simulation of 104 to 105 deforming drops in turbulence. Moreover, similar frameworks
coupling carrier-phase simulation with simple models for the dispersed phase have also
been utilized to study the tumbling motion of non-spherical particles (Marchioli, Fantoni &
Soldati 2010; Challabotla, Zhao & Andersson 2015), the stretching and buckling of flexible
rods (Allende, Henry & Bec 2018), and the breakup of ductile aggregates (Marchioli &
Soldati 2015).
The study of the deformation of the finite-sized bubbles in turbulence is much more

complicated. As detailed by Elghobashi (2019) in a recent review, there are three main
direct numerical simulation (DNS) approaches to the study of finite-sized bubbles and
droplets in turbulence: (i) tracking individual points on the bubble interface, e.g. front
tracking (Unverdi & Tryggvason 1992; Tryggvason et al. 2001); (ii) tracking a scalar
function, e.g. volume of fluid (Scardovelli & Zaleski 1999; Dodd & Ferrante 2016), level
set (Sussman, Smereka & Osher 1994; Osher & Fedkiw 2001), lattice-Boltzmann (Shan &
Chen 1993) or the phase field method; (iii) a more recently developed hybrid method that
couples the immerse boundary method with a phenomenological interaction potential. All
these sophisticated models are valuable tools for investigating finite-sized bubble/droplet
deformation in turbulence. However, they are expensive to perform for a large number of
bubbles/droplets in a large system even with the most advanced computational methods
and resources.
The objective of this paper is to develop a phenomenological model to characterize

the deformation and orientation dynamics of finite-sized bubbles without considering
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two-way couplings or the bubble–bubble interaction. Similar to the MnM model, the
proposed model takes the known flow conditions, including the velocity gradients and
the bubble slip velocity as inputs and predicts the time evolution of the bubble shape
and orientation. In § 2, we introduce the experimental set-up and the measurement
techniques that enable the simultaneous measurements of both phases, including the
three-dimensional (3-D) shape of the bubbles and their surrounding turbulence. Then
a new phenomenological model accounting for the contribution of the slip velocity to
the bubble deformation and orientation dynamics is discussed and explained in § 3.
Following this, the model parameters are calibrated against experimental results for
bubbles deforming in quiescent and turbulence media in § 4. In the same section, we
present how to extend the proposed new model to characterize the deformation of
finite-sized droplets with different viscosities and densities.

2. Experimental set-up and measurements

2.1. Experimental set-up
Although the focus of this paper is on developing a phenomenological model to
describe the deformation and orientation dynamics of finite-sized bubbles with any given
surrounding flow fields, the experimental data for constraining such a model was not
available until recently thanks to the advance of the simultaneous measurements of the
bubble 3-D shape and surrounding turbulence. Here, we introduce a unique facility and
the associated 3-D simultaneous two-phase measurement technique to aid in developing a
phenomenological model for deformable bubbles and drops.
To ensure that the proposed model works for all cases from the buoyancy-dominated

to the turbulence-dominated regimes, it is important to develop an experimental set-up
that can produce a strong turbulent environment with the turbulence-induced deformation
stronger than or at least similar to the buoyancy-induced bubble deformation. This requires
that We � Eo and We > 1, where the Weber number is defined as We ≈ ρc(〈ε〉D)2/3D/σ

based on the Kolmogorov theory. To satisfy this requirement, it is important for 〈ε〉 to
reach approximately O(0.1) m2 s−3.
A vertical water tunnel (V-ONSET) was constructed to produce both quiescent and

turbulent media. Turbulence in the tunnel was generated by shooting 88 high-speed
momentum jets (∼12 m s−1), through a jet array, into the test section co-axially with
the mean flow. All jet nozzles (the nozzle diameter d is 5 mm) were connected to the same
high pressure water tank and controlled by a dedicated solenoid valve. The measurement
volume of 6 cm × 6 cm × 5 cm was located about 40d below the jet array. Such a large
separation is designed to ensure that the jets are well mixed and that turbulence generated
is close to homogeneous and isotropic. A randomized firing pattern of the jets was set
similar to that of a previous study by Variano, Bodenschatz & Cowen (2004), which was
shown to generate homogeneous and isotropic turbulence without inducing a persistent
mean flow or any secondary flow structures without considering two-way couplings or the
bubble–bubble interaction. Detailed discussions of these statistics and flow distributions
have been discussed by Masuk et al. (2019b).
In addition to the randomly fired jets, the vertical tunnel features an independently

controlled downward mean flow of ∼0.25 m s−1 to maintain bubbles inside the test
section for an extended residence time, which helps to obtain longer bubble trajectories.
Bubbles were injected through a capillary island consisting of four arrays of vertically
oriented hypodermic needles of two different sizes. After these bubbles reached the
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Bubble deformation model

f ′1 f ′2 Ks Ko Weslip Wevg Reslip Reλ Eo Mo

Quiescent 1 0 0.14 15 [2.03, 3.84] 0 [540, 895] 0 [0.54, 1.23] 2.6 × 10−11

Turbulent 1 0.5 0.14 0 [2.28, 9.56] [1.28, 4.3] [697, 1945] 435 ± 20 [1.65, 6.2] 2.6 × 10−11

Table 1. Values of the dimensionless parameters used in the model and experiments.

interrogation volume, the typical size range of the bubbles turned out to be D = 2–7 mm.
The dimensionless numbers of these bubbles are listed in table 1.
The test section of the tunnel features an octagonal cross-section with eight vertical

walls to allow optical access by six high-speed cameras that are uniformly distributed all
around the test section. Each of these cameras can operate at 4000 frames per second at
a full resolution of 1 megapixel. One dedicated LED panel for each high-speed camera
was used to provide diffused back lighting. By using such an optical arrangement, both
bubbles and a high concentration of tracer particles (density-matched Polyamide particles
with 50 μm in diameter) appeared as dark shadows in front of a bright background. For
further description of the tunnel and its diagnostics, the reader may refer to a recent work
published by Masuk et al. (2019b).

