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Abstract— We consider a class of multi-agent optimization
problems, where each agent is associated with an action vector
and a local cost that depends on the joint actions of all agents,
and the goal is to minimize the average of the local costs.
Such problems arise in many control applications such as wind
farm operation and mobile sensor coverage. In many of these
applications, while we have access to (zeroth-order) information
about function values, it can be difficult to obtain (first-order)
gradient information. In this paper, we propose a zeroth-order
feedback optimization (ZFO) algorithm based on two-point
gradient estimators for the considered class of problems, and
provide the convergence rate to a first-order stationary point for
nonconvex problems. We complement our theoretical analysis
with numerical simulations on a wind farm power maximization
problem.

I. INTRODUCTION

In this paper, we consider cooperative multi-agent opti-
mization problems in the following form:

: 1 n _l - (el n
min f(x,...,x)—n;fl(a:,...,x). (D

zteR%

Above, n is the number of agents, ' € R% denotes the
action vector of agent i, and f; : R% x ... x R¥» — R
denotes the local cost function of agent ¢ which is smooth
but not necessarily convex. We note that the local cost f; is a
function of the joint action profile z := (z?, ..., 2™) for each
i, indicating that the local cost value of agent ¢ is affected
not just by its own action z* but also possibly the actions of
all other agents. We also assume that each agent ¢ can only
control its own action vector x* though the global system
seeks to find an optimal joint action profile x. Therefore,
our setting is distinct from the more commonly studied
global variable consensus optimization (see [1] for a survey),
where each agent maintains a local copy of the whole global
decision variable, and is able to query information (e.g.,
function value, gradient) of the local cost evaluated at its own
local copy without being directly affected by other agents.
Problem (1) and similar variants have appeared in many
applications, such as wind farm power optimization [2],
distributed routing control [3], and mobile sensor coverage
[4]. In those applications, the goal is to seek local actions
that optimize the global behavior of a system of closely
interrelated agents. In many cases of these applications, each
agent can only evaluate/observe the value of one part of
the global cost, e.g., the function value of its own cost f;
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and not (higher-order) derivatives thereof. This requires that
the optimization procedure should be gradient-free, relying
only on zeroth-order feedback of the local costs f;. We refer
to such optimization problems as zeroth-order cooperative
multi-agent optimization.

While many multi-agent control problems can be formu-
lated under the framework of zeroth-order cooperative multi-
agent optimization, to the best of our knowledge, the design
and analysis of effective algorithms for general zeroth-order
cooperative multi-agent optimization has not been exten-
sively studied in the literature (see Section I-B Related Work
for more discussion on literature). This motivates our study
of multi-agent optimization that leverages solely zeroth-order
information.

A. Our Contributions

First, we propose a zeroth-order cooperative multi-agent
optimization algorithm, which we call Zeroth-order Feed-
back Optimization (ZFO). We consider the case where the
individual cost functions f; are smooth but nonconvex, and
our goal is to find a joint action profile = close to a stationary
point of the global cost f. The ZFO algorithm we develop
depends on local computation and communication of two-
point zeroth-order gradient estimators, such as the ones
studied in [5], [6]. Specifically, at each iteration, each agent
takes its own actions, collects zeroth-order information on
the corresponding local costs, exchanges its most up-to-date
zeroth-order information of all agents with its neighbors by a
communication network, and forms a two-point zeroth-order
gradient estimate to update its action vector. We note that the
communication network could be subject to potential delays.

Second, we prove the convergence of our algorithm, and
analyze its non-asymptotic convergence rate to a first-order
stationary point when communication delays are bounded
above. We focus on first-order stationarity as our setting
involves nonconvex smooth objective functions. We establish
a O(1/+/T) convergence rate for the average squared norm
of the gradients of the iterates, where 7" is the number of iter-
ations. This dependence on 7' is the same as those results for
related problems in the distributed nonconvex optimization
literature, such as asynchronous parallel stochastic gradient
descent [7] and distributed zeroth-order global consensus
optimization [8]. We also analyze the dependence of the
algorithm’s sample complexity on the problem dimension,
the network size, and the communication delays.

