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The orientational dynamics of deformable
finite-sized bubbles in turbulence
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We present simultaneous three-dimensional measurements of deformable finite-sized
bubbles and surrounding turbulent flows. The orientations of bubbles are linked to two
key mechanisms that drive bubble deformation: the turbulent strain rate and slip velocity
between the two phases. The strongest preferential alignment is between the bubbles
and slip velocity, indicating the latter plays a dominant role. We also compared our
experimental results with the deformation of ideal material elements with no slip velocity
or surface tension. Without these, material elements show highly different orientations,
further confirming the importance of the slip velocity in the bubble orientation.
In addition to deformation, when bubbles begin to break, their relative orientations
change significantly. Although the alignment of the severely deformed bubbles with the
eigenvectors of the turbulent strain rate becomes much stronger, the bubble semi-major
axis becomes aligned with (rather than perpendicular to) the slip velocity through an
almost 90◦ turn. This puzzling orientation change occurs because the slip velocity contains
the contributions from both the bubble and the background flow. As the bubble experiences
strong deformation, the rapid elongation of its semi-major axis leads to a large bubble
velocity, which dominates the slip velocity and forces its alignment with the bubble’s
semi-major axis. The slip velocity thereby switches from a driving mechanism to a
driven result as bubbles approach breakup. The results highlight the complex coupling
between the bubble orientation and the surrounding flow, which should be included when
modelling the bubble deformation and breakup in turbulence.

Key words: bubble dynamics, multiphase flow, isotropic turbulence

1. Introduction

Bubbles transported by turbulent flows in nature and industrial applications are constantly
deformed by the surrounding turbulent stresses. The question of how the deformation
affects the bubble’s orientation and translational motion constitutes one of the fundamental
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and practically important two-phase flow problems. Significant effort has been devoted
to simpler rigid particles, including both spherical (Balachandar & Eaton 2010) and
non-spherical particles (Voth & Soldati 2017), which has helped to advance both
the physical understanding of turbulent two-phase flows and different numerical and
experimental techniques. Adding particle deformation to these already complicated
problems introduces new challenges and opportunities.
One challenge is related to the deformation and orientation dynamics of deformable

bubbles/drops, which are crucial to their experienced hydrodynamic forces. For instance,
the added mass (Lamb 1924; Brennen 1982, 2005; Magnaudet & Eames 2000),
lift (Mathai, Lohse & Sun 2020) and drag all depend on the relative orientation
of the bubbles with their surrounding flows and on the bubble aspect ratio. The
direct numerical simulation has made significant progress in addressing this problem
(Elghobashi 2019); however, it is often quite expensive to resolve the complex deformation
of finite-sized bubbles/droplets in turbulence. As a result, only the deformation
of small, sub-Kolmogorov-scale, neutrally buoyant droplets has been studied using
phenomenological models (Maffettone & Minale 1998; Biferale, Meneveau & Verzicco
2014). However, most deformable bubbles in turbulence are much larger and likely to be
in the inertial range. In this paper, our focus is on finite-sized deformable bubbles with
volume-equivalent sphere diameter (D) in the inertial range (η � D � L), where η is the
Kolmogorov scale and L is the integral length scale. Therefore, their deformation is driven
by the gradient of dynamic pressure acting on the bubble interface, rather than by viscous
stresses.
Most prior investigations on the orientation of deformable bubbles are limited to simple

flow configurations, e.g. viscous shear flows (in which the orientation of bubbles was
measured as a function of the capillary number), size (Rust & Manga 2002; Kameda,
Katsumata & Ichihara 2008), or the viscosity ratio (Müller-Fischer et al. 2008). In these
cases, the flows were in a quasi-steady state, and the flow inertia could be neglected.
A final steady state for the bubble orientation that solely depends on the balance between
the flow shear and the capillary stress hence can be reached (Huber et al. 2014).
Furthermore, significant attention has been paid to the deformation and orientation of oil
droplets in steady shear flows (Guido & Greco 2001; Megías-Alguacil, Fischer &Windhab
2006; Feigl et al. 2007; Armandoost, Bayareh & Nadooshan 2018).
The study of bubbles/droplets deformed by viscous flows has also been extended to

turbulence, although limited solely to sub-Kolmogorov-scale neutrally buoyant droplets,
because droplets at this scale remain subject to viscous deformation even in turbulence.
For this problem, the background turbulence is simulated first, and the orientation and
deformation of droplets can be calculated by employing the same phenomenological
model used by Maffettone & Minale (1998); inputs being the local turbulent vorticity
and strain rates (Biferale et al. 2014). In this work, unlike small rigid non-spherical
particles, e.g. rods and fibres (Shin & Koch 2005; Parsa et al. 2012; Chevillard &
Meneveau 2013; Ni et al. 2015), the semi-major axis of the deformed droplets show
stronger alignment with the maximum stretching direction of turbulent strain rate
than with the vorticity vector, but the degree of this alignment decreases with an
increasing capillary number. A similar method was also applied to sub-Kolmogorov
neutrally buoyant droplets (Spandan, Lohse & Verzicco 2016) and bubbles (Spandan,
Verzicco & Lohse 2017) in turbulent Taylor–Couette flows. The semi-major axis of
these droplets also preferentially aligns with the maximum stretching direction, with
a stronger alignment near the wall than in bulk region where the flow is more
isotropic.
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Alignment of bubble deformation and breakup in turbulence