2.2. Bubble and flow measurements
From raw images, bubbles and tracers were segmented based on their size and contrast
difference. Each phase was processed separately to quantify its dynamics. For the fluid
phase, an in-house particle tracking code OpenLPT (Tan et al. 2020) that utilizes the
Shake-The-Box (Schanz, Gesemann & Schröder 2016) method was used to obtain the
tracer trajectories. For each frame, the centre of each particle was triangulated to obtain its
3-D location, which was then connected through time to acquire the particle trajectory. For
the gas phase, a recently developed virtual-camera visual hull method (Masuk, Salibindla
& Ni 2019a) was employed to construct the bubble shape. The 3-D volume of the bubble
was first reconstructed by calculating the intersection of the cone-like volume extruding
from the bubble shadow on each camera. Then, the shape was refined iteratively by
projecting the initial reconstructed volume onto virtual cameras to remove any artefacts
generated. In each iteration, the refined geometry was also projected back onto the real
cameras to ensure that no real material was removed. Based on the shape reconstruction
and refinement, the bubble geometry consisting of many surface vertices can be acquired.
These surface vertices can be averaged to determine the bubble centre, which is connected
over time, as with how the tracer trajectories were calculated. Both the bubble and tracer
trajectories are smoothed by convoluting with Gaussian kernels (Mordant, Crawford &
Bodenschatz 2004), from which the tracer velocity up and acceleration ap and the bubble
velocity ub and acceleration ab can be obtained along their trajectories.
Along with each bubble trajectory, two important flow parameters of interest in this

study are the fluid velocity at the CoM of a bubble uf if the bubble is not present and
the coarse-grained velocity gradient tensor Ãij. For every bubble in our experiments, a
spherical search volume with diameter Ds = 2D centred at the bubble CoM was used
to select the surrounding tracer particles. Note that for each of these n (p = 1, 2, . . . , n)
tracer particles, their velocities and locations have already been determined. The value
of uf is estimated by taking an average of the particle velocity of all n tracer particles,
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Figure 1. Example 3-D bubble trajectories colour coded with their instantaneous velocity magnitude and
the 3-D reconstructed shapes at one time instant in (a) an otherwise quiescent medium, and (b) intense
turbulence.

uf = ∑n
p=1 u

p/n. This allows us to calculate the instantaneous slip velocity us between the
two phases: us = ub − uf . To obtain the coarse-grained velocity gradient Ãij = ∂upi /∂x

p
j ,

a least-square fit was performed to minimize the residuals of
∑

p(u
p
i − Ãijx

p
j )

2 using the
velocity and location of all n nearby tracer particles. In particular, xp is the separation
vector of the pth tracer particle away from the CoM of a bubble. For additional details
about the calculation and reliability of such coarse-grained velocity gradients, please refer
to previous works by Masuk, Salibindla & Ni (2021a) and Ni et al. (2015).
Figure 1 shows examples of the trajectories of deforming bubbles in both (a) quiescent

and (b) turbulent media. The trajectories are colour coded with their velocity magnitudes.
The zigzag path oscillation is clearly visible in the quiescent rising case, whereas more
chaotic trajectories become evident for bubbles travelling in turbulence. In addition to their
3-D trajectories, the shadows they cast on the three main planes are presented to illustrate
their projected tracks. Although a high concentration of tracer particles are present, their
trajectories are not shown to highlight the difference of bubble tracks in different flows.

2.3. Flow characterization
Before attempting to develop a model for bubble deformation and orientation, the
characteristics of the single-phase turbulence generated in our system are briefly discussed
here for completeness. Additional details regarding the turbulence characteristics can be
found in a recent work by Masuk et al. (2019b). In figure 2, the second-order (DLL)
and third-order longitudinal structure functions (DLLL) are shown, both of which follow
the scaling laws for a range of scales that the Kolmogorov theory predicts. Specifically,
between 2η and 200η, DLL appears to exhibit a 2/3 power law, indicated by the dashed
line, whereas the power-law exponent seems to be close to 1 for DLLL, as indicated by the
solid line. Furthermore, the green region in figure 2 indicates the range of the bubble size.
It is evident that the bubble size lies within the inertial range, as expected. Moreover, based
on the structure function in figure 2, a reasonable estimation of the energy dissipation rate
can be obtained, namely 〈ε〉 ≈ 0.16 ± 0.02 m2 s−3, which satisfies the required turbulence
intensity 〈ε〉 ≈ O (0.1) m2 s−3 forWe > Eo. All relevant dimensionless parameters of the
generated turbulence can be found in table 1.
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Figure 2. The second-order and third-order longitudinal structure functions (DLL and DLLL) of turbulence.
The green region indicates the range of the bubble size.

3. Finite-sized bubble deformation model (FBD model)

This paper has three main objectives. The first objective is to develop a model to capture
the deformation dynamics of finite-sized bubbles with diameter D (η < D < L) both in
turbulence and in water at rest. Second, the developed model should correctly account
for two deformation mechanisms driven by the local velocity gradients and the slip
velocity between the two phases. For one extreme limit, when bubbles rise in an otherwise
quiescent medium, the bubble deformation is dominated by the slip velocity. In this
case, Eo is much greater than 1, and We driven by the velocity gradients is close to
zero. For the other limit, the turbulent energy dissipation rate becomes so large that the
bubble deformation driven by the dynamic pressure gradient (We � 1) becomes important.
Finally, the third objective is to use our experimental results to validate the model and
constrain different dimensionless coefficients in the model.
Before introducing our model, we begin with the MnM model originally proposed

by Maffettone & Minale (1998) to describe the shape evolution of neutrally buoyant
droplets in a linear velocity gradient, with the droplet shape represented by a symmetric
positive–definite second-order tensor Pij, which can be expressed as

dPij

dt
= ΩikPkj − PikΩkj + f2(μ)(SikPkj + PikSkj) − f1(μ)

τ
(Pij − g(P)δij), (3.1)

where the three eigenvalues of Pij represent the squared lengths of three semi-axes
of an ellipsoid. Here, Sij and Ωij are the symmetric and anti-symmetric parts of the
velocity gradient tensor (Aij) that the droplet is subject to. In particular, Sij = (Aij + Aji)/2
and Ωij = (Aij − Aji)/2. For a simple shear flow with a small Reynolds number, f1
and f2 are functions of the viscosity ratio μ = μd/μc, where μd and μc represent the
dynamic viscosity of the inner fluid of bubbles/drops and their surrounding carrier fluid,
respectively. The last term on the right-hand side of (3.1) is the restoring term, in
which τ = μdD/2σ is the relaxation time scale of the droplet determined by μd and
the coefficient of surface tension σ ; D is the equivalent sphere diameter of the droplet.
Volume conservation is ensured in the model with g(P) = 3IIIP/IIP, where IIIP and IIP
are the invariants of Pij

