2021 IEEE International Conference on Cluster Computing (CLUSTER) | 978-1-7281-9666-4/21/$31.00 ©2021 IEEE | DOI: 10.1109/Cluster48925.2021.00065

2021 IEEE International Conference on Cluster Computing (CLUSTER)

cuZ-Checker: A GPU-Based Ultra-Fast Assessment
System for Lossy Compressions

Xiaodong Yu*, Sheng Di*, Ali Murat Gok', Dingwen Tao?, Franck Cappello*
*Argonne National Laboratory, Lemont, IL
TCerebras Systems, Los Altos, CA
iWashington State University, Pullman, WA
Emails: xyu@anl.gov, sdil @anl.gov, ali.gok@cerebras.net, dingwen.tao@wsu.edu, cappello@mcs.anl.gov

Abstract—Lossy compression is becoming an indispensable
technique for the success of today’s extreme-scale high-
performance computing projects that produce vast volumes of
data during scientific simulations or instrument data acquisitions.
Comprehensively understanding the compression quality and
performance of different lossy compressors is critical to selecting
the best-fit compressors and using them properly and efficiently
in practice. A few lossy compression assessment tools (e.g.,
Z-checker) have been developed, but none of them support
the execution in a GPU environment. This is a significant
gap because many recent extreme-scale applications and lossy
compressors (e.g., cuSZ) can run entirely within GPUs. In this
work, we develop an efficient lossy compression measuring system
(called cuZ-Checker) on the GPU platform, which aims to per-
form the lossy compression quality and performance assessment
completely within the GPU environment. Our contribution is
threefold. (1) We develop a novel GPU-based lossy compression
measuring framework using a computation pattern-based design
approach. This approach classifies the computing-intensive met-
rics into three categories based on their patterns which creates
large opportunities for kernel fusion and data reuse. (2) For
each pattern in cuZ-Checker, we develop a CUDA Kkernel and
provide fine-grained optimizations to boost its performance. (3)
We thoroughly evaluate our cuZ-checker on a V100 GPU using
four real-world scientific application datasets. Experiments show
that cuZ-Checker can significantly accelerate the overall lossy
compression assessment performance by 23X~31X compared
with the OpenMP-based multithreading CPU performance. To
the best of our knowledge, this is the first lossy compression
measuring system designed for GPU devices.

Index Terms—lossy compression, GPU, performance optimiza-
tion, quality evaluation, SSIM

I. INTRODUCTION

Today’s scientific applications are producing extremely
large amounts of data during simulations or instrument data
acquisitions. On the one hand, some scientific projects need to
run the simulations on large-scale environments with millions
of cores, each of which may output extremely large amounts of
data. For instance, when simulating 1 billion particles in the
HACC cosmology research project, one simulation run can
generate 20 PB of datasets through hundreds of snapshots. On
the other hand, advanced instruments such as the Advanced
Photon Source [1] and Linac Coherent Light Source (LCLS)

Corresponding author: Sheng Di, Mathematics and Computer Science
Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL
60439, USA

[2] can have a data acquisition rate (e.g., 250 GB/s on LCLS-II
[3]) too high to store or transmit to disk.

Error-bounded lossy compression techniques are becoming
the most effective solution to resolve the big-data issue in
today’s extreme-scale scientific research. These compressors
offer on-demand control of data distortion by allowing users
to control the compression errors in a specific form, such as
absolute error bound, relative error bound, and peak signal-to-
noise ratio (PSNR). Moreover, unlike the lossless compressors
[4]-[8] that generally suffer from very low compression ratios
(around 2:1 in most of cases), error-bounded lossy compres-
sors can generally get fairly high compression ratios (10:1,
100:1 or even higher) in most cases [9]-[12].

Although lossy compressors offer the error-bounding sup-
port for scientific data compression, scientists still need a
comprehensive understanding of the reconstructed data and
compression quality of lossy compressors before using them
in practice. A few lossy compression assessment tools have
been developed to address this issue, such as Z-checker [13]
and Foresight [14]. However, none of the existing compression
assessment tools or systems use GPU accelerators, leaving a
significant gap in today’s extreme-scale scientific simulations.

Over the last decade, GPU has been used as the mainstream
accelerator due to its massive parallelism and computational
power. A variety of today’s extreme-scale scientific research
projects, such as cosmology (e.g., EXASKY [15]), quantum
chemistry (e.g., EXAALT [16], GAMESS [17]), and climate
(e.g., DNN-based climate research [18]), have been success-
fully accelerated on GPU device. More recently, With the rapid
increase of GPU capacity, the coming high-performance com-
puting systems appear to be GPU-centric [19] to ultimately
reduce the control and data movement overhead on the host
CPU side.

To accommodate this GPU-centric trend, the entire lossy-
compression-related workflow, including the compression
quality measurement and analysis, should be incorporated
into the GPU to better facilitate the GPU-based exa-scale
applications. Several GPU-based lossy compressors, such as
cuSZ [20] and cuZFP [21], have been proposed. However,
the GPU-based lossy compression assessment system is still
missing. The current assessment of GPU-based lossy com-
pressors’ compression quality is performed on CPU. It re-

978-1-7281-9666-4/21/$31.00 ©2021 IEEE 307
DOI 10.1109/Cluster48925.2021.00065

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

quires both the raw and decompressed data of the GPU-based
lossy compressors to be moved from GPU memory to CPU
memory for in situ analysis, resulting in huge data transfer
overhead. Moreover, since the data volume could be extremely
large, the CPU-based compression assessment can become a
serious bottleneck for the entire simulation/analysis workflow
also because of the high time complexity of some metric
calculations such as the Structural Similarity Index Measure
(SSIM). In fact, comprehensively assessing the GPU-based
lossy compression quality is even more critical than assessing
the CPU-based compression quality, since the GPU-based
lossy compressors generally have to trade off compression
quality for execution efficiency due to the characteristics of
GPU architecture. For instance, cuZFP supports only fixed-
rate mode, which suffers substantially lower compression
quality than does its absolute error bound mode. As verified
by [22], ZFP’s fixed-rate mode could result in 2~3x lower
compression ratios than its fixed-accuracy mode, with the same
level of data distortion (in terms of PSNR). Although the GPU
version of the SZ library, cuSZ, supports absolute error bound
in lossy compression, its compression quality is much lower
than its CPU version [9], [23], [24], since it currently supports
only the design of version 1.4 [23]. By comparison, the latest
version 2.1 of SZ on CPU [24] has far better compression
quality especially for high compression cases, because of the
more advanced data prediction algorithm adopted.

