
1 
 

A macroscopic two-length-scale model for natural convection in porous media 

driven by a species-concentration gradient 

Stefan Gasow1, Andrey V. Kuznetsov2, Marc Avila1, 3, and Yan Jin1, 3* 

1 Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, 

Bremen, Germany 

2 Department of Mechanical and Aerospace Engineering, North Carolina State University, 

Raleigh, North Carolina 27695-7910, USA 

3 MAPEX Center for Materials and Processes, University of Bremen, 28359, Bremen, Germany 

* Corresponding author: Yan Jin (yan.jin@zarm.uni-bremen.de) 

 

Abstract 

The modeling of natural convection in porous media is receiving increased interest due to its 

significance in environmental and engineering problems. State-of-the-art simulations are based 

on the classic macroscopic Darcy-Oberbeck-Boussinesq (DOB) equations, which are widely 

accepted to capture the underlying physics of convection in porous media provided the Darcy 

number, 𝐷𝑎, is small. In this paper we analyze and extend the recent pore-resolved DNS of 

Gasow et al. (2020) and show that the macroscopic diffusion, which is neglected in DOB, is of 

the same order (with respect to 𝐷𝑎) as the buoyancy force and the Darcy drag. Consequently, 

the macroscopic diffusion must be modelled even if the value of 𝐷𝑎 is small. We propose a 

“two-length-scale diffusion” (TLSD) model, in which the effect of the pore scale on the 

momentum transport is approximated with a macroscopic diffusion term. This term is 

determined by both the macroscopic length scale and the pore scale. It includes a transport 

coefficient that solely depends on the pore-scale geometry. Simulations of our model render a 

more accurate Sherwood number, root-mean-square (r.m.s.) of the mass concentration, and 

r.m.s. of the velocity than simulations that employ the DOB equations. In particular, we find 

that the Sherwood number 𝑆ℎ increases with decreasing porosity and with increasing Schmidt 

number (𝑆𝑐 ). In addition, for high values of 𝑅𝑎  and high porosities, 𝑆ℎ  scales nonlinearly. 

These trends agree with the DNS, but are not captured in the DOB simulations. 

Key words: convection in porous media, boundary layer stability, buoyant boundary layers, 

macroscopic modeling 



2 
 

1. Introduction 

The realization of long-term storage of CO2 in deep saline aquifers (Orr 2009; Basbug & 

Gumrah 2009; Pamukcu & Gumrah 2009; Huppert & Neufeld 2014; Metz et al. 2005; Michael 

et al. 2009), the provision of large scale thermal-energy storage systems (Heyde & Schmitz 

2017; Singh 2010), and the increase of efficiency of geothermal energy extraction (Ghoreishi-

Madiseh et al. 2013; Böttcher et al. 2016) are examples of emerging engineering technologies 

that have the potential to slow down climate change. Natural convection in porous media is a 

fundamental process relevant to these applications (Hewitt et al. 2012; Liang et al. 2018; Wen 

et al. 2018a; Liu et al. 2020a; Hewitt 2020). In general, it describes the flow of fluid in a 

saturated porous medium between two infinite horizontal plates driven by a temperature or 

species concentration difference. The variation of temperature or species concentration results 

in the variation of the density, which induces the buoyancy force.  

In this paper, we focus on the natural convection in porous media driven by a species 

concentration gradient. Compared with convective heat transfer, convective mass transfer is 

usually characterized by high Schmidt numbers (𝑆𝑐 ) and unlike thermal-energy, the mass 

cannot penetrate the surfaces of solid obstacles. In the absence of a porous medium, the natural 

convective fluid flow is governed by the dimensionless Rayleigh number, which describes the 

buoyancy-to-diffusion ratio (Kunes 2012). In the presence of a porous medium, a Rayleigh-

Darcy number (hereafter Rayleigh number, 𝑅𝑎 ) is introduced; it is a modification of the 

conventional Rayleigh number, which takes the effect of the porous matrix into account (Nield 

1994). Mass transfer in natural convection is characterized by the Sherwood number (𝑆ℎ ), 

which is the ratio of the total mass transfer rate (by convection and mass diffusion) to the 

diffusive mass transfer rate. The onset of natural convection occurs when 𝑆ℎ exceeds unity. 𝑆ℎ 

quantifies the efficiency of the mass transfer enhancement due to natural convection.  

Besides field research studies (Arts et al. 2008) and laboratory experiments (Kneafsey & Pruess 

2010; Faisal et al. 2015), numerical simulation is another established tool for understanding 

convection in porous media. Two approaches are available for the simulation of convection in 

porous media: pore-scale resolving direct numerical simulations (DNS) and macroscopic 

(volume-averaged) simulations. Macroscopic simulations are widely employed in modeling 

convection in porous media (Nield & Bejan 2017), due to their significantly lower 

computational costs. The first macroscopic model for fluid flow in porous media was proposed 

by Darcy (1856). Whitaker (1969) proposed the most commonly used macroscopic equations 

for the conservation of volume-averaged quantities. Using Whitaker’s approach, the Darcy-
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Oberbeck-Boussinesq (DOB) equations can be derived, as shown in Nield & Bejan (2017). This 

set of equations has been often used in recent studies, see Hewitt et al. (2012, 2013, 2014), Wen 

et al. (2015), Paoli et al. (2016), and Pirozzoli et al. (2021) as examples. A deficiency of the 

DOB equations is the underlying assumption that convection in porous media is uniquely 

determined by the Rayleigh number, in which the pore scale is combined with the macroscopic 

length scale. This simplification could however be at the root of reported discrepancies between 

numerical simulations and experiments. For example, most numerical studies based on the DOB 

equations indicate a linear scaling of 𝑆ℎ  versus 𝑅𝑎  in the ultimate regime (𝑅𝑎 ൒ 5,000 ), 

whereas the experiments by Neufeld et al. (2010) and Keene & Goldstein (2015) exhibited a 

nonlinear scaling. The experiments by Backhaus et al. (2011) in a Hele-Shaw cell, where the 

flow obeys the Darcy law but there is no porous matrix, also exhibited a nonlinear scaling. 

However, recent studies showed that nonlinear scaling observed in Hele-Shaw experiments may 

be related to the 3- dimensionality of the flow (Letelier et al. 2019; De Paoli et al. 2020). In a 

recent study of 3-dimensional DOB simulation, Pirozzoli et al. (2021) indicated that the 

nonlinear scaling can occur in 3-dimensional flows at very high Rayleigh numbers. This could 

be related to supercells at the boundary, which are the footprint of megaplumes dominating the 

interior part of the flow.  

Another possible reason for the nonlinear scaling is related to non-Darcy effects induced by the 

porous matrix. Various studies have been performed to analyze non-Darcy effects in natural 

convection in porous media. For example, Shao et al. (2016) and Wang & Tan (2009) included 

the Brinkman term (which is a Laplacian term that is included to model the effect of 

macroscopic velocity gradients on the momentum transport) in their simulations of convection 

at low 𝑅𝑎 numbers (𝑅𝑎 ൑ 5,000). However, the study of Vasseur et al. (1989) concluded that 

the Brinkman term is significant only for large Darcy numbers. Mijic et al. (2014) and Das et 

al. (2016) included the Forchheimer term in their models to account for the effect of turbulence. 

In recent years, increasing attention is paid to hydrodynamic dispersion in porous media, see 

Hidalgo & Carrera (2009), Yang & Vafai (2011), Ghesmat et al. (2011), MacMinn et al. (2012), 

Wang et al. (2016), Liang et al. (2018), Wen et al. (2018b), Fahs et al. (2020), Jouybari et al. 

(2020) and Liu et al. (2020b). It is sometimes also referred to as thermal dispersion for heat 

transfer problems (Pedras & de Lemos 2008), or mass dispersion for mass transfer problems 

(Mesquita & de Lemos 2004). A Fickian dispersion tensor introduced by Bear (1961) is often 

used to model the hydrodynamic dispersion. These studies show that hydrodynamic dispersion 

can have significant effects on convection in porous media, at least for high Darcy number 

problems. Gelhar et al. (1992), Lallemand-Barres & Peaudecerf (1978), Neuman (1990), and 
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Liang et al. (2018) indicated that that the hydrodynamic dispersion is also important at low 

Darcy numbers, since dispersion at the macro-scale (macrodispersivity) is dependent on the 

scale of the system, rather than the grain size. In a recent study, however, Zech et al. (2019) 

showed that dispersion at the macro-scale varied widely and did not show any clear effect on 

the scale of solute plumes.  

In the DNS, the Navier-Stokes equations coupled to a convection-diffusion equation for the 

species concentration (or temperature for heat transfer) are solved, whereby the smallest scale 

of the porous matrix is resolved. Due to the high computational costs, this approach has so far 

only been used for simple geometries of porous matrices (Minkowycz et al. 2006; Torabi et al. 

