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Abstract

The modeling of natural convection in porous media is receiving increased interest due to its
significance in environmental and engineering problems. State-of-the-art simulations are based
on the classic macroscopic Darcy-Oberbeck-Boussinesq (DOB) equations, which are widely
accepted to capture the underlying physics of convection in porous media provided the Darcy
number, Da, is small. In this paper we analyze and extend the recent pore-resolved DNS of
Gasow et al. (2020) and show that the macroscopic diffusion, which is neglected in DOB, is of
the same order (with respect to Da) as the buoyancy force and the Darcy drag. Consequently,
the macroscopic diffusion must be modelled even if the value of Da is small. We propose a
“two-length-scale diffusion” (TLSD) model, in which the effect of the pore scale on the
momentum transport is approximated with a macroscopic diffusion term. This term is
determined by both the macroscopic length scale and the pore scale. It includes a transport
coefficient that solely depends on the pore-scale geometry. Simulations of our model render a
more accurate Sherwood number, root-mean-square (r.m.s.) of the mass concentration, and
r.m.s. of the velocity than simulations that employ the DOB equations. In particular, we find
that the Sherwood number Sh increases with decreasing porosity and with increasing Schmidt
number (Sc). In addition, for high values of Ra and high porosities, Sh scales nonlinearly.

These trends agree with the DNS, but are not captured in the DOB simulations.
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1. Introduction
The realization of long-term storage of CO:2 in deep saline aquifers (Orr 2009; Basbug &
Gumrah 2009; Pamukcu & Gumrah 2009; Huppert & Neufeld 2014; Metz et al. 2005; Michael
et al. 2009), the provision of large scale thermal-energy storage systems (Heyde & Schmitz
2017; Singh 2010), and the increase of efficiency of geothermal energy extraction (Ghoreishi-
Madiseh et al. 2013; Bottcher et al. 2016) are examples of emerging engineering technologies
that have the potential to slow down climate change. Natural convection in porous media is a
fundamental process relevant to these applications (Hewitt et al. 2012; Liang et al. 2018; Wen
et al. 2018a; Liu ef al. 2020a; Hewitt 2020). In general, it describes the flow of fluid in a
saturated porous medium between two infinite horizontal plates driven by a temperature or
species concentration difference. The variation of temperature or species concentration results

in the variation of the density, which induces the buoyancy force.

In this paper, we focus on the natural convection in porous media driven by a species
concentration gradient. Compared with convective heat transfer, convective mass transfer is
usually characterized by high Schmidt numbers (Sc) and unlike thermal-energy, the mass
cannot penetrate the surfaces of solid obstacles. In the absence of a porous medium, the natural
convective fluid flow is governed by the dimensionless Rayleigh number, which describes the
buoyancy-to-diffusion ratio (Kunes 2012). In the presence of a porous medium, a Rayleigh-
Darcy number (hereafter Rayleigh number, Ra) is introduced; it is a modification of the
conventional Rayleigh number, which takes the effect of the porous matrix into account (Nield
1994). Mass transfer in natural convection is characterized by the Sherwood number (Sh),
which is the ratio of the total mass transfer rate (by convection and mass diffusion) to the
diffusive mass transfer rate. The onset of natural convection occurs when Sh exceeds unity. Sh

quantifies the efficiency of the mass transfer enhancement due to natural convection.

Besides field research studies (Arts et al. 2008) and laboratory experiments (Kneafsey & Pruess
2010; Faisal et al. 2015), numerical simulation is another established tool for understanding
convection in porous media. Two approaches are available for the simulation of convection in
porous media: pore-scale resolving direct numerical simulations (DNS) and macroscopic
(volume-averaged) simulations. Macroscopic simulations are widely employed in modeling
convection in porous media (Nield & Bejan 2017), due to their significantly lower
computational costs. The first macroscopic model for fluid flow in porous media was proposed
by Darcy (1856). Whitaker (1969) proposed the most commonly used macroscopic equations

for the conservation of volume-averaged quantities. Using Whitaker’s approach, the Darcy-
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Oberbeck-Boussinesq (DOB) equations can be derived, as shown in Nield & Bejan (2017). This
set of equations has been often used in recent studies, see Hewitt e al. (2012, 2013, 2014), Wen
et al. (2015), Paoli et al. (2016), and Pirozzoli et al. (2021) as examples. A deficiency of the
DOB equations is the underlying assumption that convection in porous media is uniquely
determined by the Rayleigh number, in which the pore scale is combined with the macroscopic
length scale. This simplification could however be at the root of reported discrepancies between
numerical simulations and experiments. For example, most numerical studies based on the DOB
equations indicate a linear scaling of Sh versus Ra in the ultimate regime (Ra = 5,000),
whereas the experiments by Neufeld ef al. (2010) and Keene & Goldstein (2015) exhibited a
nonlinear scaling. The experiments by Backhaus et al. (2011) in a Hele-Shaw cell, where the
flow obeys the Darcy law but there is no porous matrix, also exhibited a nonlinear scaling.
However, recent studies showed that nonlinear scaling observed in Hele-Shaw experiments may
be related to the 3- dimensionality of the flow (Letelier et al. 2019; De Paoli et al. 2020). In a
recent study of 3-dimensional DOB simulation, Pirozzoli et al. (2021) indicated that the
nonlinear scaling can occur in 3-dimensional flows at very high Rayleigh numbers. This could
be related to supercells at the boundary, which are the footprint of megaplumes dominating the

interior part of the flow.