Developing a GPU-supported lossy compression assessment
tool or system faces several challenges. (1) The compression
assessment metrics to be included in the GPU-based checker
involve diverse execution patterns, which need careful inves-
tigation and classification. (2) Some advanced metrics (e.g.,
high-dimensional SSIM [25]) yield a heavy computational
burden even for GPU devices. Their implementations need
fine-grained designs and optimizations to fully leverage both
the architectural and algorithmic characteristics.

In this work we present a GPU-based lossy compression
assessment framework, cuZ-Checker,and optimize its perfor-
mance with various strategies. The key novelties of our design
are that, we propose an pattern-oriented design by classifying
the metrics into three categories based on their computational
patterns to allow GPU kernel fusion and data reuse. For each
pattern, especially the one covering SSIM, we provide fine-
grained design to optimize its GPU kernel. We also thorough
evaluation our cuZ-checker using real-world scientific datasets.
The detailed contributions are summarized as follows.

« We provide an in-depth investigation for all of the lossy
compression assessment metrics supported by Z-checker
and classify the computing-intensive metrics into three
categories by their computational patterns.

o We accordingly propose a pattern-oriented design for our
cuZ-Checker to maximize the CUDA kernel fusion and
data reuse. Kernel fusion is an essential GPU performance
optimization that can reduce kernel launch overhead as
well as the data transfers and memory accesses.

« For each pattern in cuZ-Checker, we provide fine-grained
optimizations for its kernel by thoroughly leveraging the

308

advance GPU features. In particular, we design and opti-
mize the GPU-based SSIM calculation, which is the first
attempt to the best of our knowledge. SSIM is arguably
one of the most important indicators for quantifying
the reconstructed data quality, but it is also one of the
most computationally expensive metrics. We highlight
our utilization of GPU shared memory as a First-In First-
Out (FIFO) buffer to maximize the data sharing of ghost
regions between SSIM windows.

o We thoroughly evaluate our cuZ-Checker with various
real-world scientific data. The results show that our solu-
tion can achieve 22.6-31.2 and 1.49-1.7 times speedups
compared with the multithreading CPU and baseline
metric-oriented GPU counterparts, respectively.

The rest of this paper is organized as follows. In Section II
we introduce the background of lossy compression assessment
and formulate the research problems. In Section III we present
our design and optimizations for cuZ-Checker. We discuss
evaluation results in Section IV and discuss related work in
Section V. In Section VI we summarize our conclusions and
briefly discuss future work.

II. BACKGROUND AND PROBLEM FORMULATION

With the ever-increasing demand for lossy compressors for
significantly reducing the extremely large volumes of data, Z-
checker [13] was developed to comprehensively understand
the lossy compression error, which is critical for users to
judge compression quality accurately and thus select the best-
fit compressor. Before Z-checker was developed, compressor
developers and application users had to implement a battery
of assessment metrics by themselves, a time-consuming and
error-prone task especially for inexperienced users. In this
section we provide background about Z-checker and formulate
the research problem of our study.

Z-checker is a lossy compression assessment framework
supporting over 20 compression-related metrics, including
compression ratio, compression throughput, decompression
throughput, and many metrics related to data distortion (i.e.,
compression error) such as PSNR and SSIM, Pearson corre-
lation, and autocorrelation of compression errors.

Figure 1 illustrates the design architecture of Z-checker [13],
summarized as follows:

o Data Visualization Engine is used to plot analysis results

such as visualization of reconstructed data and errors.

e Z-server is an engine supporting the online web visual-
ization of compression results.

o Output engine is used to parse the output results (includ-
ing reconstructed data and compression analysis results)
for other modules such as visualization.

o Input engine is used to load the data in different formats,
such as binary data format, HDFS5, and NetCDF.

o CPU-based execution model is the core module in charge
of the execution and coordination of the analysis kernels
and other modules.

o CPU-based analysis kernel is the other core module; it
contains the algorithms and implementation of all the

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

| Z-checker |
I | Data Visualization Engine | I %
o
| | Z-server || Output Engine | I 3
s
| CPU-based Execution Model|| § § o
| [Online Mode][Offiine Mode ||| & ||| ¢ <
20

c IS

| CPU-based Analysis Kernel || S [||S=
| Data Property | | Compression g I %%
I Analysis Checker 2 @ &
3rd S|7 e
. rd-party (&) T
I Input Engine Connecter I N
I Data Source (stream, file, 3rd-party (’}‘)
etc.) with formats (HDF5, Library I =~

I NetCDF, ADIOS, binary) (R, FTTW) Y,

Fig. 1: The design architecture of Z-Checker.

analysis metrics including both data property analysis
(such as data value range and entropy) and compression-
related metrics (such as compression time, error distribu-
tion, PSNR, and SSIM).

o Configuration parser is used to load and parse the user’s
configuration, with regard to both assessment metrics and
compression settings such as error bounds.

Figure 2 presents the design architecture of the cuZ-
Checker. Compared with Z-checker’s design, we propose
GPU-compatible designs for the three critical modules—
analysis kernel, module execution coordination, and config-
uration parser—in order to execute the assessment framework
on GPU devices. Among them, the GPU analysis kernel is the
core and raises the most challenges. Therefore, this paper will
focus on the design and optimization of this module.

fF——————————
| cuZ-checker |
I | Data Visualization Engine | I *
. 112
| | Z-server || Output Engine @
| S
GPU Module coordination = | Sa
I — | |z
| Optimized GPU Kernel S |||g3
| Data Property | | Compression | g I : N
I Analysis Analysis = o @
c © O
E
| Input Engine o 2
| 1S
Data Source (stream, file, etc.): I
I binary data format, HDF5, NetCDF, etc.
—_————————"

Fig. 2: The cuZ-Checker design architecture. We use different colors to
highlight the modules that require GPU-compatible designs.

For the lossy compression assessment metrics (more specif-
ically, the ones offered by Z-checker), we will explore the
following topics: (1) What are the computational cores of
the metrics? (2) For the computing-intensive metrics, how
can we implement their computational cores on GPUs and

309

optimize their performance? (3) How can we optimize the
overall performance of cuZ-Checker, considering all the lossy
compression evaluation metrics as a whole?

III. cUZ-CHECKER DESIGN AND OPTIMIZATION

In this section we present our design of cuZ-Checker and
describe how to optimize the performance of diverse patterns’
GPU implementations.

