
cuZ-Checker: A GPU-Based Ultra-Fast Assessment
System for Lossy Compressions

Xiaodong Yu∗, Sheng Di∗, Ali Murat Gok†, Dingwen Tao‡, Franck Cappello∗
∗Argonne National Laboratory, Lemont, IL

†Cerebras Systems, Los Altos, CA
‡Washington State University, Pullman, WA

Emails: xyu@anl.gov, sdi1@anl.gov, ali.gok@cerebras.net, dingwen.tao@wsu.edu, cappello@mcs.anl.gov

Abstract—Lossy compression is becoming an indispensable
technique for the success of today’s extreme-scale high-
performance computing projects that produce vast volumes of
data during scientific simulations or instrument data acquisitions.
Comprehensively understanding the compression quality and
performance of different lossy compressors is critical to selecting
the best-fit compressors and using them properly and efficiently
in practice. A few lossy compression assessment tools (e.g.,
Z-checker) have been developed, but none of them support
the execution in a GPU environment. This is a significant
gap because many recent extreme-scale applications and lossy
compressors (e.g., cuSZ) can run entirely within GPUs. In this
work, we develop an efficient lossy compression measuring system
(called cuZ-Checker) on the GPU platform, which aims to per-
form the lossy compression quality and performance assessment
completely within the GPU environment. Our contribution is
threefold. (1) We develop a novel GPU-based lossy compression
measuring framework using a computation pattern-based design
approach. This approach classifies the computing-intensive met-
rics into three categories based on their patterns which creates
large opportunities for kernel fusion and data reuse. (2) For
each pattern in cuZ-Checker, we develop a CUDA kernel and
provide fine-grained optimizations to boost its performance. (3)
We thoroughly evaluate our cuZ-checker on a V100 GPU using
four real-world scientific application datasets. Experiments show
that cuZ-Checker can significantly accelerate the overall lossy
compression assessment performance by 23X∼31X compared
with the OpenMP-based multithreading CPU performance. To
the best of our knowledge, this is the first lossy compression
measuring system designed for GPU devices.

Index Terms—lossy compression, GPU, performance optimiza-
tion, quality evaluation, SSIM

I. INTRODUCTION

Today’s scientific applications are producing extremely

large amounts of data during simulations or instrument data

acquisitions. On the one hand, some scientific projects need to

run the simulations on large-scale environments with millions

of cores, each of which may output extremely large amounts of

data. For instance, when simulating 1 billion particles in the

HACC cosmology research project, one simulation run can

generate 20 PB of datasets through hundreds of snapshots. On

the other hand, advanced instruments such as the Advanced

Photon Source [1] and Linac Coherent Light Source (LCLS)

Corresponding author: Sheng Di, Mathematics and Computer Science
Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL
60439, USA

[2] can have a data acquisition rate (e.g., 250 GB/s on LCLS-II

[3]) too high to store or transmit to disk.

Error-bounded lossy compression techniques are becoming

the most effective solution to resolve the big-data issue in

today’s extreme-scale scientific research. These compressors

offer on-demand control of data distortion by allowing users

to control the compression errors in a specific form, such as

absolute error bound, relative error bound, and peak signal-to-

noise ratio (PSNR). Moreover, unlike the lossless compressors

[4]–[8] that generally suffer from very low compression ratios

(around 2:1 in most of cases), error-bounded lossy compres-

sors can generally get fairly high compression ratios (10:1,

100:1 or even higher) in most cases [9]–[12].

Although lossy compressors offer the error-bounding sup-

port for scientific data compression, scientists still need a

comprehensive understanding of the reconstructed data and

compression quality of lossy compressors before using them

in practice. A few lossy compression assessment tools have

been developed to address this issue, such as Z-checker [13]

and Foresight [14]. However, none of the existing compression

assessment tools or systems use GPU accelerators, leaving a

significant gap in today’s extreme-scale scientific simulations.

Over the last decade, GPU has been used as the mainstream

accelerator due to its massive parallelism and computational

power. A variety of today’s extreme-scale scientific research

projects, such as cosmology (e.g., EXASKY [15]), quantum

chemistry (e.g., EXAALT [16], GAMESS [17]), and climate

(e.g., DNN-based climate research [18]), have been success-

fully accelerated on GPU device. More recently, With the rapid

increase of GPU capacity, the coming high-performance com-

puting systems appear to be GPU-centric [19] to ultimately

reduce the control and data movement overhead on the host

CPU side.

To accommodate this GPU-centric trend, the entire lossy-

compression-related workflow, including the compression

quality measurement and analysis, should be incorporated

into the GPU to better facilitate the GPU-based exa-scale

applications. Several GPU-based lossy compressors, such as

cuSZ [20] and cuZFP [21], have been proposed. However,

the GPU-based lossy compression assessment system is still

missing. The current assessment of GPU-based lossy com-

pressors’ compression quality is performed on CPU. It re-

307

2021 IEEE International Conference on Cluster Computing (CLUSTER)

978-1-7281-9666-4/21/$31.00 ©2021 IEEE
DOI 10.1109/Cluster48925.2021.00065

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

(C
LU

ST
ER

) |
 9

78
-1

-7
28

1-
96

66
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
lu

st
er

48
92

5.
20

21
.0

00
65

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

quires both the raw and decompressed data of the GPU-based

lossy compressors to be moved from GPU memory to CPU

memory for in situ analysis, resulting in huge data transfer

overhead. Moreover, since the data volume could be extremely

large, the CPU-based compression assessment can become a

serious bottleneck for the entire simulation/analysis workflow

also because of the high time complexity of some metric

calculations such as the Structural Similarity Index Measure

(SSIM). In fact, comprehensively assessing the GPU-based

lossy compression quality is even more critical than assessing

the CPU-based compression quality, since the GPU-based

lossy compressors generally have to trade off compression

quality for execution efficiency due to the characteristics of

GPU architecture. For instance, cuZFP supports only fixed-

rate mode, which suffers substantially lower compression

quality than does its absolute error bound mode. As verified

by [22], ZFP’s fixed-rate mode could result in 2∼3× lower

compression ratios than its fixed-accuracy mode, with the same

level of data distortion (in terms of PSNR). Although the GPU

version of the SZ library, cuSZ, supports absolute error bound

in lossy compression, its compression quality is much lower

than its CPU version [9], [23], [24], since it currently supports

only the design of version 1.4 [23]. By comparison, the latest

version 2.1 of SZ on CPU [24] has far better compression

quality especially for high compression cases, because of the

more advanced data prediction algorithm adopted.
Developing a GPU-supported lossy compression assessment

tool or system faces several challenges. (1) The compression

assessment metrics to be included in the GPU-based checker

involve diverse execution patterns, which need careful inves-

tigation and classification. (2) Some advanced metrics (e.g.,

high-dimensional SSIM [25]) yield a heavy computational

burden even for GPU devices. Their implementations need

fine-grained designs and optimizations to fully leverage both

the architectural and algorithmic characteristics.
In this work we present a GPU-based lossy compression

assessment framework, cuZ-Checker,and optimize its perfor-

mance with various strategies. The key novelties of our design

are that, we propose an pattern-oriented design by classifying

the metrics into three categories based on their computational

patterns to allow GPU kernel fusion and data reuse. For each

pattern, especially the one covering SSIM, we provide fine-

grained design to optimize its GPU kernel. We also thorough

evaluation our cuZ-checker using real-world scientific datasets.

The detailed contributions are summarized as follows.

• We provide an in-depth investigation for all of the lossy

compression assessment metrics supported by Z-checker

and classify the computing-intensive metrics into three

categories by their computational patterns.

• We accordingly propose a pattern-oriented design for our

cuZ-Checker to maximize the CUDA kernel fusion and

data reuse. Kernel fusion is an essential GPU performance

optimization that can reduce kernel launch overhead as

well as the data transfers and memory accesses.

• For each pattern in cuZ-Checker, we provide fine-grained

optimizations for its kernel by thoroughly leveraging the

advance GPU features. In particular, we design and opti-

mize the GPU-based SSIM calculation, which is the first

attempt to the best of our knowledge. SSIM is arguably

one of the most important indicators for quantifying

the reconstructed data quality, but it is also one of the

most computationally expensive metrics. We highlight

our utilization of GPU shared memory as a First-In First-

Out (FIFO) buffer to maximize the data sharing of ghost

regions between SSIM windows.