Finite-sized bubbles deforming in intense turbulence are in the opposite limit, where
the viscous effect becomes negligible (the capillary number is much smaller than one).
Owing to the limited studies in this regime, we examine another case of a bubble rising
in an otherwise quiescent medium following a non-rectilinear path, where the bubble
is deformed by the pressure gradient induced by buoyancy, and the bubble-size-based
Reynolds number is sufficiently large. The semi-minor axis of the bubble typically aligns
with its velocity (Lunde & Perkins 1998; Ellingsen & Risso 2001; Riboux, Risso &
Legendre 2010; Legendre, Zenit & Velez-Cordero 2012) within less than 2◦ (Mougin &
Magnaudet 2001; Ern et al. 2012), whereas both directions oscillate about the vertical
axis within 30◦ (Riboux et al. 2010; Ellingsen & Risso 2001; Ern et al. 2012) for a wide
range of bubble sizes (Luewisutthichat, Tsutsumi & Yoshida 1997). For this regime, the
orientational dynamics are therefore periodic, and the oscillation of the bubble orientation
is more closely related to its wake oscillation rather than to its deformation (Tayler et al.
2012).
In high-Reynolds-number turbulent flows, bubbles were also observed to oscillate

periodically within around 45◦ about the vertical axis (Ravelet, Colin & Risso 2011), which
is consistent with that reported in a quiescent medium but with a slightly larger amplitude.
One plausible explanation for such a similar bubble behaviour in both quiescent and
turbulent media is that, in the experiment by Ravelet et al. (2011), turbulence was relatively
weak compared with buoyancy. As a result, bubbles were still preferentially deformed by
buoyancy, thereby aligning with the vertical direction. If the pressure gradient induced
by turbulent stresses is stronger than that due to buoyancy, new phenomena may emerge.
A recent work showed that finite-sized bubbles rising in intense turbulence experience
different lift and drag forces due to the turbulence-induced deformation (Salibindla et al.
2020).
In the current study, we experimentally measure the bubble orientational dynamics

in intense turbulence, where turbulent stresses become more important than buoyancy.
The three-dimensional (3-D) shape and surrounding turbulent flows are measured
simultaneously. The experimental set-up and measurement techniques used are introduced
in § 2.1, whereas the measurable quantities and their calculations are summarized in § 2.2.
The acquired unique data set helps us to investigate the preferential alignment of the
bubble semi-major (r̂1) and semi-minor axes (r̂3) with the representative directions of
two deformation mechanisms, i.e. the slip velocity and turbulent strain rate, which are
discussed in § 3.1. Finally, the evolution of the relative orientation of the bubble with
the surrounding turbulence as it approaches the moment of breakup is introduced and
explained in § 3.2.

2. Experimental set-up and measurements

2.1. Experimental set-up
In this study, a vertical water tunnel named V-ONSET was utilized to measure the
interaction between deforming air bubbles and surrounding turbulence. V-ONSET was
designed to generate intense turbulence with a large mean energy dissipation rate 〈ε〉 of
O(0.1) m2 s−3 while maintaining a nearly homogeneous and isotropic environment over
a measurement volume of 6 cm × 6 cm × 5 cm. At this 〈ε〉, the Kolmogorov length and
time scales were determined to be η ≈ 50 µm and τη ≈ 2.5 ms, respectively. Key facility
features are briefly summarized below. Additional details concerning the experimental rig
and its flow characteristics can be found in Masuk et al. (2019b).
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Figure 1. The distribution of the volume-equivalent sphere diameter D of all bubbles in our experiments.