Another possible reason for the nonlinear scaling is related to non-Darcy effects induced by the
porous matrix. Various studies have been performed to analyze non-Darcy effects in natural
convection in porous media. For example, Shao et al. (2016) and Wang & Tan (2009) included
the Brinkman term (which is a Laplacian term that is included to model the effect of
macroscopic velocity gradients on the momentum transport) in their simulations of convection
at low Ra numbers (Ra < 5,000). However, the study of Vasseur et al. (1989) concluded that
the Brinkman term is significant only for large Darcy numbers. Mijic et al. (2014) and Das et
al. (2016) included the Forchheimer term in their models to account for the effect of turbulence.
In recent years, increasing attention is paid to hydrodynamic dispersion in porous media, see
Hidalgo & Carrera (2009), Yang & Vafai (2011), Ghesmat et al. (2011), MacMinn et al. (2012),
Wang et al. (2016), Liang et al. (2018), Wen et al. (2018b), Fahs et al. (2020), Jouybari et al.
(2020) and Liu et al. (2020Db). It is sometimes also referred to as thermal dispersion for heat
transfer problems (Pedras & de Lemos 2008), or mass dispersion for mass transfer problems
(Mesquita & de Lemos 2004). A Fickian dispersion tensor introduced by Bear (1961) is often
used to model the hydrodynamic dispersion. These studies show that hydrodynamic dispersion
can have significant effects on convection in porous media, at least for high Darcy number

problems. Gelhar et al. (1992), Lallemand-Barres & Peaudecerf (1978), Neuman (1990), and
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Liang et al. (2018) indicated that that the hydrodynamic dispersion is also important at low
Darcy numbers, since dispersion at the macro-scale (macrodispersivity) is dependent on the
scale of the system, rather than the grain size. In a recent study, however, Zech et al. (2019)
showed that dispersion at the macro-scale varied widely and did not show any clear effect on

the scale of solute plumes.

In the DNS, the Navier-Stokes equations coupled to a convection-diffusion equation for the
species concentration (or temperature for heat transfer) are solved, whereby the smallest scale
of the porous matrix is resolved. Due to the high computational costs, this approach has so far
only been used for simple geometries of porous matrices (Minkowycz et al. 2006; Torabi et al.
2017). Although DNS is too expensive for engineering applications, it is a powerful tool to gain
a better understanding of the physics of convection in porous media and serves as a foundation
for developing macroscopic models. Recently, we performed pore-scale-resolving DNS of
natural convection in porous media composed of a simple porous matrix (Gasow et al. 2020).
Our DNS results showed that the boundary layer thickness for convection in porous media is
determined by the pore size instead of the Rayleigh number. This is distinctly different from
classical DOB simulations (Huppert & Neufeld 2014). We also showed that the scaling for the
Sherwood number depends on the porosity and the pore-scale parameters and observed that the
scaling law becomes nonlinear for porous media with sufficiently high porosity. Furthermore,
the computed flow patterns exhibited motions with large length scales, close to the size of the
whole domain, which were not found in DOB simulations. In another recent numerical study,
Liu et al. (2020a) observed that the Nusselt number increases with a decrease in the porosity,
while the Rayleigh-Darcy number is kept constant. This trend cannot be captured by the DOB
equations. Liu et al. (2020a) also indicated that the ratio of the pore scale to the thickness of the
thermal boundary layer has a significant effect on the scaling of the Nusselt number versus Ra.
A scaling crossover occurs when the thickness of the thermal boundary is comparable to the
pore scale. Therefore, the discrepancy between the DOB solutions and the experiments could

arise due to pore-scale effects.

In this paper, we develop a new macroscopic model for natural convection in porous media,
which accounts for pore-scale effects. Our model is based on a detailed analysis of the DNS
simulations of Gasow et al. (2020) and additional DNS carried out here. The model involves a
coefficient, which depends solely on the pore-scale geometry. This coefficient must be
determined a priori. For each pore-scale geometry, this coefficient is determined with a single

DNS performed with a fixed set of parameters. Subsequently, we show that the simulations of
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the model agree with our DNS results (e.g. results with respect to the Sherwood number, mean
species concentration, r.m.s. species concentration, and velocity) in wide ranges of pore size,

Rayleigh, Schmidt, and Darcy numbers.

2. Governing equations and numerical methods
We consider natural convection in a porous medium domain bounded by two walls (figure 1),
which is the porous equivalent to the classical Raleigh-Bénard cell (Hewitt 2020). The
computational domain is two-dimensional, and it has a width-to-height ratio L/H = 2. Two
different geometries of the generic porous matrix are studied. They are composed of aligned
(figure 1(b)) or staggered (figure 1(c)) square obstacles. The analysis in this study is mainly
based on the results of the first porous matrix, while the sensitivity of our model coefficient to
the pore scale geometry is examined with the second porous matrix. In both cases, the
periodically arranged square obstacles with the size d are a distance s apart in the horizontal
and vertical directions. The geometry of a REV of the simulated porous medium is a square

with a side length s, containing one obstacle.

Constant species concentrations, ¢; and ¢y, are maintained at the upper and lower walls of the
domain, respectively. The difference of the species concentrations at the upper and lower walls
leads to density differences, which drives natural convection in the domain. The horizontal
boundary conditions are periodic, whereas the no-slip boundary condition is used at the upper
and lower walls and on the surfaces of the obstacles. And because mass cannot penetrate the
solid matrix of the porous medium, no mass transfer is assumed at the interface, hence
homogeneous Neumann boundary conditions are used at the obstacles for the species
concentration. Similar setups have been adopted in other numerical studies of convection in
porous media, see Javaheri et al. (2010), Hewitt et al. (2012), Wen et al. (2019), and Hewitt
(2020) as examples.



(a) L=211

Figure 1. Structure of the computational domain occupied by a regular porous matrix, with a
magnified view of a single REV, used for the DNS (a). A constant species concentration
difference at the top and bottom walls and periodic boundary conditions in the horizontal
direction are utilized. The porous matrix inside the domain is composed of aligned (b) or
staggered square obstacles (¢).

2.1 Governing equations for DNS
DNS studies were performed to gain insights into the physics of natural convection in the
porous medium, to determine the coefficients for the macroscopic model, as well as to obtain
the validation data. The governing equations for DNS of natural convection in porous media
are the Navier-Stokes equations and the species transport equation. In the flow field, the local
species concentration differences are small; hence, the Boussinesq approximation is used to
account for the buoyancy force (Herwig 2013). Using Einstein’s summation convention, the

governing microscopic equations for natural convection in porous media are as follows:
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where v, Dy, u;, p, g, and ¢ are the kinematic viscosity, the mass diffusivity, the ith component
of the velocity vector, the pressure, the ith component of the gravity vector, and the species
concentration, respectively. The concentration expansion coefficient is defined as f = B(cy) =

—1/po (dp/0dc),, see Herwig & Moschalski (2009), where p is the fluid density.

The Sherwood number Sh is calculated from the DNS as the ratio of the total mass transfer rate
m (by convection and diffusion) to the mass transfer ,;¢¢ (by diffusion only) across the lower

or upper wall (Baehr & Stephan 2006):
ac
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where the sign ~ denotes the time averaging operator, while the subscript w denotes either the
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upper or lower wall surface.