Third, empirically, we apply our algorithm to a simulated
wind farm power maximization problem, and show that our
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algorithm can converge to an optimal solution for the given
problem with satisfactory convergence behavior.

B. Related Work

a) Zeroth-order optimization: The absence of gradient
information in our problem setting situates our work in the
broader zeroth-order optimization literature. In the central-
ized setting, examples of zeroth-order optimization include
estimating gradients using function values [5], [6], [9], [10],
and direct-search methods that do not seek to approximate a
gradient [11]. A survey of the zeroth-order literature can be
found in [12]. There has also been some recent work utilizing
zeroth-order optimization in a distributed setting [8], [13]-
[16]. However, to the best of our knowledge, most of them
focus on the distributed setting of global variable consensus
optimization, rather than the cooperative multi-agent setting
discussed in this paper.

b) Multi-agent optimization from game-theoretic per-
spective: The cooperative multi-agent optimization problem
can also be interpreted as a cooperative game. Accordingly,
there has been a line of work studying the problem from the
lens of game theory. In particular, the problem studied in
our work has also been studied in a series of papers utilizing
game-theoretic control [2], [17], in the specific application
of wind farm operation. However, [17] and [2] only provide
results on asymptotic convergence, while we provide explicit
convergence rates. In another related direction, [3] considers
the problem of designing local objective functions so as to
optimize global behavior in cooperative games. While our
goal is similar, we consider the problem from an optimization
rather than game-theoretic perspective, and assume only
zeroth-order information of the local costs f; is available.

c) Distributed optimization: Another research area
closely related to our work is distributed optimization. While
our setting is distinct from the extensively studied global
variable consensus problem [18]-[24], we note that in both
settings, agents need to collaborate so as to optimize the
global objective. In addition, due to the local nature of
communication, the agents will experience delays when
receiving information from other (possibly distant) agents
in the network. Therefore, our problem can also be viewed
from the perspective of distributed optimization with delays
[7], [25]-[28]. However, our work appears to be the first
to study the effects of delays in a distributed zeroth-order
setting.

Notation

Throughout this paper, we use ||-|| to denote the standard
Euclidean norm. For any real-valued differentiable function
h(z) = h(z!,... ,2™), we use V'h(z) to denote the partial
gradient of h with respect to z*. The px p identity matrix will
be denoted by I,,. We use N (y,X) to denote the Gaussian
distribution with mean p and covariance matrix .

II. PROBLEM FORMULATION

Consider a group of n agents, where agent ¢ is associated
with an action vector z* € R% for each i = 1,...,n.

The joint action profile of the group of agents is then
z = (2',2%,...,2") € RY where d = I, d;. Each
agent is also associated with a real-valued local cost function
fi(z) = fi(z',...,2") that depends on the joint action
profile 2 € R?. The goal of the agents is to cooperatively
find the joint action profile that minimizes the average of the
local costs, i.e., to solve the following problem

. . 1 - 1 n
min, f(z) .—n;fz(aj ey @), (2)
where f(x) denotes the average costs among agents.

In solving this problem, it is natural that each agent needs
to collect information on its own local cost and exchange
information with other agents, as the local costs are affected
by all agents’ actions. We make two assumptions on how
information is obtained and exchanged among agents. The
first pertains to the type of information the agents can access,
and the second to communication mechanism:

1) Access to only zeroth-order information. We assume
that each agent ¢ is only able to access (zeroth-order) function
value information of its local cost f;, and that derivatives of
any order of f; are not readily available. In obtaining the the
function value, each agent ¢ first updates its action vector
x%, which yields a new joint action profile z = (x!,... z").
Then, each agent ¢ observes its corresponding local cost f;
evaluated at the updated = = (z1,...,z").

For simplicity, we assume that the function values ob-

served by the agents are noiseless and accurate for most parts
of this paper; we shall see in Section V-B that the proposed
algorithm still works empirically when the function values
are corrupted by independent additive noise.
2) Localized communication. We assume that the n agents
are connected by a communication network. The topology of
the communication network is represented by an undirected,
connected graph G = ({1,...,n}, &), where the edges in £
represent the bidirectional communication links. Each agent
exchanges messages directly only with its neighbors in the
communication network G. As an example, if agent 1 is two
hops away from agent 3 in G, assuming no communication
failure, it takes two communication rounds to transmit infor-
mation from agent 1 to agent 3, and vice versa. We denote
the distance (the length of the shortest path) between the pair
of nodes (4, j) in the graph G by b;;.

