
An Experimental Study of Balance
in Matrix Factorization

Jennifer Hsia
Department of Computer Science

Princeton University
Princeton, United States of America

jhsia@princeton.edu

Peter J. Ramadge
Department of Electrical Engineering

Princeton University
Princeton, United States of America

ramadge@princeton.edu

Abstract—We experimentally examine how gradient descent
navigates the landscape of matrix factorization to obtain a
global minimum. First, we review the critical points of matrix
factorization and introduce a balanced factorization. By focusing
on the balanced critical point at the origin and a subspace of
unbalanced critical points, we study the effect of balance on
gradient descent, including an initially unbalanced factorization
and adding a balance-regularizer to the objective in the MF
problem. Simulations demonstrate that maintaining a balanced
factorization enables faster escape from saddle points and overall
faster convergence to a global minimum.

Index Terms—matrix factorization, gradient descent, balance,
saddle points, non-convex optimization.

I. INTRODUCTION

Matrix factorization is a well-known technique for represen-
tational learning. In basic matrix factorization, a real m × n
matrix X is approximately factorized into the product of (non-
unique) real matrices W and S by solving

min
W∈Rm×k,S∈Rk×n

1/2‖X −WS‖2F . (1)

The inner dimension k of the product WS is a pre-specified
integer parameter. When k < r = rank(X), the new low-rank
representation of X forces a careful selection of which aspects
of X to encode in W and S to the maximize the fidelity of
the representation. This saves space, simplifies downstream
computations involving X, and can give insight into latent
factors giving rise to the data.

A motivating application for the present work is the anal-
ysis of multi-subject functional magnetic resonance imaging
(fMRI) of brain activity. The top diagram in Figure 1 shows
a simplified example where the data matrix on the left is
constructed by stacking two subjects’ time-synchronized fMRI
data matrices. By solving the constrained matrix factorization

min
W1,W2,S

J(W,S) =
1

2

∥∥∥∥[X1

X2

]
−
[
W1

W2

]
S

∥∥∥∥2
F

s.t. Wi
TWi = Ik, i = 1, 2,

(2)

The first author thanks the School of Engineering and Applied Science at
Princeton University for a Essig-Enright Fund summer research award. The
second author acknowledges support from NSF MRI Award: 1919452.

Fig. 1. Top: Example of matrix factorization applied to fMRI data for low-
rank representation. Below: Example of matrix factorization applied to a
recommender system [1]

we obtain a voxel matrix W and a time matrix S of rank
at most k. The voxel matrix identifies k latent factors de-
scribing how each subject’s brain responds to the experimental
stimulus (e.g. audiobook, movie). The time matrix identifies k
latent factors describing the shared stimulus presented to the
subjects. Together, these matrices reveal functional response
differences across subjects and the components of the stimulus
eliciting a shared response.

One can also add regularization to problem (1). For exam-
ple, a solution of (1) is balanced if WTW − SST = 0 [2].
This implies ‖W‖2F = ‖S‖2F . A balanced solution can be
encouraged by adding a regularizer to (1):

min
W,S

1/2‖X −WS‖2F + ρ(‖W‖2F + ‖S‖2F), (3)

where ρ > 0 is a regularization parameter. This problem can be
solved in place problem (2) to yield a distinct but nevertheless
informative factorization. We will demonstrate that balance has
advantages when (1) and (3) are solved using gradient descent.

Much is known about the landscape of the matrix factoriza-
tion problem. In 1989, Baldi and Hornik [3] showed that every
critical point of problem (1) is either a global minimum or a
strict saddle point. A strict saddle point (W,S) is a critical
point at which λmin(∇2J(W,S)) < 0. Such saddle points
guarantee at least one escape direction from a neighborhood of

978-1-6654-1268-1/21/$31.00 ©2021 IEEE

20
21

 5
5t

h
An

nu
al

 C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
Sc

ie
nc

es
 a

nd
 S

ys
te

m
s (

CI
SS

) |
 9

78
-1

-6
65

4-
12

68
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CI
SS

50
98

7.
20

21
.9

40
02

32

Authorized licensed use limited to: Princeton University. Downloaded on October 18,2021 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

the saddle. Since the critical points of matrix factorization can
only be global minima or strict saddles, this greatly simplifies
the landscape of the problem. Nevertheless, the MF landscape
is still complex. Valavi et al. examine the strict saddle points
of (1) and derive a bound for the minimum eigenvalue of the
Hessian at critical points [2]. These bounds show that despite
being strict saddles, the saddle points can become very flat.