2017). Although DNS is too expensive for engineering applications, it is a powerful tool to gain 

a better understanding of the physics of convection in porous media and serves as a foundation 

for developing macroscopic models. Recently, we performed pore-scale-resolving DNS of 

natural convection in porous media composed of a simple porous matrix (Gasow et al. 2020). 

Our DNS results showed that the boundary layer thickness for convection in porous media is 

determined by the pore size instead of the Rayleigh number. This is distinctly different from 

classical DOB simulations (Huppert & Neufeld 2014). We also showed that the scaling for the 

Sherwood number depends on the porosity and the pore-scale parameters and observed that the 

scaling law becomes nonlinear for porous media with sufficiently high porosity. Furthermore, 

the computed flow patterns exhibited motions with large length scales, close to the size of the 

whole domain, which were not found in DOB simulations. In another recent numerical study, 

Liu et al. (2020a) observed that the Nusselt number increases with a decrease in the porosity, 

while the Rayleigh-Darcy number is kept constant. This trend cannot be captured by the DOB 

equations. Liu et al. (2020a) also indicated that the ratio of the pore scale to the thickness of the 

thermal boundary layer has a significant effect on the scaling of the Nusselt number versus 𝑅𝑎. 

A scaling crossover occurs when the thickness of the thermal boundary is comparable to the 

pore scale. Therefore, the discrepancy between the DOB solutions and the experiments could 

arise due to pore-scale effects.  

In this paper, we develop a new macroscopic model for natural convection in porous media, 

which accounts for pore-scale effects. Our model is based on a detailed analysis of the DNS 

simulations of Gasow et al. (2020) and additional DNS carried out here. The model involves a 

coefficient, which depends solely on the pore-scale geometry. This coefficient must be 

determined a priori. For each pore-scale geometry, this coefficient is determined with a single 

DNS performed with a fixed set of parameters. Subsequently, we show that the simulations of 
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the model agree with our DNS results (e.g. results with respect to the Sherwood number, mean 

species concentration, r.m.s. species concentration, and velocity) in wide ranges of pore size, 

Rayleigh, Schmidt, and Darcy numbers.  

 

2. Governing equations and numerical methods 

We consider natural convection in a porous medium domain bounded by two walls (figure 1), 

which is the porous equivalent to the classical Raleigh-Bénard cell (Hewitt 2020). The 

computational domain is two-dimensional, and it has a width-to-height ratio 𝐿 𝐻⁄ ൌ 2. Two 

different geometries of the generic porous matrix are studied. They are composed of aligned 

(figure 1(b)) or staggered (figure 1(c)) square obstacles. The analysis in this study is mainly 

based on the results of the first porous matrix, while the sensitivity of our model coefficient to 

the pore scale geometry is examined with the second porous matrix. In both cases, the 

periodically arranged square obstacles with the size 𝑑 are a distance 𝑠 apart in the horizontal 

and vertical directions. The geometry of a REV of the simulated porous medium is a square 

with a side length 𝑠, containing one obstacle.  

Constant species concentrations, 𝑐ଵ and 𝑐଴, are maintained at the upper and lower walls of the 

domain, respectively. The difference of the species concentrations at the upper and lower walls 

leads to density differences, which drives natural convection in the domain. The horizontal 

boundary conditions are periodic, whereas the no-slip boundary condition is used at the upper 

and lower walls and on the surfaces of the obstacles. And because mass cannot penetrate the 

solid matrix of the porous medium, no mass transfer is assumed at the interface, hence 

homogeneous Neumann boundary conditions are used at the obstacles for the species 

concentration. Similar setups have been adopted in other numerical studies of convection in 

porous media, see Javaheri et al. (2010), Hewitt et al. (2012), Wen et al. (2019), and Hewitt 

(2020) as examples.  
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Figure 1. Structure of the computational domain occupied by a regular porous matrix, with a 
magnified view of a single REV, used for the DNS (a). A constant species concentration 
difference at the top and bottom walls and periodic boundary conditions in the horizontal 
direction are utilized. The porous matrix inside the domain is composed of aligned (b) or 
staggered square obstacles (c). 

 

2.1 Governing equations for DNS 

DNS studies were performed to gain insights into the physics of natural convection in the 

porous medium, to determine the coefficients for the macroscopic model, as well as to obtain 

the validation data. The governing equations for DNS of natural convection in porous media 

are the Navier-Stokes equations and the species transport equation. In the flow field, the local 

species concentration differences are small; hence, the Boussinesq approximation is used to 

account for the buoyancy force (Herwig 2013). Using Einstein’s summation convention, the 

governing microscopic equations for natural convection in porous media are as follows: 

𝜕𝑢௜

𝜕𝑥௜
ൌ 0, (1) 

𝜕𝑢௜

𝜕𝑡
൅

𝜕൫𝑢௜𝑢௝൯
𝜕𝑥௝

ൌ െ
𝜕𝑝
𝜕𝑥௜

൅ 𝜈
𝜕ଶ𝑢௜

𝜕𝑥௝
ଶ ൅ 𝛽𝑔௜ሺ𝑐 െ 𝑐଴ሻ, (2) 

𝜕𝑐
𝜕𝑡

൅
𝜕ሺ𝑢௜𝑐ሻ

𝜕𝑥௜
ൌ 𝐷௙

𝜕ଶ𝑐
𝜕𝑥௝

ଶ, (3) 
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where 𝜈, 𝐷௙, 𝑢௜, 𝑝, 𝑔௜, and 𝑐 are the kinematic viscosity, the mass diffusivity, the ith component 

of the velocity vector, the pressure, the ith component of the gravity vector, and the species 

concentration, respectively. The concentration expansion coefficient is defined as 𝛽 ൌ 𝛽ሺ𝑐଴ሻ ൌ

െ 1 𝜌଴⁄ ሺ𝜕𝜌 𝜕𝑐⁄ ሻ௖బ
, see Herwig & Moschalski (2009), where 𝜌 is the fluid density.  

The Sherwood number 𝑆ℎ is calculated from the DNS as the ratio of the total mass transfer rate 

𝑚ሶ  (by convection and diffusion) to the mass transfer 𝑚ሶ ௗ௜௙௙ (by diffusion only) across the lower 

or upper wall (Baehr & Stephan 2006): 

𝑆ℎ ൌ 𝑚ሶ 𝑚ሶ ௗ௜௙௙⁄ ൌ
න

𝜕𝑐
𝜕𝑐ଶ

തതതതത
dA

 

௪

඲ 𝜕𝑐
𝜕𝑐ଶ

തതതതത
ฬ

ோ௔೑ୀ଴
dA

 

௪

, (4) 

where the sign   ത denotes the time averaging operator, while the subscript 𝑤 denotes either the 

upper or lower wall surface.  

2.2 Macroscopic equations 

The macroscopic equations are obtained by averaging the Navier-Stokes equations and the 

species transport equation (1)-(3) over each REV (see figure 1). This method of averaging is 

similar to the one used in de Lemos (2012), however, de Lemos (2012) carried out a time and 

volume averaging over each respective REV, while we performed only volume averaging. The 

macroscopic equations read: 

𝜕𝑢෬௜

𝜕𝑥෬௜
ൌ 0, (5) 

𝜕𝑢෬௜

𝜕𝑡̆
൅

𝜕ሺ𝑢෬௜𝑢෬௜ 𝜙⁄ ሻ

𝜕𝑥෬௝
൅

𝜕൫𝜙〈 𝑢௜ 
௜ 𝑢௝ 

௜ 〉௜൯
𝜕𝑥෬௝

ൌ െ
𝜕൫𝜙〈𝑝〉௜൯

𝜕𝑥෬௜
൅ 𝜈

𝜕ଶ𝑢෬௜

𝜕𝑥෬௝
ଶ െ 𝜙𝛽𝑔௜ሺ𝑐̆ െ 𝑐଴ሻ െ 𝜙𝑅෰௜, (6) 

𝜕ሺ𝜙𝑐̆ሻ

𝜕𝑡̆
൅

𝜕ሺ𝑢෬௜𝑐̆ሻ

𝜕𝑥෬௜
൅

𝜕൫𝜙〈 𝑢௜ 
௜ 𝑐 ௜ 〉௜൯

𝜕𝑥෬௝
ൌ 𝐷௠

𝜕ଶ𝑐̆
𝜕𝑥෬௝

ଶ, (7) 

where the sign   ෬  denotes a REV-volume-averaged quantity. The operator 〈  〉௜  denotes the 

intrinsic volume-averaging in the fluid phase, which is adopted from Whitaker (1986). The left 

superscript 𝑖  denotes the intrinsic deviation of a volume-averaged quantity, e.g. 𝑢௜ 
௜ ൌ 𝑢௜ െ

〈 𝑢௜ 〉௜ . The porosity 𝜙  is defined as 𝜙 ൌ 𝑉௩௢௜ௗି௦௣௔௖௘ 𝑉௧௢௧௔௟⁄  , 𝑢෬௜ ൌ 𝜙〈𝑢௜〉௜  is the volume-

averaged velocity, which is often referred to as the superficial velocity, and 𝑐̆ ൌ 〈𝑐〉௜  is the 

intrinsic averaged mass concentration. The subscript 𝑚  denotes an effective property in the 
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volume-averaged equations, e.g., 𝐷௠  is the effective mass diffusivity. Simulations of small 

domains are needed to determine the value of 𝐷௠ for a specific pore-scale geometry (see Gasow 

et al. 2020). 