A. An Example: Wind Farm Power Maximization

Here we present an example abstracted from practical
problems which fits the aforementioned formulation.

Consider a wind farm with n wind turbines. Each turbine
1 is associated with a local agent that is responsible for
adjusting the turbine’s axial induction factor denoted by a’,
which influences the amount of wind the turbine can harness.
According to the Park model [29], a standard wake model
studied in existing literature, when a wind turbine extracts
energy out of the wind, it creates a wake downstream where
the wind speed is reduced. As a result, the power generated
by turbine ¢, denoted by P;, depends not just on its own
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axial induction factor a’ but also on those of wind turbines
upstream. Consequently, if we denote a = (a',...,a"), then
P; is in general a function of the joint axial inductor factor
profile a. The wind farm power maximization problem can
now be posed as

max
a=(al,...,a™)

1 n

— Pi(a',...,a"). 3
- ; (a',.. a") 3)
We assume the following mechanism of collecting and
exchanging information among agents:

1) Access to only zeroth-order information. The agents
do not have the computational capacity for numerical com-
putation or simulation of P; or its derivatives due to the
highly complex aerodynamic interactions between turbines
[2]. On the other hand, each agent 7 is able to measure the
power P; generated by its corresponding turbine via some
measurement apparatus at any time.

2) Localized communication. The agents are connected by
a bidirectional communication network, and each agent can
only directly talk to its neighbors.

We refer to [2] for more details on the wind farm model and
the power maximization problem.

III. ALGORITHM
A. Preliminaries on Zeroth-Order Gradient Estimators

In order to solve the problem (2) where only zeroth-order
function value information can be obtained, we consider the
following gradient estimator from zeroth-order optimization
[5]:
flz+uz) — f(z—uz)

2u

where u is a positive parameter called the smoothing radius,
and z is sampled from the Gaussian distribution N (0, I4). It
can be shown (see Lemma 1) that when f is L-smooth, the
bias of the estimator Gy (z;u, z) can be controlled by

Gy(zsu,2) = Z, “4)

|Gy (i u,2)] — V()| < uLVa.

In other words, Gy(x;u,z) can be viewed as a stochastic
gradient with a nonzero bias that can be controlled by w.
We can then plug this stochastic gradient into the gradient
descent method, which leads to a zeroth-order optimization
algorithm.

B. Our Proposed Algorithm

Our proposed algorithm is presented in Algorithm 1,
which is based on the zeroth-order gradient estimator (4):

_ 1 " fi(ztuz) — fi(v—uz)
Gi(zyu,2) = n; o z
where z ~ N(0,1;). We highlight that Gy(z;u, z2)
is a vector approximating the gradient Vf(z) =
(V1f(x),..., V" f(x)). One the one hand, each agent i only
needs to estimate the partial gradient V*f(x) to update its

Algorithm 1: Zeroth-order Feedback Optimization
(ZFO) for cooperative multi-agent systems

Require: step size n > 0, smoothing radius v > 0,
number of iterations 7', initial point zq
1 Initialize: (0) < xo, D}(—1) = 0,7}(~1) = —1 for
alli,j=1,...,n.

2fort=0,...,7—1do
3 Each agent i generates z°(t) ~ N(0,1,).
4 BEach agent i takes action x%(t)+uz’(t).
5 Each agent i observes its local cost f;"(t).
6  EBach agent i takes action z°(t) —uz‘(t).
7 Each agent i observes its local cost fi_ (t).
8 Agent ¢ computes

il 2u ’
()=t
9 Agent i receives (D}“i(t), Tf”(t))?zl from each

neighbor k : (k,i) € £, and sets*

i ki
k3(t) = argmax 757" (t),
k:(ki)e€

and

T;(t) =

ki(t)-i

;0 ()

Fj(t)i

7 ),

for each j # 1.
10 Agent i sends (D’ (t), T?'(t));zl to its neighbors.