Ip = Pii, IIP = −1
2(PijPij − I2P), IIIP = 1

3(PikPkjPji − I3P + 3IPIIP). (3.2a–c)
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This model is suitable for describing the deformation of bubbles in simple flows, and it
has been validated against several experimental results (Torza, Cox &Mason 1972; Bentley
& Leal 1986; Guido & Villone 1998; Guido, Minale & Maffettone 2000). Moreover, the
MnM model has been used to characterize the shape evolution of small neutrally buoyant
droplets in turbulence (Biferale et al. 2014; Spandan et al. 2016). This works under two
assumptions: (i) D is in the dissipative range (D � η), where the viscous stress still
dominates; and (ii) drops are neutrally buoyant with no significant slip velocity.
For finite-sized bubbles with D in the inertial range (η � D � L), neither of these two

assumptions holds any longer. In particular, the bubble slip velocity is so large such that
the bubble-scale Reynolds number Reb becomes much larger than one, implying that the
flow inertia plays a more important role than viscous stresses. The two basic sources of
flow inertia come from the surrounding straining flows and the velocity mismatch between
the two phases due to the density mismatch and finite bubble size.
Although an analytic model of the bubble deformation and orientation dynamics in

turbulence is not available, the potential flow calculations for bubble deformation in either
uniform flows or pure straining flows have been conducted, which can lend us some
insights into this problem. First, for a nearly spherical bubble with small deformation, the
bubble shape can be taken to be the ellipsoid of revolution: r = D[1 + ζ(We)P2(cos θ)]/2,
where the deviation of the bubble radius at a different location θ away from the equivalent
spherical radius D/2 is a function of the Weber number ζ(We) and the Legendre
polynomial P2(cos θ). By calculating the irrotational flow passing a sphere, the local
radius can be determined by the difference of pressure across the interface. From this
relationship, the bubble radius and its aspect ratio can be calculated. For both uniform
flows (Moore 1959, 1965) and straining flows (Kang & Leal 1987) around a nearly
spherical particle, ζ(We) appears to be a linear function ofWe

r = D
2

[
1 − 3

32
WeslipP2(cos(θ)

]
(uniform flows),

r = D
2

[
1 + Westrain

4
25
168

P2(cos(θ)

]
(straining flows),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.3)

whereWeslip = ρ(us)2D/σ andWestrain = ρ(λ3D/2)2D/σ are theWeber numbers defined
by the slip velocity (us) and the smallest eigenvalue of the rate-of-strain tensor λ3,
respectively.
In this paper, the contribution of the uniform flows (driven by the slip velocity

between the two phases) and straining flows are considered separately in the model.
However, rigorously, when one applies the potential flow solution that accounts for both,
the nonlinearity of the Bernoulli equation results in not only these terms that depend
on Weslip and Westrain but also some coupled terms as a function of

√
WeslipWestrain.

Nevertheless, since these coupled terms are associated with the higher-order Legendre
polynomials that do not contribute to the ellipsoidal deformation (which can be proved
with a simple expansion), they are ignored in our framework and the deformation driven
by the slip velocity and straining flows can therefore be cleanly separated.
In the MnM model, the term that characterizes the bubble deformation driven by the

straining flow is f2(μ)(SikPkj + PikSkj). This term cannot be directly applied to finite-sized
bubbles for two reasons: (i) Sij is the local strain rate tensor at a length scale close to or
smaller than η. For bubbles with D 
 η, it should be a coarse-grained S̃ij that dominates
the bubble deformation, i.e. S̃ikPkj + PikS̃kj. This argument is supported by our recent
work, which showed that the bubble deformation can be estimated using a Weber number
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calculated based on S̃ij (Masuk et al. 2021a). In addition, the bubble orientation appears
to be preferentially aligned with the eigenvectors of S̃ij, further confirming that S̃ij is the
relevant flow strain rate that contributes to bubble deformation (Masuk, Salibindla & Ni
2021b). (ii) For sub-Kolmogorov bubbles or drops, f2(μ)(SikPkj + PikSkj), scales linearly
with the Capillary number. However, if we follow the same expression but replace Sij
with S̃ij for finite-sized bubbles, the deformation scales withWe1/2, which differs from the
potential flow predictions in (3.3).
Although we cannot adopt the deformation term induced by the coarse-grained strain

rate as it is, i.e. S̃ikPkj + PikS̃kj, this formulation does capture one important feature of
the process: the resulting principal axes of the deformed shape Pij will align with the
eigenvectors of S̃ij, which is consistent with the experimental observation (Masuk et al.
2021b). One might attempt to improve this formulation by assuming a more general form
from potential flow theory and retaining terms of a higher order in the departures from
the small deformation limit. However, as Moore (1959) indicated, not only would such a
calculation be very lengthy, but it is also unlikely for one to obtain a valid result for large
deformation without using an excessively large number of terms. In this paper, we intend
to retain a simple formulation, i.e. S̃ikPkj + PikS̃kj, but correct its scaling with We. Here,
we introduce a stress tensor

γij = ρVikΛkp|Λpq|Vqj

(
D
2

)2

, (3.4)

where Λij = diag(λ1, λ2, λ3) is a diagonal matrix with λi representing the eigenvalues of
S̃ij, and Vij is a matrix with each column corresponding to one of the eigenvectors êi of
S̃ij. This stress term is formulated such that it scales with the dynamic pressure and the
Weber number linearly and the directions of maximum and minimum pressure align with
the maximum compression and stretching directions of the strain-rate tensor, respectively.
This stress tensor must be converted back to a strain-rate tensor to (i) maintain the

same formulation as the one used in the MnM model, and (ii) ensure that the volume
is conserved during deformation. In particular, a new deformation-rate tensor S̃sij (the
superscript s indicates that the eigenvalues of this tensor are the square of those of S̃ij,
i.e. λi|λi|) can be expressed by following the generalized Hooke’s law

Ssij = 1
Eτn

[(1 + ν)γij − νγkkδij], (3.5)

to relate stress with strain for isotropic materials (Ugural & Fenster 2003). Here, E is
a constant related to the restoring stress of bubble, which can be linked to the surface
tension coefficient, i.e. E = σ/D. Another constant in (3.5) is ν, often referred to as the
Poisson ratio in solid mechanics, which can be set as 0.5 for incompressible fluid. Since
only gas bubbles rather than vapour bubbles are considered in our case, this assumption
should be valid.
The new deformation-rate tensor obtained from (3.5) scales linearly withWe and can be

used directly with Pij to represent the deformation of finite-sized bubbles under a straining
flow, i.e. f ′2(S̃

s
ikPkj + PikS̃skj). Note that the coefficient f ′2 in this case does not depend on

the carrier-phase viscosity as the deformation of finite-sized bubbles is driven by inertia
rather than viscous stresses.
In addition to the coarse-grained velocity gradients, another effect caused by finite-sized

bubbles is the stresses on the bubbles induced by the slip velocity between the two phases.
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Figure 3. An example time trace of the semi-minor axis (r3) and the bubble slip velocity projected onto the
direction of r3 for an air bubble rising in an otherwise quiescent water medium.