The terms 𝜙〈 𝑢௜ 
௜ 𝑢௝ 

௜ 〉௜ , 𝜙〈 𝑢௜ 
௜ 𝑐 ௜ 〉௜ , and 𝑅෰௜  are the momentum dispersion, mass dispersion, and 

total drag, respectively. The momentum and mass dispersion terms have been neglected in our 

model due to the underlying assumptions for convection in porous media with low Darcy 

numbers (see Appendix A1). Since the local Reynolds number 𝑅𝑒௄ ൌ |𝐮෭|√𝐾/𝜈  in our 

simulations is generally smaller than unity (Gasow et al. 2020), the Forchheimer term in 𝑅෰௜ can 

be also neglected (Nield & Bejan 2017). The effects of the macroscopic velocity gradient on 𝑅෰௜ 

can be modelled with a Laplacian term, which was first proposed by Brinkman (1949) and then 

was extensively studied and improved, see Rao et al. (2020), Zaripov et al. (2019), Zhao et al. 

(2018), Liu et al. (2007), Valdes-Parada et al. (2007), Vafai (2005), Starov & Zhdanov (2001), 

and Ochoa-Tapia & Whitaker (1995) as examples. Here, we model the sum of the total drag 𝑅෰௜ 

and the diffusion term 𝜈 ሺ𝜕ଶ𝑢෬௜ 𝜕𝑥෬௝
ଶሻൗ  in equation (6) as 

𝜈
𝜕ଶ𝑢෬௜

𝜕𝑥෬௝
ଶ ൅ 𝑅෰௜ ൌ

𝜈
𝐾

𝑢෬௜ ൅ 𝜈௠
𝜕ଶ𝑢෬௜

𝜕𝑥෬௝
ଶ , (8) 

where 𝐾 and 𝜈௠ are the permeability and effective viscosity of the porous medium. Simulations 

of small domains are needed to determine their values a priori (see Gasow et al. (2020) for 

details of how they were determined). The macroscopic momentum equation (6) is hence 

simplified to  

𝜕𝑢෬௜

𝜕𝑡̆
൅

𝜕ሺ𝑢෬௜𝑢෬௜ 𝜙⁄ ሻ

𝜕𝑥෬௝
ൌ െ

𝜕൫𝜙〈𝑝〉௜൯
𝜕𝑥෬௜

൅ 𝜈௠
𝜕ଶ𝑢෬௜

𝜕𝑥෬௝
ଶ െ 𝜙𝛽𝑔௜ሺ𝑐̆ െ 𝑐଴ሻ െ 𝜙

𝜈
𝐾

𝑢෬௜. (9) 

 

2.3 Two-length-scale diffusion assumption 

Normalizing the governing equations (5), (9) and (7) using the characteristic concentration 

difference Δ𝑐 ൌ 𝑐ଵ െ 𝑐଴ , velocity 𝑢௠ ൌ 𝛽∆𝑐𝑔𝐾 𝜈⁄  , length 𝐻 , and time 𝑡௠ ൌ 𝐻 𝑢௠⁄  , the 

following dimensionless macroscopic equations are obtained 

𝜕𝑢ො௜

𝜕𝑥ො௜
ൌ 0, (10) 

𝜕𝑢ො௜

𝜕𝑡̂
൅

𝜕ሺ𝑢ො௜𝑢ො௜ 𝜙⁄ ሻ
𝜕𝑥ො௝

ൌ െ
𝜕൫𝜙〈𝑝෤〉௜൯

𝜕𝑥ො௜
൅

𝑎ఔ𝑆𝑐
𝛾௠𝑅𝑎

𝜕ଶ𝑢ො௜

𝜕𝑥ො௝
ଶ െ

𝜙Sc
𝛾௠𝑅𝑎𝐷𝑎

𝑧௜𝑐̂ െ
𝜙𝑆𝑐

𝛾௠𝑅𝑎𝐷𝑎
𝑢ො௜, (11) 
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𝜕ሺ𝜙𝑐̂ሻ

𝜕𝑡̂
൅

𝜕ሺ𝑢ො௜𝑐̂ሻ

𝜕𝑥ො௜
ൌ

1
𝑅𝑎

𝜕ଶ𝑐̂
𝜕𝑥ො௝

ଶ, (12) 

where   ො  denotes a dimensionless volume-averaged quantity, 𝑐̂  is the dimensionless volume 

averaged species concentration defined as 𝑐̂ ൌ ൫〈𝑐〉௜ െ 𝑐଴൯ ሺ𝑐ଵ െ 𝑐଴ሻ⁄ , 𝑎ఔ ൌ 𝜈௠ 𝜈⁄  is the ratio 

of the effective viscosity 𝜈௠ to the molecular viscosity of the fluid 𝜈, and 𝛾௠ ൌ 𝐷௠ 𝐷௙⁄  is the 

ratio of the effective mass diffusivity 𝐷௠ to the mass diffusivity of the fluid 𝐷௙. The Rayleigh 

number in equations (11) and (12) is defined by using the common definition of this parameter 

for natural convection in porous media, as in Nield (1994):  

𝑅𝑎 ≡
𝑅𝑎௙𝐷𝑎

𝛾௠
ൌ

𝐻𝛽∆𝑐𝑔𝐾
𝐷௠𝜈

. (13) 

The Schmidt number is defined as  

𝑆𝑐 ൌ
𝜈

𝐷௙
. (14) 

The Darcy number is defined as 

𝐷𝑎 ൌ
𝐾

𝐻ଶ. (15) 

By assuming that 𝑎ఔ is independent of 𝐷𝑎 and taking the leading order terms with respect to 

1/𝐷𝑎 in equation (11), one obtains the well-known DOB equations. However, we reported in 

our recent DNS study (Gasow et al. 2020) that the boundary layer thickness is determined by 

the pore size, which is characterized by √𝐾. In addition, similar profiles for temporally and 

horizontally averaged quantities are observed when the distance from the wall is normalized 

with the pore size. Therefore, the Laplacian term ሺ𝑎ఔ𝑆𝑐 𝛾௠𝑅𝑎⁄ ሻ൫𝜕ଶ𝑢ො௜ 𝜕𝑥ො௝
ଶൗ ൯ in equation (11) is 

expected to scale as 1 𝐾⁄   and should be of order 1 𝐷𝑎⁄  , exactly as the Darcy term 

െሺ𝜙𝑆𝑐 𝛾௠𝑅𝑎𝐷𝑎⁄ ሻ𝑢ො௜ and the buoyancy force term െሺ𝜙Sc 𝛾௠𝑅𝑎𝐷𝑎⁄ ሻ𝑧௜𝑐̂. Hence, the Laplacian 

term in the macroscopic equation cannot be neglected even if the Darcy number is small.  

We here propose a model for the effective viscosity 𝜈௠ based on a two-length-scale diffusion 

(TLSD) hypothesis, in which the macroscopic diffusion is determined by the pore size, 

characterized by √𝐾, and the distance between the lower and upper boundaries 𝐻. Our TLSD 

hypothesis is supported by our recent DNS (Gasow et al. 2020), where we showed that natural 

convection in porous media is determined by these two length scales. The pore size 

characterizes the boundary layer thickness and the size of proto-plumes, whereas the distance 

between the two walls determines the size of mega-plumes.  
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Based on the TLSD assumption stated above, 𝑎ఔ is modeled as: 

𝑎ఔ ൌ
𝜈௠

𝜈
ൌ

𝑎ఔ
∗

𝐷𝑎
, (16) 

where 𝑎ఔ
∗   is a constant assumed to be solely determined by the pore-scale geometry of the 

porous matrix. Note that the two length scales √𝐾 and 𝐻 are combined in 𝐷𝑎. At the upper and 

lower walls, we imposed constant species concentrations, 𝑐ଵ and 𝑐଴, respectively, and the no-

slip boundary condition. 