2.2 Macroscopic equations
The macroscopic equations are obtained by averaging the Navier-Stokes equations and the
species transport equation (1)-(3) over each REV (see figure 1). This method of averaging is
similar to the one used in de Lemos (2012), however, de Lemos (2012) carried out a time and
volume averaging over each respective REV, while we performed only volume averaging. The

macroscopic equations read:

—=0, (5)
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where the sign ~ denotes a REV-volume-averaged quantity. The operator { )' denotes the
intrinsic volume-averaging in the fluid phase, which is adopted from Whitaker (1986). The left
superscript i denotes the intrinsic deviation of a volume-averaged quantity, e.g. ‘u; = u; —
(u; ). The porosity ¢ is defined as ¢ = Vypia-space/Veotar » i = ¢p{u;)* is the volume-
averaged velocity, which is often referred to as the superficial velocity, and ¢ = (c)’ is the

intrinsic averaged mass concentration. The subscript m denotes an effective property in the
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volume-averaged equations, e.g., Dy, is the effective mass diffusivity. Simulations of small

domains are needed to determine the value of D,,, for a specific pore-scale geometry (see Gasow

et al. 2020).

The terms ¢{‘u; iuj)i, ¢('u;‘c)t, and R; are the momentum dispersion, mass dispersion, and
total drag, respectively. The momentum and mass dispersion terms have been neglected in our
model due to the underlying assumptions for convection in porous media with low Darcy
numbers (see Appendix Al). Since the local Reynolds number Rey = |G|vVK/v in our
simulations is generally smaller than unity (Gasow ez al. 2020), the Forchheimer term in R; can
be also neglected (Nield & Bejan 2017). The effects of the macroscopic velocity gradient on R;
can be modelled with a Laplacian term, which was first proposed by Brinkman (1949) and then
was extensively studied and improved, see Rao et al. (2020), Zaripov et al. (2019), Zhao et al.
(2018), Liu et al. (2007), Valdes-Parada et al. (2007), Vafai (2005), Starov & Zhdanov (2001),
and Ochoa-Tapia & Whitaker (1995) as examples. Here, we model the sum of the total drag R;
and the diffusion term v (0%1; / 69?]-2) in equation (6) as
%, . v_ 021,
+R ==1U; + vy,

iz K 9%’ ®

where K and v,, are the permeability and effective viscosity of the porous medium. Simulations
of small domains are needed to determine their values a priori (see Gasow et al. (2020) for

details of how they were determined). The macroscopic momentum equation (6) is hence

simplified to
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2.3 Two-length-scale diffusion assumption
Normalizing the governing equations (5), (9) and (7) using the characteristic concentration
difference Ac = ¢; — ¢y, velocity u,, = fAcgK /v, length H, and time t,, = H/u,,, the

following dimensionless macroscopic equations are obtained

) (10)
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where ~ denotes a dimensionless volume-averaged quantity, ¢ is the dimensionless volume
averaged species concentration defined as ¢ = ((c)i — co) /(c1 — cp), a, = vy, /v is the ratio
of the effective viscosity v,, to the molecular viscosity of the fluid v, and y,, = D, /Dy is the
ratio of the effective mass diffusivity Dy, to the mass diffusivity of the fluid Dy. The Rayleigh
number in equations (11) and (12) is defined by using the common definition of this parameter

for natural convection in porous media, as in Nield (1994):

_ RasDa _ HBAcgK

Ra " Dy (13)
The Schmidt number is defined as
Sc = Dl (14)
f
The Darcy number is defined as
Da = % (15)

By assuming that a, is independent of Da and taking the leading order terms with respect to
1/Da in equation (11), one obtains the well-known DOB equations. However, we reported in
our recent DNS study (Gasow et al. 2020) that the boundary layer thickness is determined by
the pore size, which is characterized by VK. In addition, similar profiles for temporally and
horizontally averaged quantities are observed when the distance from the wall is normalized
with the pore size. Therefore, the Laplacian term (a, Sc/y,,Ra)(8%4;/ 69?]-2) in equation (11) is
expected to scale as 1/K and should be of order 1/Da, exactly as the Darcy term
—(¢Sc/ymRaDa)l; and the buoyancy force term —(¢Sc/y,RaDa)z;¢. Hence, the Laplacian

term in the macroscopic equation cannot be neglected even if the Darcy number is small.

We here propose a model for the effective viscosity v,, based on a two-length-scale diffusion

(TLSD) hypothesis, in which the macroscopic diffusion is determined by the pore size,

characterized by VK, and the distance between the lower and upper boundaries H. Our TLSD
hypothesis is supported by our recent DNS (Gasow et al. 2020), where we showed that natural
convection in porous media is determined by these two length scales. The pore size
characterizes the boundary layer thickness and the size of proto-plumes, whereas the distance

between the two walls determines the size of mega-plumes.



Based on the TLSD assumption stated above, a, is modeled as:

Y= T ha (16)

where a;, is a constant assumed to be solely determined by the pore-scale geometry of the
porous matrix. Note that the two length scales VK and H are combined in Da. At the upper and

lower walls, we imposed constant species concentrations, ¢; and ¢, respectively, and the no-

slip boundary condition.

It should be noted that only the leading order terms of Da for diffusion are kept in the
macroscopic equations (10)-(12). As Da — 0, the macroscopic governing equations can be

further simplified to

o1
ﬁ = 0, (17)
i
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where p = RaDa(p)!/y,,Sc is the normalized pressure. The dimensionless time is modified to
be £ = £/¢. These macroscopic equations (17)-(19) become the DOB equations if a; is set to
zero. When the DOB equations are solved, only the velocity component in the wall-normal
direction is set to zero at the upper and lower walls. This boundary condition was also used in
other DOB simulations, see Hewitt et al. (2014) and Wen et al. (2015) as examples. In this
paper, the macroscopic simulations were carried out by solving equations (10)-(12), so that the
effect of the Darcy number can be assessed. The Sherwood number for the macroscopic model

simulations is defined using the same definition as for the DNS, which is given in equation (4).