The slip velocity results from both the density mismatch and finite-size effect (Bellani &
Variano 2012; Cisse, Homann & Bec 2013). The importance of the slip velocity was clearly
illustrated in a recent work by Masuk et al. (2021b). In particular, the bubble semi-minor
axis appears to preferentially align not only with the eigenvector (ê3) associated with the
smallest eigenvalue (λ3, strongest compression) of S̃ij but also with the slip velocity us.
This indicates that the role played by the slip velocity cannot be ignored for finite-sized
bubbles.
To include the contribution of the slip velocity, we decide to seek a simpler case in which

the slip velocity is the only dominant mechanism for bubble deformation with nearly zero
velocity gradients coarse grained at the bubble scale. Such an example is readily available
for a bubble rising in an otherwise quiescent aqueous medium at a high Reynolds number.
In this case, the vorticity production induced by the bubble motion is assumed to be strictly
confined to the interface and zero everywhere else in the fluid. At high Reynolds numbers,
the boundary layer is so thin that this assumption should hold.
We performed such an experiment in the same V-ONSET facility by simply turning

all jets and the mean flow off to allow for individual bubbles to rise in an undisturbed
environment. The same diagnostic system was used to extract the bubble rise motion and
their shapes in three dimensions. One such example is shown in figure 3. Here, the blue
line indicates the time trace of the bubble dimension along the semi-minor axis (r3), while
the red line represents the slip velocity projected onto the direction of r̂3, i.e. (|us · r̂3|).
Both signals exhibit some apparent oscillations in time because of the well-known path
instability developed due to the wake–bubble interaction (Mougin & Magnaudet 2001,
2006; Ern et al. 2012; Tayler et al. 2012). It appears that the time traces of r3 and |us · r̂3|
are out of phase with each other, indicating that an increase of the slip velocity results in
a decrease in the bubble minor axis. This is consistent with our expectation that a stronger
dynamic pressure from a larger slip velocity tends to compress the bubble along that
direction. When the slip velocity weakens, the bubble can relax back toward a spherical
geometry resulting in an increase of r3.
In this case, the background flow is almost stagnant, and the velocity gradient around

the bubble is negligible if we do not consider the bubble-induced flows. Following this
argument, the terms associated with velocity gradients in the MnM model become close
to zero. It is evident that, without these two terms, there is no other driving force that can
deform a bubble. Thus, the roles played by the slip velocity mush be added. In figure 3, it
is clear that the slip velocity primarily compresses bubbles along its direction. To add its
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contribution, a new stress tensor, i.e. γ ′
ij, is defined in a way that it must be aligned with

the slip velocity us following: γ ′
ij = −ρcusi u

s
j . This allows us to define a pseudo-strain-rate

tensor S̃′
ij following (3.5). Adding this term into the revised MnM model yields

dPij

dt
= f ′2(S̃

s
ikPkj + PikS̃skj) + Ks(S̃′

ikPkj + PikS̃′
kj) − f ′1

τn
(Pij − g(IIP, IIIP)δij)

+ Ω̃ikPkj − PikΩ̃kj, (3.6)

where Ωij in the MnM model is replaced with the coarse-grained version (Ω̃ij = (Ãij −
Ãji)/2). Here, f ′1 and f ′2 are two dimensionless coefficients, and τn is the typical relaxation
time scale of the bubble, which will be discussed in § 4.1. The pseudo-strain-rate term, i.e.
Ks(S′

ikPkj + PikS′
kj), has a coefficient Ks that measures its relative importance. To validate

the new model, we numerically integrate equation (3.6) and set S̃sij = 0 and Ω̃ij = 0 for
bubbles rising in water at rest. The time series of us were used to calculate the time series
of S′

ij. The integration was performed using the fourth-order Runge–Kutta method. The
initial condition for Pij was set such that the semi-minor axis of Pij is identical to that of
the measured bubble. The dimensions along the other two axes were assumed to be the
same, and the total volumes of the modelled and measured geometries were also kept the
same. This initial condition essentially fits the measured bubble geometry with an oblate
spheroidal shape. The same initial conditions and integration methods will are employed
throughout the remainder of this paper.
Both the semi-major and semi-minor axes integrated from the new model with the

pseudo-strain-rate term are shown in figure 4(b) along with the experimental result
presented in figure 4(a) for comparison. In this case, f ′1 = 1 and Ks = 0.14 were used. The
reasons for selecting these values will be discussed in § 4.1. It can be seen that the model
successfully reproduces the oscillation of both r3 and r1 simply based on the oscillation
of the slip velocity. In addition, the oscillation amplitude differs slightly between the
experimental results and the model prediction as the modelled oblate spheroidal geometry
is an approximation and the actual bubble will always have some deviation from this
idealized case.
In addition to the shape oscillation, decades of works have revealed the following

essential picture of the dynamics of finite-sized air bubbles rising in purified water with
no contaminants or surfactants. The bubble first rises along a straight line, followed by a
zigzag motion and subsequent spiral circular motion. During this process, its orientation
also oscillates along with its slip velocity. It has been shown by many previous works that
the semi-minor axis of a bubble oscillates between 0◦ and 30◦ (Mougin & Magnaudet
2001) with respect to the vertical direction. Such an oscillation arises from the wake
dynamics (Mougin & Magnaudet 2001, 2006; Ern et al. 2012; Tayler et al. 2012). The
wake vortices break and reform with reversed rotation near the inflection point of the
zigzag motion (Mougin & Magnaudet 2001), whereas the wake is continuously generated
during the spiral motion.
Figure 5 displays an example time trace of the relative orientation between r̂3 and the

vertical direction ẑ. The orientation oscillation can be clearly captured by the 3-D shape
reconstruction. The black line represents the prediction based on the modifiedMnMmodel
with the addition of the pseudo-strain-rate term. It is clear that the modelled results appear
to capture the orientation oscillation. However, for each oscillation period, as the relative
orientation reaches the peak and begins to drop, the predicted time trace consistently lags
behind the experimental one. We found that the lag is linked to the fact that the predicted
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Figure 4. Example time traces of the semi-major (blue) and semi-minor (red) axes of an air bubble rising
in water at rest from (a) direct experimental measurements and (b) the model calculation by using the
pseudo-strain-rate term based on the slip velocity.
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Figure 5. Time evolution of the cosine of the angle between the semi-minor axis of a bubble and the vertical
direction ẑ, including the direct experimental measurements (blue) and the model predictions with Ko = 0
(black solid line), Ko = 15 (red solid line) and f ′2 = 0 and Ks = 0 (rigid-particle limit, black dashed line).

bubble semi-minor axis does not rotate away from the vertical axis as quickly as the slip
velocity does.
To illustrate the underlying mechanism, figure 6 displays the possible processes of a

bubble following the re-orientation of the slip velocity. In this case, the bubble is shown
as an oblate spheroid geometry at t0 as if it was compressed due to a slip velocity aligned
with the vertical z axis prior to t0. At t0, us switches to a new direction aligning with
the y axis. There are two possible means by which a bubble can adjust its orientation
to the new us. The first way is through deformation. The pseudo-strain rate in this case
acts to first assist the restoring force to help the bubble to return to a sphere and then
continues compressing the bubble along the new us direction. In this case, the bubble axes
do change their orientations, but rather their lengths. However, as a result, the semi-minor
axis appears to switch from the z axis to the y axis.
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Figure 6. Schematic of two possible bubble-reorientation mechanisms as the slip velocity changes it direction,
including (M1) deformation along a different direction, or (M2) simple rotation while maintaining the original
geometry.