It should be noted that only the leading order terms of 𝐷𝑎  for diffusion are kept in the 

macroscopic equations (10)-(12). As 𝐷𝑎 → 0 , the macroscopic governing equations can be 

further simplified to 

𝜕𝑢ො௜

𝜕𝑥ො௜
ൌ 0, (17) 

𝜕𝑝̂
𝜕𝑥ො௜

൅ 𝑐̂𝑧௜ ൅ 𝑢ො௜ ൌ
𝑎ఔ

∗

𝜙
𝜕ଶ𝑢ො௜

𝜕𝑥ො௝
ଶ , (18) 

𝜕𝑐̂
𝜕𝑡̂

൅
𝜕ሺ𝑢ො௜𝑐̂ሻ

𝜕𝑥ො௜
ൌ

1
𝑅𝑎

𝜕ଶ𝑐̂
𝜕𝑥ො௝

ଶ, (19) 

where 𝑝̂ ൌ 𝑅𝑎𝐷𝑎〈𝑝෤〉௜ 𝛾௠𝑆𝑐⁄  is the normalized pressure. The dimensionless time is modified to 

be 𝑡̂ ൌ 𝑡̆ 𝜙⁄ . These macroscopic equations (17)-(19) become the DOB equations if 𝑎ఔ
∗  is set to 

zero. When the DOB equations are solved, only the velocity component in the wall-normal 

direction is set to zero at the upper and lower walls. This boundary condition was also used in 

other DOB simulations, see Hewitt et al. (2014) and Wen et al. (2015) as examples. In this 

paper, the macroscopic simulations were carried out by solving equations (10)-(12), so that the 

effect of the Darcy number can be assessed. The Sherwood number for the macroscopic model 

simulations is defined using the same definition as for the DNS, which is given in equation (4).  

 

2.4 Numerical method 

For the simulations, a finite volume-method (FVM) was utilized. The solvers were developed 

by using the open source code package OpenFoam 6. The spatial discretization was 

implemented by a second-order central-difference scheme. For time derivatives, the second-

order implicit backward method was used. For the correction and coupling of the pressure and 

velocity fields, the Pressure-Implicit scheme with Splitting of Operators (PISO) algorithm was 

used (Versteeg & Malalasekera 2007). A stabilized preconditioned (bi-)conjugate gradient 
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solver was utilized to solve the pressure field and the momentum and species concentration 

equations. We have performed the code validation for our DNS solver extensively in our 

previous studies (Jin et al. 2015, 2017; Uth et al. 2016; Gasow et al. 2020).  

 

3. Studied test cases 

3.1. Description of the test cases 

We continued selected DNS cases of Gasow et al. (2020) to improve the statistics and thus to 

allow a more thorough validation of our hypothesis. In addition, we also computed these cases 

by solving the macroscopic equations (10)-(12) with our two-length-scale diffusion model. The 

Rayleigh numbers 𝑅𝑎 are up to 20,000 and the Schmidt numbers 𝑆𝑐 are 1 and 250. The ranges 

of geometrical parameters of the studied test cases are given in table 1. For both DNS and 

macroscopic simulation cases 𝑢௜ ൌ 0 and 𝑐 ൌ ሺ𝑐ଵ െ 𝑐଴ሻ 2⁄  were used as initial conditions.  

𝒔/𝒅 𝟏. 𝟏𝟕𝟓 െ 𝟓 

𝝓 0.28 െ 0.96 

𝜸𝒎 0.16 െ 0.92 

𝒂𝒗
∗  2.4 ൈ 10ିଽ െ 5.18 ൈ 10ିହ 

𝑯/𝒔 10 െ 100 

𝑫𝒂 7 ൈ 10ି଼ െ 1.7 ൈ 10ିସ 

Table 1. Range of geometrical parameters for the studied test cases. 

To obtain representative statistical results, the time averaging, denoted by the sign   ത, of the 

respective variable was performed after the flow and mass concentration fields reached a 

statistically steady state. As an example, the time evolutions of the instantaneous Sherwood 

number for the DNS case with 𝐻/𝑠 ൌ 100 , 𝑠/𝑑 ൌ 1.5 , 𝑅𝑎 ൌ 20,000 , and 𝑆𝑐 ൌ 250  are 

shown in figure 2. The time averaging of the Sherwood number has been started after the time 

marked by the red dashed line. At least 200 dimensionless time units 𝐻 𝑢௠⁄  are calculated to 

obtain the statistical results. 
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Figure 2. The time evolution of the instantaneous Sherwood number for the DNS case with 
𝐻/𝑠 ൌ 50 ; 𝑠/𝑑 ൌ 1.5 ; 𝑅𝑎 ൌ 20,000 ; and 𝑆𝑐 ൌ 250 . The dashed red line marks the time at 
which the time-averaging is started. 𝑡̂ ൌ 𝑡𝑢௠ 𝐻⁄  is the dimensionless time.  

 

3.2. Determination of the model coefficient 

The coefficient 𝑎ఔ
∗   for a specific pore-scale geometry cannot be computed a priori with 

simulations of small domains (as for the other model parameters). Here, we empirically 

determine 𝑎ఔ
∗  by simulating natural convection within the specific pore-scale geometry with 

fixed values of 𝐻 𝑠⁄ , 𝑆𝑐, and 𝑅𝑎. Since we only keep the leading order terms of the order 𝐷𝑎 

in our model equations, a test case with a sufficiently small Darcy number should be used to 

ensure that the higher order terms of Da are negligible. In particular, we performed a parametric 

study for 𝑎ఔ
∗ ሺ𝜙ሻ  while keeping 𝐻 𝑠⁄ ൌ 20, 𝑆𝑐 ൌ 250,  and 𝑅𝑎 ൌ 20,000  fixed. These 

parameter values were selected because the Sherwood number from DNS marginally changes 

as 𝐻 𝑠⁄  is increased (i.e. as the pore size is decreased), hence the effect of higher order terms of 

Da on Sh can be safely neglected. The value of 𝑎ఔ
∗  is selected for each considered porosity value, 

so that the Sherwood number from the macroscopic simulation matches the DNS results. Figure 

3 shows the dependence of 𝑎ఔ
∗  on the porosity 𝜙. 

We expect that 𝑎ఔ
∗  is a geometrical parameter that is independent of 𝑆𝑐, 𝑅𝑎, and Da. This will 

be examined later in section 5. The value of 𝑎ఔ
∗  only mildly changes when the porous matrix is 

switched from aligned squares to staggered squares. According to our DNS results, 𝑎ఔ
∗  can be 

well correlated by 

𝑎௩
∗ሺ𝜙ሻ ൌ 7.5 ൈ 10ିହ𝜙ଽ. (20) 

This correlation has reasonable accuracy for 0.28 ൏ 𝜙 ൏ 0.95. However, variations of pore-

scale geometries used in this study are limited. In particular, the flow structures in randomly 
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packed porous matrices may be distinctly different from those in regularly packed porous 

matrices (Liu et al. 2020). Studies with more pore-scale geometries are needed to test the 

generality of equation (20). 

 

 

Figure 3. Dependence of the model coefficient 𝑎ఔ
∗   on the porosity 𝜙 , for porous matrices 

composed of aligned and staggered square obstacles.  

 

3.3. Mesh and time step independence study 

The mesh and time step independence study for the DNS cases have already been performed in 

our previous work, see Gasow et al. (2020). Here we focus on the influence of the mesh and 

time step on the macroscopic simulation results (solution of equations (10)-(12)). The numerical 

results for the Sherwood number are shown in table 2. At least 200 dimensionless time units 

𝐻 𝑢௠⁄  were calculated to obtain the statistical results. 

 

ID Mesh resolution ሺ𝑵𝒙 ൈ 𝑵𝒚ሻ Mesh size 𝑪𝒐𝒎𝒂𝒙 𝑺𝒉 

a 800ൈ1200 960 000 0.2 105.3 

b 1000ൈ1600 1 600 000 0.2 110.1 

c 2000ൈ3000 6 400 000 0.2 120.1 

d 3200ൈ2200 7 040 000 0.2 122 

e 2000ൈ3200 6 400 000 0.6 122.4 
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f 2000ൈ3200 6 400 000 0.8 121.5 

g 2000ൈ3200 6 400 000 1.1 115.8 

Table 2. Influence of mesh and time step on the Sherwood number 𝑆ℎ. The test case with 𝐻/𝑠 ൌ
50, 𝑠/𝑑 ൌ 1.5, 𝑅𝑎 ൌ 20,000, and 𝑆𝑐 ൌ 250 is used in the parametric study. The cases ‘c’, ‘d’, 
‘e’, and ‘f’ are considered to be mesh and time step independent. The mesh resolution and 
maximum Courant number of the case ‘f’ (underlined) are used in all cases of macroscopic 
simulation. 

 

The results of the resolution study show that the Sherwood number is under-predicted if the 

mesh resolution is too low (see table 2 cases ‘a’ and ‘b’) or the maximum Courant number is 

too high (see table 2 case ‘g’). According to the mesh/time step independence study, 𝐶𝑜௠௔௫ ൌ

0.8 and mesh resolution 2000×3200 (case ‘f’) were used for all cases of macroscopic simulation. 

The numerical error of 𝑆ℎ in the macroscopic simulations is estimated to be 2.8 %, which is the 

maximum variation of 𝑆ℎ in the cases ‘c’, ‘d’, ‘e’, and ‘f’. All simulations were performed on 

the clusters of the HLRN (North-German Supercomputing Alliance), using 2x Intel Cascade 

Lake Platinum 9242 CPUs (CLX-AP) with 96 cores per node. The DNS cases use up to 7.2 ൈ

10଻ mesh cells, which requires a parallel computing time of 1,200 hours using 384 processors. 