2.4 Numerical method
For the simulations, a finite volume-method (FVM) was utilized. The solvers were developed
by using the open source code package OpenFoam 6. The spatial discretization was
implemented by a second-order central-difference scheme. For time derivatives, the second-
order implicit backward method was used. For the correction and coupling of the pressure and
velocity fields, the Pressure-Implicit scheme with Splitting of Operators (PISO) algorithm was

used (Versteeg & Malalasekera 2007). A stabilized preconditioned (bi-)conjugate gradient
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solver was utilized to solve the pressure field and the momentum and species concentration
equations. We have performed the code validation for our DNS solver extensively in our

previous studies (Jin ef al. 2015, 2017; Uth et al. 2016; Gasow et al. 2020).

3. Studied test cases
3.1. Description of the test cases
We continued selected DNS cases of Gasow et al. (2020) to improve the statistics and thus to
allow a more thorough validation of our hypothesis. In addition, we also computed these cases
by solving the macroscopic equations (10)-(12) with our two-length-scale diffusion model. The
Rayleigh numbers Ra are up to 20,000 and the Schmidt numbers Sc are 1 and 250. The ranges
of geometrical parameters of the studied test cases are given in table 1. For both DNS and

macroscopic simulation cases u; = 0 and ¢ = (¢; — ¢)/2 were used as initial conditions.

s/d 1.175-5

@ 0.28 — 0.96

Ym 0.16 — 0.92

a, 24%x107°—518%x 1075
H/s 10 — 100

Da 7% 1078 — 1.7 x 10~*

Table 1. Range of geometrical parameters for the studied test cases.

To obtain representative statistical results, the time averaging, denoted by the sign ~, of the
respective variable was performed after the flow and mass concentration fields reached a
statistically steady state. As an example, the time evolutions of the instantaneous Sherwood
number for the DNS case with H/s = 100, s/d = 1.5, Ra = 20,000, and Sc = 250 are
shown in figure 2. The time averaging of the Sherwood number has been started after the time
marked by the red dashed line. At least 200 dimensionless time units H /u,, are calculated to

obtain the statistical results.
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Figure 2. The time evolution of the instantaneous Sherwood number for the DNS case with
H/s =50;s/d = 1.5; Ra = 20,000; and Sc = 250. The dashed red line marks the time at
which the time-averaging is started. £ = tu,,/H is the dimensionless time.

3.2. Determination of the model coefficient
The coefficient a;, for a specific pore-scale geometry cannot be computed a priori with
simulations of small domains (as for the other model parameters). Here, we empirically
determine a,, by simulating natural convection within the specific pore-scale geometry with
fixed values of H/s, Sc, and Ra. Since we only keep the leading order terms of the order Da
in our model equations, a test case with a sufficiently small Darcy number should be used to
ensure that the higher order terms of Da are negligible. In particular, we performed a parametric
study for a;(¢) while keeping H/s = 20, Sc = 250, and Ra = 20,000 fixed. These
parameter values were selected because the Sherwood number from DNS marginally changes
as H /s is increased (i.c. as the pore size is decreased), hence the effect of higher order terms of
Da on Sh can be safely neglected. The value of a,, is selected for each considered porosity value,
so that the Sherwood number from the macroscopic simulation matches the DNS results. Figure

3 shows the dependence of a;, on the porosity ¢.

We expect that ay, is a geometrical parameter that is independent of Sc, Ra, and Da. This will
be examined later in section 5. The value of a;, only mildly changes when the porous matrix is
switched from aligned squares to staggered squares. According to our DNS results, a;, can be

well correlated by

a;(¢p) =7.5x1075¢°. (20)
This correlation has reasonable accuracy for 0.28 < ¢ < 0.95. However, variations of pore-

scale geometries used in this study are limited. In particular, the flow structures in randomly
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packed porous matrices may be distinctly different from those in regularly packed porous

matrices (Liu et al. 2020). Studies with more pore-scale geometries are needed to test the

generality of equation (20).

0%

10710

101"

aligned square

< staggered square

— a,*(#)="7.5x10 %¢*

0.7 0.8 0.9

Figure 3. Dependence of the model coefficient a;, on the porosity ¢, for porous matrices
composed of aligned and staggered square obstacles.

3.3. Mesh and time step independence study

The mesh and time step independence study for the DNS cases have already been performed in

our previous work, see Gasow et al. (2020). Here we focus on the influence of the mesh and

time step on the macroscopic simulation results (solution of equations (10)-(12)). The numerical

results for the Sherwood number are shown in table 2. At least 200 dimensionless time units

H /u,, were calculated to obtain the statistical results.

ID  Mesh resolution (N, X N,) Mesh size CO,0x Sh
a 800x1200 960 000 0.2 105.3
b 1000x1600 1600 000 0.2 110.1
c 2000%3000 6400 000 0.2 120.1
d 3200%x2200 7 040 000 0.2 122
e 2000%x3200 6400 000 0.6 122.4
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=

2000x3200 6400 000 0.8 121.5

g 2000%x3200 6400 000 1.1 115.8

Table 2. Influence of mesh and time step on the Sherwood number Sh. The test case with H/s =
50, s/d = 1.5, Ra = 20,000, and Sc = 250 is used in the parametric study. The cases ‘c’, ‘d’,
‘e’, and ‘f” are considered to be mesh and time step independent. The mesh resolution and
maximum Courant number of the case ‘f” (underlined) are used in all cases of macroscopic
simulation.

The results of the resolution study show that the Sherwood number is under-predicted if the
mesh resolution is too low (see table 2 cases ‘a’ and ‘b’) or the maximum Courant number is
too high (see table 2 case ‘g’). According to the mesh/time step independence study, Co,,q, =
0.8 and mesh resolution 2000x3200 (case ‘f”) were used for all cases of macroscopic simulation.
The numerical error of Sh in the macroscopic simulations is estimated to be 2.8 %, which is the
maximum variation of Sh in the cases ‘c’, ‘d’, ‘e’, and ‘. All simulations were performed on
the clusters of the HLRN (North-German Supercomputing Alliance), using 2x Intel Cascade
Lake Platinum 9242 CPUs (CLX-AP) with 96 cores per node. The DNS cases use up to 7.2 X
107 mesh cells, which requires a parallel computing time of 1,200 hours using 384 processors.

The macroscopic simulation cases use up to 6.4 X 10° mesh cells.