• We thoroughly evaluate our cuZ-Checker with various

real-world scientific data. The results show that our solu-

tion can achieve 22.6–31.2 and 1.49–1.7 times speedups

compared with the multithreading CPU and baseline

metric-oriented GPU counterparts, respectively.

The rest of this paper is organized as follows. In Section II

we introduce the background of lossy compression assessment

and formulate the research problems. In Section III we present

our design and optimizations for cuZ-Checker. We discuss

evaluation results in Section IV and discuss related work in

Section V. In Section VI we summarize our conclusions and

briefly discuss future work.

II. BACKGROUND AND PROBLEM FORMULATION

With the ever-increasing demand for lossy compressors for

significantly reducing the extremely large volumes of data, Z-

checker [13] was developed to comprehensively understand

the lossy compression error, which is critical for users to

judge compression quality accurately and thus select the best-

fit compressor. Before Z-checker was developed, compressor

developers and application users had to implement a battery

of assessment metrics by themselves, a time-consuming and

error-prone task especially for inexperienced users. In this

section we provide background about Z-checker and formulate

the research problem of our study.

Z-checker is a lossy compression assessment framework

supporting over 20 compression-related metrics, including

compression ratio, compression throughput, decompression

throughput, and many metrics related to data distortion (i.e.,

compression error) such as PSNR and SSIM, Pearson corre-

lation, and autocorrelation of compression errors.

Figure 1 illustrates the design architecture of Z-checker [13],

summarized as follows:

• Data Visualization Engine is used to plot analysis results

such as visualization of reconstructed data and errors.

• Z-server is an engine supporting the online web visual-

ization of compression results.

• Output engine is used to parse the output results (includ-

ing reconstructed data and compression analysis results)

for other modules such as visualization.

• Input engine is used to load the data in different formats,

such as binary data format, HDF5, and NetCDF.

• CPU-based execution model is the core module in charge

of the execution and coordination of the analysis kernels

and other modules.

• CPU-based analysis kernel is the other core module; it

contains the algorithms and implementation of all the

308

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The design architecture of Z-Checker.

analysis metrics including both data property analysis

(such as data value range and entropy) and compression-

related metrics (such as compression time, error distribu-

tion, PSNR, and SSIM).

• Configuration parser is used to load and parse the user’s

configuration, with regard to both assessment metrics and

compression settings such as error bounds.

Figure 2 presents the design architecture of the cuZ-

Checker. Compared with Z-checker’s design, we propose

GPU-compatible designs for the three critical modules—

analysis kernel, module execution coordination, and config-

uration parser—in order to execute the assessment framework

on GPU devices. Among them, the GPU analysis kernel is the

core and raises the most challenges. Therefore, this paper will

focus on the design and optimization of this module.

Fig. 2: The cuZ-Checker design architecture. We use different colors to
highlight the modules that require GPU-compatible designs.

For the lossy compression assessment metrics (more specif-

ically, the ones offered by Z-checker), we will explore the

following topics: (1) What are the computational cores of

the metrics? (2) For the computing-intensive metrics, how

can we implement their computational cores on GPUs and

optimize their performance? (3) How can we optimize the

overall performance of cuZ-Checker, considering all the lossy

compression evaluation metrics as a whole?

III. CUZ-CHECKER DESIGN AND OPTIMIZATION

In this section we present our design of cuZ-Checker and

describe how to optimize the performance of diverse patterns’

GPU implementations.

A. Design Overview
Because of the substantial difference between CPU and

GPU architectures, cuZ-Checker demands a new design as

distinct from the CPU-based Z-checker model. The original

CPU-based analysis kernel implements each analysis metric

as an individual entity. Such a metric-oriented design is

intuitive, allowing easy codebase maintenance and usage.

It suffers from little data access overhead with the CPU

because all the data can reside in the whole system’s main

memory. In contrast, applying the metric-oriented design to

a GPU implementation would be inefficient because of the

redundant high costs in data movement and memory access.

With this feature in mind, the first critical design in our cuZ-

Checker is an elaborate (computational) pattern-oriented
model. That is, we classify all the analysis metrics into three

categories based on the patterns of their computational cores,

in order to ultimately fuse the GPU kernels and efficiently

reuse the data during the computation. CUDA kernel fusion

is crucial to the GPU performance because it can help avoid

redundant kernel launches and data movements. Moreover, in

the fused kernel the GPU memory access is minimized since

one access can support multiple computations. For simplicity

of the description, we mainly discuss the situation with three-

dimensional input data in the following text, without loss of

generality. In fact, all the design and optimization strategies

for the 3D tenors can be easily extended to other dimensions

(including 1D, 2D, and 4D).
In our design we exploit three computing patterns—global

reduction, stencil-like, and sliding window—that cover all the

computing-intensive metrics implemented by Z-checker. On

the one hand, our careful performance profiling over the CPU

Z-checker indicates that the expensive operations of all time-

consuming metric implementations are 3D array reductions.

On the other hand, we notice that many metrics have the same

array-processing pattern, such that their implementations can

be combined to enable CUDA kernel fusion with maximized

data reuse.
The cuZ-Checker adopts a GPU module coordinator to

handle the launch and execution of the metric calculations.

Specifically, as cuZ-Checker is executed, the coordinator first

identifies the category of the user-requested metrics and then

invokes the corresponding optimized fused CUDA kernel to

generate a series of compression measurement analysis data.

We describe this design in the following text.

B. Pattern-Oriented Metrics Classification
Our cuZ-Checker aims to support 20+ assessment met-

rics, from among which 18 metrics use time-consuming

309

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Pattern-oriented metrics classification

Category I Category II Category III
pattern global reduction stencil-like sliding window

metric

Min error, Max error,
Avg error, Error PDF,
Min pwr error, Max pwr
error, Avg pwr error, Pwr
error PDF, MSE, RMSE,
NRMSE, SNR, PSNR

Derivatives,
Divergence,
Laplacian,
Autocorre-
lation

SSIM

3D array processing as their computational cores. As intro-

duced in Section III-A, we classify these metrics into three

categories—global reduction metric, stencil-like metric, and

sliding window-based metric—according to their computa-

tional patterns and exhibit them in Table I. In what follows,

we describe the calculations of some representative metrics

in each category; other metrics in the same category follow

similar styles.

1) Global Reduction Metrics: Each metric in this category

performs a reduction from 3D array data to a scalar. For

instance, min, max, and average errors are three such metrics

(mainly calculating minimum value, maximum value, and

summation, respectively), which indicate various types of

differences between the original and the decompressed data.

MSE calculates the mean squared error between the original

and the decompressed data. It depends on a summation of the

power of errors, which is a also reduction from 3D data to

scalar. Figure 3 shows the GPU workflows of two illustrative

Fig. 3: Kernel fusing and data reuse for two pattern-1 metrics (Min. error and
MSE). We use a red block to highlight the most time-consuming parts in their
GPU workflows that can be fused.

global reduction metrics: avg. error and MSE. The metric

classification allows us to process the two flows in one CUDA

kernel. With this design, the most time-consuming data load

and memory read (the steps in the red block in Figure 3) of

two metrics can be fused, so that one data read from global

memory to registers can feed two reductions.

2) Stencil-like Metrics: Derivative is a critical metric to

assess how large the data varies in any position of the dataset.

Such a metric can potentially cache the data changes in space

and enlarge the errors introduced by lossy compression [26],

making the compression developers or users understand the

compression errors more easily. Our cuZ-Checker supports the

computation of both the first- and second- derivatives for the

original data vs. decompressed data. The first-order derivative

can be calculated with the following formula:

Der(x, y, z) = |f(x+1, y, z)−f(x−1, y, z)|+|f(x, y+1, z)

− f(x, y − 1, z)|+ |f(x, y, z + 1)− f(x, y, z − 1)|, (1)

Fig. 4: Kernel fusing and data reuse for two pattern-2 metrics (derivative
and autocorrelation). We highlight with a red block the fused heavy memory
accesses in their GPU workflows.

where Der(x, y, z) and f(x, y, z) are the derivative and data

value at location (x, y, z) of the 3D input data, respectively.

The derivative computation is a 7-point 3D stencil, in which

the computing at each data point requires the neighbor data

points along all three dimensions. Besides, the Divergence

and Laplacian metrics are the sums of first- and second-order

derivatives, respectively.