There are many other variations and applications of ma-
trix factorization. See for example, the recent survey paper
by Chi et al. [4]. This paper gives an overview of matrix
factorization, including a comparison of tailored initialization
and initialization-free algorithms and a discussion of canonical
matrix factorization problems.

To illustrate the breadth of these applications we mention
a few specific examples. In recommender systems (lower
diagram in Fig. 1), each row of X represents a user, each
column represents an item, and the entries are user ratings of
items. In general, X is sparse since each user rates only a few
items. The goal is to predict the empty entries of X. Factoring
X into the product of a low-rank user matrix and item matrix
allows approximation of the unknown entries:

min
W,S

J(W,S) =
1

2
‖K ⊗ (X −WS)‖2F . (4)

Here ⊗ denotes the Schur product, and matrix K selects the
known entries of X when minimizing the loss function.

In other versions of matrix factorization, constraints are very
important. For example, [5] uses a non-negative matrix factor-
ization algorithm on multimodal attention-deficit/hyperactivity
disorder (ADHD) data to idenitfy biomarkers of the disorder.
Another example, uses a rank 1 factorization problem with a
linear constraint for online matrix factorization [6]:

min
W,S

J(W,S) =
1

2

∥∥X − wsT∥∥2
F

s.t. aTw + b = 0.

(5)

Our goal is to better understand the role and limitations
of gradient descent in solving MF problems. Above, we have
conveyed the broad range of such problems. In the present
paper, we focus on problems of the form (1) and (3). We
investigate the use of (3) as a surrogate for problems of the
form (2). Specifically, we explore the consequences of moving
away from the strict saddle point at the origin (W,S) = (0,0)
into a subspace of strict saddles. These saddles can become
increasingly flat as one moves away from the origin. We show
how to construct such strict saddles so as to attain precise
control over the minimum eigenvalue of the Hessian. This
allows us to examine the impact of these saddle points on
gradient descent as the saddle point moves further away from
the balanced saddle at the origin. In detail, we use the above
parameterization together with an fMRI dataset to empirically
demonstrate the impact of strict saddles on gradient descent
and on the balance (WTW − SST or its norm version
‖W‖2F − ‖S‖2F) of the factorization. We perform the same
investigation for problem (3) to demonstrate how and why
improving balance improves gradient descent convergence.

II. PRELIMINARIES

A. Singular Value Decomposition and Balanced Solutions

Assume X ∈ Rm×n with m ≤ n has rank r ≤ m.
The singular value decomposition (SVD) of X yields X =
UΣV T =

∑r
i=1 σiuiv

T
i giving r pairs of singular vectors

ui, vi and singular values σi > 0. One solution of (1) is
(W ∗, S∗) = (Uk,ΣkV

T
k), where Uk is the first k columns

of U , Σk is the first k × k submatrix of Σ, and Vk is
the first k columns of V . To verify this claim, recall that
‖A − B‖2F ≥

∑q
i=1(σi(A) − σi(B))2 [7, Corollary 7.4.1.3].

Then note that W ∗S∗ achieves the lower bound

‖X −W ∗S∗‖2F = ‖
r∑
i=1

σiuiv
T
i −

k∑
i=1

σiuiv
T
i ‖2F =

r∑
i=k+1

σ2
i .