The macroscopic simulation cases use up to 6.4 ൈ 10଺ mesh cells.  

 

4. DNS results 

In this section, we focus on an a priori verification of the TLSD hypothesis. The model results 

are compared with the DNS results in section 5. 

4.1. Budget of the macroscopic kinetic energy 

The budget for the time- and line-averaged macroscopic kinetic energy 〈𝐾ഥ〉௫ଵ ൌ ଵ

ଶ
〈𝑢෬௜

ଶ〉௫ଵ was 

calculated from the DNS for 𝑅𝑎 ൌ 20,000, 𝑠/𝑑 ൌ 1.5,  𝑠/𝑑 ൌ 1.25, 𝑆𝑐 ൌ 250 and 𝐷𝑎 in the 

range 3.5 ൈ 10ି଻ െ 3.5 ൈ 10ିହ. By averaging the momentum equation (2) over REVs, taking 

the dot-product with the superficial velocity 𝑢෬௜ ൌ 𝜙〈𝑢௜〉௜, and then averaging in time- and in 

the horizontal direction 𝑥ଵ, we obtained the following equation for 〈𝐾ഥ〉௫ଵ 

െ 〈𝑢෭𝑖𝜙 〈
𝜕൫𝑢𝑖𝑢𝑗൯

𝜕𝑥𝑗
〉𝑖

തതതതതതതതതതതതതതതതതതത
〉௫ଵ െ 〈𝑢෭𝑖𝜙 〈

𝜕𝑝
𝜕𝑥𝑖

〉𝑖
തതതതതതതതതതതതത

〉௫ଵ ൅ 〈𝑢෭𝑖𝜙 〈𝜈
𝜕ଶ𝑢𝑖

𝜕𝑥𝑗
ଶ 〉𝑖

തതതതതതതതതതതതതതതതത
〉௫ଵ ൅ 〈𝑢෭𝑖𝜙〈𝛽𝑔𝑖ሺ𝑐 െ 𝑐଴ሻ〉𝑖തതതതതതതതതതതതതതതതതതതതതതത〉௫ଵ ൌ 0. (21) 

Equation (21) shows that the budget for 〈𝐾ഥ〉௫ଵ includes 

 the production by the buoyancy force, 𝐾௕௨௢௬ ൌ 〈𝑢෬𝑖𝜙〈𝛽𝑔𝑖ሺ𝑐 െ 𝑐଴ሻ〉𝑖തതതതതതതതതതതതതതതതതതതതതത〉௫ଵ; 
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 the loss due to viscous dissipation, 𝐾ௗ௜௙௙ ൌ 〈𝑢෬𝑖𝜙 〈𝜈 డమ𝑢𝑖

డ௫ണ
మ 〉𝑖

തതതതതതതതതതതതതത
〉௫ଵ; 

 the loss due to pressure gradient, 𝐾௣௥௘௦ ൌ െ 〈𝑢෬𝑖𝜙 〈డ௣

డ௫𝑖
〉𝑖തതതതതതതതതതത〉௫ଵ; 

 the transport due to convection, 𝐾௖௢௡௩ ൌ െ 〈𝑢෬𝑖𝜙 〈
డ൫௨𝑖௨𝑗൯

డ௫𝑗
〉𝑖

തതതതതതതതതതതതതതതത
〉௫ଵ. 

In the DOB equations, the Darcy term (Darcy drag) is the only source of losses of macroscopic 

kinetic energy. The Darcy losses read 

𝐾஽௔௥௖௬ ൌ െ𝜙ሺ𝜈 𝐾⁄ ሻ〈𝑢෬𝑖
ଶതതത〉௫ଵ. (22) 

The budget of 〈𝐾ഥ〉௫ଵ  is studied using the test case with 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ , 𝐻/𝑠 ൌ 20 , 

𝑅𝑎 ൌ 20,000 , 𝐷𝑎 ൌ 8.8 ൈ 10ି଺  , and 𝑆𝑐 ൌ 250 . Figure 4 shows the distribution of 𝐾௕௨௢௬ , 

𝐾ௗ௜௙௙ , 𝐾௣௥௘௦ , and 𝐾௖௢௡௩  in the wall-normal direction. They are normalized with the 

characteristic kinetic energy 𝐾௠௘௔௡ ൌ 1/2 𝑢௠
ଶ  or 𝐾௕௨௢௬. The distance from the lower wall is 

normalized with the pore size 𝑠. It is evident that more macroscopic kinetic energy is produced 

by the buoyancy force in the central region than in the region close to the wall. The transport of 

〈𝐾ഥ〉௫ଵ due to convection is much smaller than 𝐾௕௨௢௬, so it can be neglected. െ𝐾ௗ௜௙௙ and െ𝐾௣௥௘௦ 

are the losses of the macroscopic kinetic energy. Both െ𝐾ௗ௜௙௙  and െ𝐾௣௥௘௦  increase with 

increasing distance from the wall 𝑥ଶ 𝑠⁄  . The loss of 〈𝐾ഥ〉௫ଵ  in the region close to the wall is 

mainly due to the pressure gradient െ𝐾௣௥௘௦. 
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Figure 4. Distribution of the budget of the macroscopic kinetic energy 〈𝐾ഥ〉௫ଵ in the wall-normal 
direction. 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ , 𝐻/𝑠 ൌ 20 ሺ𝐷𝑎 ൌ 8.8 ൈ 10ି଺ሻ , 𝑅𝑎 ൌ 20,000 ,   and 𝑆𝑐 ൌ
250.  

 

Figure 5 shows the loss of the macroscopic kinetic energy due to the Darcy drag 𝐾஽௔௥௖௬ , 

(assuming that the superficial velocity calculated from the macroscopic simulation is identical 

to the DNS solution). 𝐾஽௔௥௖௬ is normalized by 𝐾௠௘௔௡ or 𝐾௕௨௢௬. It can be seen that 𝐾஽௔௥௖௬ is 

close to 𝐾௕௨௢௬  in the region away from the wall (𝑥ଶ 𝑠⁄ ≫ 0 ). However, 𝐾஽௔௥௖௬ 𝐾௕௨௢௬⁄   is 

smaller than 0.85 in the first three REVs adjacent to the wall (𝑥ଶ 𝑠⁄ ൏ 3). The DNS results 

confirm that the Darcy term, which accounts for the losses due to the Darcy drag, cannot 

account for all the losses of the macroscopic kinetic energy. 
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Figure 5. Distribution of the loss of the macroscopic kinetic energy 〈𝐾ഥ〉௫ଵ due to the Darcy drag. 
𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ, 𝐻/𝑠 ൌ 20 ሺ𝐷𝑎 ൌ 8.8 ൈ 10ି଺ ሻ, 𝑅𝑎 ൌ 20,000, and 𝑆𝑐 ൌ 250. 

 

The question arises of whether the difference between 𝐾஽௔௥௖௬ and 𝐾௕௨௢௬ shown in figure 5 is 

because the Darcy number in the DNS case is not small enough. To answer this question, 

𝐾௣௥௘௦ 𝐾௕௨௢௬⁄ , 𝐾ௗ௜௙௙ 𝐾௕௨௢௬⁄ , 𝐾௖௢௡௩ 𝐾௕௨௢௬⁄ , and 𝐾ௗ௔௥௖௬ 𝐾௕௨௢௬⁄  in the first REV cell next to the 

bottom wall for different Darcy numbers are compared in figure 6. It is evident from this figure 

that all of these quantities stay almost constant as the Darcy number is decreased from 3.5 ൈ

10ିହ to 3.5 ൈ 10ି଻, suggesting that the Darcy numbers in our DNS cases are small enough for 

the presented analysis. The Darcy number has a noticeable effect as it is increased to ~3 ൈ

10ିହ . In this case, 𝐾௣௥௘௦ 𝐾௕௨௢௬⁄   and 𝐾஽௔௥௖௬ 𝐾௕௨௢௬⁄   become smaller, 𝐾ௗ௜௙௙ 𝐾௕௨௢௬⁄   becomes 

larger, whereas 𝐾௖௢௡௩ 𝐾௕௨௢௬⁄  is still negligibly small. We speculate that higher 𝐾ௗ௜௙௙ at very 

large Darcy numbers is due to the mass dispersion, which is neglected in our macroscopic model 

(convection with very large Darcy numbers is out of the scope of this study). 

Our budget analysis shows that, in the near wall region, there is a difference between the loss 

due to the Darcy drag 𝐾஽௔௥௖௬  and the overall loss which is identical to െ𝐾௕௨௢௬ . Since the 

transport of 〈𝐾ഥ〉௫ଵ is negligibly small, this suggests that another source for the loss of 〈𝐾ഥ〉௫ଵ 

should be considered in the macroscopic equations.  
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Figure 6. 𝐾௣௥௘௦ 𝐾௕௨௢௬⁄   (a), 𝐾ௗ௜௙௙ 𝐾௕௨௢௬⁄   (b), 𝐾௖௢௡௩ 𝐾௕௨௢௬⁄  (c), and 𝐾஽௔௥௖௬ 𝐾௕௨௢௬⁄   (d) in the 

first REV cell next to the bottom wall versus the Darcy number. 𝑠 𝑑⁄ ൌ 1.5 ሺ𝜙 ൌ
0.56ሻ with 𝐻 𝑠⁄ ൌ 10; 20; 50; 100;  and 𝑠 𝑑⁄ ൌ 1.25 ሺ𝜙 ൌ 0.36ሻ with 𝐻 𝑠⁄ ൌ 10; 20; 50; 
𝑅𝑎 ൌ 20,000;  and 𝑆𝑐 ൌ 250. 