A. Design Overview

Because of the substantial difference between CPU and
GPU architectures, cuZ-Checker demands a new design as
distinct from the CPU-based Z-checker model. The original
CPU-based analysis kernel implements each analysis metric
as an individual entity. Such a metric-oriented design is
intuitive, allowing easy codebase maintenance and usage.
It suffers from little data access overhead with the CPU
because all the data can reside in the whole system’s main
memory. In contrast, applying the metric-oriented design to
a GPU implementation would be inefficient because of the
redundant high costs in data movement and memory access.
With this feature in mind, the first critical design in our cuZ-
Checker is an elaborate (computational) pattern-oriented
model. That is, we classify all the analysis metrics into three
categories based on the patterns of their computational cores,
in order to ultimately fuse the GPU kernels and efficiently
reuse the data during the computation. CUDA kernel fusion
is crucial to the GPU performance because it can help avoid
redundant kernel launches and data movements. Moreover, in
the fused kernel the GPU memory access is minimized since
one access can support multiple computations. For simplicity
of the description, we mainly discuss the situation with three-
dimensional input data in the following text, without loss of
generality. In fact, all the design and optimization strategies
for the 3D tenors can be easily extended to other dimensions
(including 1D, 2D, and 4D).

In our design we exploit three computing patterns—global
reduction, stencil-like, and sliding window—that cover all the
computing-intensive metrics implemented by Z-checker. On
the one hand, our careful performance profiling over the CPU
Z-checker indicates that the expensive operations of all time-
consuming metric implementations are 3D array reductions.
On the other hand, we notice that many metrics have the same
array-processing pattern, such that their implementations can
be combined to enable CUDA kernel fusion with maximized
data reuse.

The cuZ-Checker adopts a GPU module coordinator to
handle the launch and execution of the metric calculations.
Specifically, as cuZ-Checker is executed, the coordinator first
identifies the category of the user-requested metrics and then
invokes the corresponding optimized fused CUDA kernel to
generate a series of compression measurement analysis data.
We describe this design in the following text.

B. Pattern-Oriented Metrics Classification

Our cuZ-Checker aims to support 20+ assessment met-
rics, from among which 18 metrics use time-consuming

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Pattern-oriented metrics classification

Most time-consuming parts

Category I Category II | Category III

pattern global reduction stencil-like sliding window

Min error, Max error, Derivatives

Avg error, Error PDF, . ’

Min pwr error, Max pwr Dlverg_ence,
metric ? Laplacian, SSIM

error, Avg pwr error, Pwr Autocorre-

error PDF, MSE, RMSE, lation

NRMSE, SNR, PSNR

3D array processing as their computational cores. As intro-
duced in Section III-A, we classify these metrics into three
categories—global reduction metric, stencil-like metric, and
sliding window-based metric—according to their computa-
tional patterns and exhibit them in Table I. In what follows,
we describe the calculations of some representative metrics
in each category; other metrics in the same category follow
similar styles.

1) Global Reduction Metrics: Each metric in this category
performs a reduction from 3D array data to a scalar. For
instance, min, max, and average errors are three such metrics
(mainly calculating minimum value, maximum value, and
summation, respectively), which indicate various types of
differences between the original and the decompressed data.
MSE calculates the mean squared error between the original
and the decompressed data. It depends on a summation of the
power of errors, which is a also reduction from 3D data to
scalar. Figure 3 shows the GPU workflows of two illustrative

Most time-consuming parts

Load data to GPU Read data points Conduct reductions Min. Error
global memory to registers to get Min.

Load data to GPU Read data points Conduct reductions Sum / no. of MSE
global memory to registers to get Sum elements

Can be fused in pattern-based design

Fig. 3: Kernel fusing and data reuse for two pattern-1 metrics (Min. error and
MSE). We use a red block to highlight the most time-consuming parts in their
GPU workflows that can be fused.

global reduction metrics: avg. error and MSE. The metric
classification allows us to process the two flows in one CUDA
kernel. With this design, the most time-consuming data load
and memory read (the steps in the red block in Figure 3) of
two metrics can be fused, so that one data read from global
memory to registers can feed two reductions.

2) Stencil-like Metrics: Derivative is a critical metric to
assess how large the data varies in any position of the dataset.
Such a metric can potentially cache the data changes in space
and enlarge the errors introduced by lossy compression [26],
making the compression developers or users understand the
compression errors more easily. Our cuZ-Checker supports the
computation of both the first- and second- derivatives for the
original data vs. decompressed data. The first-order derivative
can be calculated with the following formula:

Der(,r,y, Z) = |f($+1,y,z)ff(xfl,y,z)\+|f($,y+1,z)
7f(m,y71,z)|+|f(x,y,z+1)ff(x,y,zfl)|, (1)

310

Load data to GPU
global memory

Read a block to
shared memory

Perform computation
in Eq. (1)

|_.|
|_.|

Can be fused in pattern-based design

|_ | | Derivative
|_ | | Auto-correlation

Fig. 4: Kernel fusing and data reuse for two pattern-2 metrics (derivative
and autocorrelation). We highlight with a red block the fused heavy memory
accesses in their GPU workflows.

Load data to GPU
global memory

Read a block to
shared memory

Perform computation
in Eq. (2)

where Der(z,y,z) and f(x,y, z) are the derivative and data
value at location (z,y, z) of the 3D input data, respectively.
The derivative computation is a 7-point 3D stencil, in which
the computing at each data point requires the neighbor data
points along all three dimensions. Besides, the Divergence
and Laplacian metrics are the sums of first- and second-order
derivatives, respectively.

Autocorrelation of compression errors is an important met-
ric used to assess whether the compression errors are dis-
tributed randomly or not. This assessment metric is particularly
useful for applications that require the compression errors to
be uncorrelated or white noise [27]. Accordingly, our cuZ-
Checker supports the autocorrelation metric for the compres-
sion errors. The autocorrelation metric can be mathematically
calculated as follows:

h—1Tw—1l—7

AC(T) = (Z Z Z (%(e(ac,y,z)7“)((e(m+7,y,z)7ﬂ)+(

z=1 y=1 z=1

€(z,y+1,2) — /14) + (e(z,y,erT) - /j,))))/ne/o], (2)

where 7 is a spatial gap; e(,) is the error value at (z,y, 2); p
and o2 are the mean and covariance of e, respectively; (h, w, 1)
refers to the 3D shape of e; and ne = (h—7)(w —7)(l — 7)
denotes the number of elements having been summed up. Sim-
ilar to derivatives, computing the autocorrelation also follows
a stencil-like pattern in which the value at any point depends
on its right-hand neighbor points along all dimensions.