This solution, however, requires time complexity O(mn2) [8].
In general, the solution given above is not balanced. On

the other hand, (W ∗, S∗) = (Uk
√

Σk,
√

ΣkV
T
k) is a balanced

solution. To verify this note that W ∗TW ∗ − S∗S∗T =
ΣkU

T
k Uk − ΣkV

T
k Vk = Σk − Σk = 0. Balanced solutions

have additional useful properties [9], [10].

B. Gradient Descent

Gradient descent (GD) provides an alternative approach for
solving matrix factorization (MF) problems, with the potential
for improved scaling with the size of the problem. After setting
an initial value (W0, S0), GD iterates:

(Wt+1, St+1) = (Wt, St)− λ∇J(Wt, St), t ≥ 0, (6)

until either the accuracy is satisfactory or a maximum iteration
is reached. Here∇J(W,S) = ((WS−X)ST , WT (WS−X))
is the gradient of J(W,S) and λ is the learning rate.

To gauge the time complexity of GD, we first break
down the gradient into individual terms. For two matrices
A ∈ Rm×r, B ∈ Rr×n, (AB)ij is a dot product of row i of A
and column j of B. This requires a sum over r products with
a time complexity O(r). There are mn elements to compute
since AB ∈ Rm×n, so the time complexity of computing
the product is O(mnr). Similarly, the time complexity of
calculating XST and WTX is O(mnr), and that of WSST

and WTWS is O(max(m,n)r2). The max operator arises
since SST requires O(nr2) while W (SST) requires O(mr2).
The time complexity is dominated by the larger term, hence the
runtime is O(max(m,n)r2). Since r ≤ min(m,n), it follows
that O(max(m,n)r2) ≤ O(mnr). So computing XST and
WTX dominates the total time. The time complexity per
update is O(mnr).

If the maximum number of GD iterations is T and the
factorization dimension is k, then the total time complex-
ity O(Tmnk) [11]. Recall the time complexity of SVD is
O(mn2). If we choose T, k wisely, GD can be faster than
SVD. GD also only requires storage for the current gradient.

Authorized licensed use limited to: Princeton University. Downloaded on October 18,2021 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

C. Critical Points

A point (W,S) is a critical point of J if ∇J(W,S) =
(0,0). Here 0 denotes a matrix of all zeros. The first zero
matrix above has the same dimensions as W (m× k), while
the second has the same dimensions as S (k × n).

Basic matrix factorization is a non-convex problem. It is
known, however, that every critical point of the basic MF
problem is either a global minimum or a strict saddle point
[3], [2]. Since GD uses the gradient to update (W,S), critical
points are fixed points under GD. If GD enters a neighborhood
of a global minimum, the gradient becomes very small, but
GD is still on track to find an optimal solution (W ∗, S∗).
In contrast, if it enters a neighborhood of a saddle point,
the gradient becomes very small, but (Wt, St) is not in the
neighborhood of an optimal solution. Recall a strict saddle
has the property that the Hessian of J at the saddle has a
negative eigenvalue. Hence there is an escape direction from
the saddle that allows (noisy) GD to further decrease the loss.

Below we examine the balanced critical point (W,S) =
(0,0) and the subspace of critical points V0 = {(0, CT0 V T0)}
where C0 ∈ R(n−r)×k is a free parameter and V0 =[
vr+1 . . . vn

]
∈ Rn×(n−r) is the trailing subset of X’s

right singular vectors.
We need two results from prior work that provide the setting

for our experimental investigation. We state these as lemmas
and in each case give a sketch of the proof. This is important
since we need to use elements of the proof in our investigation.

It is easy to see that (W,S) = (0,0) is a balanced critical
point of J . For nontrivial X, it is a strict saddle.

Lemma 2.1 (After [2]): The minimum and maximum eigen-
values of ∇2J(0,0) are ±σ1, where σ1 is the largest singular
value of X =

∑r
i=1 σiuiv

T
i .

Proof. (Sketch) Let Gi,j = uie
T
j , Hj,i = ejv

T
i , i ∈ [1 :

m], j ∈ [1 : k]. Substituting the vector (Gi,j , δHj,i),
with δ ∈ R, into the Hessian map ∇2J(0,0)[(G,H)] =
(−XHT ,−GTX) yields:

∇2J(W,S)[(Gi,j , δHj,i)] = (−δσiGi,j ,−σiHj,i)

= ρ(Gi,j , δHj,i).