In the test section of V-ONSET, intense turbulence was generated by firing high-speed
momentum jets (up to 12 m s−1) into the test section through randomly selected nozzles
(the nozzle diameter d is 5 mm) from a jet array. On average, 12.5% of the total
88 jets were kept activated since this was found to maximize the turbulence intensity,
and their firing pattern was randomized following a Gaussian distribution. This firing
scheme follows the work by Variano, Bodenschatz & Cowen (2004), to ensure that no
secondary flow structure would develop in the test section (De Silva & Fernando 1994;
Srdic, Fernando & Montenegro 1996; Variano et al. 2004). The jet array was located
approximately 80d above the measurement location to allow jets to be fully mixed before
reaching the interrogation volume. In addition, a uniform downward mean flow, with
magnitude similar to the bubble rise velocity, was introduced to keep bubbles within the
measurement volume for an extended time. Moreover, bubbles were generated through
four groups of hypodermic needles of two sizes, which are located at the bottom of the
test section. Once a bubble reached the test section, its 3-D shape was reconstructed from
the virtual-camera visual-hull method (Masuk, Salibindla & Ni 2019a). The probability
density function (p.d.f.) of the volume-equivalent sphere size D of the bubbles is shown
in figure 1. The typical bubble size range in the test section is approximately 2–7 mm in
diameter, with most around 3–4 mm.
Six high-speed cameras were distributed all around the tunnel’s octagonal test section to

simultaneously acquire images of both phases from different directions. Six LED panels,
one for each camera, were used to provide diffused back-lighting, which results in a
white background. The dark silhouettes of large dispersed bubbles and tracer particles
can be identified, segmented and eventually separated based on their contrasts from the
background and their size differences (the diameter of the tracer particle is 50 µm). After
image segmentation, large bubble silhouettes were input into the 3-D shape reconstruction
method, whereas the tracer locations were tracked using our in-house Shake-The-Box
method (Schanz, Gesemann & Schröder 2016; Tan et al. 2020) (the code is available
online @JHU-Ni-Lab on GitHub). Flow information, such as velocity and acceleration,
can be calculated from these 3-D trajectories. A high concentration of tracer particles
could potentially contaminate the bubble interface and modulate its boundary condition;
however, this effect is less important for finite-sized bubbles because their deformation
is primarily driven by inertia (or, more specifically, the gradient of dynamic pressure)
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Figure 2. (a) The compensated longitudinal (DLL) and transverse (DNN ) second-order structure function as a
function of the separation distance between a pair of velocity vectors. (b) The profile of the mean 〈ui〉 and the
fluctuation u′

i velocity along the vertical z axis in the view volume.

rather than by viscous stresses. Therefore, the contamination is not expected to affect the
deformation statistics reported in this paper.
To confirm that the flow is indeed homogeneous and isotropic as designed, single-phase

turbulence without initial bubble injection was measured by tracking tracer particles
in three dimensions, whose trajectories can be used to acquire the Eulerian turbulence
statistics. The results are shown here in figure 2. We first discuss the second-order Eulerian
structure functions, including both the longitudinal (DLL(r) = 〈[u‖(xxx + rrr) − u‖(xxx)]2〉) and
transverse (DNN(r) = 〈[u⊥(xxx + rrr) − u⊥(xxx)]2〉) components, where 〈· · · 〉 represents an
ensemble average over many pairs of particles with separation r. Here u‖ and u⊥ represent
the tracer velocities projected to directions that are parallel and perpendicular to the
separation direction rrr between a pair of particles located at xxx + rrr and xxx, respectively.
Based on the Kolmogorov theory (Kolmogorov 1941), in the inertial range (η � r � L),
DLL(r) = C2(〈ε〉r)2/3 and DNN(r) = (4/3)C2(〈ε〉r)2/3, with C2 being the Kolmogorov
constant and DLL and DNN differing by a factor of 4/3, calculated based on the assumption
that the flow is homogeneous and isotropic. To test whether the background turbulence
agrees with this well-known inertial range scaling, DLL and DNN are compensated by
the inertial range scalings and converted into the mean energy dissipation rate following
〈ε〉 = (DLL/C2)

3/2/r and 〈ε〉 = (DNN/4C2/3)3/2/r, respectively, as shown in figure 2(a).
The two compensated structure functions collapse well with each other over the inertial
range where the plateau is located. Within this inertial range, the mean energy dissipation
rate 〈ε〉, measured by the plateau height (red dashed line), is found to be 0.16 m2 s−3.
The 〈ε〉 calculated from both structure functions are consistent with each other, suggesting
that turbulence in our system is close to homogeneous and isotropic. In addition to the
background turbulence, a red shaded area is added to figure 2(a) to illustrate the range of
bubble sizes, which resides within the inertial sub-range as designed.
Furthermore, the spatial distributions of the mean 〈ui〉 (i = 1, 2, 3) and fluctuation

velocities u′
i along the vertical direction z are shown in figure 2(b). Three components

of fluctuation velocities are close to each other at around 0.20 m s−1, with no obvious
trend along the z-axis, further confirming that the flow is nearly homogeneous and
isotropic. The mean flows along the horizontal directions (〈u1〉 and 〈u2〉) are close to zero.
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To extend the bubble residence time in the view area for longer trajectories and converged
statistics, the vertical mean flow 〈u3〉 is designed to be at −0.25 m s−1 to balance the rise
velocity of bubbles. For bubbles rising in an otherwise quiescent water, the rise velocity
of bubbles with D = 2 mm and 7 mm is about 0.25 m s−1 and 0.35 m s−1, respectively
(Clift, Grace & Weber 2005). As a result, the residual bubble rise velocity in the test
section ranges roughly from 0 m s−1 to 0.10 m s−1, which is smaller than the turbulence
fluctuation velocity at around 0.20 m s−1. For more information concerning the set-up
and measurement techniques, the reader can refer to Masuk et al. (2019a,b) and Tan et al.
(2020).