 

4.2. Sh-Da dependence 

According to our hypothesis, the macroscopic diffusion, the Darcy drag, and the buoyancy force 

are of the same order with respect to the Darcy number, so the macroscopic diffusion cannot be 

neglected even if the Darcy number is small. To examine our hypothesis, we investigated the 

relationship between the Sherwood number and the Darcy number. We varied 𝐷𝑎 in the range 

3.5 ൈ 10ି଻ െ 3.5 ൈ 10ିହ  for 𝑠 𝑑⁄ ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ  and 2.8 ൈ 10ି଻ െ 7 ൈ 10ି଺  for 𝑠 𝑑⁄ ൌ

1.25 ሺ𝜙 ൌ 0.36ሻ; the corresponding 𝐻/𝑠 ratios are in the range 10-100. If our hypothesis were 

true, the Sherwood number should gradually become independent of 𝐷𝑎  and should not 

approach the DOB solution.  

The DNS results shown in figure 7 generally support our assumption, i.e. the values of 𝑆ℎ for 

𝑆𝑐 ൌ 250  depend only weakly on 𝐷𝑎,  when 𝐷𝑎  is small enough. The values of 𝑆ℎ  are also 

different from the DOB solution. As shown in figure 7(a), the same trend is found for 𝑠/𝑑 ൌ

1.25 ሺ𝜙 ൌ 0.36ሻ  and 𝑆𝑐 ൌ 1 , where 𝑆ℎ  depends on 𝐷𝑎  for the cases with 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ

0.56ሻ . The only exception is the case for 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ  and 𝑆𝑐 ൌ 1 , where 𝑆ℎ  still 

increases with decreasing Da (but it is still far away from the DOB result). Test cases with even 

smaller Darcy numbers could be computed to probe the Da-dependence more thoroughly. 
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However, the calculation of these cases would be extremely expensive and hence out of the 

scope of this study.  

It should be noted that the Darcy numbers for real applications are much smaller than the values 

used in the DNS cases. However, since our DNS results for the Sherwood number are 

approximately 𝐷𝑎-independent, we expect that it is possible to predict the Sherwood numbers 

using DNS with relatively higher (computationally affordable) Darcy numbers.  

 

Figure 7. The 𝑆ℎሺ𝐷𝑎ሻ dependence for the DNS and DOB cases. 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ with 
ு

௦
ൌ 10; 20; 50; 100;  and 𝑠/𝑑 ൌ 1.25 ሺ𝜙 ൌ 0.36ሻ with 𝐻/𝑠 ൌ 10; 20; 50 ; and 𝑅𝑎 ൌ 20,000 . 

(a) 𝑆𝑐 ൌ 1 and (b) 𝑆𝑐 ൌ 250.  

 

In a recent DNS study, Liu et al. (2020a) proposed the following correlation for estimating the 

Nusselt number (equivalent to 𝑆ℎ in this study): 

𝑆ℎ ൎ 𝑐 ∙ 𝜙 ൬
𝐻
𝑙

൰
ସ

𝑆𝑐ଶ𝑅𝑒௥௠௦
ଶ 𝑅𝑎௙

ିଵ ൅ 1, (23) 

where 𝑐 is an undetermined constant according to the work of Grossmann & Lohse (2000; 2001; 

2004),  𝑙  is the minimum spacing between the obstacles, 𝑅𝑒௥௠௦ ൌ 𝑈௥௠௦𝑙 𝜈⁄   is the Reynolds 

number based on the volume-averaged r.m.s. velocity magnitude, and 𝑅𝑎௙ ൌ 𝐻ଷ𝛽Δ𝑐𝑔 𝜈⁄ 𝐷௙ is 

the Rayleigh number defined for the free fluid flow. If we set the value of 𝑐  to 1250  and 

determine 𝑈௥௠௦ from our DNS results, the results of equation (23) are in good agreement with 
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our DNS results for different values of 𝜙 and 𝑆𝑐, see figure 8Error! Reference source not 

found.. It should be noted that equation (23) is proposed based on the flow condition that 

viscosity dominates, hence intense kinetic energy dissipation takes place within the bulk 

domain and turbulence is suppressed in the pore canals. For the volume and time averaged 

kinetic energy dissipation rate 〈𝜖௨〉௩,௧  the following proportionality is valid: 

〈𝜖௨〉௩,௧~ 𝜙𝜈𝑈௥௠௦
ଶ 𝑙ଶ⁄  , which corresponds to the ∞-regime of classical Rayleigh Bernard 

convection (without porous media) introduced by Grossmann & Lohse (2001) for large 𝑆𝑐 and 

small 𝑅𝑎௙. A good agreement between predictions obtained using equation (23) and our DNS 

results indicates the significance of macroscopic diffusion in momentum transport.  

 

Figure 8. Sherwood number versus the Rayleigh number for 𝑅𝑎 in the range 500 െ 20,000 
compared to the correlation proposed by Liu et al. (2020a). (a) 𝑆𝑐 ൌ 1, (b) 𝑆𝑐 ൌ 250. 

 

5. Macroscopic modeling results 

Since the leading order terms of 𝐷𝑎 for diffusion are accounted for in the TLSD model, this 

model can be used in principle to calculate cases characterized by small Darcy numbers. In this 

section, we test whether and how the model results approach the DNS results as 𝐷𝑎 → 0. In 

addition, we investigate the range of parameters for the validity of the TLSD model.  
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5.1. Sherwood number 

Figure 9 shows the relationship between the Sherwood number and the Rayleigh number when 

𝐻 𝑠⁄  is 20 and Rayleigh numbers are up to 20,000. The results of our macroscopic model are 

compared with the correlation obtained from the DNS results (see Gasow et al. 2020) as well 

as the DOB results. In the DNS, 𝑆ℎ  depends on 𝑠/𝑑  or 𝜙  for 𝑅𝑎 ൐ 2,000 . The value of 𝑆ℎ 

increases as 𝑠/𝑑 or 𝜙 decreases, while the difference becomes larger as 𝑅𝑎 increases. In the 

large Rayleigh-number regime (𝑅𝑎 ൒ 5,000), the 𝑆ℎ ൌ 𝑓ሺ𝑅𝑎ሻ scaling changes from a linear 

scaling 𝑆ℎ~𝑅𝑎  for 𝑠/𝑑 ൌ 1.25  (𝜙 ൌ 0.36 ) to a non-linear scaling 𝑆ℎ~𝑅𝑎଴.଼  for 𝑠/𝑑 ൌ 1.5 

(𝜙 ൌ 0.56). These characteristics are not captured in DOB simulations but are well reproduced 

in our macroscopic model simulations. 

For the current small 𝐻 𝑠⁄  (or 𝐷𝑎) value, both DNS and model results show that the Sherwood 

number increases as the Schmidt number is increased from 1 to 250. Similar to 𝑆𝑐 ൌ 1, the 

scaling for 𝑆𝑐 ൌ 250 changes from linear (𝑆ℎ~𝑅𝑎ሻ for 𝑠/𝑑 ൌ 1.25 (𝜙 ൌ 0.36) to non-linear 

(𝑆ℎ~𝑅𝑎଴.଼) for 𝑠/𝑑 ൌ 1.5 (𝜙 ൌ 0.56). This behavior is reproduced in our macroscopic model 

solution, whereas the effect of the Schmidt number is not accounted for in the DOB equations.  

 

Figure 9. Sherwood number versus the Rayleigh number with 𝑅𝑎 in the range 500 െ 20,000 
and 𝐻/𝑠 ൌ 20  for three values of the Darcy number: 𝐷𝑎 ൌ 8.8 ൈ 10ି଺  (𝑠/𝑑 ൌ 1.5ሻ , 𝐷𝑎 ൌ
5.4 ൈ 10ି଺ (𝑠/𝑑 ൌ 1.4ሻ, and 𝐷𝑎 ൌ 1.8 ൈ 10ି଺ (𝑠/𝑑 ൌ 1.25ሻ. (a) 𝑆𝑐 ൌ 1, (b) 𝑆𝑐 ൌ 250. 
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We neglected the high order terms with respect to 𝐷𝑎 when we proposed the TLSD model. 