The last line holds if and only if ρ = −δσi = −σi

δ . Multiply
both expressions for ρ by δ yields δ2 = 1. So δ = ±1, and
ρ = ±σi. This yields 2mk eigenvalues of the Hessian. The
final (n −m)k eigenvalues result by considering the vectors
(0, Hj,i), i ∈ [m+ 1 : n], j ∈ [1 : k]. The Hessian map above
acts on these vectors to yield ∇2J(0,0)[(0, Hi,j)] = (0,0) =
0(0, Hj,i). Hence these are eigenvectors with eigenvalue 0.�

Now consider the subspace V0 = {(W,S) = (0, CT0 V
T
0)}.

It is easy to verify that each point in V0 is a critical point (i.e.,
∇J(0, CT0 V

T
0) = (0,0). Hence V0 is a continuum of critical

points. By the lemma below every point V0 is a strict saddle.
Lemma 2.2 (After [2]): Let ωk denote the minimal singular

value of CT0 C0. Then

λmin(∇2J(0, CT0 V
T
0)) = ωk

2 −
√
σ2
1 + (wk

2)2 < 0. (7)

Proof. (Sketch) Let CT0 C0 have SVD ZΩZT , where Z ∈
Rk×k is orthogonal and Ω ∈ Rk×k is a diagonal matrix of
eigenvalues ωj ≥ 0 in descending order. Let Gi,j = uiz

T
j and

Hj,i = zjv
T
i , i ∈ [1 : m], j ∈ [1 : k]. The Hessian acts on the

vectors (Gi,j , δHj,i) to give:

∇2J(0, CT0 V
T
0)[(Gi,j , δHj,i)] = ((ωj − δσi)Gi,j ,−σiHj,i).

This equals ρ(Gi,j , δHj,i) if and only if ρ = ωj − δσi =
−σi

δ . Assume σi > 0. Multiplying both expressions for ρ by
δ/σi yields δ2 − ωj

σi
δ − 1 = 0. Solving this equation, gives

two solutions δ =
ωj

2σi
± 1

σi

√
σ2
i + (

wj

2)2. Hence ρ =
ωj

2 ±√
σ2
i + (

wj

2)2. This gives 2rk eigenvalues of the Hessian (r =

rank(X)), the least of which is given by (7). Finally, we need
to show that none of the remaining Hessian eigenvalues is
more negative than (7). The proof is similar to that used in
the proof of Lemma 2.1. �

By Lemma 2.1, (0,0) is a strict saddle point with
λmin(∇2J(W,S)) = −σ1. The smaller the value of
λmin(∇2J(0,0)), the steeper the best escape direction from
the saddle point, and the faster GD can continue its descent.
Note that (0,0) is a balanced strict saddle point.

By Lemma 2.2, every point in V0 is also a strict saddle.
However, when ωk � σ1, λmin(∇2J) can become arbitrarily
close to zero. This means the fastest escape direction can
become increasingly flat, and it can take longer for GD to
escape a neighborhood the saddle. We also note that except
for the strict saddle at (0,0), the critical points in V0 are
unbalanced: WTW = 0 and SST = CT0 C0. Some of these
unbalanced critical points (those with ωk large) give rise to
the very flat saddles discussed above.

Constructing Saddle Points: Precise Control of λmin(∇2J)

In Section III, we need to construct strict saddle points in V0
with precise control of λmin(∇2J). These factorizations will
be unbalanced, but balance alone does not control λmin(∇2J).
For example, if ω1 � 0 and ωk = 0, then (0, CT0 V

T
0)

is unbalanced but λmin(∇2J(0, CT0 V
T
0)) = −σ1 remains

invariant. To control λmin(∇2J), we use ωk > 0 and ensure
that σmin(CT0 C0) = ωk. Then λmin(∇2J(0, CT0 V

T
0)) is given

by (7). This suggests selecting

C0 = arg min
C∈R(n−r)×k

‖C‖2F , s.t. σk(C) =
√
ωk. (8)

One solution is C∗ =
√
ωk
[
e1 e2 · · · ek

]
where ei is the

i-th standard basis vector in Rn−r. All other solutions arise
by right and left multiplication of C∗ by orthogonal matrices.