Di(t)y=D

J
11 Agent ¢ updates

) 1 o
Gt)y== > D) (1), O
" jrimzo

ot +1) = 2 (t) —nG(t). (6)

12 end

*In the situation where additional delay occurs in transmitting data from
agent k to agent 7, and agent 7 does not receive new data from agent k at
time ¢, we let (D;-Hz(t), TJ’.HZ(t)) = (D; (t=1), 7} (t— 1)).

own action 2%, The estimation of the partial gradient is given
by

o0 . (7

1 i: filz +uz) — fij(x —uz) i

ni
where 2 ~ N(0,1,,) denotes the subvector of z corre-
sponding to agent i’s action vector. On the other hand, the
computation of (7) requires agent ¢ to collect the differences
of function values f;(x+uz) — fj(x —wuz) of all agents
7. While each agent can observe its own local cost, other
agents’ local cost information needs to be transmitted by
the communication network and will suffer from delays. We
therefore propose the following procedure for collecting and
sharing necessary data among agents.

1) At time ¢, each agent i adjusts its actions to be z*(t) +
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uz'(t) and observes the corresponding local costs; see
Lines 3-7 of Algorithm 1 where we denote f(t) =
fi(z(t)Luz(t)). Agent i then computes

_ file@®)+uzt) — fi(x(t) —uz(t))
2u ’

and also records the time instant 7/ (¢) at which Di(t) is
computed (Line 8 in Algorithm 1). This pair of newly-
generated data (D!(t),7}(t)) is going to be distributed

via the communication network among agents.

Di(t) -

2) At time t, agent i’s most up-to-date information on f;
is recorded by a pair (Dj(t),7}(t)), where the quantity
D' (t) records agent i’s most up-to-date value of
file(r)+uz(r)) — fi(x(r) —uz(7))
2u ’
and the quantity 7/(¢) records the time instant at which
D;(t) was recorded by agent j. In other words,

Dj(t) = D} (r} (1))

Fi (2 (r () +uz(r) (1)) = fi(x() (1) —uz(7](1)))
2u '

In order to update the pair (D’(t), 7i(t)) for j # i at time
t, each agent ¢ first receives data sent by its neighbors
earlier, which we denote by (Dfﬁi(t),rf”i(t))?zl for
each neighbor k. Then for each j # 4, agent ¢ finds the
pair with the largest Tf”(t), i.e., the pair with the most
up-to-date information, and lets (D}(t),7;(t)) be equal

to this pair (Line 9 in Algorithm 1) .

3) After all of the pairs (D}(t),7;(t)) have been updated,
each agent 7 sends them to its neighbors in the network
(Line 10 of Algorithm 1).

Here we further elaborate on this procedure and the
communication delays therein: If each round of communi-
cation takes just one time step, and no additional delays
occur during the communication (Lines 9 and 10) for all
t, then agent i’s received pair (D} i(t),7)7(t)) is just
(D} (t-1), 7} (t-1)). Consequently 77 (t) = t—by; for t > b,
as it takes exactly b;; communication rounds to transmit data
from agent j to agent i (recall that b;; is the distance between
i and j in G). Correspondingly, D’(t) = Di(t — bij). On
the other hand, when some additional delay occurs during
communication, agent ¢ may not receive new data from
some neighbor k£ at some time step t. In this case we
let (D§7(t), 7} (t)) = (Di(t—1),7}(t—1)), i.e., agent
1 will just use old data. We shall see in Section IV that
our algorithm works with performance guarantees when the
additional delays during communication are bounded.

Lastly, each agent ¢ calculates the subvector (7) but
with delayed information. Specifically, one uses D(t) =
D? (3(1)) instead of D;(t), and correspondingly replaces
z'(t) by 2'(7;(t)) in (7); the resulting subvector is denoted
by G*(t) in (5). A gradient descent step is then applied to
obtain z%(t+1) (Line 11 of Algorithm 1).