Autocorrelation of compression errors is an important met-

ric used to assess whether the compression errors are dis-

tributed randomly or not. This assessment metric is particularly

useful for applications that require the compression errors to

be uncorrelated or white noise [27]. Accordingly, our cuZ-

Checker supports the autocorrelation metric for the compres-

sion errors. The autocorrelation metric can be mathematically

calculated as follows:

AC(τ) =
(h−τ∑

x=1

w−τ∑
y=1

l−τ∑
z=1

(1
3
(e(x,y,z)−μ)((e(x+τ,y,z)−μ)+(

e(x,y+τ,z) − μ) + (e(x,y,z+τ) − μ))
))

/ne/σ2, (2)

where τ is a spatial gap; e(x,y,z) is the error value at (x, y, z); μ
and σ2 are the mean and covariance of e, respectively; (h,w, l)
refers to the 3D shape of e; and ne = (h− τ)(w − τ)(l − τ)
denotes the number of elements having been summed up. Sim-

ilar to derivatives, computing the autocorrelation also follows

a stencil-like pattern in which the value at any point depends

on its right-hand neighbor points along all dimensions.

Figure 4 shows the GPU workflows of derivative and

autocorrelation calculations. Classifying them in the same

categories enables the fusing of the most time-consuming

memory accesses, as indicated by the red block in Figure 4.

We note that in contrast to the metrics in the first category

that can read data points to registers, the stencil-like metrics

require the blocked data cubes to be read into GPU shared

memory, which will be explained in Section III-C.

3) Sliding Window-Based Metrics: SSIM is the only metric

in this category, which has the most expensive computation

compared with all other metrics. SSIM measures the struc-

tural similarity between the original and the decompressed

data [25]. In Figure 5, we schematically illustrate how it works.

For a 3D dataset, a small 3D sliding window is used to scan

both datasets along all three dimensions with a fixed stride.

The window size and stride are defined by the user. At each

scan position, the reductions are performed to compute the

window’s min, max, sum, and power sum. After that, the

310

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

​

​ ​ ​
​
​

​ ​

​ ​ ​
​
​

​ ​

​

​

​

SSIM

​

​

​

​

Fig. 5: Schematic illustration of 3D SSIM algorithm. The small 3D sliding
window scans both original and decompressed data. At each scan position, the
local reductions are performed within both windows, and then the reduction
results are mixed to generate the window local SSIM. A global reduction is
conducted at the end to output the final SSIM.

reduction results of the two datasets’ corresponding windows

are mixed (by some simple sums and multiplications) to

generate the local SSIM. At the end of the entire scan, a global

reduction is conducted to sum up all the local SSIMs to get

the final SSIM result. For simplicity, we use scan positions

and windows interchangeably in the rest of the paper.

We categorize SSIM as a unique metric since its computa-

tion conducts 3D reductions at two different levels (sliding

window and global data), thus significantly increasing the

computational burdens and requiring a GPU kernel that is

different from the other categories. The ghost regions between

neighbor windows also make SSIM distinct from other met-

rics, since their data sharing can largely affect the performance.

C. Pattern Implementations and Optimizations

In this subsection we describe our performance optimization

strategies in detail. The fundamental idea for performance

optimization is minimizing the writes and reads on both global

and shared memories, since we observe that the performance

of GPU-based 3D array processing is bounded by the number

of memory accesses relative to the computation operations.

Another optimization is on the calculation of SSIM, which

demands optimized sharing of the ghost regions among the

windows. To our best knowledge, no studies exist on how to

accelerate the SSIM calculation over GPU. In what follows, we

provide our design and optimization details of all the pattern

implementations.

1) Pattern-1: global reduction: The efficient GPU global

reduction heavily relies on warp-level shuffles [28]. Starting

from CUDA 9, NVIDIA provides warp-level primitives in-

cluding shuffle operations with explicit intra-warp thread-level

synchronization [29]. In shuffles, for example, shfl up sync,

shfl down sync, and shfl xor sync, a participated thread

can directly read a register of another thread in the same warp.

​

​ ​ ​
​ ​

​

​ ​ ​
​ ​

​

​ ​ ​
​ ​

​

​ ​ ​
​ ​

​

​ ​ ​
​ ​

​

​ ​ ​
​ ​

​

​

Fig. 6: GPU implementation for pattern-1 metrics. The data is divided into
slices, and each slice is assigned to a thread block. The global reduction
is accomplished via warp-level shuffles, cross-warp shared-memory-based
reductions, and cross-thread-block grid-level reductions.

These primitives enable warp-level collective data exchanging

or broadcasting without involving shared memory.

The state-of-the-art GPU-based reduction implementations,

such as CUB [30], are highly optimized but not flexible enough

to realize the customized reductions in our pattern-1 design.

Therefore, we developed our own CUDA kernel for pattern-1

metric calculations, as illustrated in Figure 6. Assuming the

3D data shape is (h,w, l), we divide the data into 2D slices

along the z-axis and assign each slice to a CUDA thread block.

Hence, l thread blocks are created in the grid. The threads

in each block are organized as a two-dimensional layout in

which the x-dimension (blockDim.x) is set to warp size (32 in

CUDA). Each block performs the warp-level and cross-warp

reductions on its corresponding slice in an iterative manner

along both the x-axis and y-axis. Then a grid-level reduction

is performed to generate the results of pattern-1 metrics.

We present the pseudocode of the CUDA kernel for the

pattern-1 calculation in Algorithm 1. As shown in the pseu-

docode, after the kernel is launched, each thread performs

intra-thread reductions by reading the global memory data

iteratively with the stride of thread-block dimensions along

both axes (ln.4-6). The results are held in each thread’s

registers. Then, the warp-level reductions are conducted by

leveraging shuffle operations (ln.7-8). The intermediate reduc-

tion results are stored in the first thread of every warp. They

should be written into shared memory (ln.9) for the cross-

warp reductions (ln.11-15). After that, the first thread of each

thread-block has the reduction results of the corresponding

slice. These results are written to the global memory (ln.16)

to be used for the grid-level reduction (ln.18-22) to yield the

final global reduction results (ln.23). Notice that we leverage

cooperative groups (ln.2), also introduced in CUDA 9 [31],

to achieve in-kernel grid synchronization (ln.17) to avoid

additional kernel launch costs. The corner case handlings at

the edges are straightforward; we omit the discussions of them

because of space limits.

In Algorithm 1, the memory access overhead has been

minimized. The reduce() in Algorithm 1 can concurrently

handle multiple reduction operations, thus each memory access

can be used for processing all pattern-1 metrics. This memory

access fusion is enabled thanks to our pattern-oriented design.

2) Pattern 2: stencil-like: In pattern 2, the processing of

each data point requires its neighbor points along all three

311

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: CUDA kernel for pattern-1

1 Kernel PATTERN-1 (d data, d out)
2 grid = cg::this grid(); � cooperative groups
3 tidx←threadIdx.x ; tidy←threadIdx.y ; bidx←blockIdx.x ;

/* reductions in each individual thread. */
4 for i=tidx ; i<h; i+=blockDim.x do
5 for j=tidy ; j<w ; j+=blockDim.y do
6 reg ←− reduce(d data[i, j, bidx]);

/* warp-level reductions. */
7 for offset=warpSize/2; offset>0; offset/=2 do
8 reg ←− reduce(shfl down sync(mask, reg, offset));
9 if tidx=0 then shared[tidy] ←− reg; � write to shared memory

10 syncthreads;
/* cross-warp reductions. */

11 if tidy=0 then
12 if tidx<blockDim.y then reg ←− shared[tidx];
13 mask = ballot sync(mask, tidx<blockDim.y);
14 for offset=warpSize/2; offset>0; offset/=2 do
15 reg ←− reduce(shfl down sync(mask, reg, offset));
16 if tidx=0 then d out[bidx] ←− reg; � write to global memory
17 cg::sync(grid); � sync the entire CUDA grid

/* cross-threadblock reductions. */
18 if bidx=0 then
19 for i=tidx ; i<l ; i+=blockDim.x do
20 reg ←− reduce(d out(i));
21 for offset=warpSize/2; offset>0; offset/=2 do
22 reg ←− reduce(shfl down sync(mask, reg, offset));
23 if tidx=0 then result ←− reg; � output final reduction result

dimensions. Holding the read data in registers and using shuf-

fles are insufficient to handle this pattern, since the warp-level

operations can provide neighbor access in only one dimension.

Therefore, registers have to offload the read data into shared

memory for data accesses in the other two dimensions.