III. EXPERIMENTAL STUDY

The goal is to better understand how balance and gradient
descent interact in the context of matrix factorization. To do so,
we use three forms of initialization. The first initializes (W,S)
randomly (each component ∼ N(0, σ2)) about the balanced
saddle point (0,0). The second initializes (W,S) randomly
about an unbalanced saddle point (0, CT∗ V

T
0). The third, has

Authorized licensed use limited to: Princeton University. Downloaded on October 18,2021 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

the same initialization as case 2, but a balance regularizer is
added to the MF objective function in (1).

We examine the performance of gradient descent with these
three setups using an fMRI dataset [12]. The dataset measures
the BOLD response of voxels in the ventral temporal cortex of
10 subjects as they watch the movie “Raiders of the Lost Ark”.
Data for subject j is organized as a matrix Xj ∈ R500×2203

where the first dimension indexes 500 selected voxels and the
second indexes time samples (TRs).

A. Initialization

All single phase GD machine learning algorithms require
selection of initial parameter values. It is common to initialize
the parameters randomly in a neighborhood of the origin. For
basic MF, this means random initialization about the strict
saddle (0,0). This is reasonable since we know this point has a
strong descent direction with eigenvalue −σ1. However about
this point (and almost all strict saddles), there are unbalanced
saddles some of which can become very flat. If the GD
trajectory is initialized poorly, or wanders into unbalanced
regions, it can encounter these very flat saddles. Our goal is
to prevent GD from moving near these flat saddle points and
being slowed by the lack of strong descent direction. To do so,
we investigate if preserving balance keeps the GD trajectory
away from such saddles.

In passing, note that related but distinct issues arise in
training neural networks, e.g., the vanishing/exploding gra-
dient problem. To combat these issues, Glorot and Bengio
[13] and He et al. [14] have proposed specialized initialization
procedures. The problem for basic MF differs in that there are
no nonlinearities to deal with. Instead the balance of the factors
plays a more central role.

B. Effect of Balance on Convergence

Generally, the more balanced a saddle point, the faster GD
can escape from a neighborhood of the saddle. To investigate
this, we consider three scenarios: starting/passing near (i) the
balanced saddle (W0, S0) = (0,0), (ii) an unbalanced saddle
(W0, S0) = (0, CT∗ V

T
0), and (ii) the same unbalanced saddle

in (ii) but with the balance-regularized objective (3). We select
ωk = 2σ1 and C∗ =

√
2σ1[e1, . . . , ek]. This ensures the

unbalanced saddle is flatter than the saddle at (0,0).
The results of these three experiments are shown in Fig. 2.

GD with initialization near (0,0) converges the fastest; then
balance-regularized GD initialized near the unbalanced point
(0, CT∗ V0), and finally initialization at the same point but
without balance regularization. The convergence rates accord
with the levels of balance in each case. We observe that
trajectories starting from a neighborhood of the unbalanced
saddle (0, CT∗ V

T
0) take much longer to escape from the saddle

than those starting near the (0,0) — trajectories starting near
(0,0) escape their initial saddle point at around 35 iterations,
and trajectories starting near (0, CT∗ V

T
0) without regulariza-

tion escape at around 75 iterations. This is a reflection of
the less negative value of λmin(∇2J(0, CT∗ V

T
0)). The results

also indicate that this can be ameliorated by adding a balance

Fig. 2. GD trajectories after ran-
dom Gaussian initialization at means:
(0,0) (top), (0, CT

∗ V
T
0) without bal-

ance regularization (bottom left) and
with balance regularization (bottom
right). All graphs show 10 trials of GD
using k = 10 and learning rate = 1e-
5. The dashed lines labelled “sval i”
indicate the optimal loss for k = i,
for i = 1, . . . , 6. “var” is the initial-
ization variance.

regularizer to the MF objective. When a balance regularizer is
added, the trajectories initialized near the same saddle point
escape faster at around 50 iterations.