4. DNS results
In this section, we focus on an a priori verification of the TLSD hypothesis. The model results

are compared with the DNS results in section 5.

4.1. Budget of the macroscopic kinetic energy

Z)xl was

The budget for the time- and line-averaged macroscopic kinetic energy (K)*! = %(ﬁi
calculated from the DNS for Ra = 20,000, s/d = 1.5, s/d = 1.25, Sc = 250 and Da in the
range 3.5 X 1077 — 3.5 X 10~°. By averaging the momentum equation (2) over REVs, taking

the dot-product with the superficial velocity &; = ¢{u;)}, and then averaging in time- and in

the horizontal direction x,, we obtained the following equation for (K)*?

37 a(uiuj) iyx1 57 6p iyx1 57 azui iyx1 57 iyx1 —
_<ui¢(a—xj)> - <ui¢<a_xi)> +(Up (v 5 ]2)) +{(Wp(Bgi(c — o))y = 0. (21)

Equation (21) shows that the budget for (K)*! includes

e the production by the buoyancy force, Kp,,0, = (Ti,{Bg:(c — ¢0)))*!;
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) L - EEN
e the loss due to viscous dissipation, Kg;rr = (i, (v #)‘)’”;
j)

. SN
e the loss due to pressure gradient, K o5 = — (U, (a—j)l)“;
. - B(uiuj) Nl
e the transport due to convection, K, = — (ii;¢p (T)l) .
)

In the DOB equations, the Darcy term (Darcy drag) is the only source of losses of macroscopic

kinetic energy. The Darcy losses read

Kparey = —o(v/K)(@2)*". (22)

The budget of (K)*! is studied using the test case with s/d = 1.5 (¢ = 0.56), H/s = 20,
Ra = 20,000, Da = 8.8 X 107°, and Sc = 250. Figure 4 shows the distribution of Kpuoy»
Kaifr » Kpres » and Kgopy, in the wall-normal direction. They are normalized with the
characteristic kinetic energy Kyoqn = 1/2 u2, or Kpuoy- The distance from the lower wall is
normalized with the pore size s. It is evident that more macroscopic kinetic energy is produced
by the buoyancy force in the central region than in the region close to the wall. The transport of
(K)** due to convection is much smaller than Kj,,,y,, so it can be neglected. —Kg;rr and —Kpyes
are the losses of the macroscopic kinetic energy. Both —Kg;rr and —Kp,..s increase with
yx1

increasing distance from the wall x,/s. The loss of (K)*! in the region close to the wall is

mainly due to the pressure gradient —Kp,..
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Figure 4. Distribution of the budget of the macroscopic kinetic energy (K)*! in the wall-normal
direction. s/d = 1.5 (¢ = 0.56), H/s = 20 (Da = 8.8 X 107%), Ra = 20,000, and Sc =

250.

Figure 5 shows the loss of the macroscopic kinetic energy due to the Darcy drag Kpgycy

(assuming that the superficial velocity calculated from the macroscopic simulation is identical

to the DNS solution). Kpgrcy 18 normalized by Kiyeqn OF Kpyoy . It can be seen that Kpgy.cy, 18

close to Koy in the region away from the wall (x,/s > 0). However, Kpgrcy/Kpuoy 18

smaller than 0.85 in the first three REVs adjacent to the wall (x,/s < 3). The DNS results

confirm that the Darcy term, which accounts for the losses due to the Darcy drag, cannot

account for all the losses of the macroscopic kinetic energy.
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Figure 5. Distribution of the loss of the macroscopic kinetic energy (K)*! due to the Darcy drag.
s/d = 1.5 (¢ = 0.56), H/s = 20 (Da = 8.8 X 107° ), Ra = 20,000, and Sc = 250.

The question arises of whether the difference between Kpqrcy, and Kpy0, shown in figure 5 is
because the Darcy number in the DNS case is not small enough. To answer this question,
Kyres/ Kbuoys Kaifr/ Kpuoy> Keonv/ Kbuoy> ad Kaqarey /Kpyoy in the first REV cell next to the
bottom wall for different Darcy numbers are compared in figure 6. It is evident from this figure
that all of these quantities stay almost constant as the Darcy number is decreased from 3.5 X
1075 to 3.5 X 1077, suggesting that the Darcy numbers in our DNS cases are small enough for
the presented analysis. The Darcy number has a noticeable effect as it is increased to ~3 X
107>, In this case, Kyres/Kpuoy and Kparey/Kpuoy become smaller, Ky;rr/Kpyoy becomes
larger, whereas Koy, /Kpyoy is still negligibly small. We speculate that higher K7 at very
large Darcy numbers is due to the mass dispersion, which is neglected in our macroscopic model

(convection with very large Darcy numbers is out of the scope of this study).

Our budget analysis shows that, in the near wall region, there is a difference between the loss

due to the Darcy drag Kpg4ycy, and the overall loss which is identical to —Kpy,,,. Since the

transport of (K)*! is negligibly small, this suggests that another source for the loss of (K)*!

should be considered in the macroscopic equations.

17



(@) 1o (b 10,

Da Da

Figure 6. Kpres/Kbuoy (a), Kdiff/Kbuoy (b), Kconv/Kbuoy (C), and KDarcy/Kbuoy (d) in the
first REV cell next to the bottom wall versus the Darcy number. s/d = 1.5 (¢ =
0.56) with H/s = 10;20;50; 100; and s/d = 1.25 (¢ = 0.36) with H/s = 10; 20; 50;
Ra = 20,000; and Sc = 250.

4.2. Sh-Da dependence
According to our hypothesis, the macroscopic diffusion, the Darcy drag, and the buoyancy force
are of the same order with respect to the Darcy number, so the macroscopic diffusion cannot be
neglected even if the Darcy number is small. To examine our hypothesis, we investigated the
relationship between the Sherwood number and the Darcy number. We varied Da in the range
3.5%x1077 —3.5x 107° for s/d = 1.5 (¢p = 0.56) and 2.8 X 1077 — 7 X 107° for s/d =
1.25 (¢ = 0.36); the corresponding H /s ratios are in the range 10-100. If our hypothesis were
true, the Sherwood number should gradually become independent of Da and should not

approach the DOB solution.