No off-the-shelf GPU autocorrelation is available; and the

existing GPU derivatives, such as [32], are not flexible enough

to support our fused kernel. Thus, we implement our pattern-

2 computation on the GPU as described in Figure 7 and

Algorithm 2. We leverage the blocking approach used in GPU

stencil implementations [33] and divide the data of pattern-2

into 3D cubes (or 3D blocks), as shown in Figure 7. Such

a blockwise scheme can leverage data locality in pattern

2 better than does the slicing (which is utilized in pattern

1). As indicated in Fig. 7, different planes along the z-axis

are assigned to different thread-blocks. In each plane, the

cubes are iteratively read into GPU shared memory and then

processed by the corresponding thread-block. Algorithm 2

presents the CUDA kernel for pattern 2. The input stride is

the distance between the current data point and its neighbor

point. It can represent both the derivative’s order and the

autocorrelation’s spatial gap. It is also the overlap length

of the adjacent cubes. In each iteration (ln.4-5), a cube is

loaded by the thread-block from global memory to shared

memory (ln.6-8). Subsequently, each thread of the thread-

block (except the ones in the stride-wide borders) (ln.10)

first computes the derivative at its location (ln.11-16), then

calculates the autocorrelation of its corresponding data point

(ln.17-18), both by reading neighbor data along all three

dimensions from shared memory. We note that a reduction

of intermediate results at all data points is required to yield

the final autocorrelation and divergence/Laplacian (if opted

​​
​

​
​ ​
​

​ ​ ​
​ ​
​​ ​ ​

​ ​
​​ ​ ​

​ ​
​ ​ ​ ​

​ ​
​​ ​ ​

​ ​
​​ ​ ​

​ ​
​

​
​
​
​

​
​
​
​

Fig. 7: GPU implementation for pattern-2 metrics. Since the processing of
current data points requires the neighbors along all three dimensions, the data
is blocked to small cubes that can be read into GPU shared memory.

in) (ln.18). The reduce operation here includes warp-level,

cross-warp, and cross-block reductions. We omit the detailed

description of how the corner cases at the edges along all axes

are processed, since they are straightforward to deal with.

Algorithm 2: CUDA Kernel for Pattern-2

1 Kernel PATTERN-2 (d data, μ, ssize, stride) � ssize is the side length
of the cube; stride is the distance between current point and its neighbor

2 tidx←threadIdx.x ; tidy←threadIdx.y ; bidx←blockIdx.x ;
3 ssize’ = ssize - stride; k = bidx * ssize’;

/* in each iteration of the second loop, a cube is processed. */
4 for i=0; i<h-stride; i+=ssize’ do
5 for j=0; j<w-stride; j+=ssize’ do

/* the corresponding cube is load to shared memory. */
6 for s=0; s<ssize; s++ do
7 shared[tidx, tidy, k] ← d data[i+tidx, j+tidy, k+s];
8 syncthreads;

/* read data from shared memory for computings. */
9 for s=0; s<ssize’; s++ do

10 if tidx and tidy < ssize’ then
/* compute derivatives. */

11 x ← tidx+stride/2; y ← tidy+stride/2;
12 z ← s+stride/2;
13 dx ←− (shared[x+stride/2, y, z] -

shared[x-stride/2, y, z]) / 2;
14 dy ←− (shared[x, y+stride/2, z] - shared[x,

y-stride/2, z]) / 2;
15 dz ←− (shared[x, y, z+stride/2] - shared[x, y,

z-stride/2]) / 2;
16 Der[i+tidx, j+tidy, k+s] ←− sqrt(dx2, dy2,

dz2); � output derivative of current point
/* compute auto-correlations. */

17 sum ←− (shared[tidx+stride, tidy+stride,
s+stride] - μ) ∗ (shared[tidx, tidy, s] - μ);

18 Div,Lap,corr ← reduce(Der,sum); � required to yield final autocorr

To summarize, the kernel fusion and data reuse are en-

abled in pattern 2 because of our pattern-oriented design.

This CUDA kernel implementation allows computing multiple

metrics with a single kernel launch. Furthermore, in the kernel,

one loading of a data point from global memory to shared

memory can serve the calculations of all pattern-2 metrics.

3) Pattern 3: sliding window: Compared with the first two

patterns, pattern-3’s algorithm exposes significantly heavier

computation because of the local reductions in each SSIM win-

dow. Moreover, since the sliding step length usually is small

(mostly just 1), substantial overlaps exist between adjacent

windows. Hence, data-sharing efficiency among the windows

312

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

​

​

​

​

​

​

​

​ ​ ​
​ ​
​​ ​ ​

​ ​
​​ ​ ​

​ ​
​ ​ ​ ​

​ ​
​​ ​ ​

​ ​
​​ ​ ​

​ ​
​

​​ ​​

​ ​ ​

​

​ ​

SSIM
Fig. 8: GPU implementation for pattern-3 metric (SSIM). In this design, each
(x,z) plane is assigned to a thread block. In a plane, the windows along the z-
axis are further sliced to utilize shared memory as FIFO buffers for ultimately
avoiding redundant ghost region processings.

can significantly affect the performance of pattern 3.

To the best of our knowledge, no previous work exists

about GPU-based SSIM calculation. Thus, we develop a new

GPU kernel to calculate the SSIM and also optimize its

performance. As demonstrated in Figure 5, the calculation

of multidimensional SSIM needs to simultaneously slide the

windows in both the original and decompressed datasets. At

each sliding step, the key operation is the local window

reduction which is algorithmically identical for both datasets’

windows; performing mix to get the local SSIM thereafter

is simple. Therefore, to be concise, in the following text we

mainly describe the GPU local window reduction design for

one (original) dataset. The local window reductions calculation

for the decompressed dataset is exactly the same.

Figure 8 illustrates our design using only the original dataset

as an example. In our design we assign one (x,z) plane to a

thread block. Each plane contains several windows along the

y-axis and all windows along the x- and z-axes. In a thread-

block, each thread handles the processing of one window, so

the ghost regions between adjacent windows along the x-axis

can be ultimately shared by using warp-level shuffles. We note

that shuffle operations allow stride thread access; thus this

design supports arbitrary sliding step length. Furthermore, in

a plane, we slice the windows along the z-axis and then utilize

the GPU shared memory as a FIFO buffer to maximize data

sharing between windows along this dimension, as shown in

Fig. 8. This FIFO buffer design allows the current window

to reuse the intermediate ghost region results of the preceding

window along the z-axis. Thus each slice needs to be read and

processed only once.

Algorithm 3 presents the pseudocode of the CUDA kernel

for our pattern-3 implementation. In each thread-block, the

corresponding plane is further divided into slices along the z-

axis that will be iteratively processed (ln.6). In an iteration,

each thread reads one data point of the current slice from

global memory to its register. Then, the threads within the

mask (ln.9) handle one window per thread, so a total of

xNum·yNum windows can be processed simultaneously. These

threads perform window local reductions first along the x-

axis by leveraging warp-level shuffles to read the registers of

neighbor threads and then along the y-axis through shared

memory (ln.10-12; see warp-level and cross-warp reduction

details in Algorithm 1). These intermediate reduction results of

the current slice are subsequently stored into the FIFO buffer

(ln.15) before the kernel moves to the processing of the next

slice. After the wsizeth (wsize is the window’s side length

along z-axis) slices are processed (ln.16), the results in the

FIFO buffer are reduced and mixed to yield the local SSIMs

of the first xNum·yNum 3D windows (ln.17-19). Thereafter, the

kernel processes the (wsize+1)th slice likewise and stores the

intermediate results in the FIFO buffer by overwriting the first

slice’s buffered data (ln.15). The kernel keeps iterating until

the (wsize+step)th slice (ln.16) has been processed. After

that, the results in the FIFO buffer are reduced and mixed

again to generate the second set of xNum·yNum windows’ local

SSIMs (ln.17-19). At the end of the entire loop, a grid-level

reduction of all local SSIMs is conducted to get the final SSIM

result (ln.20). Notice that corner cases at the edges happen only

along the x- and y-axes and are straightforward to be handled.