2.2. Flow measurements and characteristics
Using the 3-D reconstructed bubble geometries, the lengths of the semi-major and
semi-minor axes (|r1| and |r3|) can be determined by measuring the longest and shortest
distances from surface vertices to the bubble’s centre-of-mass, respectively. The ratio
between them is the aspect ratio, i.e. α = |r1|/|r3|. Note that this method of extracting
bubble axes does not force them to be orthogonal to each other, which captures the
bubble deformation in turbulence more accurately because not all bubbles follow affine
deformation in turbulence. In addition to geometrical information, the bubble trajectory
can be acquired by linking the centres of the 3-D reconstructed geometries over time,
which can be used to calculate the bubble velocity ub.
From our in-house particle tracking results, the velocity up and acceleration ap of the

pth tracer particle at any time instant can be determined by applying a Gaussian kernel to
the particle trajectory (Mordant, Crawford & Bodenschatz 2004; Ni, Huang & Xia 2012).
If this tracer particle at x0 + xp is located near the centre of a bubble at x0 within a
search radius of Ds/2 (|xp| < Ds/2), it can be used to quantify the flow characteristics
near the bubble, including the local mean flow velocity uf = ∑n

p=1 u
p(x0 + xp)/n and

velocity gradients, where n is the total number of tracer particles that can be identified
within the search volume. As this study focuses on finite-sized bubbles, their alignment
and orientation should be associated with flows at the bubble scale. The velocity
gradients discussed hereafter are therefore referred to as Ãij with tilde representing the
coarse-graining at the bubble size of D.
For Ãij, a minimum of n = 4 tracer particles are needed; however, in practice, about

30–40 particles were used to perform least-squares fits by seeking the minimum value
of the squared residual

∑
p[u

p
i − Ãijx

p
j ]

2 (i, j = 1, 2, 3) (Pumir, Bodenschatz & Xu 2013;
Ni et al. 2015; Masuk, Salibindla & Ni 2021). If these particles are located within a
quasi-two-dimensional plane, estimating the out-of-plane velocity gradient would entail
significant uncertainty. Therefore, similar to previous studies (Xu, Pumir & Bodenschatz
2011), an inertia tensor I = ∑

p x
p
i x

p
j /tr(

∑
p x

p
i x

p
j ) was employed to evaluate the shape

factor of the particle cloud. If particles are distributed uniformly in three dimensions, all
three eigenvalues of the inertia tensor would be equal to 1/3; conversely, if particles lie in
a plane, the smallest eigenvalue would be very close to zero. To ensure accurate estimation
of velocity gradients, events with ratios between the smallest and the largest eigenvalues
of the inertia tensor smaller than 0.15 were removed from the statistics. Compared with
previous studies that focused on a scale closer to η (Ni et al. 2015), we require additional
tracer particles for calculating Ãij.
The coarse-grained strain rate tensor, S̃ij, and rotation tensor, Ω̃ij, can be obtained based

on Ãij: S̃ij = (Ãij + Ãji)/2, Ω̃ij = (Ãij − Ãji)/2. The search volume used for calculating
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Figure 3. Probability density function of the cosine of the angle between vorticity ω̂ and eigenvectors of the
strain-rate tensor êi.

the coarse-grained velocity gradient has a different, but comparable, length scale Ds ≈
4D. The strain rate and its associated eigenvalues calculated using Ds require corrections
following the method proposed by Masuk et al. (2021). Because both D and Ds are in
the inertial range, by assuming a constant local energy dissipation rate over these scales
close to the bubble size, the corrected eigenvalues of S̃ij become λi = (λi)s(Ds/D)2/3,
where (λi)s represents the eigenvalues of the strain rate tensor coarse grained at the scale
of Ds.
To ensure that the measured velocity gradient tensor is correct, the alignment of the

coarse-grained vorticity vector ω̂ with three eigenvectors of S̃ij, i.e. êi (i = 1, 2, 3) is shown
in figure 3. Although this alignment is calculated based on the coarse-grained velocity
gradient Ãij, the results are consistent with those previously reported for the local velocity
gradient Aij (Ashurst et al. 1987; Huang 1996; Xu et al. 2011; Ni, Ouellette & Voth 2014).
In both cases, coarse-grained or not, the vorticity vector is preferentially aligned with
the eigenvector corresponding to the intermediate eigenvalue of the strain rate tensor (Ni
et al. 2014). In addition, this relative orientation is not sensitive to the range of D or
Ds considered in this work, which suggests that (i) the velocity gradient measurement
is successful and (ii) this preferential alignment does not depend on the selected search
diameter.