Figure 4 shows the GPU workflows of derivative and
autocorrelation calculations. Classifying them in the same
categories enables the fusing of the most time-consuming
memory accesses, as indicated by the red block in Figure 4.
We note that in contrast to the metrics in the first category
that can read data points to registers, the stencil-like metrics
require the blocked data cubes to be read into GPU shared
memory, which will be explained in Section III-C.

3) Sliding Window-Based Metrics: SSIM is the only metric
in this category, which has the most expensive computation
compared with all other metrics. SSIM measures the struc-
tural similarity between the original and the decompressed
data [25]. In Figure 5, we schematically illustrate how it works.
For a 3D dataset, a small 3D sliding window is used to scan
both datasets along all three dimensions with a fixed stride.
The window size and stride are defined by the user. At each
scan position, the reductions are performed to compute the
window’s min, max, sum, and power sum. After that, the

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

original local local
data window window
_____ [— — —|— — — ¥ reductions reductions
> »l
e i
osliding _-
...... o . ~
windows ~ P local SSIM
. ~_ -
-_ -
-~ < ~
e ~ g
—=~ local local
- window window
o -~ . .
pie decompressed reductions reductions
A dgta | | __ __— —
mix
- local SSIM
sliding
windows :
\ > N)

Fig. 5: Schematic illustration of 3D SSIM algorithm. The small 3D sliding
window scans both original and decompressed data. At each scan position, the
local reductions are performed within both windows, and then the reduction
results are mixed to generate the window local SSIM. A global reduction is
conducted at the end to output the final SSIM.

reduction results of the two datasets’ corresponding windows
are mixed (by some simple sums and multiplications) to
generate the local SSIM. At the end of the entire scan, a global
reduction is conducted to sum up all the local SSIMs to get
the final SSIM result. For simplicity, we use scan positions
and windows interchangeably in the rest of the paper.

We categorize SSIM as a unique metric since its computa-
tion conducts 3D reductions at two different levels (sliding
window and global data), thus significantly increasing the
computational burdens and requiring a GPU kernel that is
different from the other categories. The ghost regions between
neighbor windows also make SSIM distinct from other met-
rics, since their data sharing can largely affect the performance.

C. Pattern Implementations and Optimizations

In this subsection we describe our performance optimization
strategies in detail. The fundamental idea for performance
optimization is minimizing the writes and reads on both global
and shared memories, since we observe that the performance
of GPU-based 3D array processing is bounded by the number
of memory accesses relative to the computation operations.
Another optimization is on the calculation of SSIM, which
demands optimized sharing of the ghost regions among the
windows. To our best knowledge, no studies exist on how to
accelerate the SSIM calculation over GPU. In what follows, we
provide our design and optimization details of all the pattern
implementations.

1) Pattern-1: global reduction: The efficient GPU global
reduction heavily relies on warp-level shuffles [28]. Starting
from CUDA 9, NVIDIA provides warp-level primitives in-
cluding shuffle operations with explicit intra-warp thread-level
synchronization [29]. In shuffles, for example, __shfl_up_sync,
__shfl_down_sync, and __shfl_xor_sync, a participated thread
can directly read a register of another thread in the same warp.

311

m— evel thread-block thread-block
K warp-leve
! ‘ shuries | 000 | 100O
000|000

n

-1 cross warplS _ -

reductions Vsharee memory shared memory
P

—
—

h | -
B

\ grid-level (cross TB) reductions

slicing T
w results of pattern-l metrics

Fig. 6: GPU implementation for pattern-1 metrics. The data is divided into
slices, and each slice is assigned to a thread block. The global reduction
is accomplished via warp-level shuffles, cross-warp shared-memory-based
reductions, and cross-thread-block grid-level reductions.

These primitives enable warp-level collective data exchanging
or broadcasting without involving shared memory.

The state-of-the-art GPU-based reduction implementations,
such as CUB [30], are highly optimized but not flexible enough
to realize the customized reductions in our pattern-1 design.
Therefore, we developed our own CUDA kernel for pattern-1
metric calculations, as illustrated in Figure 6. Assuming the
3D data shape is (h,w,l), we divide the data into 2D slices
along the z-axis and assign each slice to a CUDA thread block.
Hence, [thread blocks are created in the grid. The threads
in each block are organized as a two-dimensional layout in
which the x-dimension (blockDim.x) is set to warp size (32 in
CUDA). Each block performs the warp-level and cross-warp
reductions on its corresponding slice in an iterative manner
along both the x-axis and y-axis. Then a grid-level reduction
is performed to generate the results of pattern-1 metrics.

We present the pseudocode of the CUDA kernel for the
pattern-1 calculation in Algorithm 1. As shown in the pseu-
docode, after the kernel is launched, each thread performs
intra-thread reductions by reading the global memory data
iteratively with the stride of thread-block dimensions along
both axes (In.4-6). The results are held in each thread’s
registers. Then, the warp-level reductions are conducted by
leveraging shuffle operations (In.7-8). The intermediate reduc-
tion results are stored in the first thread of every warp. They
should be written into shared memory (In.9) for the cross-
warp reductions (In.11-15). After that, the first thread of each
thread-block has the reduction results of the corresponding
slice. These results are written to the global memory (In.16)
to be used for the grid-level reduction (In.18-22) to yield the
final global reduction results (In.23). Notice that we leverage
cooperative groups (In.2), also introduced in CUDA 9 [31],
to achieve in-kernel grid synchronization (In.17) to avoid
additional kernel launch costs. The corner case handlings at
the edges are straightforward; we omit the discussions of them
because of space limits.

In Algorithm 1, the memory access overhead has been
minimized. The reduce() in Algorithm 1 can concurrently
handle multiple reduction operations, thus each memory access
can be used for processing all pattern-1 metrics. This memory
access fusion is enabled thanks to our pattern-oriented design.