Notice that trajectories with an unbalanced initialization and
without regularization are less uniform than the other cases.
These 10 trajectories reach their second saddle point over a
range of 25 iterations, while the 10 trajectories in the other
cases do so over a range of 5 iterations. Compared to the more
balanced setups, an unbalanced initialization introduces more
variance in its trajectories and stalls longer before escaping
from the initial saddle point. In the next section, we examine
the balance of the points at each iteration for these scenarios
to see how balance fluctuates along the GD trajectory.

C. Preservation of Balance

An important property of balance is its invariance under
gradient flow: if (W0, S0) is balanced, then the solution of the
o.d.e. Ẇt = Wt−∇WJ(Wt, St) and Ṡt = St−∇SJ(Wt, St),
t ≥ 0 remains in balance [9], [10], [15]. This suggest that if
GD for MF starts near the balanced saddle (0,0) and uses a
very small learning rate, balance is approximately preserved.
To explore this, we use Gaussian initialization with mean
(0,0) and a small learning rate (10−5) to emulate gradient
flow. The results are shown in Fig. 3.

In the top left plot of Fig. 3, the absolute imbalance starts
near 0 as expected, increases slightly, but still remains on the
order of 10−3. The top right plot shows the relative imbalance
by normalizing the absolute imbalance with the norms of W
and S. Both absolute and relative imbalance of (W,S) remain
on the order of 10−3.

We now perform the same experiment with the same Gaus-
sian initialization except with mean (W0, S0) = (0, CT∗ V

T
0).

The results are shown in the bottom plots of Fig. 3). Initial
norm imbalance is large by construction. On an absolute

Authorized licensed use limited to: Princeton University. Downloaded on October 18,2021 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Random Gaussian initialization with mean: (0,0) (top), and
(0, CT

∗ V
T
0) (bottom). Left plots display absolute norm imbalance v. it-

erations. Right plots display the relative norm imbalance (normalized by
‖W‖F ‖S‖F) vs. iterations. Each graph displays 10 trials of gradient descent
with k = 1 and learning rate = 1e-5. “var” is the initialization variance.

Fig. 4. Random Gaussian initialization with mean (0, CT
0 V

T
0) followed by

GD without regularization (left) and with balance regularization (right). Each
graph reflects 10 trials with k = 10 and learning rate = 1e-5. lr could be
relaxed here as gradient flow is not required here.

scale, the imbalance increases rapidly and is on the order of
104. The relative imbalance peaks around 7 ∗ 104 gradually
and decreases towards 0. If (W0, S0) is unbalanced, (Wt, St)
remains unbalanced. This result was also tested with k = 10.

In section III-B we empirically demonstrated that under
unbalanced initialization, GD with a balance regularizer con-
verges faster than GD without such a regularizer. We posit
that the regularizer quickly decreases imbalance and this leads
to avoiding unbalanced strict saddles with the potential to
slow the progress of GD. To explore this idea, we randomly
initialize (W0, S0) with mean (0, CT∗ V

T
0). Then apply GD

to minimize the standard MF objective. From the same ini-
tial condition, we also apply GD to minimize the balance-
regularized objective (3). The results are shown in Fig. 4.

Comparing the left and right plots in Fig. 4, we see that the

Fig. 5. Left: Top 10 Singular Values of X. Right: (W,S) initialized as
an interpolation between (u1, v1) and (u2, v2). The graph plots the loss
v. iterations of 10 GD trials with learning rate = 1e-5, and (W,S) as rank =
1. “sval 1” is the optimal loss with k = 1.

absolute imbalance of GD increases rapidly then levels out
without decreasing. For balance-regularized GD, imbalance
decreases exponentially. This supports our idea that balance
regularization aids the rate of convergence of GD by restoring
and maintaining the balance of (Wt, St). In effect, the increas-
ingly more balanced trajectory encounters only strict saddles
with strong descent directions, thus speeding convergence.