Remark 1. Our study suggests that the gradient descent step
(Line 11) of Algorithm 1 can be carried out by each agent in
an asynchronous manner without sacrificing the convergence
rate much. However, Lines 4 to 7 of Algorithm 1 require
all agents to synchronize their changes of actions, so that
f(t)— f7(t) gives the desired function value difference in
the two-point zeroth-order gradient estimator (7). Whether
these steps can also be made asynchronous without sacrific-
ing the convergence rate is still under investigation.

IV. CONVERGENCE ANALYSIS

In this section, we present our main results on the conver-
gence rate of Algorithm 1. We first impose some assumptions
on the objective functions.

Assumption 1. Each f; : R? —» R, j =
Lipschitz and L-smooth, i.e.,

1fi (@) = i) < Gllz =yl
IVfi(z) = V)l < Liz —yll,
for all 2,y € R%. Moreover, f* = inf,cga f(z) > —o0.

1,...,n is G-

Recalling that b;; is the distance between 4 and j in the
communication graph G, we then have ¢ — 7/(t) > bi;, i.e.,
the delay ¢ — 77 (t) between agent j sending (Dj(t),t) and
agent i receiving (D%(t),7;(t)) is at least b;;.

Assumption 2. There exists A > 0 such that the delays are
bounded above as t — 7(t) < b;; + A for any t > 0 and
ij=1,....,n.

We denote

b= %ZZ([)” + A)2,

i=1 j=1

B = maxb;; + A.
,]

Theorem 1 (Main result). Given the number of iterations
T > B, let the step size and smoothing radius satisfy

_ Qi u270[2G72 5\/R
T L ovnd NT-Bt1 w2\ (T-B+1)d

for some o, € (0,1] and o, > 0. Then

T

=g BV Ol

6L(f(x0) = [*) 2 by/nd
<@G? (=Y J ) v
<G ( 5y G2 + 30a, + 20, T_B+1

12v/3dBG?
T-—B+1

_0 by/nd
o T—-B+1

Corollary 1 (Sample complexity). Let € > 0 be arbitrary.
The number of iterations T' required for Algorithm 1 to
achieve

1 T
m;mnww»m <e
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is bounded by

T=0 (Wﬁd> . ®)

€2

A proof sketch of Theorem 1 is given in Appendix L.
We now provide some discussions on the main theorem
and its corollary.

1) Ergodic convergence as the metric. Since we consider
smooth nonconvex objectives in (2), the commonly used
convergence metrics in convex optimization (e.g., f(z(t)) —
f* or |Jz(t) — z*|) are not eligible unless further condi-
tions are imposed. Instead, we consider ergodic convergence
T%BH ZtT:B E[[Vf(x(t))||?] that averages the (expected)
squared norms of the gradients, which has been widely
adopted in smooth nonconvex optimization [30], [31].

2) Convergence rate. The convergence rate in terms of the
number of iterations 7' is O(1/+/T). This rate is consistent
with the centralized stochastic gradient descent without delay
[30] and also the delayed stochastic gradient descent method
[7].

3) Dependence on problem dimension. We can see from
(8) that the sample complexity has an explicit linear depen-
dence on d. This dependence is consistent with results in
centralized and distributed zeroth-order optimization [5], [8]
under the noiseless setting.

4) Dependence on network size and delays. Apart from
d/€?, there is an additional factor b\/n in the numerator
of (8), which reflects the effects of the number of agents,
the network structure and the communication delays. This
dependence suggests that Algorithm 1 is able to scale rea-
sonably with the size of the network. On the other hand,
we are investigating whether this dependence can be further
improved.

V. SIMULATIONS

We demonstrate the performance of our ZFO algorithm on
the power maximization problem in wind farms, which we
have shown to be an example of the zeroth-order cooperative
multi-agent optimization problem in Section II-A. For more
details about the wind farm model we adopt, we refer the
reader to Section II of [2].

A. Eighty-Turbine Example

We apply our ZFO algorithm to a setting with eighty
turbines. We base our model on the Horns Rev wind farm in
Denmark [32], whose layout is illustrated in Figure la (see
also [2, Figure 5(a)]). In this model, the turbines (blue dots
in Figure 1a) are placed in a parallelogram with 8 rows and
10 columns, and spaced 560 meters apart from each other in
both X and Y directions. We let the wind blow in the positive
X-direction. In addition, we assume the left, right, top and
bottom turbines are neighbors in the communication network,
so each turbine has up to 4 neighbors. As an example to
demonstrate the typical connectivity in the communication
graph, in Figure la, we draw an arrow between the turbine
circled in red (fourth row from the top, fifth column from
the left) and each of its four neighbors.