Alternatively, the bubble could simply rotate toward the new direction of us while
maintaining its original oblate spheroidal geometry. The evidence to support such a
mechanism can be drawn from decades of research on the path instability observed both
for bubbles (Magnaudet & Eames 2000; Mougin & Magnaudet 2001, 2006) and rigid
non-spherical particles rising/settling in an otherwise quiescent medium (Ern et al. 2012).
It has been shown that rigid oblate spheroidal particles can exhibit similar orientation
oscillation as deformable bubbles (Mougin & Magnaudet 2006; Fernandes et al. 2008;
Cano-Lozano et al. 2016). This observation has led to a conclusion that the deformability
effect is not important for path instability, and it also implies that the oscillation of the
bubble orientation is likely connected to rotation rather than deformation. Following this
argument, the pseudo-strain-rate term might not be sufficient to account for all effects
introduced by the slip velocity, as it does not contain an anti-symmetric component to
describe the bubble rotation due to wake–bubble interaction.
The rigorous method of modelling this bubble rotation due to wake–bubble interaction

is through the Kevin–Kirchhoff equation (Kirchhoff 1870; Mougin & Magnaudet 2002)

(mIII +AAA) · du
s

dt
+ mω × us = F + (m − ρcV)g, (3.7)

(JJJ +DDD) · dω
dt

+ ω × (JJJ · ω) = Γ , (3.8)

where III is the identity matrix, us and ω indicate body translational and rotational velocities
respectively with their main axes aligning with the principal axes of the body. To be
consistent with the rest of the paper, the translational velocity is denoted the same as
the slip velocity since the background flow velocity is close to zero. Additionally AAA and
DDD are the translational and rotational added-mass tensors, respectively. For bubbles with
negligible inertia, both mass m and moment of inertia tensor JJJ should be close to zero;
F and Γ are the instantaneous hydrodynamic force and torque, respectively, obtained by
integrating local stresses and moments over the bubble interface. Many attempts have been
made to solve the Kevin–Kirchhoff equations by coupling them with the Navier–Stokes
equation (Mougin & Magnaudet 2002), potential flow approximation (Fernandes et al.
2008) and subcritical bifurcation model of the lateral lift force (Shew & Pinton 2006).
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Through these models and simplifications, the importance of the wake dynamics and
the added-mass effects have been established. Note that, in this framework, bubbles are
considered as rigid spheroids without the deformation oscillation, which suggests that the
deformation and orientation oscillation can be separately modelled.
To model the orientation oscillation, a new pseudo-rotation tensor Ω ′

ij is introduced to
characterize the bubble rotation induced by the wake dynamics

Ω ′
ij = −1

2εijkω
′
k, (3.9)

where ω′ is the pseudo-vorticity vector. This equation connects with the Kevin–Kirchhoff
equation (3.8) based on the relationship between vorticity and the object angular velocity:
ω′ = 2ω. Although it might appear that ω′ is readily available after solving (3.7) and
(3.8) together, the inputs to these equations, i.e. F and Γ , can only be acquired by
integrating hydrodynamic forces over the entire bubble interface, which requires access
to the entire flow field nearby a bubble. Since the goal of the proposed framework is to
model the bubble dynamics based on simplified flow information, we cannot rely on the
Kevin–Kirchhoff equation directly, at least not in its complete form without a simple but
realistic model for F and Γ . In the current framework, we turn to a simple experimental
observation that r̂3 always attempts to align with the direction of usi , which is consistent
with what has also been reported in previous works (Mougin & Magnaudet 2001). Based
on this observation, we propose that ω′ = φ(r̂3 × ûs)/|r̂3 × ûs|. The variable φ is the
angle between two unit vectors: r̂3 and ûs. This pseudo-vorticity vector ω′ points to a
direction that is perpendicular to both r̂3 and ûs. In this way, ω′ is designed such that the
pseudo-rotation tensor Ω ′

ij rotates the semi-minor axis of the bubble towards the direction
of the slip velocity at a rate linearly proportional to φ.
Finally, adding both the pseudo-strain-rate (S′

ij) and pseudo-rotation (Ω ′
ij) terms to

equation (3.6) leads to a new model (the finite-sized bubble deformation model, or the
FBD model hereafter) for describing the affine deformation of finite-sized bubbles in both
linear flows and turbulence

dPij

dt
= Ω̃ikPkj − PikΩ̃kj + f ′2(S̃

s
ikPkj + PikS̃skj) − f ′1

τn
(Pij − g(IIP, IIIP)δij)

+ Ko(Ω
′
ikPkj − PikΩ

′
kj) + Ks(S′

ikPkj + PikS′
kj). (3.10)

The coefficients Ko and Ks are constants that set the relative roles played by these
two new terms, respectively. These two new coefficients must be constrained through
comprehensive experimental results that are introduced in § 4.1. Here, to demonstrate that
they can capture the observed oscillations for bubbles rising in an otherwise quiescent
medium, we fix them at Ks = 0.14 and Ko = 15.
The red line in figure 5 shows the predicted relative orientation of the semi-minor axis

of the bubble, which appears to better agree with the measured results than does the black
line obtained using the pseudo-strain-rate term alone, capturing not only the overall trend
but also the shape of each peak. Moreover, the lag between the blue line and black line at
the trailing edge of each peak is reduced by the addition of the pseudo-rotation term.
Furthermore, to ensure that the model can reproduce the key observation that the bubble

deformation does not affect the orientation oscillation, we performed another test of the
model by setting f ′2 = 0 and Ks = 0, which returns to the solid-particle limit that forces
the bubble to retain its initial geometry throughout the entire time trace without any
deformation. The results are shown as the black dashed line in figure 5. This line falls
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Bubble deformation model

directly on top of the red line, suggesting that the orientation oscillation can be reproduced
even for rigid particles without deformation.
Similar tests were performed to repeat the calculation of the shape oscillation in

figure 4(b) for cases with or without the pseudo-rotation term. The results are almost
identical, suggesting that the deformation dynamics is primarily dominated by the
pseudo-strain-rate term. Combining this test with the previous one on the deformation
oscillation, we conclude that Ko and Ks, can be separately evaluated based on the
deformation and orientation oscillation. In addition, the FBD model, in essence, is a
first-order linear model that cannot capture the free oscillation of a bubble. The emergence
of the oscillation in both the deformation and orientation dynamics arises from the
oscillation in the inputted slip velocity.