2.3. Deformation mechanisms
A bubble can be simultaneously stretched along the maximum stretching direction (ê1)
and compressed along the maximum compression direction (ê3) so λ in the dimensionless
Weber number Wevg = ρ(λD)2D/σ can be either λ1 or λ3. Based on a recent study by
Masuk et al. (2021), the distribution of the Weber number based on either eigenvalue
seems to be nearly identical. In this paper, we intend to study the orientational dynamics of
bubbles relative to ê1 and ê3 to distinguish the contribution of stretching from compression
for bubble deformation.
Figure 4(a) shows an example of a bubble experiencing strong turbulent strains,

illustrated by many tracer tracks that are colour-coded with their instantaneous velocity
magnitude. Although the flow field is complicated and contains dynamics over multiple
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Figure 4. Reconstructed 3-D shape of deforming bubbles with surrounding tracer trajectories (the
instantaneous velocity magnitude u of each particle is indicated by the colour), including (a) a case that is
primarily deformed by turbulent strain and (b) another case that is primarily deformed by the slip velocity.
(c,d) Schematics of the coarse-grained flow field around these two bubbles.

scales, the estimated S̃ij coarse-grained at the bubble scale is sketched in figure 4(c).
For this case, ê3 clearly aligns with the bubble semi-minor axis r̂3, whereas ê1 aligns
with the bubble semi-major axis r̂1. This result is consistent with our expectations, but
it is important to collect statistics concerning such relative orientation to ensure that this
example is not an isolated case.
Another driving mechanism for bubble deformation is the slip velocity uslip = ub − u f

between the two phases. Bubbles subjected to uslip will experience a motion-induced
pressure gradient and thus deform, which can be measured by another Weber number:
Weslip = ρu2slipD/σ . Weslip can be defined either using the total slip velocity or one of
its three components, i.e. Weslip,x, Weslip,y and Weslip,z. The slip velocity could arise
due to multiple effects: (i) the buoyancy effect is the strongest for bubbles rising in an
otherwise quiescent medium, in which the bubble deformation is primarily driven by the
slip velocity along the vertical direction; (ii) the added mass force, which is important
for bubbles travelling in turbulence with large carrier-phase acceleration; (iii) the finite
size effect could also lead to a large slip velocity between the two phases (Bellani &
Variano 2012; Cisse, Homann & Bec 2013). Figure 4(b) shows an example of a bubble
subjected to a strong slip velocity along the horizontal direction. After coarse-graining
the flow field, figure 4(d) illustrates the mean flow around the bubble, which is primarily
along the horizontal direction. At the same time, the bubble slides along the cyan arrow.
As a result, the slip velocity points in a direction indicated by the red arrow, which
aligns excellently with the direction of the semi-minor axis r̂3 of the reconstructed bubble
geometry.
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(a) (b)

Figure 5. Probability density function of the cosine of the angle between bubble axes with (a) the slip
velocity and (b) the turbulent strain rate.

3. Results and discussion

3.1. Alignment and orientation of deforming bubbles
Figure 5 shows the p.d.f. of the cosine of the angle (W) between two unit vectors. If two
unit vectors are randomly oriented, the p.d.f. should be close to a uniform distribution
(p(W) = 1 for all W, where p(· · · ) represents the probability). A peak at W = 1 in the
p.d.f. would suggest a preferential alignment between the two vectors, whereas a peak
near W = 0 would imply that the two vectors are perpendicular to each other. Figure 5(a)
shows the orientation of the slip velocity ûslip with respect to r̂1 and r̂3. There is a clear
preferential alignment between ûslip and r̂3, which suggests that the pressure gradient
induced by the bubble’s relative motion compresses the bubble along this direction.
In addition to compression, bubbles must extend in other directions to conserve volume.