We introduce two benchmark action profiles for our sim-
ulation: One is the greedy solution maximizing each local
objective given by ag = (1/3,...,1/3) [2], and the other is
an optimal action profile a* = (a'*,...,a™) computed by
a centralized trust-region algorithm. As a sanity check, the
total generated power achieved by the greedy baseline ag is
74.6% of the optimal total power achieved by a*, which is
consistent with the empirical results in [2, Figure 5b].

For our ZFO algorithm, we normalize each P;(-) by P*/n
where P* is the total generated power under the optimal
profile a*. We pick the initial point to be ag, and run our
algorithm for 7' = 2000 iterations, with n = 1072 and u =
0.075. We repeat this for 50 trials, and assume exact access
to function values.

4000

.......... 1.00
3500

..........
3000 095

2500
~ | & e o ecsdeoe o o o o
E 2000
=

..........
1500

0.90

0.85 —=trust-region centralized solution

normalized power

—— multi-agent zeroth-order
greedy baseline

ol o e e e e e s e e e
0.80

s0] o o e e a o o o o o
0{ © o & o o o o o o o 0.75
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000

X(m) iterations

(a) 2D Layout of turbines

Fig. 1: Eighty-turbine simulation, exact function values,
averaged over 50 trials.

(b) Power trajectory plot

In Figure 1, we plot the evolution of the total generated
power normalized by P* of our ZFO algorithm, as well as
the greedy and optimal benchmarks. We use the dark blue
line to indicate the average trajectory over 50 trials, and also
include a light blue shaded band indicating a 2.0 standard
deviation-sized confidence interval for the algorithm’s power
trajectory. As the plot in Figure 1b indicates, for our ZFO
algorithm, the total generated power of the system converges
to near the optimal value within about 1000 iterations.

We note that [2] also tested the performance of their
algorithm numerically on the eighty-turbine Horns Rev wind
farm. However, for this particular simulation, [2] used an
algorithm which assumes that each agent has access to all
other agents’ costs, which is strictly stronger than ZFO’s lo-
cal communication assumption. Despite this, the convergence
of ZFO in Figure 1b still seems faster than the corresponding
convergence in [2] — the average trajectory of ZFO takes just
under 500 iterations to be above 95% of the optimal power,
while the algorithm in [2] takes about 1000 iterations (see
[2, Figure 5(b)]).

B. The Setting with Noisy Zeroth-Order Information

In the preceding test case, we considered a deterministic
setting where we enjoyed exact access to the function values
for each agent. In this example, we adopt the same eighty-
turbines wind farm model, but instead consider a noisy
zeroth-order oracle: Given the joint action z, the value
observed by agent i is P;(x) := Py(x) + &(x) for &(x) ~
N(0,0%); we also assume that noises added on different

3653

Authorized licensed use limited to: Harvard Library. Downloaded on October 18,2021 at 15:02:30 UTC from IEEE Xplore. Restrictions apply.



observations are independent. We test our algorithm with

c=0.1and o =0.2.
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23
o

0 500 1000 1500 2000 0 500 1000 1500 2000
iterations iterations

(@) o =0.1 (b) o =0.2

Fig. 2: Eighty-turbine simulation, noisy function values,
averaged over 50 trials.

As we can see in Figures 2a and 2b, the variance of the
trajectories in the noisy setting increases as we increase o
from 0.1 to 0.2. This is indicated by the light blue shaded
bands illustrating the 2.0 standard deviation-sized confidence
interval of the trajectories in both Figures 2a and 2b, and the
fact that the band is thicker in Figure 2b (¢ = 0.2) than in
Figure 2a (¢ = 0.1). In addition, comparing the two plots
in Figure 2 for the noisy case to the plot in Figure 1b for
the noiseless case, we observe that the speed of convergence
degrades as the noise increases, and there seems to be a
gap between the optimal value and the value the iterates
converge to, which increases as the noise increases. Other
than these observations, the average behavior across the exact
and noisy settings seem broadly similar. While our current
analysis holds only for deterministic two-point zeroth-order
estimators, this simulation suggests that a similar result might
hold in the noisy setting, making for interesting future work.