Algorithm 3: CUDA kernel for pattern-3

1 Kernel PATTERN-3 (d data1, d data2, wsize, step) � wsize is the
length of a window side while step is the sliding step length

2 tidx←threadIdx.x ; tidy←threadIdx.y ; bidx←blockIdx.x ;
3 j = bidx ∗ yNum; � j is the base index of data and yNum is the

number of windows, both along y-axis and for current threadblock
4 xNum = warpSize - wsize + step;

/* i iterates along x-axis while k iterates along z-axis. */
5 for i=0; i<h; i+=xNum do
6 for k=0; k<l ; k++ do
7 d1 ← d data1[i+tidx, j+tidy, k];
8 d2 ← d data2[i+tidx, j+tidy, k];
9 mask = ballot sync(mask, tidx<xNum);

/* window local reductions on the current slice. */
10 for offset=1; offset<wsize; offset++ do
11 w1 ←reduce(shfl down sync(mask,d1,offset));
12 w2 ←reduce(shfl down sync(mask,d2,offset));
13 if tidx%step = 0 and tidx < xNum and tidx%step = 0

and tidy < yNum then
14 wx = tidx /step; wy = tidy /step;

/* store current slice’s results into FIFO buffer. */
15 shared[wx, wy, k%wsize] ←− w1, w2;

/* if the current slice is the end of windows, reduce the
entire buffer data to yield local window SSIMs. */

16 if (k+1-wsize) % step = 0 then
17 for s=0; s<wsize; s++ do
18 w1’, w2’ ← reduce(shared[wx, wy, s]);
19 wssim[i+wx, j+wy, (k+1-wsize)/step] ←−

calw(w1’, w2’); � get local window SSIMs
20 SSIM ←− reduce(wssim); � reduce window results to get final SSIM

To summarize, our implementation achieves perfect data

sharing along the z-axis, thanks to our FIFO buffer design.

With this design, each slice only needs to be read from

global memory and processed once. Our implementation also

313

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

ultimately leverages the x-axis data sharing because of the

utilizing of warp-level shuffles. Most data points along the x-

axis need to be processed just once; only slightly repeated data

point processings exist between the x-axis iterations (ln.5).

The data sharings along the y-axis are also partially leveraged

since we assign multiple windows on this dimension to a

thread-block. The y-dimensional data processing repetitions

only happen between adjacent thread blocks. Generally speak-

ing, with our GPU kernel design, for most data points, the

pattern-3 (SSIM) calculation reads them from global memory

and processes them just once. The shared memory is only

minimally used by the reductions along the y-axis (cross-warp

reductions) and z-axis (FIFO buffer).

IV. PERFORMANCE EVALUATION

In this section we thoroughly evaluate our cuZ-Checker

using a GPU node of Argonne National laboratory’s Lambda

cluster1. This machine is configured with 512 GB of system

main memory, Intel Xeon Gold 6148 CPU, and NVIDIA Tesla

V100 GPU with CUDA driver version 11.2. Xeon Gold 6148

CPU has 20 physical cores and a 27.5 MB L3 cache, running

at 2.40 GHz base frequency. V100 GPU is built on NVIDIA’s

Volta microarchitecture. It has 80 streaming multiprocessors

(SMs) and 32 GB GPU global memory. Each SM has 64

CUDA cores (total of 5,120 cores device-wide), 48 KB on-

chip shared memory, and 64K registers.

A. Datasets and Their Characteristics

We evaluate our cuZ-Checker by using it to measure

the cuSZ [20] lossy compressor based on the simulation

datasets generated by four well-known real-world scientific

applications, including (a) Hurricane ISABEL simulation [34],

which simulates the most intense hurricane in the 2003

Atlantic hurricane season; (b) NYX cosmology simulation

[35], which solves equations of compressible hydrodynamics

flow describing the evolution of baryonic gas coupled with

an N-body treatment of the dark matter in an expending

universe; (c) Scale-LETKF weather simulation [36], which

performs real-time, high-resolution, short-term prediction of

heavy rainfall systems; and (d) Miranda turbulence simulation

[37], a radiation hydrodynamics code designed for large-eddy

simulation of multicomponent flows with turbulent mixing.

Each dataset contains different data patterns and features.

Specifically, (a) Hurricane consists of 13 data fields (e.g.,

QCLOUD and temperature); each field is a 100×500×500

3D data. (b) NYX includes six fields, such as dark matter

density and baryon density, and each field is a 5123 3D array.

(c) Scale-LETKF has six data fields with 98×1200×1200

elements per field. (d) Miranda contains severn different fields,

each being a 256×384×384 3D vector. All data fields are

stored in single precision. One illustrative field of each dataset

is visualized in Figure 9. All these scientific datasets can be

downloaded from the SDRBench [38], [39].

1https://collab.cels.anl.gov/display/LCD

(a) Hurricane (CLOUDf48) (b) NYX (baryon-density)

(c) Scale-LETKF (PRES) (d) Miranda (Pressure)
Fig. 9: Visualization of diverse application datasets.

B. Overall Performance Analysis

We have verified that our cuZ-Checker has the correct

calculation on all assessment metrics by comparing it with

the Z-checker’s output. For example, with first field of the

Hurricane dataset, both cuZ-Checker and the CPU-based Z-

checker yield 2.8× 10−9 as the first-order derivative result.

We compare the performance of our cuZ-Checker (abbrevi-

ated as cuZC) with an OpenMP-based CPU counterpart (ab-

breviated as ompZC) and a metric-oriented GPU counterpart

(abbreviated as moZC). OmpZC is the multithreading version

of the original Z-checker [13]. MoZC is our straightforward

CUDA implementation of Z-checker following the conven-

tional metric-oriented design principle. We develop moZC

mainly for demonstrating the advantage of our patten-oriented

design. MoZC implements each metric as an individual CUDA

kernel. In moZC, we leverage NVIDIA’s CUB library [30] to

achieve reductions for each pattern-1 metric. We note that we

do not utilize the CUB library in our cuZC since its APIs are

not flexible enough to express user-defined reductions [40]

(e.g., the fused reductions in our pattern-1 implementation).

We separately implement autocorrelation and derivative met-

rics following NVIDIA’s approach [32]. Since SSIM has no

GPU implementation in the literature, in order to evaluate our

cuZC’s data-sharing efficiency, the counterpart implementation

in moZC adopts an approach similar to that introduced in

Section III-C3 but without the FIFO buffer.

Figure 10 shows cuZC’s overall performance improvements

compared with that of both ompZC and moZC. Its x-axis

represents different datasets while the y-axis displays the

speedups (in log scale) of cuZC relative to both counterparts.

In this experiment we measure the entire executions of the

assessment systems with all metrics enabled. For the derivative

metric, we calculate both first-order and second-order deriva-

tives. For autocorrelation, we allow the spatial gap to be up

314

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Overall performance comparisons of cuZC with both ompZC and
moZC. The x-axis represents different datasets while the y-axis indicates
cuZC’s speedups in log scale.

to 10. For SSIM, we set the sliding-window size to 8 on each

side and the step length to 1. Each dataset involves many fields

(e.g., 13 fields for Hurricane and 6 fields for NYX). We show

the average performance calculated over all fields for each

dataset in Figure 10. As shown in the figure, compared with

multithreading CPU-based ompZC, our cuZC can achieve at

least 22.6× and up to 31.2× speedups. Moreover, it exhibits

1.5–1.7× better performance than the does the metric-oriented

GPU-based moZC. The overall performance of our cuZC

is dominated by the most computing-intensive metrics (e.g.,

SSIM). If we need our framework to assess only part of the

supported metrics, the performance improvement potentially

could be larger, as we detail in the next subsection.

C. Performance Breakdown Analysis

In this section we perform a breakdown performance anal-

ysis for the time-consuming pattern metrics listed in Table I.

Figure 11 presents the throughput of all three frameworks

(ompZC, moZC, and cuZC) with only pattern-1 metrics (Fig-

ure 11(a)), pattern-2 metrics (Figure 11(b)), or pattern-3 met-

rics (Figure 11(c)) enabled, respectively. From these figures,

we can observe that our cuZC always yields much higher

throughput than the other two frameworks do. We also observe

that from among the three patterns, the throughputs on pattern-

1 are significantly higher than the throughputs on pattern-2

and pattern-3. Specifically, as the dataset changes, cuZC can

achieve a throughput of 103–137 GB/s while moZC can reach

only 17–31 GB/s and ompZC can reach only 0.44–0.51 GB/s.

The reason for the high throughput of pattern 1 is that pattern-

1 requires much fewer computations than the other patterns do,

as described in Section III. On the other hand, we observe that

all three frameworks exhibit the lowest throughputs on pattern

3 (i.e., SSIM), since it yields the heaviest computation burden.

For this pattern, our cuZC has 497–758 MB/s throughput

while moZC and ompZC have 351–514 and 24.8–26.6 MB/s

throughputs, respectively. The throughput on pattern 3 clearly

dominates the overall framework performance.