However, r̂1 is not forced to be orthogonal to r̂3 during the 3-D reconstruction to allow the
capture of any non-affine deformation. Thus, the preference of r̂1 being perpendicular to
ûslip is not as strong as that of r̂3 being aligned with ûslip. Such a difference also suggests
that the orientation of a deformable bubble is primarily determined by the slip velocity
compressing the bubble.
The contribution from the surrounding turbulent strain rate to the orientation of the

bubbles is also shown in figure 5(b). r̂1 and r̂3 clearly preferentially align with ê1 and
ê3, respectively. The alignment between r̂3 and ê3 is slightly stronger, suggesting a more
important role played by the flow compression. The small difference implies that, although
the bubble deformation is driven by flow compression, bubbles must be stretched along
other directions with the least resistance; this happens to be r̂1 if only the strain rate tensor
is considered.
The preferential alignment between bubble axes with the eigenvectors of the strain rate

tensor is significantly weaker compared to that with the slip velocity, despite the similarity
of their respective Weber numbers (Masuk et al. 2021). A reason for this is that the
slip velocity is associated with large-scale flow motions, which can be sustained longer
compared with the strain rate. Therefore, the bubble orientation may be more dominated by
the slip velocity. In addition, the slip velocity and turbulent strain rate do not always work
collaboratively. Figure 5(a) shows the p.d.f. of the relative orientation between ê3 and ûslip,
which seems to be a nearly random distribution and may slightly prefer a perpendicular
orientation. This suggests that these two mechanisms are not correlated and may even
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occasionally compete with each other, and therefore a preferential alignment with the slip
velocity may lead to a weaker alignment with turbulent strain rate and vice versa.
If the bubble shape can be assumed as a triaxial ellipsoid without any non-affine

deformation, it can be captured as a symmetric, positive definite, second-rank tensor P.
The phenomenological equation to describe the time evolution of P was provided by
Maffettone & Minale (1998):

dP
dt

− (Ω · P − P · Ω) = − f1
τ

(P − g(P)I) + f2(S · P + P · S), (3.1)

where S and Ω represent the symmetric and anti-symmetric parts of the velocity gradient
tensor; τ = μD/2σ is the interfacial relaxation timescale; μ and σ are the dynamic
viscosity and the surface tension of water, respectively; and I is the second-rank unit
tensor. The equation has two main contributions, deformation and restoration (the first
term on the right-hand side), where f1 and f2 are two coefficients associated with the
viscosity ratio, and g(P) is introduced to preserve the bubble volume.
Strictly speaking, equation (3.1) should not be applied to finite-sized bubbles since

the model assumes a linear flow around the bubble, which should be limited solely to
bubbles with size D � η. Moreover, this equation does not consider the slip velocity
or the buoyancy effect owing to a significant density mismatch between the two
phases. Nevertheless, when ignoring this mismatch and replacing S and Ω with their
coarse-grained counterparts, this equation can estimate the alignment between a deforming
neutrally buoyant droplet and its surrounding coarse-grained strain rate.
If the restoring term led by the surface tension is ignored for further simplification,

the equation restores to the deformation equation of a material element (Girimaji & Pope
1990), dF/dt = A · F , where F is the deformation tensor and can be converted to a left
C(L) or right C(R) Cauchy–Green strain tensor using C(L) = F · FT and C(R) = FT · F .
One can prove that C(L) ≡ P, which suggests that a bubble without surface tension will
be deformed by turbulence similarly to the deformation process of a material element,
whose three semi-major axes can be determined based on the eigenvectors of C(L). The
deformation equation can be integrated to obtain C(L) as reported in Ni et al. (2015),
using the simulation results by Benzi et al. (2009). Although the eigenvalues of C(L) grow
exponentially as the integration time increases, the eigenvectors of C(L), êLi vary by only
a little and they can be used to represent the directions of neutrally buoyant droplets with
zero surface tension.
Figure 6 shows the relative orientation between the semi-major axis of the deformed

material element êL1 with three eigenvectors, êi, of the strain rate tensor as well as
with the vorticity vector ω̂. It has been discussed before by Ni et al. (2015), that the
strongest alignment is observed between the semi-major axis of the material element and
the vorticity vector because vorticity is amplified by the vortex stretching process. As a
vortex is stretched by the Lagrangian stretching C(L), it ends up aligning with êL1.
When comparing figures 5 and 6, the semi-major axis of a material element, êL1,

shows strong alignment with ê2 and ω̂, whereas the semi-major axis r̂1 of finite-sized
bubbles does not appear to have strong preferential orientation. This finding is qualitatively
consistent with the work conducted by Biferale et al. (2014), who showed that, for a small
capillary number, the alignment between the semi-major axis of the neutrally buoyant
droplets with ω̂ is relatively weak; in addition, as the capillary number increases, the
alignment becomes stronger. This observation suggests that, despite the differences in
Reynolds number and sizes, our results for the orientational dynamics of finite-sized
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Figure 6. Probability density function of the cosine of the angle between the semi-major axis of material
elements êL1 and both vorticity ω̂ and eigenvectors of the strain-rate tensor, êi.

bubbles share similarities with the sub-Kolmogorov-scale neutrally buoyant droplets at
a small capillary number.
Nevertheless, the alignment of finite-sized bubbles with the coarse-grained strain rate

is much weaker than that for sub-Kolmogorov-scale droplets, which is mainly caused by:
(i) the competing effect from the slip velocity and (ii) the non-affine deformation allowed
by our shape reconstruction method, meaning that the semi-major and semi-minor axes of
the bubbles are not necessarily orthogonal, which would weaken the alignment with the
eigenvectors of the coarse-grained turbulent strain rate.