VI. CONCLUSION

In this paper, we propose a zeroth-order feedback opti-
mization (ZFO) algorithm for cooperative multi-agent op-
timization. Theoretically, we prove the convergence of our
algorithm for nonconvex cooperative multi-agent optimiza-
tion, and provide explicit convergence rates. Numerically,
we demonstrate that our algorithm is indeed convergent
with appropriate parameter choices on a wind farm power
maximization problem.

Some interesting future directions include 1) theoretical
analysis for the case with noisy function evaluations, 2) how
to handle constrained problems, 3) extension to asynchronous
algorithms, 4) improvement of convergence rate and sample
complexity.

Let F; denote the o-algebra generated by z(7) for 7 < ¢t
and all 7/(s) for 1 <i,j <nand 0 <s<T.

We introduce the “smoothed version” of f and f; defined
by fu(x) = E,[f(x+uy)] and () = E,[f;(z+uy)]
where y ~ N (0, I).

Lemma 1. 1) For each j, the function f}' : R — R is
G-Lipschitz and L-smooth, and for each x € R?,

filz+uz) — fi(z _ u

—uz) B

z N(O,[d).

2) For any x € R?, we have
IVf(z) = V()| < uLVd.

The first part of Lemma 1 can be found in [5], and a
proof of the second part follows similarly as [33, Lemma
6(b)]. Then by appealing to concentration inequalities for
standard Gaussian distribution and following the derivations
in [6, Lemma 10], we get the following lemma.

Lemma 2. Let z ~ N(0,1;), and let h : R — R be G-
Lipschitz. Then

h(z—uz)

Ez Zi

h(z4uz) —
2u

2
] < 12G?,

for any i =1,...,d, where z; denotes the i’th entry of z.

Lemma 2 helps to bound terms related to the second
moment of G*(t).

Lemma 3. For any t > 0, we have
E[[[Ds(rie)2 (ri@)|*] < 12624,
E[|G®)|?] < 12G*d.

Proof. The first inequality is a consequence of Lemma 2.
For the second inequality, we have

sljaor] = 2| ;300

;ii B[,

< Z 12G?d; < 12G2d.

i=1

i(75 ()2 (7(8))

The following lemma will be used to quantify the effect
of delays on Algorithm 1.

APPENDIX | . .
PROOF SKETCH OF THEOREM 1 Eerj_mAa 4. Let i,j € N be arbitrary. Then for any t >
For notational simplicity, we let D;(t) denote Dg(t) for 7 '

t > 0, and let each D;(t) = 0 and z(t) = 0 when ¢t < 0. ]E{Hvlf]“(:c(t)) Vi f“( )| }
For each ¢t > 0, let G(t) be the d-dimensional vector that < 19C22I2 (b A
concatenates G'(t),...,G"(t) for each i = 1,...,n. We = L2 (bij + A)*d
see that each iteration of the algorithm can be equivalently  and 4 4 4 )
written as E[Hvzf(x(t)) — sz(x(T;(t)))H }

rt+1)=2()—nGE), t=0,1,2,... < 12G*0° L2 (bij + A)*d
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Proof. Since f}' is L-Lipschitz, we have

B[V} (@(0) = V£ ()]
< L2E[|l2(t) - o(r} )] }

-1 2
2
<rE((X, L mca+ni)]
-1
<L+ ) Y
T:—brij—A
< 12G*n*L*(bij + A)?d.

The second inequality follows similarly. O

E[G(t+7)I7]

Lemma 5. For any t > B, we have
B [_anWif (2(t) - Vs (x(r}f(t»),Dj(T;u))zi(T;(tM
(2]
< 12G%nLby/nd,
where (-,-) denotes the standard Euclidean inner product.
Proof. We have
£ [_nlzwif (2(0) = Vi ((7 (1), D; (7} ()=" (7} (1) >}
(2]
<

1 1

“on nLby/n ;
1 _

+ 5, -an\/ﬁ;E [I1D; (ri(t

B[V £(@(t) - ¥ a(ri(0) ]

)2 (7 (1))11°]

12G?*nLd ,  12G%NLbyn 1 S
< amp b tA) = =y D s

271,3/217 1,7 j=11:i=1
= 12G?*nLbv/nd.