2) Pattern 2: stencil-like: In pattern 2, the processing of
each data point requires its neighbor points along all three

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: CUDA kernel for pattern-1

1 Kernel PATTERN-1 (d_data, d_out)

2 grid = cg::this_grid(); D> cooperative_groups
3 tidx«+—threadldx.x; tidy<threadldx.y; bidx<—blockldx.x;

/* reductions in each individual thread. */

4 for i=tidx; i<h; i+=blockDim.x do

5 for j=tidy; j<w; j+=blockDim.y do

6 reg «+— reduce(d_data[i, j, bidx]);

/* warp-level reductions. */

7 for offset=warpSize/2; offset>0; offset/=2 do

8 | reg «+— reduce(shfl_down_sync(mask, reg, offset));

9 if tidx=0 then shared[tidy] «— reg; > write to shared memory
10 __syncthreads;

/* cross-warp reductions. */

11 if fidy=0 then

12 if tidx<blockDim.y then reg «— shared[tidx];

13 mask = ballot_sync(mask, tidx<blockDim.y);

14 for offset=warpSize/2; offset>0; offset/=2 do

15 | reg «— reduce(shfl_down_sync(mask, reg, offset));
16 if tidx=0 then d_Out[bidX] <— reg; D write to global memory

17 cg::sync(grid);
/* cross-threadblock reductions. */

18 if bidx=0 then

D> sync the entire CUDA grid

19 for i=tidx; i</; i+=blockDim.x do

20 | reg <— reduce(d_out(/));

21 for offset=warpSize/2; offset>0; offset/=2 do

22 \ reg «— reduce(shfl_down_sync(mask, reg, offset));
23 if tidx=0 then result <— reg; > output final reduction result

dimensions. Holding the read data in registers and using shuf-
fles are insufficient to handle this pattern, since the warp-level
operations can provide neighbor access in only one dimension.
Therefore, registers have to offload the read data into shared
memory for data accesses in the other two dimensions.

No off-the-shelf GPU autocorrelation is available; and the
existing GPU derivatives, such as [32], are not flexible enough
to support our fused kernel. Thus, we implement our pattern-
2 computation on the GPU as described in Figure 7 and
Algorithm 2. We leverage the blocking approach used in GPU
stencil implementations [33] and divide the data of pattern-2
into 3D cubes (or 3D blocks), as shown in Figure 7. Such
a blockwise scheme can leverage data locality in pattern
2 better than does the slicing (which is utilized in pattern
1). As indicated in Fig. 7, different planes along the z-axis
are assigned to different thread-blocks. In each plane, the
cubes are iteratively read into GPU shared memory and then
processed by the corresponding thread-block. Algorithm 2
presents the CUDA kernel for pattern 2. The input stride is
the distance between the current data point and its neighbor
point. It can represent both the derivative’s order and the
autocorrelation’s spatial gap. It is also the overlap length
of the adjacent cubes. In each iteration (In.4-5), a cube is
loaded by the thread-block from global memory to shared
memory (In.6-8). Subsequently, each thread of the thread-
block (except the ones in the stride-wide borders) (In.10)
first computes the derivative at its location (In.11-16), then
calculates the autocorrelation of its corresponding data point
(In.17-18), both by reading neighbor data along all three
dimensions from shared memory. We note that a reduction
of intermediate results at all data points is required to yield
the final autocorrelation and divergence/Laplacian (if opted

312

thread-block thread-block

000
jooo

shared
memory

\ grid-level reductions

blocking

|
Auto-corr, Div, Lap

Fig. 7: GPU implementation for pattern-2 metrics. Since the processing of
current data points requires the neighbors along all three dimensions, the data
is blocked to small cubes that can be read into GPU shared memory.

in) (In.18). The reduce operation here includes warp-level,
cross-warp, and cross-block reductions. We omit the detailed
description of how the corner cases at the edges along all axes
are processed, since they are straightforward to deal with.

Algorithm 2: CUDA Kernel for Pattern-2
1 Kernel PATTERN-2 (d_data, p, ssize, stride) > ssize is the side length

of the cube; stride is the distance between current point and its neighbor

2 tidx<«—threadldx.x; tidy < threadldx.y; bidx<—blockldx.x;

3 ssize’ = ssize - stride; k = bidx * ssize’;
/* in each iteration of the second loop, a cube is processed. */
4 for i=0; i< h-stride; i+=ssize’ do
5 for j=0; j<w-stride; j+=ssize’ do
/* the corresponding cube is load to shared memory. */
6 for s=0; s<ssize; s++ do
7 | shared[tidx, tidy, k] < d_data[i+tidx, j+tidy, k+s];
8 __syncthreads;
/* read data from shared memory for computings. */
for s=0; s<ssize’; s++ do
10 if tidx and tidy < ssize’ then
/* compute derivatives. */
11 X < tidx+stride/2; y < tidy+stride/2;
12 7 < S+stride/2;
13 dx «— (shared[x+stride/2, y, 7] -
shared[x-stride/2, y, z]) / 2;
14 dy «— (shared[x, y+stride/2, z] - shared[x,
y-stride/2, z]) / 2;
15 dz +— (shared[x, y, z+stride/2] - shared[x, y,
z-stride/2]) / 2;
16 Derfi+tidx, j+tidy, k+s] <— sqrt(dx2, dy?2,
dZZ); D output derivative of current point
/* compute auto-correlations. */
17 sum <— (shared[tidx+stride, tidy+stride,
s+stride] - p) * (shared[tidx, tidy, s] - u);
18 Div,Lap,corr <— reduce(Der,sum); D> required to yield final autocorr

To summarize, the kernel fusion and data reuse are en-
abled in pattern 2 because of our pattern-oriented design.
This CUDA kernel implementation allows computing multiple
metrics with a single kernel launch. Furthermore, in the kernel,
one loading of a data point from global memory to shared
memory can serve the calculations of all pattern-2 metrics.

3) Pattern 3: sliding window: Compared with the first two
patterns, pattern-3’s algorithm exposes significantly heavier
computation because of the local reductions in each SSIM win-
dow. Moreover, since the sliding step length usually is small
(mostly just 1), substantial overlaps exist between adjacent
windows. Hence, data-sharing efficiency among the windows

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

one plane
m-in

(x, z) plane

-~

{hrnad-h}ﬁ? ~|

thread-block

z-axfs

windows
> x 2gbm-in shared memory shared memory
w2/7
wl h :
H I(} iFIFO buffer zoom-in
L~ !
eV
slicin, \
¢ 51|52 S3 shr-eerees # 55| 56| 53 54 et

w1llocal SSIM w2 local SSIM

grid-level reductions |

SSIM

Fig. 8: GPU implementation for pattern-3 metric (SSIM). In this design, each
(x,z) plane is assigned to a thread block. In a plane, the windows along the z-
axis are further sliced to utilize shared memory as FIFO buffers for ultimately
avoiding redundant ghost region processings.

can significantly affect the performance of pattern 3.