3.2. Breakup
The previous section discussed statistics concerning the alignment between the semi-major
and semi-minor axes of deforming bubbles and the slip velocity and velocity gradients. To
collect sufficient statistics, bubbles with different aspect ratios and sizes were compiled
together. This data can help us to answer whether the alignment depends on how strongly
the bubble is deformed and whether the roles played by different mechanisms change when
bubbles experience strong deformation. In this section, we will examine bubbles with
strong deformation and that are close to the breakup moments, to unveil key mechanisms
behind bubble breakup in turbulence.
The slip velocity and turbulent strain rate can be tracked along each bubble trajectory.

For all our experiments, 190 datasets were collected, from which a total of 480 329 bubbles
were reconstructed and tracked over time. The majority did not break during the time spent
in the view volume, and only 195 breakup events were identified and reconstructed. Details
concerning the reconstruction of the breakup events can be found in Masuk et al. (2019a)
and Qi, Masuk & Ni (2020).
For all these breakup events, time traces of Weslip,x and Wevg before breakups are

compiled to calculate the time evolution of the Weber numbers. Figure 7 shows the p.d.f.s
of Weslip,x and Wevg at different times before breakup. The closest and the farthest times
tracked before the breakup were approximately 0.5τη and 20τη, respectively. We also plot
the p.d.f.s ofWeslip,x andWevg for all bubbles, including both weak and strong deformation
cases, in figure 7(a,b) as black solid circles. They show that the Weber numbers for
bubbles about to break are systematically larger than those for non-breaking bubbles with a
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Figure 7. Probability density function of (a) the slip-velocity-based Weber number and (b) the
strain-rate-based Weber number, for mild deformation case (black solid symbols) as well as different times
(τ0) before breakup.

similar size. In addition, Weslip,x continues to grow from 20τη to 5τη; however, from 2τη

to the moment of breakup, the distribution leaps far rightward to a larger Weslip,x. This
indicates that the bubble breakup is associated with a timescale that is within ∼2τη, over
which the slip velocity experiences dramatic changes. The same calculation was performed
for Wevg; unlike the case for Weslip,x, however, the distribution of Wevg does not seem to
experience a systematical shift over time. Nevertheless, the left tail for small Wevg seems
to shift rightward as bubbles approach breakup, which indicates that the number of events
with small velocity gradients declines near breakup. In contrast to the time evolution of
Weslip,x and Wevg for breaking bubbles only, the distribution of these two Weber numbers
(shown as black solid symbols in figure 7a,b) for all bubbles are quite close to each other
and both peak at around We ≈ 1.
In addition to the Weber numbers, figure 8 shows the alignment of the slip velocity with

the semi-major axis of the bubble for (i) all bubbles, (ii) the breaking bubbles (5τη prior to
the breakup) and (iii) the breaking bubbles (20τη prior to the breakup). The results suggest
a consistent trend of the bubble semi-major axis flipping from a perpendicular to a parallel
orientation relative to the slip velocity direction, which seems to contradict the discussion
in § 3.1 that slip velocity should flatten rather than elongate the bubble along its direction.
This surprising behaviour will be explained later after discussing the relative orientation

of the bubble semi-major axis with the eigenvectors of the strain rate tensor. Figure 9(a)
shows the distribution of the alignment of the bubble semi-major axis with ê3 similar to
figure 5(b). Here, the distribution is shown as a function of the time before the breakup
event. As we discussed in § 3.1, the bubble semi-major axis prefers a slightly perpendicular
orientation with ê3. Unlike with slip velocity, this preference becomes even stronger as
bubbles approach breakup over time, which is clear from figure 9(a).
Although the distribution ofWevg measuring the magnitude of the driving force changes

by little over time (figure 7), the strain rate seems to more effectively compress the bubble
as ê3 becomes more perpendicular to r̂1 and better aligns with r̂3 over time; however, the
p.d.f.s of the relative orientation are noisy due to the limited number of breakup events.
To verify this observed trend, figure 9(b) shows the p.d.f. for the same relative orientation
but only for cases when bubbles experienced significant deformation (α > 2.5) but did not
break, and the results show a similar trend to what has been observed for breaking bubbles
close to the breakup moment. This supports the conjecture that the flow compression
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Figure 8. Probability density function of the cosine of the angle between the bubble semi-major axis r̂1 and

the slip velocity ûslip for mild deformation and two different time (τ0) before breakup.
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|r̂1 · ê3| |r̂1 · ê3|
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Figure 9. Probability density function of the cosine of the angle between the bubble semi-major axis r̂1 and the
smallest eigenvector of the strain-rate tensor ê3 for (a) different times (τ0) before breakup and (b) all strongly
deformed (aspect ratio α > 2.5) cases.