Here in the first inequality we used the fact that 2(u,v) <
||lul|?/e + €||v]|* for any € > 0 and any vectors u, v, and in
the third inequality we used Lemmas 2 and 4. O

Lemma 6. For any t > B, we have

E[_i SOS (Vi (a7 (1)), D

i=1j=1
<~ B[V )I?) + 4VECPIbd + nra,
Proof sketch. By Lemma 1, for t — b;; — A <7 <t — by,
B[~ (7£(a(0). D)2 (0)) Loy |7
= —(V'f(z(r)), szf(f(T)» “Lri=rs
where 1 denotes the indicator function of an event. Therefore
E(V'f (2(75 (1)), Dj (7 (8)2" (75 (1)))]
= S E[E[- (V' (2(n), Dj(7)2 (7)) Lysgoy—r 17 ||

E| - 2AVIEE), VS (olr D) Loer|
= [—<V F(ri 1), V7 (z(7 @) -

We then notice that
_ 72 (Vif(x

_ 1 Z (Vif (e
- = Z (VI f(a(t), V' f () (1) = V£ (2(1))
- <Vf( (£), VS (@(t)) = V f(@(1))) = IV f (D).

It can be shown that the expected value of each term on the
right-hand side can be individually bounded as

- HZW? (2(75(1) =V (2(0)) 9} (W;(m)ﬂ
< 2\/§G27;LE\/ﬁd,
E[ %Z (Vif(a(t), Vi fi (e (rit) — VP (aj(t))>]

< 2V/3G*nLby/nd,

and

), V' fi (x(75 (1))

Vi (), VI (2(7(1)))

E[—(Vf(x(t)), Vf“( (1)) —
< LBV i@@)P I+ 32124,

Vf(x(t)))]

where we skip the details due to space limit, but point out
that their derivations follow mostly from

E[(u,v)] < VE[[ull?]v/E[|lv]?]

for any € > 0 and the previous lemmas. The lemma’s conclu-
sion then follows by adding these inequalities together. [

< E[[Jull?/(2€) + 2¢[v]’]

We are now ready to prove Theorem 1. By the L-
smoothness of f, we see that

2
f@@+1) <f(z(t) —n(Vf(2(t),G{)) + %HG@)H2
=f(x(t))—ZnW"f(w(t)),Gi(t»+%IIG(t)H2~
We have

D), )
= (Va0
Y (el (0), Di(r ) 6),

Vi (a(7j(1))), Di(; (1) 2'(7(#)))

and by Lemmas 5 and 6, we get

=D (V' f((1),G'(1)

i=1

E[|[V f(x(t)]?] + 19G*nLby/nd + gmzd,

@\Cﬂ
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and together with the bound in Lemma 3, we get [11]
51 2 [12]
E[f(a(t+1))] <E[f(z(t))] = ZE[IV/(@®)]]
2, 2171 3 2712 [13]
+25G% 0 Lbv/nd + SuLPd.
By taking the telescoping sum, we get (14
1 T
15]
—_— E[|Vf(z(®)]? [
T g1 2 BV )]
6EL/ (x(B) — 1 ;
< + 30G?nLby/nd + 2u*L3d. 16
= T5p(T—B+1) K el
For E[f(x(B))], we have (7]
E[f(z(B))]—f(z0) < GE[lz(B) — z(0)]]
B—-1
<0G Y E(IGO) < nGBVI2GR.
t=0
Therefore
[19]
1 T
—_— E[|Vf(z(t)]?
=571 O ElIV /)l o
6 (f(wo) = f") 7
< + 30G*nLby/nd + 2u°L*d
=5(T —B+1) kb 21]
12v/3dG?B
5(T—B+1) [22]
By plugging in the given step size 1 and smoothing radius 231
u, we get the desired convergence rate.
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