The DNS results shown in figure 7 generally support our assumption, i.e. the values of Sh for
Sc = 250 depend only weakly on Da, when Da is small enough. The values of Sh are also
different from the DOB solution. As shown in figure 7(a), the same trend is found for s/d =
1.25 (¢ = 0.36) and Sc = 1, where Sh depends on Da for the cases with s/d = 1.5 (¢p =
0.56). The only exception is the case for s/d = 1.5 (¢ = 0.56) and Sc = 1, where Sh still
increases with decreasing Da (but it is still far away from the DOB result). Test cases with even

smaller Darcy numbers could be computed to probe the Da-dependence more thoroughly.
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However, the calculation of these cases would be extremely expensive and hence out of the

scope of this study.

It should be noted that the Darcy numbers for real applications are much smaller than the values
used in the DNS cases. However, since our DNS results for the Sherwood number are
approximately Da-independent, we expect that it is possible to predict the Sherwood numbers

using DNS with relatively higher (computationally affordable) Darcy numbers.
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Figure 7. The Sh(Da) dependence for the DNS and DOB cases. s/d = 1.5 (¢ = 0.56) with
% = 10;20;50; 100; and s/d = 1.25 (¢ = 0.36) with H/s = 10;20; 50; and Ra = 20,000.
(a) Sc = 1 and (b) Sc = 250.

In a recent DNS study, Liu et al. (2020a) proposed the following correlation for estimating the
Nusselt number (equivalent to Sh in this study):

4
Sh~c-¢ (T) Sc*RelysRa;' + 1, (23)

where c is an undetermined constant according to the work of Grossmann & Lohse (2000; 2001;
2004), [ is the minimum spacing between the obstacles, Re,ys = Upmsl/V is the Reynolds
number based on the volume-averaged r.m.s. velocity magnitude, and Ray = H 3BAcg /v Dy is
the Rayleigh number defined for the free fluid flow. If we set the value of ¢ to 1250 and
determine U,.,,,¢ from our DNS results, the results of equation (23) are in good agreement with

19



our DNS results for different values of ¢ and Sc, see figure 8Error! Reference source not
found.. It should be noted that equation (23) is proposed based on the flow condition that
viscosity dominates, hence intense kinetic energy dissipation takes place within the bulk
domain and turbulence is suppressed in the pore canals. For the volume and time averaged
kinetic energy dissipation rate (e,)"* the following proportionality is valid:
(e0)"t~ PpvUZ,s /1%, which corresponds to the oo-regime of classical Rayleigh Bernard
convection (without porous media) introduced by Grossmann & Lohse (2001) for large Sc and
small Ray. A good agreement between predictions obtained using equation (23) and our DNS

results indicates the significance of macroscopic diffusion in momentum transport.
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Figure 8. Sherwood number versus the Rayleigh number for Ra in the range 500 — 20,000
compared to the correlation proposed by Liu ef al. (2020a). (a) Sc = 1, (b) Sc = 250.

5. Macroscopic modeling results
Since the leading order terms of Da for diffusion are accounted for in the TLSD model, this
model can be used in principle to calculate cases characterized by small Darcy numbers. In this
section, we test whether and how the model results approach the DNS results as Da — 0. In

addition, we investigate the range of parameters for the validity of the TLSD model.
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5.1. Sherwood number
Figure 9 shows the relationship between the Sherwood number and the Rayleigh number when
H/s is 20 and Rayleigh numbers are up to 20,000. The results of our macroscopic model are
compared with the correlation obtained from the DNS results (see Gasow et al. 2020) as well
as the DOB results. In the DNS, Sh depends on s/d or ¢ for Ra > 2,000. The value of Sh
increases as s/d or ¢ decreases, while the difference becomes larger as Ra increases. In the
large Rayleigh-number regime (Ra = 5,000), the Sh = f(Ra) scaling changes from a linear
scaling Sh~Ra for s/d = 1.25 (¢ = 0.36) to a non-linear scaling Sh~Ra®® for s/d = 1.5
(¢ = 0.56). These characteristics are not captured in DOB simulations but are well reproduced

in our macroscopic model simulations.

For the current small H/s (or Da) value, both DNS and model results show that the Sherwood
number increases as the Schmidt number is increased from 1 to 250. Similar to Sc = 1, the
scaling for Sc = 250 changes from linear (Sh~Ra) for s/d = 1.25 (¢ = 0.36) to non-linear
(Sh~Ra’®) for s/d = 1.5 (¢ = 0.56). This behavior is reproduced in our macroscopic model

solution, whereas the effect of the Schmidt number is not accounted for in the DOB equations.
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Figure 9. Sherwood number versus the Rayleigh number with Ra in the range 500 — 20,000
and H/s = 20 for three values of the Darcy number: Da = 8.8 X 107° (s/d = 1.5), Da =
54 x107%(s/d = 1.4),and Da = 1.8 x 107° (s/d = 1.25). (a) Sc = 1, (b) Sc = 250.
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We neglected the high order terms with respect to Da when we proposed the TLSD model.
However, since the leading order term with respect to Da is kept in the momentum equation
(11), the effect of Da on natural convection can still be accounted for when its value is small
enough. The relationship between the Sherwood number and the Darcy number for Ra =
20,000, Sc = 1 or 250, and s/d = 1.5 or 1.25 (¢p = 0.56 or 0.36) is shown in figure 10. The
macroscopic model results are compared with the DNS results as well as with the DOB results.
Recall that a;, is only related to the pore scale geometry and is independent of the flow
conditions and the Darcy number. The macroscopic model simulations are in good agreement
with the DNS for Da < 2 X 107° and for different Schmidt numbers. By contrast, the DOB
results are independent of the Darcy and Schmidt numbers. The DOB simulations overpredict
the Sherwood number for s/d = 1.5 (¢ = 0.56) and underpredict Sh for s/d = 1.25 (¢ =
0.36).
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Figure 10. Sherwood number versus the Darcy number. s/d = 1.5 (¢ = 0.56) with H/s =
10;20;50;100; and s/d = 1.25 (¢p = 0.36) with H/s = 10; 20;50; and Ra = 20,000. (a)
Sc = 1and (b) Sc = 250.
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5.2. Species concentration and velocity statistics
The vertical profiles of the temporally and horizontally averaged macroscopic quantities (time-
and line-averaged species concentration (¢)*', species concentration fluctuation (&7™)*! and
velocity fluctuations (@i;""°)** and (fi,""*)*') for s/d = 1.5 (¢p = 0.56) and Sc = 1 are
shown in figure 11. The Rayleigh numbers are 5,000 and 20,000. The results of our
macroscopic TLSD model are compared with the DNS results as well as the DOB results. It is