To better demonstrate cuZC’s performance improvement on

different patterns, we also plot the speedups of cuZC over

ompZC and moZC in Figure 12, which clearly shows that

our cuZC always exhibits best performance. In Figure 12(a),

we observe that cuZC can achieve 227×-268× speedups to

ompZC on pattern 1. These speedups are remarkably higher

than the overall speedups in Figure 10, especially because

pattern-1’s implementation in cuZC requires the fewest opera-

tions in thread iterations compared with the other two patterns.

Moreover, it is capable of thoroughly leveraging advanced

GPU features, such as warp-level primitives, to optimize the

performance. We can also see that cuZC achieves a speedup of

3.49×-6.38× over moZC on pattern 1. We note that in Table I,

RMSE’s and NRMSE’s computational cores essentially are

MSE while PSNR’s core is SNR. Therefore, moZC contains 10

CUDA kernels for pattern 1, and cuZC’s speedup upper bound

is 10. However, the additional resource usages and branching

overhead lower the actual speedup. Figure 12(b) shows that

on pattern 2 our cuZC can achieve 17.1×-47.4× and 1.79×-

1.86× speedups over ompZC and moZC, respectively. Since

Divergence and Laplacian in Table I are the summations of

order-1 and order-2 derivatives, respectively, moZC imple-

ments two CUDA kernels for pattern 2. cuZC’s speedups over

moZC on pattern 2 are close to 2, indicating that our kernel

fusion and data reuse are efficient with only slight branching

overhead. Figure 12(c) shows that our cuZC attains 19.2×–

28.5× and 1.42×–1.63× speedups to ompZC and moZC on

pattern 3 (SSIM). It indicates our FIFO buffer design in cuZC

can successfully improve the performance by around 50%.

Takeaway 1: Our cuZC shows different speedups with

different categories of metrics. For pattern 1, the speedups are

significantly higher than the overall speedups since its kernel

fully utilizes advanced GPU features and computes 14 metrics

within one kernel launch. For pattern 2, cuZC shows a nearly

twofold speedup compared with moZC, indicating that our

kernel fusion is efficient with tiny overhead. For pattern 3, our

FIFO buffer design achieves ∼50% performance improvement.

To gain insights about how different datasets influence the

assessment performance, we profile our cuZC during run

time and display the results in Table II. For each pattern,

we present the register usage per thread block (Regs/TB),

the shared-memory usage per thread block (SMem/TB), the

total iterations in each thread (Iters/thread), and the number

of thread-blocks assigned to each streaming multiprocessor

along with the number of thread-blocks among them that

can be concurrently handled (TB(cncr.)/SM), with different

datasets. During the execution, an active thread-block (TB)

will exclusively reserve a portion of its corresponding SM’s

computation resources, including registers and shared memory,

based on the request. Once a SM has enough idle resources

available, the TBs assigned to it can be scheduled to ex-

ecute concurrently. The SM occupancy will be maximized

when all assigned TBs concurrently execute. Therefore, the

amount of resources requested by a TB largely affects the

overall performance. Furthermore, Iters/thread represents the

sequentially executed workloads in each thread, which can

also impact the GPU performance. Regs/TB and SMem/TB

are determined by the computation pattern, while Iters/thread

315

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

(a) Pattern-1 (b) Pattern-2 (c) Pattern-3

Fig. 11: Throughput of cuZC, moZC, and ompZC performing (a) pattern-1 metrics, (b) pattern-2 metrics, and (c) pattern-3 metrics with all four datasets.

(a) pattern-1 (b) pattern-2 (c) pattern-3

Fig. 12: Speedups (in log scale) of our cuZC over ompZC and moZC when executing the three groups of metrics separately with all four datasets.

and TB(cncr.)/SM can be affected by the datasets. Several

remarkable performance varying with the dataset change can

be observed in Figure 12. (i) In Figure 12(a), cuZC shows

significantly less speedup with NYX and Scale-LETKF to

moZC. The reason is that these two datasets have larger data

sizes resulting in more TBs per SM (seven) or more iterations

per thread (6.3k), as shown in Table II. Since cuZC processes

14 pattern-1 metrics in one kernel, the register usage of a TB

is big, which limits the concurrent TBs in a SM to at most

four (64k/14k). Consequently, with NYX, a SM needs two

rounds of execution to process all associated thread-blocks.

(ii) In Figure 12(b), cuZC shows much less speedup than does

ompZC with Hurricane and Scale-LETKF. The reason is that

they yield at most one thread-block on each SM. The number

of TBs in pattern 2 is decided by the z-axis size; both two

datasets have short lengths along this dimension (100 and 98)

and thus have small numbers of TBs. With only one thread

block on a SM, there is no space to hide the latency, leading to

less efficient GPU utilization. (iii) In Figure 12(c), compared

to cuZC with other datasets, cuZC with NYX achieves less

speedup than does ompZC. This is because in our FIFO buffer

design, the data length along the z-axis determines Iters/thread

in the pattern-3 (SSIM) calculation. Since NYX has the biggest

length along the z-axis (512), it requires more iterations in

each thread resulting in less speedup than the other datasets.

We emphasize that Table II intends to demonstrate dataset

impacts on cuZC’s performance with the same pattern. Any

cross-pattern comparisons of Iters/thread or TBs/SM are not

meaningful because, with different patterns, an iteration has

quite different instructions and workloads.

Takeaway 2: With the same pattern, changing datasets

TABLE II: cuZC Runtime Profiling

Pattern-1
Regs/TB SMem/TB Iters/thread TB(cncr.)/SM

Hurricane 14k 0.4KB 977 2(2)
NYX 14k 0.4KB 1k 7(4)

SCALE-LETKF 14k 0.4KB 6.3k 2(2)
MIRANDA 14k 0.4KB 576 4(4)

Pattern-2
Regs/TB SMem/TB Iters/thread TB(cncr.)/SM

Hurricane 2.3k 17KB 205 1(1)
NYX 2.3k 17KB 205 2(2)

SCALE-LETKF 2.3k 17KB 1.1k 1(1)
MIRANDA 2.3k 17KB 89 2(2)

Pattern-3
Regs/TB SMem/TB Iters/thread TB(cncr.)/SM

Hurricane 11k 16KB 1.8k 2(2)
NYX 11k 16KB 8.7k 2(2)

SCALE-LETKF 11k 16KB 3.4k 2(2)
MIRANDA 11k 16KB 2.9k 2(2)

can affect our cuZC’s speedup. Specifically, the size and

shape of a dataset determine the number of thread-blocks

per multiprocessor and the number of iterations per thread,

which can potentially impact GPU performance. With pattern

1, small datasets exhibit higher cuZC speedup compared with

ompZC. With pattern 2, a more balanced data shape (cube vs.

cuboid) can lead to a better cuZC performance. With pattern

3, a dataset having shorter length along the z-axis can make

cuZC achieve higher speedup.

V. RELATED WORK

In this section we first discuss the existing lossy compres-

sion assessment systems and then describe current GPU-based

implementations and optimization techniques related to the

three patterns in our cuZ-Checker.

316

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

To the best of our knowledge, none of the existing lossy

compression assessment platforms or libraries support GPU

accelerators, which leaves a significant gap for comprehen-

sively assessing the emerging GPU-based lossy compressors

such as cuSZ [20] and cuZFP [21]. Z-checker [13] is the

first scientific lossy compression assessment toolkit/library,

which includes many compression-related metrics such as dis-

tribution of errors, MSE, PSNR, derivatives, autocorrelation,

and SSIM. QCAT [41] is a lightweight compression analy-

sis toolkit, which focuses on easy-to-use compression data

analysis. Foresight [14] is a generic framework for analysis

and visualization of lossy compression errors. It does not

provide as compression assessment metrics as comprehensive

as Z-checker requires, while it offers better visualization of

simulation data and compression errors.

CUDA warp-level shuffles with either implicit (before

CUDA 9) or explicit warp synchronization have been broadly

used to improve the performance for a variety of appli-

cations, including sequence alignments [42], sparse matrix

computations [43]–[47], string matchings [48]–[52], graph

traversals [53]–[55], and data scans [56]–[59]. Some works

also propose advanced optimizations for GPU reductions.

Reddy et al. [40] design language constructs allowing arbitrary

reductions to be easily expressed on user-defined data types.

Jradi et al. [60] employ techniques such as loop unrolling and

persistent threads to implement the generic GPU reductions.

De Gonzalo et al. [61] provide a new set of high-level APIs

for domain-specific languages (DSLs) to easily generate warp

shuffle instructions and atomic instructions. Navarro et al. [62]

levarage GPU tensor cores to boost the reduction performance.