However, since the leading order term with respect to 𝐷𝑎 is kept in the momentum equation 

(11), the effect of 𝐷𝑎 on natural convection can still be accounted for when its value is small 

enough. The relationship between the Sherwood number and the Darcy number for 𝑅𝑎 ൌ

20,000, 𝑆𝑐 ൌ 1 or 250, and 𝑠/𝑑 ൌ 1.5 or 1.25 (𝜙 ൌ 0.56 or 0.36) is shown in figure 10. The 

macroscopic model results are compared with the DNS results as well as with the DOB results. 

Recall that 𝑎ఔ
∗   is only related to the pore scale geometry and is independent of the flow 

conditions and the Darcy number. The macroscopic model simulations are in good agreement 

with the DNS for 𝐷𝑎 ൑ 2 ൈ 10ି଺ and for different Schmidt numbers. By contrast, the DOB 

results are independent of the Darcy and Schmidt numbers. The DOB simulations overpredict 

the Sherwood number for 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ  and underpredict Sh for 𝑠/𝑑 ൌ 1.25 ሺ𝜙 ൌ

0.36ሻ.  

 

Figure 10. Sherwood number versus the Darcy number. 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ with  𝐻/𝑠 ൌ
10; 20; 50; 100 ; and 𝑠/𝑑 ൌ 1.25 ሺ𝜙 ൌ 0.36ሻ with 𝐻/𝑠 ൌ 10; 20; 50 ; and 𝑅𝑎 ൌ 20,000 . (a) 
𝑆𝑐 ൌ 1 and (b) 𝑆𝑐 ൌ 250.  
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5.2. Species concentration and velocity statistics 

The vertical profiles of the temporally and horizontally averaged macroscopic quantities (time- 

and line-averaged species concentration 〈𝑐̂̅〉௫ଵ, species concentration fluctuation  〈𝑐̂௥௠௦〉௫ଵ, and 

velocity fluctuations  〈𝑢ොଵ
௥௠௦〉௫ଵ  and  〈𝑢ොଶ

௥௠௦〉௫ଵሻ  for 𝑠/𝑑 ൌ 1.5  (𝜙 ൌ 0.56 ) and 𝑆𝑐 ൌ 1  are 

shown in figure 11. The Rayleigh numbers are 5,000 and 20,000 . The results of our 

macroscopic TLSD model are compared with the DNS results as well as the DOB results. It is 

evident that our macroscopic TLSD modeling results for 〈𝑐̂̅〉௫ଵ,  〈𝑢ොଵ
௥௠௦〉௫ଵ, and  〈𝑢ොଶ 

௥௠௦〉௫ଵ are 

more accurate than the DOB results in the first REV next to the wall. The DNS results show 

that all statistical results can be well scaled by the pore size 𝑠 and that the influence of the 

bounding walls is limited to within the first three REVs next to the wall (Gasow et al. 2020). 

Thus, the boundary layer thickness is determined by the pore size 𝑠, instead of the Rayleigh 

number, as suggested in Huppert & Neufeld (2014). These features are all well captured in the 

macroscopic simulation. 

 

Figure 11. The vertical profiles of the temporally and horizontally averaged macroscopic 
quantities for 𝑠/𝑑 ൌ 1.5  ( 𝜙 ൌ 0.56 ), 𝐻/𝑠 ൌ 20  ሺ𝐷𝑎 ൌ 8.8 ൈ 10ି଺ሻ , and 𝑆𝑐 ൌ 1 . The 
Rayleigh number 𝑅𝑎 is varied. The distance from the wall is normalized by the pore size 𝑠. (a) 
Time- and line-averaged species concentration 〈𝑐̂̅〉௫ଵ , (b) root mean square (r.m.s.) of the 
species concentration fluctuation 〈𝑐̂௥௠௦〉௫ଵ, (c) streamwise velocity fluctuation  〈𝑢ොଵ

௥௠௦〉௫ଵ, (d) 
wall-normal velocity fluctuation  〈𝑢ොଶ

௥௠௦〉௫ଵ. 
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The same statistical quantities are shown in figure 12 for 𝑆𝑐 ൌ 250. It can be seen that these 

statistical quantities are only marginally changed when a much higher Schmidt number is used 

in the simulation. Similar to the results for 𝑆𝑐 ൌ 1, the macroscopic modeling results are also 

in good agreement with the DNS results. The macroscopic TLSD model simulation predicts 

higher mass concentration 〈𝑐̂̅〉௫ଵ in the first REV next to the wall and higher transverse velocity 

fluctuation  〈𝑢ොଶ
௥௠௦〉௫ଵ. One possible reason for this discrepancy is that the neglected high order 

terms with respect to 𝐷𝑎 may lead to modeling errors in the boundary layer region. The TLSD 

model accuracy can be further improved by decomposing the flow domain into a boundary 

layer region and a central region, so the modeling in the boundary layer region can be improved. 

However, this would make the model more complicated and difficult to apply. This modeling 

approach is not adopted in our study to achieve a compromise between the accuracy and 

simplicity of the macroscopic model. 

 

Figure 12. The vertical profiles of the temporally and horizontally averaged macroscopic 
quantities for 𝑠/𝑑 ൌ 1.5  ( 𝜙 ൌ 0.56 ), 𝐻/𝑠 ൌ 20  ሺ𝐷𝑎 ൌ 8.8 ൈ 10ି଺ ሻ , and 𝑆𝑐 ൌ 250 . The 
Rayleigh number 𝑅𝑎 is varied. The distance from the wall is normalized by the pore size 𝑠. (a) 
Time- and line-averaged species concentration 〈𝑐̂̅〉௫ଵ , (b) r.m.s. of the species concentration 
fluctuation  〈𝑐̂௥௠௦〉௫ଵ , (c) streamwise velocity fluctuation  〈𝑢ොଵ

௥௠௦〉௫ଵ , and (d) wall-normal 
velocity fluctuation  〈𝑢ොଶ

௥௠௦〉௫ଵ.  
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5.3. Transient macroscopic fields 

To validate the results of our macroscopic TLSD model, we first compare the transient flow 

fields obtained from macroscopic simulations of equations (10)-(12) with those obtained from 

the DNS results discussed in the previous section and the DOB simulations reported in Gasow 

et al. (2020). For this purpose, the velocity field and the species concentration obtained with 

the macroscopic simulations and the DNS were volume-averaged (over each REV). 

The distribution of the instantaneous 𝑅𝑒௄ ൌ ൫|𝐮|𝐾ଵ/ଶ൯ 𝜈⁄  for 𝑅𝑎 ൌ 20,000, 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ

0.56ሻ , 𝐻/𝑠 ൌ 100 , and 𝑆𝑐 ൌ 250  is shown in figure 13. The macroscopic TLSD solution 

(figure 13(c)) is qualitatively similar to the DNS solution (figure 13(a)) and DOB solution 

(figure 13(b)). Both the DNS solution and macroscopic solutions indicate that the local 

Reynolds number is 𝑅𝑒௄ ൏ 4 ൈ 10ିଷ. This shows that the studied parameter range is well in 

the Darcy regime (𝑅𝑒௄ ≪ 1ሻ, hence the Forchheimer term in the momentum equation can be 

safely neglected. Despite the laminar flow in the pore scale, the macroscopic flow field is 

transient and chaotic. However, the strong spatial variation of the velocity field obtained from 

the DNS is neither captured in TLSD nor in the DOB simulations.  
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Figure 13. Instantaneous volume averaged Reynolds number 𝑅𝑒௄ , 𝐻/𝑠 ൌ 100 ሺ𝐷𝑎 ൌ 3.5 ൈ
10ି଻ሻ, 𝑠/𝑑 ൌ 1.5  ሺ𝜙 ൌ 0.56ሻ, 𝑅𝑎 ൌ 20,000, and 𝑆𝑐 ൌ 250. (a) DNS, (b) DOB, (c) TLSD. 

 

Snapshots of the instantaneous species concentrations for 𝐻/𝑠 ൌ 100, 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ, 

𝑅𝑎 ൌ 20,000, and 𝑆𝑐 ൌ 250 are shown in figure 14. The DNS solution (figure 14(a)), TLSD 

solution (figure 14(c)), and the DOB solution (figure 14(b)) all exhibit large mega-plumes 

structures in the internal region and small proto-plumes in the boundary layers. They occur due 

to the rising of a fluid with low species concentration and the sinking of a fluid with high species 

concentration, forming the instabilities in the boundary layer region (Hewitt et al. 2012; 

Kränzien & Jin 2019). 
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Figure 14. Instantaneous volume-averaged species concentration 𝑐̂, 𝐻/𝑠 ൌ 100 ሺ𝐷𝑎 ൌ 3.5 ൈ
10ି଻ ሻ, 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ, 𝑅𝑎 ൌ 20,000, and 𝑆𝑐 ൌ 250. (a) DNS, (b) DOB, (c) TLSD. 

 

While the macroscopic TSDL model and DOB solution exhibit relatively regular mega plumes, 

in the DNS solution the mega-plumes are more irregular and chaotic. A possible reason is that 

the Darcy number in our simulation is still not small enough, while the TLSD model is proposed 

for problems with low Darcy numbers. The transient flow field from macroscopic simulation 

converges slower than the Sherwood number and other statistical results with decreasing 𝐷𝑎. 