i, ") are

evident that our macroscopic TLSD modeling results for (¢)**, (@;""°)*', and (il,
more accurate than the DOB results in the first REV next to the wall. The DNS results show
that all statistical results can be well scaled by the pore size s and that the influence of the
bounding walls is limited to within the first three REVs next to the wall (Gasow et al. 2020).
Thus, the boundary layer thickness is determined by the pore size s, instead of the Rayleigh
number, as suggested in Huppert & Neufeld (2014). These features are all well captured in the

macroscopic simulation.
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Figure 11. The vertical profiles of the temporally and horizontally averaged macroscopic
quantities for s/d = 1.5 (¢ =0.56), H/s =20 (Da=8.8x107°), and Sc =1. The
Rayleigh number Ra is varied. The distance from the wall is normalized by the pore size s. (a)
Time- and line-averaged species concentration (¢)*!, (b) root mean square (r.m.s.) of the
species concentration fluctuation (6"™S)*1, (c) streamwise velocity fluctuation (@i, )*1, (d)

wall-normal velocity fluctuation (i, " )**.
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The same statistical quantities are shown in figure 12 for Sc = 250. It can be seen that these
statistical quantities are only marginally changed when a much higher Schmidt number is used
in the simulation. Similar to the results for Sc = 1, the macroscopic modeling results are also
in good agreement with the DNS results. The macroscopic TLSD model simulation predicts
yx1

higher mass concentration (¢)*! in the first REV next to the wall and higher transverse velocity

fluctuation (f@i," " )*. One possible reason for this discrepancy is that the neglected high order
terms with respect to Da may lead to modeling errors in the boundary layer region. The TLSD
model accuracy can be further improved by decomposing the flow domain into a boundary
layer region and a central region, so the modeling in the boundary layer region can be improved.
However, this would make the model more complicated and difficult to apply. This modeling
approach is not adopted in our study to achieve a compromise between the accuracy and

simplicity of the macroscopic model.
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Figure 12. The vertical profiles of the temporally and horizontally averaged macroscopic
quantities for s/d = 1.5 (¢ = 0.56), H/s =20 (Da =8.8x107°), and Sc = 250. The
Rayleigh number Ra is varied. The distance from the wall is normalized by the pore size s. (a)
Time- and line-averaged species concentration (¢)*!, (b) r.m.s. of the species concentration

fluctuation (¢"™$)*1 | (c) streamwise velocity fluctuation (fi,""°)*', and (d) wall-normal
velocity fluctuation (i,

rms>x1.
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5.3. Transient macroscopic fields
To validate the results of our macroscopic TLSD model, we first compare the transient flow
fields obtained from macroscopic simulations of equations (10)-(12) with those obtained from
the DNS results discussed in the previous section and the DOB simulations reported in Gasow
et al. (2020). For this purpose, the velocity field and the species concentration obtained with

the macroscopic simulations and the DNS were volume-averaged (over each REV).

The distribution of the instantaneous Rey = (|u|K/2)/v for Ra = 20,000, s/d = 1.5 (¢ =
0.56), H/s = 100, and Sc = 250 is shown in figure 13. The macroscopic TLSD solution
(figure 13(c)) is qualitatively similar to the DNS solution (figure 13(a)) and DOB solution
(figure 13(b)). Both the DNS solution and macroscopic solutions indicate that the local
Reynolds number is Rex < 4 X 1073, This shows that the studied parameter range is well in
the Darcy regime (Regx < 1), hence the Forchheimer term in the momentum equation can be
safely neglected. Despite the laminar flow in the pore scale, the macroscopic flow field is
transient and chaotic. However, the strong spatial variation of the velocity field obtained from

the DNS is neither captured in TLSD nor in the DOB simulations.
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Figure 13. Instantaneous volume averaged Reynolds number Reg, H/s = 100 (Da = 3.5 X
1077),s/d = 1.5 (¢ = 0.56), Ra = 20,000, and Sc = 250. (a) DNS, (b) DOB, (c) TLSD.

Snapshots of the instantaneous species concentrations for H/s = 100, s/d = 1.5 (¢ = 0.56),
Ra = 20,000, and Sc = 250 are shown in figure 14. The DNS solution (figure 14(a)), TLSD
solution (figure 14(c)), and the DOB solution (figure 14(b)) all exhibit large mega-plumes
structures in the internal region and small proto-plumes in the boundary layers. They occur due
to the rising of a fluid with low species concentration and the sinking of a fluid with high species
concentration, forming the instabilities in the boundary layer region (Hewitt et al. 2012;
Krinzien & Jin 2019).
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Figure 14. Instantaneous volume-averaged species concentration ¢, H/s = 100 (Da = 3.5 X
1077),s/d = 1.5 (¢ = 0.56), Ra = 20,000, and Sc = 250. (a) DNS, (b) DOB, (c) TLSD.

While the macroscopic TSDL model and DOB solution exhibit relatively regular mega plumes,
in the DNS solution the mega-plumes are more irregular and chaotic. A possible reason is that
the Darcy number in our simulation is still not small enough, while the TLSD model is proposed
for problems with low Darcy numbers. The transient flow field from macroscopic simulation

converges slower than the Sherwood number and other statistical results with decreasing Da.

The DNS study reported in Gasow et al. (2020) shows that the number of mega-plumes
increases with the decrease of Da. Figure 15 shows the time-averaged Fourier transform of the
dimensionless mass concentration ¢ along the centerline at x, = H /2. The peak wave number
calculated from the TLSD simulation is still higher than the DNS result, but it is lower than the
DOB result. Figure 16 shows that the peak wave number from DNS approaches the TLSD or

DOB results as the Darcy number approaches 0. However, DNS of natural convection with
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smaller Darcy numbers are still needed to confirm that the peak wave number from DNS will

not exceed the TLSD results and approach the DOB results.
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Figure 15. Average spectra of the dimensionless mass concentration, ¢ of the DNS, DOB, and
TLSD results at mid-height x, = H/2, H/s = 100 (Da =3.5x1077), s/d = 1.5 (¢ =
0.56), Ra = 20,000, and Sc = 250.
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Figure 16. Peak wavenumber k for the mega-plumes of the DNS, DOB, and TLSD results for
different Darcy numbers with s/d = 1.5 (¢ = 0.56), Ra = 20,000, and Sc = 250.