4. Results and discussion

In (3.10), there are four dimensionless coefficients: f ′1, f
′
2, Ko and Ks. Other than f ′1

for the relaxation term, each driving mechanism has a coefficient that needs to be
determined from experimental results. The advantage of our experimental results is that
we have a rather unique dataset with simultaneous measurements of the two phases.
This independent measurement of these two phases provides a way to constrain different
coefficients and validate the proposed FBD model. In this section, we intend to link
different coefficients to different statistics so that we can constrain them one by one
without multi-variable fitting.

4.1. Quiescent rising
The time traces of both the bubble geometry and orientation have already been used in
the previous section to introduce the additional terms. It is clear that the new model works
well. In this section, the focus is shifted to the discussion of different coefficients. Here,
special attention must be paid to two new coefficients f ′1 and f

′
2 that replace f1(μ) and f2(μ)

in the MnMmodel; f1(μ) and f2(μ) were introduced as non-dimensional and non-negative
terms that quantify the relative roles played by the relaxation and shear stresses in linear
shear flows, both of which are related to the viscosity ratio μ. For finite-sized bubbles in
turbulence, the capillary number is negligible and the turbulence Weber number becomes
large so the bubbles are deformed by inertial forces. In this case, the gradient of the
dynamic pressure is more important than the shear stresses. Therefore, the flow viscosity
becomes secondary, and f1(μ) and f2(μ) are replaced with f ′1 and f ′2, both of which are
independent of the viscosity ratio.
Note that f1(μ) enters the MnM model along with the relaxation time scale τ ,

which is also a function of μ. For the same aforementioned reason, τ should not
depend on μ for finite-sized bubbles. Therefore, the relaxation frequency f1(μ)/τ is
replaced with the natural frequency of a bubble under small deformation, namely 1/τn =√

(96σ)/(ρcD3)/2π based on Lamb’s mode 2 frequency. Following this argument, f ′1
should be of order unity, and τn should follow 2π/

√
(96σ)/(ρcD3) for all cases discussed

in this paper. For convenience, f ′1 is fixed to 1.
Once f ′1 is fixed (and f ′2 = 0 for quiescent rising), the two remaining coefficients are Ks

and Ko, which are related to the pseudo-strain-rate and pseudo-rotation terms, respectively.
As we have shown previously in figures 4 and 5, not all statistics depend on both
coefficients at the same time: the deformation oscillation is not sensitive to Ko, whereas
the orientation oscillation does not rely on Ks.
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1 2 3

D = 2.5 mm
FBD model

α

10–3
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p.d.f.

10–1

100

Figure 7. The probability density distribution of aspect ratio α for bubbles with diameter of D = 2–3 mm
rising in an otherwise quiescent medium, including direct measurements (open circles) and model predictions
(red solid line).

Symbols in figure 7 show the probability distribution function (p.d.f.) of the bubble
aspect ratio α = r1/r3 from our experiments, i.e. p(αe). In this particular case, the bubble
size D is around 2.5 mm. Most bubbles have small aspect ratios, but the tail of p(αe)
extends to a large α close to 3. In addition to the measured p(αe), the distribution of α can
also be determined by integrating the FBD model (p(αm)) using (3.10) with a selected Ks.
For each bubble trajectory, the initial condition of Pij is set the same as the oblate fit of the
bubble 3-D reconstructed geometry; Pij for the remainder of the trajectory is numerically
integrated using the time traces of the slip velocity as inputs.
A nonlinear search for Ks was performed to minimize the difference between the two

p.d.f.s: p(αm) and p(αe). Based on this search, Ks = 0.14 was obtained, which is similar
to the result if we minimize the difference between αm and αe for all bubble trajectories
directly. The final p.d.f. of α calculated using the FBD model with Ks = 0.14 is shown as
the red line in figure 7. With only one fitting parameter, p(αm) agrees well with the directly
measured p.d.f. In particular, the model captures both the long right tail for large α and a
steep drop for small α close to one.
The mean α calculated from both p.d.f.s differ by only 3.5%. This small difference

comes from the lower left tail from the model prediction. Such a difference could
potentially be attributed to the experimental uncertainty of the 3-D shape reconstruction,
which has been discussed systematically in another paper (Masuk et al. 2019b). The
key point is that this uncertainty is larger when the shape is close to a sphere as any
reconstruction artefacts could result in an overestimation of α. In other words, we have
greater confidence in large α than those close to 1. Thus, when we fit Ks, more weight is
put on the right tail of α than the left.
Once Ks and f ′1 are fixed, the only remaining coefficient for the quiescent rising case

is Ko, which can be constrained by the bubble orientation. Note that the distribution of
the alignment between r̂3 and ẑ is very close to 1. As shown in figure 5, the oscillation
of |r̂3 · ẑ| is from 0.8 to 1. Thus, rather than fitting Ko based on the p.d.f., we directly fit
Ko based on all the instantaneous trajectories, which are all quite similar to what has been
shown in figure 5 because bubbles rising in a quiescent medium are very reproducible.
This fit yields Ko ≈ 15.
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Note that the experiments for both the quiescent and turbulent carrier phases were
conducted in purified water. However, a high concentration of tracer particles was added to
the turbulent case to resolve the flows close to bubbles but no tracer particles were used for
the quiescent case. As a result, the bubble rise velocity in an otherwise quiescent medium
matches with the results obtained in prior experiments for clean bubbles. However, in
turbulence, the lift and drag coefficients are closer to the reported values for contaminated
ones (Salibindla et al. 2020). Nevertheless, the interface contamination will not affect the
model prediction as the slip velocity between the two phases enters into our model as an
input. As shown by recent experiments (Aoyama et al. 2018), the relationship between
the bubble aspect ratio and the Weber number appears to be the same for both clean and
contaminated bubbles as long as the respective rise velocity and surface tension are used
in the Weber number.

4.2. Turbulence
We assume that the three coefficients: f ′1, Ko and Ks, determined from the quiescent
case, can be directly applied to describe the bubble deformation in turbulence as the key
underlying physics that bubbles are deformed by the competition between the gradient of
the dynamic pressure and the restoring surface tension does not change whether bubbles
move in a quiescent or a turbulent medium.
The key differences between the quiescent and the turbulent cases include: (i) the slip

velocity comes not only from buoyancy but also from the random fluctuations of the
surrounding turbulent flows; (ii) the local velocity gradients are not zero and must be
measured along with the bubble trajectory. Their contributions to the bubble deformation
introduce the additional coefficient f ′2. In our experiments, both the slip velocity and the
local coarse-grained velocity gradient can be measured accurately. Additional details can
be found in a recent paper by Masuk et al. (2021a). Here, the same dataset is used to
evaluate the new model.
To constrain f ′2, the statistics of the measured bubble 3-D shape are used. In particular,

figures 8(a) and 8(b) present the p.d.f.s of the semi-major and semi-minor axes for a range
of bubble sizes (D = 3–7 mm), respectively. For both cases, the symbols represent the
measured results, whereas the solid lines of the same colour show the model predictions by
integrating equation (3.10) using the slip velocity and velocity gradients along the bubble
trajectories.
As D grows, the p.d.f.s of both r1 and r3 shift monotonically rightward. At the same