D. Capturing Principal Components

An interesting observation of the empirical study concerns
how GD captures the principal components of X. In Fig. 2,
GD initially decreases the loss slowly because it starts near the
saddle point (0,0). Once it escapes, the loss drops rapidly,
then slows near the dotted lines labeled sval 1 and sval
2. At these points the GD trajectory is passing near other
strict saddles. The values of the loss at these strict saddles
is important: sval 1 is the optimal loss when k = 1 and sval
2 is the optimal loss when k = 2. This suggests that at these
iteration points, GD has captured the first and then the second
principal components of X. This trend of capturing singular
values in descending order of magnitude is also observed in
deep linear networks [16]. However, this trend is not apparent
for high order principal components. A possible explanation
is that the first few singular values have large differences in
consecutive values (σ1 � σ2 � σ3) while the trailing singular
values are much closer in value (Fig. 5). Since the first singular
value is much larger than the subsequent values, it dominates
the attention of GD. After the first two or three components
are captured, GD seems to capture the remaining components
in parallel as no one singular value dominates the others.

A principal component has two parts: the singular vectors
and singular value. To test whether the singular vectors or the
values are captured first. we set up 10 trials of GD with k = 1
and (W,S) initialized as an interpolation between (u1, v1) and
(u2, v2) with trial 1 closest to the first pair of singular vectors
and trial 10 closest to the second pair of singular vectors. All
the trials start equidistant from the origin.

The results are shown in the right plot of Fig. 5. There is
a direct correlation between how fast GD escapes from the
initial saddle point and how close the initialization direction
is aligned with the optimal (W,S). Trial 1 converges the

Authorized licensed use limited to: Princeton University. Downloaded on October 18,2021 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. (W0, S0) of rank k = 1
is interpolated between (u1, v1) and
(u2, v2). The top graphs plot the cor-
relation v. iterations of W with U1

(left) and W with U2 (right). Bottom
plots the fraction of σ1 captured v.
iterations.“Sval” i is the loss when GD
captures first i principal components
of X .

fastest and trial 10 the slowest. This suggests that trial 10
is “distracted” by the second principal component and acts
to capture it. To test this hypothesis, we plot the correlation
WTu1

‖W‖ and the same quantity for u2. In Fig. 6, the correlation
of W with u1 in trial 1 reaches 1 within 15 iterations while the
correlation in trial 10 takes around 50 iterations to reach 1. On
the other hand, the correlation of W with u2 in trial 1 never
exceeds 0.05 while the correlation in trial 10 starts high and
increases slightly before slowly dropping. This accords with
our hypothesis that trial 10 initially pursues u2 as the optimal
W since σ2 is large despite being smaller than σ1 (Fig. 5).

To answer whether GD captures the singular vectors or
value first, we compare the correlation with U1 with fraction
of σ1 captured (Fig. 6). For most trials, the correlation with
u1 reaches 1 before σ1 is fully captured. This suggests GD
is searching for the right direction (singular vectors) before
tuning for the right magnitude (singular value).

IV. CONCLUSION

We have shown the benefits of maintaining balance in
the factors (Wt, St) of matrix factorization computed by
gradient descent. We did so by first showing how to construct
unbalanced saddle points with λmin(∇2J) < 0 but arbitrarily
close to 0. These points are unbalanced strict saddles for which
the best escape direction from the saddle can be made very flat.
We then demonstrated the comparatively worse performance
of starting or passing near such a strict saddle. However, this
poor performance can be ameliorated by adding a balance
regularizer to MF’s objective function. This exponentially
restores balance and hence steers the GD trajectory away
from unbalanced flat saddles. We also observed that gradient
descent captures large principal components of X sequentially
when the separation of consecutive singular values is large.
When GD captures a principal component, it also passes one
of infinitely many corresponding saddle points. A secondary

observation is that when GD captures the leading principal
components (e.g., k = 1), it first captures the corresponding
pair of singular vectors, then the corresponding singular value.
More experimentation is needed to to confirm this in general.