To the best of our knowledge, no previous work exists
about GPU-based SSIM calculation. Thus, we develop a new
GPU kernel to calculate the SSIM and also optimize its
performance. As demonstrated in Figure 5, the calculation
of multidimensional SSIM needs to simultaneously slide the
windows in both the original and decompressed datasets. At
each sliding step, the key operation is the local window
reduction which is algorithmically identical for both datasets’
windows; performing mix to get the local SSIM thereafter
is simple. Therefore, to be concise, in the following text we
mainly describe the GPU local window reduction design for
one (original) dataset. The local window reductions calculation
for the decompressed dataset is exactly the same.

Figure 8 illustrates our design using only the original dataset
as an example. In our design we assign one (x,z) plane to a
thread block. Each plane contains several windows along the
y-axis and all windows along the x- and z-axes. In a thread-
block, each thread handles the processing of one window, so
the ghost regions between adjacent windows along the x-axis
can be ultimately shared by using warp-level shuffles. We note
that shuffle operations allow stride thread access; thus this
design supports arbitrary sliding step length. Furthermore, in
a plane, we slice the windows along the z-axis and then utilize
the GPU shared memory as a FIFO buffer to maximize data
sharing between windows along this dimension, as shown in
Fig. 8. This FIFO buffer design allows the current window
to reuse the intermediate ghost region results of the preceding
window along the z-axis. Thus each slice needs to be read and
processed only once.

Algorithm 3 presents the pseudocode of the CUDA kernel
for our pattern-3 implementation. In each thread-block, the
corresponding plane is further divided into slices along the z-
axis that will be iteratively processed (In.6). In an iteration,

313

each thread reads one data point of the current slice from
global memory to its register. Then, the threads within the
mask (In.9) handle one window per thread, so a total of
xNum-yNum windows can be processed simultaneously. These
threads perform window local reductions first along the x-
axis by leveraging warp-level shuffles to read the registers of
neighbor threads and then along the y-axis through shared
memory (In.10-12; see warp-level and cross-warp reduction
details in Algorithm 1). These intermediate reduction results of
the current slice are subsequently stored into the FIFO buffer
(In.15) before the kernel moves to the processing of the next
slice. After the wsizeth (wsize is the window’s side length
along z-axis) slices are processed (In.16), the results in the
FIFO buffer are reduced and mixed to yield the local SSIMs
of the first xNum-yNum 3D windows (In.17-19). Thereafter, the
kernel processes the (wsize+1)th slice likewise and stores the
intermediate results in the FIFO buffer by overwriting the first
slice’s buffered data (In.15). The kernel keeps iterating until
the (wsize+step)th slice (In.16) has been processed. After
that, the results in the FIFO buffer are reduced and mixed
again to generate the second set of xNum-yNum windows’ local
SSIMs (In.17-19). At the end of the entire loop, a grid-level
reduction of all local SSIMs is conducted to get the final SSIM
result (In.20). Notice that corner cases at the edges happen only
along the x- and y-axes and are straightforward to be handled.

Algorithm 3: CUDA kernel for pattern-3
1 Kernel PATTERN-3 (d_datal, d_data2, wsize, step)

length of a window side while step is the sliding step length
2 tidx «+—threadldx.x; tidy < threadldx.y; bidx<—blockldx.x;
3 j= bidx * yNum; D> j is the base index of data and yNum is the
number of windows, both along y-axis and for current threadblock
4 xNum = warpSize - wsize + step;
/* i iterates along x-axis while k iterates along z-axis. */
5 for i=0; i<h; i+=xNum do
6 for k=0; k</; k++ do
7 dl « d_datal[i+tidx, j+tidy, k];
8
9

D> wsize is the

d2 < d_data2[i+tidx, j+tidy, k];
mask = ballot_sync(mask, tidx<xNum);
I* window local reductions on the current slice. */
for offset=1; offset<wsize; offset++ do
1 w1 «—reduce(shfl_down_sync(mask,d1,offset));
w2 «reduce(shfl_down_sync(mask,d2,offset));
if tidx%step = 0 and tidx < xNum and tidx%step = 0
and tidy < yNum then

wx = tidx/step; wy = tidy/step;

[* store current slice’s results into FIFO buffer. */

shared[wx, wy, k%wsize] «— w1, w2;

[* if the current slice is the end of windows, reduce the

entire buffer data to yield local window SSIMs. */

if (k+1-wsize) % step = O then

for s=0; s<wsize; s++ do

18 | wl’, w2’ + reduce(shared[wx, wy, s]);
19 wssim[i+wx, j+wy, (k+1-wsize)/step] —
Ca|W(Wl’, WZ’); > get local window SSIMs
SSIM +— reduce(wssim); D> reduce window results to get final SSIM

w
—

To summarize, our implementation achieves perfect data
sharing along the z-axis, thanks to our FIFO buffer design.
With this design, each slice only needs to be read from
global memory and processed once. Our implementation also

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

ultimately leverages the x-axis data sharing because of the
utilizing of warp-level shuffles. Most data points along the x-
axis need to be processed just once; only slightly repeated data
point processings exist between the x-axis iterations (In.5).
The data sharings along the y-axis are also partially leveraged
since we assign multiple windows on this dimension to a
thread-block. The y-dimensional data processing repetitions
only happen between adjacent thread blocks. Generally speak-
ing, with our GPU kernel design, for most data points, the
pattern-3 (SSIM) calculation reads them from global memory
and processes them just once. The shared memory is only
minimally used by the reductions along the y-axis (cross-warp
reductions) and z-axis (FIFO buffer).

IV. PERFORMANCE EVALUATION

In this section we thoroughly evaluate our cuZ-Checker
using a GPU node of Argonne National laboratory’s Lambda
cluster'. This machine is configured with 512 GB of system
main memory, Intel Xeon Gold 6148 CPU, and NVIDIA Tesla
V100 GPU with CUDA driver version 11.2. Xeon Gold 6148
CPU has 20 physical cores and a 27.5 MB L3 cache, running
at 2.40 GHz base frequency. V100 GPU is built on NVIDIA’s
Volta microarchitecture. It has 80 streaming multiprocessors
(SMs) and 32 GB GPU global memory. Each SM has 64
CUDA cores (total of 5,120 cores device-wide), 48 KB on-
chip shared memory, and 64K registers.