time, the p.d.f. becomes wider because the distribution of the Weber numbers based on the
slip velocity and velocity gradients expand (this result has been shown elsewhere byMasuk
et al. 2021a), indicating that large bubbles are more susceptible to stronger deformation.
It can be seen that both features can be successfully captured almost perfectly by the new
FBD model.
Note that the overall shape of the p.d.f. is controlled both by the slip velocity and by

velocity gradients. However, the role played by the slip velocity, controlled by Ks, has
already been fixed at 0.14 based on the discussions in § 4.1 so the only unknown here
is f ′2, which controls the contribution of the turbulent strain rate. When f ′2 increases, the
p.d.f. becomes wider and the peak shifts rightward. To some degree, f ′2 is overconstrained
because only one parameter is needed to capture two features (peak location and width) of
the distribution of r1 and r3 for a range of bubble sizes. In practice, the optimization was
performed for r1 of one size at D = 3 mm, from which f ′2 = 0.5 was obtained. In figure 8,
it is evident that, although f ′2 is fitted based on one size, it helps to match the p.d.f.s of both
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(b)(a)

Figure 8. The probability density distributions of (a) the semi-major axis (r1) and (b) the semi-minor axis (r3)
of bubbles with three different sizes ranging from D = 2–4 mm to D = 6–8 mm in turbulence. Symbols show
experimental results while solid lines of the same colour indicate the corresponding model predictions.

r1 and r3 for all three sizes, which confirms that the model provides an excellent prediction
of the bubble geometry with a range of sizes.
Further tests are performed to reproduce the aspect ratio α = r1/r3. The distribution of

α for three different sizes of bubbles are shown in figure 9. The shape and overall changes
of p.d.f. as a function of D are similar to the discussions for r1 and r3. For the smallest
size of bubble (D = 3 mm), the model prediction appears to agree well with the measured
p.d.f. of α as this is the size that we used to fit f ′2. For D = 5 mm and D = 7 mm, the
agreement is still very good, capturing the overall trend, including the steep drop at small
α and long tail at large α. However, a small deviation can be seen: the peak location shifts
towards smaller α and the long right tail seems to drop at a slower rate as α increases. This
small difference can be attributed to two reasons: (i) the definition of α; the reconstructed
3-D surface consists of many vertices. The values of r1 and r3, from the experiments, are
defined as the longest and shortest centre-to-vertex distances, respectively. For bubbles
deforming in turbulence, any concave areas on the bubble interface could result in a
smaller semi-minor axis and thus a large aspect ratio. Such a process can never be captured
by a linear model which consequently results in an underprediction of α. (ii) Nonlinear
deformation contributed by eddies of a size smaller than D; this effect was not accounted
for in the linear FBD model (3.10).
In addition to distributions, in figure 10, two example time traces of both experimental

measurements and model predictions for semi-axes of two different bubbles deforming
in turbulence are shown. Panels (a,b,) show the experimental measurements of r1 and
r3, whereas (c,d) show the corresponding model prediction. It is evident that the model
manages to predict the overall trend of the temporal fluctuations of the bubble deformation
for both cases. It is important to admit that not all measured time traces of r1 and r3 agree
with their calculated counterparts. Even for the two cases shown in figure 10, although
the model captures the overall trend, it clearly misses the small-scale fluctuations, which
are likely driven by eddies smaller than the bubble size. In addition, the measured peaks
of r1 appear to lag behind the calculated results. This phase lag is expected. In the
FBD model, the bubble response frequency is fixed at its natural frequency obtained by
assuming small-amplitude oscillation. Although it provides a good overall estimation, it is
not necessarily well suited for large-amplitude deformation that is likely to be nonlinear.
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Figure 9. The probability density distribution of aspect ratio α of bubbles with different sizes in turbulence.
Symbols show experimental results, while solid lines of the same colour indicate the model predictions.
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Figure 10. Two example time traces of the semi-major (r1) and semi-minor (r3) axes of bubbles deforming in
intense turbulence, with both directly measured results (a,b) and model predictions (c,d).

As a result, one can observe phase lags between the measured and calculated r1. Ideally, τn
in the FBD model should also be a function of α(t). For simplicity, this more complicated
correction is not modelled in the current framework.
Once all four coefficients f ′1, f

′
2, Ko and Ks are fixed, we can evaluate the performance

of the FBD model in predicting the bubble orientational dynamics. Given that the bubble
deformation is controlled by both the slip velocity and the velocity gradients, the bubble
orientation is shown as the cosine of the angle (W) between the bubble semi-minor axis
(r̂3) with either ûs (figure 11a) or one of the eigenvectors of the coarse-grained velocity
gradients, i.e. ê3 (figure 11b). If the bubble orientation is completely random, the p.d.f. of
W should follow a uniform distribution at 1 for the entire range of W. If the distribution
peaks at 1, this indicates that r̂3 preferentially aligns with that vector. In figure 11(a), it
is evident that r̂3 shows the strongest alignment with the slip velocity. In figure 11(b), the
preferential orientation of r̂3 with ê3 confirms that bubbles are compressed along ê3 and
therefore align their semi-minor axes r̂3 with it.
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|ê3 · r̂3||ûs · r̂3|
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Figure 11. The probability density distribution of the alignment between (a) the bubble semi-minor axis (r̂3)
and the slip velocity (ûs), (b) the bubble semi-minor axis (r̂3) and the compression (ê3) directions of their
surrounding coarse-grained strain-rate tensor. Symbols show directly measured results, while lines indicate the
model prediction using different combinations of coefficients.

In addition to the measured distribution, we also integrate the FBD model (3.10) to
obtain the p.d.f.s of the alignment using the slip velocity and velocity gradients along
the bubble trajectories as inputs. Since all coefficients have already been determined
from other tests, we begin by calculating the bubble orientation by using the same
set of coefficients (f ′1 = 1, f ′2 = 0.5, Ks = 0.14, Ko = 15) similar to the deformation
dynamics. The resulting orientation is shown as dash-dotted line in figure 11(a,b).
Although the relative orientation between r̂3 with ê3 in (b) appears to reproduce a trend
similar to the measured results, the model predicted r̂3 shows a much stronger alignment
with us.
We realize that the strong alignment between r̂3 and us is contributed by the