around bubbles does not become larger, but becomes more effective as it better aligns
with bubbles as they approach breakup or strong deformation.
Based on the observation of the relative orientation between r̂1 and the slip

velocity (ûslip) or between r̂1 and the strain rate (ê3), before bubbles break, the
slip velocity becomes stronger in magnitude, and the velocity gradient aligns better
with bubbles and consequently breaks the bubble more effectively. Each mechanism
seems to adjust in a different manner to aid breakup. The surprising nearly 90◦
rotation of the relative orientation between the slip velocity and r̂1 is caused by
the fact that the slip velocity contains contributions from both bubbles and their
surrounding flows. When the bubble deformation is weak, the slip velocity serves as the
driving mechanism for bubble deformation. As bubbles approach breakup and deform
significantly, their velocity increases and overtakes the direction of the slip velocity.
Because the bubble velocity during strong deformation aligns with r̂1, the slip velocity
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becomes aligned with the semi-major axis. In other words, the slip velocity transitions
from the driving mechanism to the driven result owing to the contributions from both
phases.
The measured orientational dynamics during deformation and breakup paints a different

physical picture compared with the popular bubble-eddy collision model, which is used
extensively in the population balance equation to calculate the bubble breakup probability
(Luo & Svendsen 1996; Lehr, Millies & Mewes 2002; Wang, Wang & Jin 2003; Liao
& Lucas 2009). This model assumes that bubble breakup is driven by the collision with
turbulent eddies of size equal to or smaller than the bubble size, and it has to assume a
breakup criteria based on the difference or ratio between the eddy kinetic energy and the
surface energy, which is similar to the critical Weber number criteria. In the bubble-eddy
collision model, the contribution of the slip velocity was not considered, although it
represents an important deformation mechanism for finite-sized bubbles, as shown in
our work. The bubble-eddy collision model also implies that the Weber number should
increase when the bubble encounters a strong eddy; however, we observed no change in
the distribution of the Weber number based on the strain rate as bubbles approach breakup.
Instead, the bubble orientation shows better alignment with the local strain rate to facilitate
bubble breakup. Furthermore, although the slip velocity plays a more dominant role in
determining the orientation of weakly deformed bubbles, the strain rate tensor seems to
be more important for breaking bubbles. It remains unclear why these two mechanisms
switch their roles between deformation and breakup, and thus requires further investigation
to appropriately capture it in models.

4. Conclusion

This paper describes an experimental study of the orientational dynamics of deformed
finite-sized bubbles in homogeneous and isotropic turbulence with a large energy
dissipation rate. Both the bubble geometry and many surrounding tracer particles have
been simultaneously reconstructed and tracked in three dimensions. From this unique data
set, the relative orientation between bubbles and two driving mechanisms, i.e. slip velocity
and the strain rate, can be extracted.
For mild deformation, the strongest alignment is observed between the bubble

semi-minor axis and slip velocity, which suggests that bubbles are predominately
compressed by the slip velocity. In addition, the bubble semi-major and semi-minor axes
are aligned with the strongest stretching and compression directions of the strain rate tensor
coarse-grained at the bubble size, respectively. Compared to the relative orientation of the
bubbles with the slip velocity, their alignment with the strain rate tensor is weaker and
could be affected by the competition between deformation driven by the strain rate and
deformation driven by the slip velocity.
The orientational dynamics of deformable bubbles are also compared to that of

neutrally buoyant sub-Kolmogorov-scale material elements with no surface tension or
slip velocity. Their orientations show strong alignment with the vorticity vector and the
intermediate eigenvector of the turbulent strain rate. But such an alignment is absent for
finite-sized bubbles in our experiments. This observed difference qualitatively agrees with
a previous simulation on sub-Kolmogorov-scale droplets with different capillary numbers,
indicating that the restoring force from the surface tension could strongly affect the bubble
orientation.
Finally, the orientational dynamics of strongly deformed bubbles is studied,

particularly for events near breakup. As bubbles approach breakup, the preference for
a perpendicular orientation between ê3 and r̂1 grows, which leads to a more effective
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Alignment of bubble deformation and breakup in turbulence

strain-induced deformation. The alignment between ûslip and the bubble semi-major axis
(r̂1) transitions from perpendicular to aligned. This transition was explained by the slip
velocity switching from a driving mechanism to the driven result as the strong deformation
begins to affect the bubble translational velocity.
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