A. Datasets and Their Characteristics

We evaluate our cuZ-Checker by using it to measure
the cuSZ [20] lossy compressor based on the simulation
datasets generated by four well-known real-world scientific
applications, including (a) Hurricane ISABEL simulation [34],
which simulates the most intense hurricane in the 2003
Atlantic hurricane season; (b) NYX cosmology simulation
[35], which solves equations of compressible hydrodynamics
flow describing the evolution of baryonic gas coupled with
an N-body treatment of the dark matter in an expending
universe; (c) Scale-LETKF weather simulation [36], which
performs real-time, high-resolution, short-term prediction of
heavy rainfall systems; and (d) Miranda turbulence simulation
[37], a radiation hydrodynamics code designed for large-eddy
simulation of multicomponent flows with turbulent mixing.

Each dataset contains different data patterns and features.
Specifically, (a) Hurricane consists of 13 data fields (e.g.,
QCLOUD and temperature); each field is a 100x500x500
3D data. (b) NYX includes six fields, such as dark matter
density and baryon density, and each field is a 5123 3D array.
(c) Scale-LETKF has six data fields with 98x1200x 1200
elements per field. (d) Miranda contains severn different fields,
each being a 256x384x384 3D vector. All data fields are
stored in single precision. One illustrative field of each dataset
is visualized in Figure 9. All these scientific datasets can be
downloaded from the SDRBench [38], [39].

Thttps://collab.cels.anl.gov/display/LCD

314

(a) Hurricane (CLOUD{48)

" (d) Miranda (Pressure)

(c) Scale-LETKF (PRES)
Fig. 9: Visualization of diverse application datasets.

B. Overall Performance Analysis

We have verified that our cuZ-Checker has the correct
calculation on all assessment metrics by comparing it with
the Z-checker’s output. For example, with first field of the
Hurricane dataset, both cuZ-Checker and the CPU-based Z-
checker yield 2.8 x 1079 as the first-order derivative result.

We compare the performance of our cuZ-Checker (abbrevi-
ated as cuZC) with an OpenMP-based CPU counterpart (ab-
breviated as ompZC) and a metric-oriented GPU counterpart
(abbreviated as moZC). OmpZC is the multithreading version
of the original Z-checker [13]. MoZC is our straightforward
CUDA implementation of Z-checker following the conven-
tional metric-oriented design principle. We develop moZC
mainly for demonstrating the advantage of our patten-oriented
design. MoZC implements each metric as an individual CUDA
kernel. In moZC, we leverage NVIDIA’s CUB library [30] to
achieve reductions for each pattern-1 metric. We note that we
do not utilize the CUB library in our cuZC since its APIs are
not flexible enough to express user-defined reductions [40]
(e.g., the fused reductions in our pattern-1 implementation).
We separately implement autocorrelation and derivative met-
rics following NVIDIA’s approach [32]. Since SSIM has no
GPU implementation in the literature, in order to evaluate our
cuZC’s data-sharing efficiency, the counterpart implementation
in moZC adopts an approach similar to that introduced in
Section III-C3 but without the FIFO buffer.

Figure 10 shows cuZC’s overall performance improvements
compared with that of both ompZC and moZC. Its x-axis
represents different datasets while the y-axis displays the
speedups (in log scale) of cuZC relative to both counterparts.
In this experiment we measure the entire executions of the
assessment systems with all metrics enabled. For the derivative
metric, we calculate both first-order and second-order deriva-
tives. For autocorrelation, we allow the spatial gap to be up

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from |IEEE Xplore. Restrictions apply.

o (A A
S brlos 27/92 31119
o 22|56
[*)]
o
c10?
1 —A— cuzC/ompzC
3 cuzZC/mozC
(0]
(]
o
172
O
N 1.59 1.49 1.56 10
o
| ! | |
T T T T
cane o TKE DA
purr N GCMEAE wRRN

Fig. 10: Overall performance comparisons of cuZC with both ompZC and
moZC. The x-axis represents different datasets while the y-axis indicates
cuZC’s speedups in log scale.

to 10. For SSIM, we set the sliding-window size to 8 on each
side and the step length to 1. Each dataset involves many fields
(e.g., 13 fields for Hurricane and 6 fields for NYX). We show
the average performance calculated over all fields for each
dataset in Figure 10. As shown in the figure, compared with
multithreading CPU-based ompZC, our cuZC can achieve at
least 22.6x and up to 31.2x speedups. Moreover, it exhibits
1.5-1.7x better performance than the does the metric-oriented
GPU-based moZC. The overall performance of our cuZC
is dominated by the most computing-intensive metrics (e.g.,
SSIM). If we need our framework to assess only part of the
supported metrics, the performance improvement potentially
could be larger, as we detail in the next subsection.

C. Performance Breakdown Analysis

In this section we perform a breakdown performance anal-
ysis for the time-consuming pattern metrics listed in Table I.
Figure 11 presents the throughput of all three frameworks
(ompZC, moZC, and cuZC) with only pattern-1 metrics (Fig-
ure 11(a)), pattern-2 metrics (Figure 11(b)), or pattern-3 met-
rics (Figure 11(c)) enabled, respectively. From these figures,
we can observe that our cuZC always yields much higher
throughput than the other two frameworks do. We also observe
that from among the three patterns, the throughputs on pattern-
1 are significantly higher than the throughputs on pattern-2
and pattern-3. Specifically, as the dataset changes, cuZC can
achieve a throughput of 103—137 GB/s while moZC can reach
only 17-31 GB/s and ompZC can reach only 0.44-0.51 GB/s.
The reason for the high throughput of pattern 1 is that pattern-
1 requires much fewer computations than the other patterns do,
as described in Section III. On the other hand, we observe that
all three frameworks exhibit the lowest throughputs on pattern
3 (i.e., SSIM), since it yields the heaviest computation burden.
For this pattern, our cuZC has 497-758 MB/s throughput
while moZC and ompZC have 351-514 and 24.8-26.6 MB/s
throughputs, respectively. The throughput on pattern 3 clearly
dominates the overall framework performance.