GPU-based stencil computations have been intensively stud-

ied. Zhang et al. [63] develop autogeneration and optimization

techniques to autotune 3D stencil computations on GPUs.

Rawat et al. [64] discuss a DSL that can generate effective tiled

code for GPUs stencils. Anjum et al. [65] present a new GPU-

based technique that uses 2D caching to efficiently imple-

ment 3D stencil computations. Matsumura et al. [66] propose

AN5D, an automated framework that can transform C stencil

code to optimized CUDA stencil code. Oh et al. [67] present

GOPipe, a programming framework for efficient pipelined

stencil executions on GPUs that can automatically find task

granularity and dynamically schedule tasks of it.

Although no existing work studied GPU-based 3D SSIM,

the sliding-window algorithm has been implemented on GPUs

for some other applications. Green et al. [68] propose a GPU-

based algorithm for merging two sorted arrays that requires

window sliding. Krizhevsky [69] implements CNN on GPUs

with direct convolution approach that utilizes the filter as a

sliding window to scan the input feature map. De Matteis

et al. [70] present an autotunable general sliding-window

operator for streaming systems. Luo et al. [71] utilize sliding-

window exponentiation to optimize a GPU side-channel timing

attack of the RSA cryptosystem. Cooke et al. [72] optimize

the sliding-window algorithm in general on various platforms

including GPUs.

VI. CONCLUSION AND FUTURE WORK

This work presents cuZ-Checker, a GPU-based assessment

system to measure GPU-based lossy compressors’ compres-

sion quality and performance. In our design, we proose a

patten-based approach to maximizes the opportunity for GPU

kernel fusion and data reuse. For each pattern, we provide

fine-grained design and optimization to its CUDA kernel by

leveraging various GPU features. We comprehensively eval-

uate our cuZ-Checker with four real-world scientific datasets

and obtain the following key findings:

• Our cuZ-Checker (cuZC) can achieve 22.6–31.2× overall

speedup over the OpenMP-based multithreading CPU

baseline (ompZC) and 1.49–1.7× overall speedup com-

pared with a GPU counterpart designed using a metric-

oriented approach (moZC).

• Our cuZC exhibits different performances when executing

metrics in different categories. With pattern-1 metrics,

cuZC shows more than 227× and 3.5× speedups over

ompZC and moZC, respectively. With pattern-2 met-

rics, cuZC shows nearly 2× speedup over moZC. With

pattern-3 metrics, FIFO buffer design in cuZC improves

the performance by around 50%.

• With each pattern, the dataset’s size and shape can also

affect cuZC’s performance, since they can determine the

GPU’s number of thread block per multiprocessor and

number of iterations per thread.

In our future work, we will extend our cuZ-Checker to a

multi-node multi-GPU environment, in terms of the funda-

mental single-GPU performance optimization that has been

solved in this paper. Many scientific applications can yield

exascale datasets that far beyond the capacity of any single

GPU. Accordingly, both multi-GPU lossy compressor and

assessment system are desired. Similar to other multi-GPU

implementations [73], [74], the multi-GPU version of cuZ-

Checker needs fine-grained design of inter-GPU synchroniza-

tion and communication to optimize the performance. We

also plan to incorporate cuZ-Checker with cuSZ to make the

assessment more seamless.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing

Project (ECP), Project Number: 17-SC-20-SC, a collaborative

effort of two DOE organizations – the Office of Science and

the National Nuclear Security Administration, responsible for

the planning and preparation of a capable exascale ecosystem,

including software, applications, hardware, advanced system

engineering and early testbed platforms, to support the nation’s

exascale computing imperative. The material was supported

by the U.S. Department of Energy, Office of Science, under

contract DE-AC02-06CH11357, and supported by the Na-

tional Science Foundation under Grant OAC-2003709, OAC-

2042084, OAC-2104023, and OAC-2104024. We acknowledge

the computing resources provided on Bebop (operated by

Laboratory Computing Resource Center at Argonne) and on

Theta operated by Argonne Leadership Computing Facility.

317

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. E. Fornek, “Advanced Photon Source Upgrade Project preliminary
design report,” 9 2017.

[2] SLAC National Accelerator Laboratory, “Linac Coherent Light Source
(LCLS-II),” https://lcls.slac.stanford.edu/, 2017, online.

[3] F. Cappello, S. Di, S. Li, X. Liang, G. M. Ali, D. Tao, C. Yoon Hong, X.-
c. Wu, Y. Alexeev, and T. F. Chong, “Use cases of lossy compression for
floating-point data in scientific datasets,” International Journal of High
Performance Computing Applications (IJHPCA), vol. 33, pp. 1201–
1220, 2019.

[4] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor
for double-precision floating-point data,” IEEE Transactions on Com-
puters, vol. 58, no. 1, pp. 18–31, Jan 2009.

[5] Zlib, https://www.zlib.net/, online.

[6] L. P. Deutsch, “GZIP file format specification version 4.3,” 1996.

[7] BlosC compressor, http://blosc.org/, online.

[8] Y. Collet, “Zstandard – real-time data compression algorithm,”
http://facebook.github.io/zstd/, 2015.

[9] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IEEE International Parallel and Distributed Processing
Symposium, 2016, pp. 730–739.

[10] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[11] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of lossy
compression for application-level checkpoint/restart,” in IPDPS 2015,
2015, pp. 914–922.

[12] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka,
S. A. Mickelson, J. Edwards, M. Vertenstein, and A. Wegener, “A
methodology for evaluating the impact of data compression on climate
simulation data,” in Proceedings of the 23rd International Symposium
on High-performance Parallel and Distributed Computing, ser. HPDC
’14. New York, NY, USA: ACM, 2014, pp. 203–214. [Online].
Available: http://doi.acm.org/10.1145/2600212.2600217

[13] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The
International Journal of High Performance Computing Applications,
vol. 33, no. 2, pp. 285–303, 2019.

[14] Los Alamos National Laboratory, “VizAly-Foresight: A compression
benchmark suite for visualization and analysis of simulation data,”
https://github.com/lanl/VizAly-Foresight, 2018, online.

[15] “EXASKY: Computing The Sky at Ex-
treme Scales,” https://www.exascaleproject.org/wp-
content/uploads/2019/10/ExaSky.pdf, 2020, online.

[16] “EXAALT: Malecular dynamics at the ex-
ascale,” https://www.exascaleproject.org/wp-
content/uploads/2019/10/EXAALT.pdf, 2020, online.

[17] “GAMESS: Enabling GAMESS for exascale computing in chemistry
and materials.”

[18] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, Prabhat, and M. Hous-
ton, “Exascale deep learning for climate analytics,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, ser. SC ’18. IEEE Press, 2018.

[19] A. Li, O. Subasi, X. Yang, and S. Krishnamoorthy, “Density matrix
quantum circuit simulation via the BSP machine on modern GPU
clusters,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2020, pp.
1–15.

[20] J. Tian et al., “CuSZ: An efficient gpu-based error-bounded lossy
compression framework for scientific data,” in Proceedings of the ACM
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’20, 2020, p. 3–15.

[21] cuZFP, https://github.com/LLNL/zfp/tree/develop/src/cuda zfp, 2020,
online.

[22] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “FRaZ: A generic
high-fidelity fixed-ratio lossy compression framework for scientific
floating-point data,” https://arxiv.org/abs/2001.06139, 2020, online.

[23] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 2017, pp. 1129–1139.

[24] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data. IEEE, 2018.

[25] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[26] Lawrence Livermore National Laboratory, “zfp and Derivatives,”
https://computing.llnl.gov/projects/zfp/zfp-and-derivatives, 2021, online.

[27] Z. Wu and N. E. Huang, “A study of the characteristics of white
noise using the empirical mode decomposition method,” Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, vol. 460, no. 2046, pp. 1597–1611, 2004.

[28] Justin Luitjens, “Faster parallel reductions on Kepler,”
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler,
2014, online.

[29] Yuan Lin and Vinod Grover, “Using CUDA warp-level primitives,”
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives,
2018, online.

[30] NVIDIA Research, “CUB documentation,”
https://nvlabs.github.io/cub/index.html, accessed 2021, online.

[31] Mark Harris and Kyrylo Perelygin, “Cooperative groups: Flexible CUDA
thread programming.”

[32] Mark Harris, “Finite difference methods in CUDA C/C++, Part
1,” https://developer.nvidia.com/blog/finite-difference-methods-cuda-cc-
part-1, 2013, online.