The experimental results use the data from a typical subject
in a fMRI dataset. We are now working on a multi-subject
extension of this work to learn a joint shared response matrix
factorization over all 10 subjects. To allow for rapid experi-
mentation for different forms of balance regularizers, we are
working with auto-differentiation to automatically compute
matrix gradients for numerous complex regularizers and with
GD accelerators. The use of GD accelerators may add weight
to the need for balance regularizers, since accelerators can
significantly exacerbate imbalance.

REFERENCES

[1] S. Ghosh, “Simple matrix factorization example on the
movielens dataset using pyspark.” [Online]. Available:
https://medium.com/@connectwithghosh/simple-matrix-factorization-
example-on-the-movielens-dataset-using-pyspark-9b7e3f567536

[2] H. Valavi, S. Liu, and P. J. Ramadge, “The landscape of matrix
factorization revisited,” arXiv preprint arXiv:2002.12795, 2020.

[3] P. Baldi and K. Hornik, “Neural networks and principal component anal-
ysis: Learning from examples without local minima,” Neural networks,
vol. 2, no. 1, pp. 53–58, 1989.

[4] Y. Chi, Y. M. Lu, and Y. Chen, “Nonconvex optimization meets low-
rank matrix factorization: An overview,” CoRR, vol. abs/1809.09573,
2018. [Online]. Available: http://arxiv.org/abs/1809.09573

[5] A. Anderson, P. K. Douglas, W. T. Kerr, V. S. Haynes, A. L. Yuille,
J. Xie, Y. N. Wu, J. A. Brown, and M. S. Cohen, “Non-negative
matrix factorization of multimodal mri, fmri and phenotypic data reveals
differential changes in default mode subnetworks in adhd,” NeuroImage,
vol. 102, pp. 207–219, 2014.

[6] H. Lyu, D. Needell, and L. Balzano, “Online matrix factorization for
markovian data and applications to network dictionary learning,” arXiv
preprint arXiv:1911.01931, 2019.

[7] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge
University Press, 2013.

[8] A. K. Cline and I. S. Dhillon, Computation of the Singular Value
Decomposition. CRC Press, 2006.

[9] S. Arora, N. Cohen, and E. Hazan, “On the optimization of deep
networks: Implicit acceleration by overparameterization,” arXiv preprint
arXiv:1802.06509, 2018.

[10] S. S. Du, W. Hu, and J. D. Lee, “Algorithmic regularization in learning
deep homogeneous models: Layers are automatically balanced,” in
Advances in Neural Information Processing Systems, 2018, pp. 384–
395.

[11] C.-J. Lin, “Projected gradient methods for nonnegative matrix factoriza-
tion,” Neural computation, vol. 19, no. 10, pp. 2756–2779, 2007.

[12] J. V. Haxby, J. S. Guntupalli, A. C. Connolly, Y. O. Halchenko, B. R.
Conroy, M. I. Gobbini, M. Hanke, and P. J. Ramadge, “A common,
high-dimensional model of the representational space in human ventral
temporal cortex,” Neuron, vol. 72, no. 2, pp. 404–416, 2011.

[13] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
pp. 249–256.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[15] H. Valavi, S. Liu, and P. Ramadge, “Revisiting the landscape of
matrix factorization,” in Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, S. Chiappa and R. Calandra, Eds.,
vol. 108. Online: PMLR, 26–28 Aug 2020, pp. 1629–1638. [Online].
Available: http://proceedings.mlr.press/v108/valavi20a.html

[16] A. K. Lampinen and S. Ganguli, “An analytic theory of generalization
dynamics and transfer learning in deep linear networks,” 2019.

Authorized licensed use limited to: Princeton University. Downloaded on October 18,2021 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