The 3-dimensional DOB simulations by Pirozzoli et al. (2021) revealed the supercells at the
boundary, which are the footprints of megaplumes dominating the interior part of the flow. They
suggest that these supercells might lead to the nonlinear scaling of Sh(Ra) in the ultimate
regime of high Ra numbers. Future work needs to investigate whether these supercells will be
also captured by 3-dimensional TLSD simulations. Elucidating how macroscopic diffusion
affects the plume structures is also a subject of future investigation.
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6. Conclusions
The DNS results of Gasow et al. (2020) (extended in this study) show that the pore-scale
geometry also has significant effects on natural convection in porous media, in particular, the
boundary layer thickness is determined by the pore size instead of the Rayleigh number. Based
on this, we have proposed the following TLSD model: we assume that pore scale structures
affect the momentum transport through macroscopic diffusion. The macroscopic diffusion is of
the same order with respect to the Darcy number as the Darcy drag and the buoyancy force,

thus, it cannot be neglected even if the Darcy number is small. It is determined by two length

scales, the pore size characterized by VK and the distance between the lower and upper

boundaries H.

The DNS results show that the loss of the macroscopic kinetic energy is mainly due to
microscopic diffusion and the pressure gradient. The loss captured in Darcy’s law is only part
of the overall loss, even if the superficial velocity is accurately calculated in the DOB equation.
The macroscopic diffusion term added here to the momentum equation accounts for the
additional loss of the macroscopic kinetic energy. Our DNS results also show that the Sherwood
number is almost independent of the Darcy number when the Darcy number is small enough.
Thus, the diffusion term is of the same order of the Darcy number (Da = K/H?) as the

buoyancy force term and the Darcy term.

A new macroscopic model for simulating natural convection in porous media is developed
based on the TLSD assumption. The results of our model are validated extensively by
comparison with the DNS as well as the DOB results. The comparison shows that the new
macroscopic model performs well as long as Da < 2 x 107°. Simulations of the model predict
a much more accurate Sherwood number, r.m.s. mass concentration, and r.m.s. velocity than
simulations that employ the DOB equations. They also predict the structures of mega-plumes
and proto-plumes with reasonable accuracy. In particular, the new model results show that the
Sh = f(Ra) scaling changes from a linear scaling to a non-linear scaling as the porosity
increases. If the Rayleigh number and Darcy number are fixed, the Sherwood number increases
with the increase of the Schmidt number and the decrease of the porosity. These trends agree
with the DNS results, whereas they cannot be captured by the DOB simulations. We expect that
these trends, as well as the TLSD assumption, also apply to 3-dimensional flows. However,

how macroscopic diffusion affects the plume structures remains an open question.

Some discrepancies between the new macroscopic modeling results and the DNS results can be

found in the boundary layer. The new macroscopic model over-predicts the mean mass
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concentration in the first REV next to the wall. This error may be reduced if the higher order
terms with respect to Da, e.g., the mass dispersion, are considered. However, the current

macroscopic model appears preferable due to its simplicity.

This work is the first step towards modeling fundamental issues arising at the pore scale in CO2
sequestration processes. However, it should be noted that a real CO2 sequestration process is
much more complicated. It has been extensively investigated by numerical modeling in the last
two decades (Weir et al. 1995, 1996; Lindeberg & Wessel-Berg 1997; Hassanzadeh et al. 2005,
2007; Bickle et al. 2007; Pruess & Zhang 2008; Chen et al. 2018). It is characterized by three-
dimensional, inherently transient multiphase flow with much more complicated pore-scale
geometries and much lower Darcy numbers than those studied in this research (Michael et al.

2010; Riley 2010; Huppert & Neufeld 2014).

Appendix A1 Momentum dispersion and species concentration dispersion
Breugem et al. (2006) argued that momentum dispersion has negligible effects on convection
in porous media. This agrees with the study by Rao et al. (2020), who showed numerically that
momentum dispersion should be accounted for only when the local Reynolds number Rey >>

1. Hence, the momentum dispersion is neglected here as well.

The effects of mass dispersion (or thermal dispersion for heat transfer problems) have been
extensively studied in recent years, as discussed in the Introduction (Fahs et al. 2020; Alomar
2019; Wen et al. 2018; Liang et al. 2018). The dispersion term in equation (7) is often modeled

using a Fickian dispersion tensor, first introduced by Bear (1961) and expressed as:

iy.ic) = D oc
d('u'c) = Dy % (24)
where the dispersion tensor D;; is calculated as:
D;; = (a; — ap) Ut /0] + a6, (25)

and a; and «a; are the longitudinal and transverse diffusivities, respectively. They can be
determined from the numerical results for the flow and mass transfer in a REV with a linear
concentration gradient in the streamwise or transverse direction, see Nakayama & Kuwahara

(1999) and Pedras & de Lemos (2008). These studies suggest that D;; has the scaling of the

form D;;~Pey, where the local Peclet number Pey is defined as
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u
Pey = ReySc = L—IRemDal/z, (26)

m

where Rey = |i|VK/v and Re,, = u,,H/v are the local and global Reynolds numbers,
respectively. Delgado (2007) and Nakayama & Kuwahara (1999) suggested that the scaling

coefficient n is between 1 and 2. As a consequence, D;; is expected to be of order between
Da'/? and Da, while D, is of order Da®. When the Darcy number is small enough, |D;;| «
D,,. Since we are interested in natural convection with small Darcy numbers, we only retain the

leading order terms with respect to Da for diffusion in equation (7). Thus, due to this theoretical

derivation, mass dispersion can also be neglected.

The dispersion at the macro-scale (macrodispersivity) suggested by Gelhar et al. (1992),
Lallemand-Barres & Peaudecerf (1978), Neuman (1990), and Liang et al. (2018) is not
considered in this study since its effect on the plume scale has not yet been fully elucidated
(Zech et al. 2019). Instead, the effect of dispersion is modeled as macroscopic diffusion in the
momentum equation. The macroscopic diffusion affects the velocity field and then accounts for

the dispersion in the species concentration indirectly.
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