The DNS study reported in Gasow et al. (2020) shows that the number of mega-plumes 

increases with the decrease of 𝐷𝑎. Figure 15 shows the time-averaged Fourier transform of the 

dimensionless mass concentration 𝑐̂ along the centerline at 𝑥ଶ ൌ 𝐻 2⁄ . The peak wave number 

calculated from the TLSD simulation is still higher than the DNS result, but it is lower than the 

DOB result. Figure 16 shows that the peak wave number from DNS approaches the TLSD or 

DOB results as the Darcy number approaches 0. However, DNS of natural convection with 
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smaller Darcy numbers are still needed to confirm that the peak wave number from DNS will 

not exceed the TLSD results and approach the DOB results. 

 

Figure 15. Average spectra of the dimensionless mass concentration, 𝑐̂ of the DNS, DOB, and 
TLSD results at mid-height 𝑥ଶ ൌ 𝐻 2⁄  , 𝐻/𝑠 ൌ 100 ሺ𝐷𝑎 ൌ 3.5 ൈ 10ି଻ ሻ , 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ
0.56ሻ, 𝑅𝑎 ൌ 20,000, and 𝑆𝑐 ൌ 250. 

 

 

Figure 16. Peak wavenumber 𝑘 for the mega-plumes of the DNS, DOB, and TLSD results for 
different Darcy numbers with 𝑠/𝑑 ൌ 1.5 ሺ𝜙 ൌ 0.56ሻ, 𝑅𝑎 ൌ 20,000, and 𝑆𝑐 ൌ 250. 

 

The 3-dimensional DOB simulations by Pirozzoli et al. (2021) revealed the supercells at the 

boundary, which are the footprints of megaplumes dominating the interior part of the flow. They 

suggest that these supercells might lead to the nonlinear scaling of 𝑆ℎሺ𝑅𝑎ሻ  in the ultimate 

regime of high Ra numbers. Future work needs to investigate whether these supercells will be 

also captured by 3-dimensional TLSD simulations. Elucidating how macroscopic diffusion 

affects the plume structures is also a subject of future investigation. 
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6. Conclusions 

The DNS results of Gasow et al. (2020) (extended in this study) show that the pore-scale 

geometry also has significant effects on natural convection in porous media, in particular, the 

boundary layer thickness is determined by the pore size instead of the Rayleigh number. Based 

on this, we have proposed the following TLSD model: we assume that pore scale structures 

affect the momentum transport through macroscopic diffusion. The macroscopic diffusion is of 

the same order with respect to the Darcy number as the Darcy drag and the buoyancy force, 

thus, it cannot be neglected even if the Darcy number is small. It is determined by two length 

scales, the pore size characterized by √𝐾  and the distance between the lower and upper 

boundaries 𝐻. 

The DNS results show that the loss of the macroscopic kinetic energy is mainly due to 

microscopic diffusion and the pressure gradient. The loss captured in Darcy’s law is only part 

of the overall loss, even if the superficial velocity is accurately calculated in the DOB equation. 

The macroscopic diffusion term added here to the momentum equation accounts for the 

additional loss of the macroscopic kinetic energy. Our DNS results also show that the Sherwood 

number is almost independent of the Darcy number when the Darcy number is small enough. 

Thus, the diffusion term is of the same order of the Darcy number ሺ𝐷𝑎 ൌ 𝐾 𝐻ଶ⁄ ሻ  as the 

buoyancy force term and the Darcy term.  

A new macroscopic model for simulating natural convection in porous media is developed 

based on the TLSD assumption. The results of our model are validated extensively by 

comparison with the DNS as well as the DOB results. The comparison shows that the new 

macroscopic model performs well as long as 𝐷𝑎 ൑ 2 ൈ 10ି଺. Simulations of the model predict 

a much more accurate Sherwood number, r.m.s. mass concentration, and r.m.s. velocity than 

simulations that employ the DOB equations. They also predict the structures of mega-plumes 

and proto-plumes with reasonable accuracy. In particular, the new model results show that the 

𝑆ℎ ൌ 𝑓ሺ𝑅𝑎ሻ  scaling changes from a linear scaling to a non-linear scaling as the porosity 

increases. If the Rayleigh number and Darcy number are fixed, the Sherwood number increases 

with the increase of the Schmidt number and the decrease of the porosity. These trends agree 

with the DNS results, whereas they cannot be captured by the DOB simulations. We expect that 

these trends, as well as the TLSD assumption, also apply to 3-dimensional flows. However, 

how macroscopic diffusion affects the plume structures remains an open question. 

Some discrepancies between the new macroscopic modeling results and the DNS results can be 

found in the boundary layer. The new macroscopic model over-predicts the mean mass 
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concentration in the first REV next to the wall. This error may be reduced if the higher order 

terms with respect to 𝐷𝑎 , e.g., the mass dispersion, are considered. However, the current 

macroscopic model appears preferable due to its simplicity.  

This work is the first step towards modeling fundamental issues arising at the pore scale in CO2 

sequestration processes. However, it should be noted that a real CO2 sequestration process is 

much more complicated. It has been extensively investigated by numerical modeling in the last 

two decades (Weir et al. 1995, 1996; Lindeberg & Wessel-Berg 1997; Hassanzadeh et al. 2005, 

2007; Bickle et al. 2007; Pruess & Zhang 2008; Chen et al. 2018). It is characterized by three-

dimensional, inherently transient multiphase flow with much more complicated pore-scale 

geometries and much lower Darcy numbers than those studied in this research (Michael et al. 

2010; Riley 2010; Huppert & Neufeld 2014).  

 

Appendix A1 Momentum dispersion and species concentration dispersion 

Breugem et al. (2006) argued that momentum dispersion has negligible effects on convection 

in porous media. This agrees with the study by Rao et al. (2020), who showed numerically that 

momentum dispersion should be accounted for only when the local Reynolds number 𝑅𝑒௄ ≫

1. Hence, the momentum dispersion is neglected here as well.  

The effects of mass dispersion (or thermal dispersion for heat transfer problems) have been 

extensively studied in recent years, as discussed in the Introduction (Fahs et al. 2020; Alomar 

2019; Wen et al. 2018; Liang et al. 2018). The dispersion term in equation (7) is often modeled 

using a Fickian dispersion tensor, first introduced by Bear (1961) and expressed as: 

𝜙〈 𝑢௜ 
௜ 𝑐 ௜ 〉௜ ൌ 𝐷௜௝

𝜕𝑐̆
𝜕𝑥෬௝

, (24) 

where the dispersion tensor 𝐷௜௝ is calculated as: 

𝐷௜௝ ൌ ሺ𝛼௟ െ 𝛼௧ሻ 𝑢෬௜𝑢෬௝ |𝐮෭|⁄ ൅ 𝛼௧𝛿௜௝|𝐮෭|, (25) 

and 𝛼௟  and 𝛼௧  are the longitudinal and transverse diffusivities, respectively. They can be 

determined from the numerical results for the flow and mass transfer in a REV with a linear 

concentration gradient in the streamwise or transverse direction, see Nakayama & Kuwahara 

(1999) and Pedras & de Lemos (2008). These studies suggest that 𝐷௜௝ has the scaling of the 

form 𝐷௜௝~𝑃𝑒௄
௡, where the local Peclet number 𝑃𝑒௄ is defined as  
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𝑃𝑒௄ ൌ 𝑅𝑒௄𝑆𝑐 ൌ
|𝐮෭|

𝑢௠
𝑅𝑒௠𝐷𝑎ଵ/ଶ, (26) 

where 𝑅𝑒௄ ൌ |𝐮෭|√𝐾/𝜈  and 𝑅𝑒௠ ൌ 𝑢௠𝐻 𝜈⁄   are the local and global Reynolds numbers, 

respectively. Delgado (2007) and Nakayama & Kuwahara (1999) suggested that the scaling 

coefficient 𝑛  is between 1 and 2. As a consequence, 𝐷௜௝  is expected to be of order between 

𝐷𝑎ଵ/ଶ and 𝐷𝑎, while 𝐷௠ is of order 𝐷𝑎଴. When the Darcy number is small enough, ห𝐷௜௝ห ≪

𝐷௠. Since we are interested in natural convection with small Darcy numbers, we only retain the 

leading order terms with respect to 𝐷𝑎 for diffusion in equation (7). Thus, due to this theoretical 

derivation, mass dispersion can also be neglected.  

The dispersion at the macro-scale (macrodispersivity) suggested by Gelhar et al. (1992), 

Lallemand-Barres & Peaudecerf (1978), Neuman (1990), and Liang et al. (2018) is not 

considered in this study since its effect on the plume scale has not yet been fully elucidated 

(Zech et al. 2019). Instead, the effect of dispersion is modeled as macroscopic diffusion in the 

momentum equation. The macroscopic diffusion affects the velocity field and then accounts for 

the dispersion in the species concentration indirectly. 
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