coefficient for the pseudo-rotation term (Ko) being too large, which essentially forces r̂3
to immediately adjust to the direction of the new us at every time steps. The fact that
Ko might be smaller in turbulence than in a quiescent medium is not surprising as the
pseudo-rotation term is linked to the wake-induced bubble rotation. For a bubble rising
in water at rest, a persistent wake forms behind the bubble. In this case, Ko is large and
the pseudo-rotation term is important. In turbulence, particularly in intense turbulence
with a large energy dissipation rate, the wake, even it forms, might not be sustained long
enough behind the bubble before it is perturbed by the pre-existing background turbulence.
Therefore, it is possible that the importance of the pseudo-rotation term becomes smaller
in intense turbulence. To test this conjecture, we calculate the bubble orientation by
setting Ko = 0 (dashed line), and the results become very close to the measured alignment
between r̂3 and us. But even if the wake effect becomes smaller, it should still exist for
finite-sized bubbles with a large enough slip velocity. The fact that setting Ko = 0 does
not affect the bubble orientation suggests that the reorientation of bubbles in turbulence
might not be dominated by rotation, if present at all, and it is the deformation that controls
the bubble orientation (M1 rather than M2 in figure 6). Continuing this logic leads to
the next argument: if the bubble rotation is not important, we hypothesize that even
the coarse-grained vorticity from the ambient turbulence is no longer important for the
bubble orientation dynamics. Note that the coarse-grained rotation term (Ω̃ij) does not
have a coefficient based on the original MnM model. Here, to quantify its importance,
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we introduce a new coefficient Kω, which was essentially set to be 1 for the MnM model
and the new FBD model. To test the hypothesis of bubble rotation, Kω is set to be zero
here, as well. The result is shown as the red solid line in both figure 11(a,b). Consistent
with our expectations, removing the contributions of both rotational terms provides
the best prediction of bubble orientation, which implies that the bubble reorientation
in turbulence occurs primarily due to deformation along another direction rather than
rotation to a new direction. This is nearly opposite to the bubble reorientation in a
quiescent medium, in which the wake-induced rotation could be equally as important, if
not more.

4.3. Possible implementation of the model in numerical simulations
Before discussing the implementation of the FBD model in numerical simulations, we
would like to briefly review how the dynamics of point spherical particles (Maxey & Riley
1983), point non-spherical particles (Voth & Soldati 2017), point bubbles (Magnaudet &
Eames 2000; Lohse 2018) and point neutrally buoyant deformable droplets (Elghobashi
2019) are simulated along with the carrier-phase turbulence. In all these cases, whether the
particle is spherical or deformable, the translational motion is computed by integrating the
Maxey–Riley equation based on the information of the carrier phase, including the local
fluid velocity to calculate the drag force. The local flow velocity gradient and acceleration
must be included if the lift force and added-mass force are considered, respectively.
Beyond the translational motion, the orientation dynamics of a non-spherical rigid particle
can be captured by Jeffery’s equation (Jeffery 1922; Voth & Soldati 2017). If such a
particle is deformable, one must include the MnM model (Elghobashi 2019). For both
Jeffery’s equation and the MnM model, the local flow velocity gradient is the key input
variable.
For finite-sized bubbles, although the Maxey–Riley equation cannot be applied directly

due to the violation of the point-bubble assumption, one might still attempt finite-size
corrections (Homann 2010) to calculate the bubbles’ translational motions. Once their
trajectories are available, the deformation and orientation dynamics can be calculated from
the FBD model by inputting the fluid velocity and velocity gradients coarse grained at
the bubble size. Although the FBD model in (3.10) appears to be complicated, it can be
implemented in simulation just like the Jeffery’s equation for non-spherical particles and
the MnMmodel for small deformable droplets with an identical number of input variables.
Furthermore, the FBD model can be used along with simulations that consider two-way

couplings and bubble-induced turbulence. The particle-induced turbulence will be solved
during the first step, in which the bubble motion and its feedback to the surrounding flows
are solved at the same time through the Euler–Lagrange framework (Laın et al. 2002). The
FBD model takes inputs from the solved flows that already contain the contributions from
bubble-induced turbulence to determine the bubble deformation and orientation, which in
turn can be used to determine the drag tensor and added-mass tensor for the next time step.

5. Conclusion

This work focuses on developing a model capable of capturing the key deformation and
orientation dynamics of finite-sized bubbles in both quiescent and turbulent media. The
model uses simplified surrounding flow information as inputs and outputs the bubble
geometry and orientation. Such a model can only be developed from and evaluated by
experiments that have access to both the flow information and the bubble geometry
simultaneously in three dimensions.
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Such a simultaneous measurement was made possible through our experimental efforts.
Six high-speed cameras were used to reconstruct the 3-D shape of bubbles with their
surrounding 3-D tracer particle trajectories in a vertical water tunnel, allowing for the
creation of both a quiescent medium for bubbles to rise up or a turbulent environment
with a large energy dissipation rate to deform finite-sized bubbles. For the turbulent case,
it has been found that the deformation of finite-sized bubbles is primarily driven by the
dynamic pressure gradients from the local velocity gradients and the slip velocity.
Based on our observation, a new FBDmodel is proposed in this work. The FBDmodel is

a linear model that comes from the potential flow solution to capture the affine ellipsoidal
deformation of bubbles in both quiescent and turbulent media. The FBDmodel extends the
work by Maffettone & Minale (1998), which was limited to small sub-Kolmogorov-scale
drops, by adding a few new components: (i) replacing the local velocity gradients with
the velocity gradients coarse grained at the bubble size; (ii) accounting for the bubble
deformation responding to the local slip velocity by using the a pseudo-strain-rate tensor;
(iii) modelling the wake-induced bubble rotation by adding a pseudo-rotation tensor.
Furthermore, the two main driving terms that account for the deformation induced by the
coarse-grained local velocity gradients and the slip velocity scale linearly with the Weber
number rather than the Capillary number due to the finite bubble Reynolds number effect.
To test the performance of the FBDmodel, the time series of the coarse-grained velocity

gradient and the slip velocity from the direct experimental measurements, following
each bubble trajectory, in both a quiescent and a turbulent medium are input into the
model. The output from the model is the time evolution of the bubble geometry and
orientation, which can also be directly and independently measured from the 3-D bubble
shape reconstruction. The difference between the calculated and measured geometries and
orientations provides a unique way of calibrating and validating the proposed FBD model.
In the FBD model, there are four new coefficients. The coefficient for bubble relaxation

can be fixed based on the bubble natural frequency, while the remaining three coefficients
can be isolated and calibrated by connecting each of them to individual statistics. In
particular, the coefficients associated with the deformation and rotation by the slip velocity
and coarse-grained strain rate can be constrained based on the bubble deformation and
reorientation in quiescent and turbulent media, respectively. Finally, based on the statistics
of the bubble orientation, we determine that both the flow rotation and the pseudo-rotation
terms are negligible in controlling the bubble orientation in turbulence because, in strong
turbulence, the rotation of a bubble is driven by the deformation along a different direction
due to the re-orientation of the strain rate and slip velocity rather than from rotation.
Finally, we propose how to implement the FBD model in simulations to describe the
deformation and orientation dynamics of finite-sized bubbles/drops in turbulence.
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