[33] K. Hou, H. Wang, and W.-c. Feng, “Gpu-uniache: Automatic code
generation of spatial blocking for stencils on gpus,” in Proceedings of
the computing frontiers conference, 2017, pp. 107–116.

[34] “Hurricane ISABELA simulation dataset in IEEE Visualization 2004
Test,” http://vis.computer.org/vis2004contest/data.html, online.

[35] “NYX simulation,” https://amrex-astro.github.io/Nyx, online.
[36] “The local ensemble transform Kalman filter (letkf) data

assimilation package for the scale-rm weather model,”
https://github.com/gylien/scale-letkf, online.

[37] “Miranda turbulence simulation,” https://wci.llnl.gov/simulation/computer-
codes/miranda, online.

[38] “Scientific data reduction benchmark,” https://sdrbench.github.io/, on-
line.

[39] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and
F. Cappello, “SDRBench: Scientific data reduction benchmark for lossy
compressors,” in 2020 IEEE International Conference on Big Data (Big
Data), 2020, pp. 2716–2724.

[40] C. Reddy, M. Kruse, and A. Cohen, “Reduction drawing: Language
constructs and polyhedral compilation for reductions on GPU,” in Pro-
ceedings of the 2016 International Conference on Parallel Architectures
and Compilation, 2016, pp. 87–97.

[41] “Quick Compression Analysis Toolkit (QCAT),”
https://github.com/szcompressor/qcat.

[42] J. Wang, X. Xie, and J. Cong, “Communication optimization on GPU:
A case study of sequence alignment algorithms,” in 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE,
2017, pp. 72–81.

[43] X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao, “cuART: Fine-
Grained Algebraic Reconstruction Technique for Computed Tomography
Images on GPUs,” in 2016 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2016.

[44] Y. Tao and H. Zhi-Bin, “Shuffle reduction based sparse matrix-vector
multiplication on Kepler GPU,” International Journal of Grid and
Distributed Computing, vol. 9, no. 10, pp. 99–106, 2016.

[45] X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao, “An enhanced image
reconstruction tool for computed tomography on GPUs,” in Proceedings
of the Computing Frontiers Conference, ser. CF’17. ACM, 2017.

[46] C. Yang, A. Buluç, and J. D. Owens, “Design principles for sparse
matrix multiplication on the GPU,” in European Conference on Parallel
Processing. Springer, 2018, pp. 672–687.

[47] X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao, “GPU-based iter-
ative medical CT image reconstructions,” Journal of Signal Processing
Systems, vol. 91, no. 3-4, pp. 321–338, 2019.

[48] X. Yu and M. Becchi, “Exploring Different Automata Representations
for Efficient Regular Expression Matching on GPUs,” SIGPLAN Not.,
2013.

[49] ——, “GPU Acceleration of Regular Expression Matching for Large
Datasets: Exploring the Implementation Space,” in Proceedings of the

318

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

ACM International Conference on Computing Frontiers, ser. CF ’13.
New York, NY, USA: ACM, 2013, pp. 18:1–18:10.

[50] S. Koibuchi, K. Ikeuchi, S. Ishida, and H. Nishi, “GPU-based string
matching method using warp shuffle instructions for network intrusion
detection system on routers,” IEICE Technical Report; IEICE Tech. Rep.,
vol. 114, no. 155, pp. 113–118, 2014.

[51] X. Yu, Deep packet inspection on large datasets: algorithmic and
parallelization techniques for accelerating regular expression matching
on many-core processors. University of Missouri-Columbia, 2013.

[52] T. Ho, S.-R. Oh, and H. Kim, “A parallel approximate string matching
under Levenshtein distance on graphics processing units using warp-
shuffle operations,” PloS one, vol. 12, no. 10, p. e0186251, 2017.

[53] F. Busato and N. Bombieri, “BFS-4K: an efficient implementation of
BFS for kepler GPU architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 7, pp. 1826–1838, 2014.

[54] K. Shirahata, H. Sato, and S. Matsuoka, “Out-of-core GPU memory
management for MapReduce-based large-scale graph processing,” in
2014 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2014, pp. 221–229.

[55] M. Nourian, X. Wang, X. Yu, W.-c. Feng, and M. Becchi, “Demystifying
automata processing: Gpus, fpgas or micron’s ap?” in Proceedings of
the International Conference on Supercomputing, 2017, pp. 1–11.

[56] A. P. Diéguez, M. Amor, and R. Doallo, “Efficient scan operator methods
on a GPU,” in 2014 IEEE 26th International Symposium on Computer
Architecture and High Performance Computing. IEEE, 2014, pp. 190–
197.

[57] K. Hou, W. Liu, H. Wang, and W.-c. Feng, “Fast segmented sort on
GPUs,” in Proceedings of the International Conference on Supercom-
puting, 2017, pp. 1–10.

[58] X. Yu, F. Wei, X. Ou, M. Becchi, T. Bicer, and D. D. Yao, “GPU-based
static data-flow analysis for fast and scalable android app vetting,” in The
34th IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2020.

[59] X. Yu, “Algorithms and frameworks for accelerating security applica-
tions on HPC platforms,” Ph.D. dissertation, Virginia Tech, 2019.

[60] W. A. R. Jradi, H. A. D. do Nascimento, and W. S. Martins, “A fast
and generic GPU-based parallel reduction implementation,” in 2018
Symposium on High Performance Computing Systems (WSCAD). IEEE,
2018, pp. 16–22.

[61] S. G. De Gonzalo, S. Huang, J. Gómez-Luna, S. Hammond, O. Mutlu,
and W.-m. Hwu, “Automatic generation of warp-level primitives and
atomic instructions for fast and portable parallel reduction on GPUs,”
in 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2019, pp. 73–84.

[62] C. A. Navarro, R. Carrasco, R. J. Barrientos, J. A. Riquelme, and
R. Vega, “GPU tensor cores for fast arithmetic reductions,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
72–84, 2020.

[63] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3D stencil
codes on GPU clusters,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization, 2012, pp. 155–164.

[64] P. S. Rawat, M. Vaidya, A. Sukumaran-Rajam, M. Ravishankar,
V. Grover, A. Rountev, L.-N. Pouchet, and P. Sadayappan, “Domain-
specific optimization and generation of high-performance GPU code for
stencil computations,” Proceedings of the IEEE, vol. 106, no. 11, pp.
1902–1920, 2018.

[65] O. Anjum, G. de Gonzalo Simon, M. Hidayetoglu, and W.-M. Hwu, “An
efficient GPU implementation technique for higher-order 3D stencils,”
in 2019 IEEE 21st International Conference on High Performance
Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, 2019, pp. 552–561.

[66] K. Matsumura, H. R. Zohouri, M. Wahib, T. Endo, and S. Matsuoka,
“An5d: automated stencil framework for high-degree temporal blocking
on GPUs,” in Proceedings of the 18th ACM/IEEE International Sympo-
sium on Code Generation and Optimization, 2020, pp. 199–211.

[67] C. Oh, Z. Zheng, X. Shen, J. Zhai, and Y. Yi, “GOPipe: a granularity-
oblivious programming framework for pipelined stencil executions on
GPU,” in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, 2020, pp. 43–54.

[68] O. Green, R. McColl, and D. A. Bader, “GPU merge path: a GPU
merging algorithm,” in Proceedings of the 26th ACM international
conference on Supercomputing, 2012, pp. 331–340.

[69] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[70] T. De Matteis, G. Mencagli, D. De Sensi, M. Torquati, and M. Danelutto,
“Gasser: An auto-tunable system for general sliding-window streaming
operators on GPUs,” IEEE Access, vol. 7, pp. 48 753–48 769, 2019.

[71] C. Luo, Y. Fei, and D. Kaeli, “Side-channel timing attack of RSA on
a GPU,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 16, no. 3, pp. 1–18, 2019.

[72] P. Cooke, J. Fowers, G. Brown, and G. Stitt, “A tradeoff analysis
of FPGAs, GPUs, and multicores for sliding-window applications,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 8, no. 1, pp. 1–24, 2015.

[73] X. Yu, V. Nikitin, D. J. Ching, S. Aslan, D. Gursoy, and T. Bicer,
“Scalable and accurate multi-gpu based image reconstruction of large-
scale ptychography data,” arXiv preprint arXiv:2106.07575, 2021.

[74] X. Yu, T. Bicer, R. Kettimuthu, and I. Foster, “Topology-aware optimiza-
tions for multi-gpu ptychographic image reconstruction,” in Proceedings
of the ACM International Conference on Supercomputing, 2021, pp.
354–366.

319

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