To better demonstrate cuZC’s performance improvement on
different patterns, we also plot the speedups of cuZC over

315

ompZC and moZC in Figure 12, which clearly shows that
our cuZC always exhibits best performance. In Figure 12(a),
we observe that cuZC can achieve 227 x-268x speedups to
ompZC on pattern 1. These speedups are remarkably higher
than the overall speedups in Figure 10, especially because
pattern-1’s implementation in cuZC requires the fewest opera-
tions in thread iterations compared with the other two patterns.
Moreover, it is capable of thoroughly leveraging advanced
GPU features, such as warp-level primitives, to optimize the
performance. We can also see that cuZC achieves a speedup of
3.49x-6.38x over moZC on pattern 1. We note that in Table I,
RMSE’s and NRMSE’s computational cores essentially are
MSE while PSNR’s core is SNR. Therefore, moZC contains 10
CUDA kernels for pattern 1, and cuZC’s speedup upper bound
is 10. However, the additional resource usages and branching
overhead lower the actual speedup. Figure 12(b) shows that
on pattern 2 our cuZC can achieve 17.1x-47.4x and 1.79x-
1.86x speedups over ompZC and moZC, respectively. Since
Divergence and Laplacian in Table I are the summations of
order-1 and order-2 derivatives, respectively, moZC imple-
ments two CUDA kernels for pattern 2. cuZC’s speedups over
moZC on pattern 2 are close to 2, indicating that our kernel
fusion and data reuse are efficient with only slight branching
overhead. Figure 12(c) shows that our cuZC attains 19.2x—
28.5x and 1.42x-1.63x speedups to ompZC and moZC on
pattern 3 (SSIM). It indicates our FIFO buffer design in cuZC
can successfully improve the performance by around 50%.
Takeaway 1: Our cuZC shows different speedups with
different categories of metrics. For pattern 1, the speedups are
significantly higher than the overall speedups since its kernel
fully utilizes advanced GPU features and computes 14 metrics
within one kernel launch. For pattern 2, cuZC shows a nearly
twofold speedup compared with moZC, indicating that our
kernel fusion is efficient with tiny overhead. For pattern 3, our
FIFO buffer design achieves ~50% performance improvement.
To gain insights about how different datasets influence the
assessment performance, we profile our cuZC during run
time and display the results in Table II. For each pattern,
we present the register usage per thread block (Regs/TB),
the shared-memory usage per thread block (SMem/TB), the
total iterations in each thread (Iters/thread), and the number
of thread-blocks assigned to each streaming multiprocessor
along with the number of thread-blocks among them that
can be concurrently handled (TB(cncr.)/SM), with different
datasets. During the execution, an active thread-block (TB)
will exclusively reserve a portion of its corresponding SM’s
computation resources, including registers and shared memory,
based on the request. Once a SM has enough idle resources
available, the TBs assigned to it can be scheduled to ex-
ecute concurrently. The SM occupancy will be maximized
when all assigned TBs concurrently execute. Therefore, the
amount of resources requested by a TB largely affects the
overall performance. Furthermore, Iters/thread represents the
sequentially executed workloads in each thread, which can
also impact the GPU performance. Regs/TB and SMem/TB
are determined by the computation pattern, while Iters/thread

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

mm ompZC mm moZC mm cuZC

mm ompZC mm moZC mwm cuZC

mm ompZC mm moZC mm cuZC

[
o
T«

[

o
=
!

iy

o
W
L

Throughput (MB/s) in log-scale
Throughput (MB/s) in log-scale

urtica™® WYX SCNE.LET“F M\N\NDA purmce™®

(a) Pattern-1

WX

(b) Pattern-2

scALE‘LETKF N\\N‘NDA

i

o
N
!

Throughput (MB/s) in log-scale

\a\urr‘\Ca“e Wit <_'(;)>\\—E-\3\:——“<F \,/\\\KN“D,X

(c) Pattern-3

Fig. 11: Throughput of cuZC, moZC, and ompZC performing (a) pattern-1 metrics, (b) pattern-2 metrics, and (c) pattern-3 metrics with all four datasets.

cuZC/ompZC wmm cuZC/mozZC

cuZC/ompZC wmm cuZC/moZC

cuZC/ompZC wmm cuZC/moZC

L] () L

T © T

? b 2

9102 4— =3 >

2 ks 2

< < 10t 4]

2 210 - g

=3 3 =

b 3 3

[[7

310t 4 2 o1

R R R

3 3 3
_. - _— L. | -— L. _— | -_
woree"® N e T a0 w0 BT e® w0 T O

(a) pattern-1

(b) pattern-2

(c) pattern-3

Fig. 12: Speedups (in log scale) of our cuZC over ompZC and moZC when executing the three groups of metrics separately with all four datasets.

and TB(cncr.)/SM can be affected by the datasets. Several
remarkable performance varying with the dataset change can
be observed in Figure 12. (i) In Figure 12(a), cuZC shows
significantly less speedup with NYX and Scale-LETKF to
moZC. The reason is that these two datasets have larger data
sizes resulting in more TBs per SM (seven) or more iterations
per thread (6.3k), as shown in Table II. Since cuZC processes
14 pattern-1 metrics in one kernel, the register usage of a TB
is big, which limits the concurrent TBs in a SM to at most
four (64k/14k). Consequently, with NYX, a SM needs two
rounds of execution to process all associated thread-blocks.
(i1) In Figure 12(b), cuZC shows much less speedup than does
ompZC with Hurricane and Scale-LETKF. The reason is that
they yield at most one thread-block on each SM. The number
of TBs in pattern 2 is decided by the z-axis size; both two
datasets have short lengths along this dimension (100 and 98)
and thus have small numbers of TBs. With only one thread
block on a SM, there is no space to hide the latency, leading to
less efficient GPU utilization. (iii) In Figure 12(c), compared
to cuZC with other datasets, cuZC with NYX achieves less
speedup than does ompZC. This is because in our FIFO buffer
design, the data length along the z-axis determines Iters/thread
in the pattern-3 (SSIM) calculation. Since NYX has the biggest
length along the z-axis (512), it requires more iterations in
each thread resulting in less speedup than the other datasets.
We emphasize that Table II intends to demonstrate dataset
impacts on cuZC’s performance with the same pattern. Any
cross-pattern comparisons of Iters/thread or TBs/SM are not
meaningful because, with different patterns, an iteration has
quite different instructions and workloads.

Takeaway 2: With the same pattern, changing datasets

316

TABLE II: cuZC Runtime Profiling

Pattern-1
Regs/TB SMem/TB Iters/thread =~ TB(cncr.)/SM
Hurricane 14k 0.4KB 977 2(2)
NYX 14k 0.4KB 1k 7(4)
SCALE-LETKF 14k 0.4KB 6.3k 2(2)
MIRANDA 14k 0.4KB 576 4(4)
Pattern-2
Regs/TB SMem/TB Iters/thread TB(cncr.)/SM
Hurricane 2.3k 17KB 205 1(1)
NYX 2.3k 17KB 205 2(2)
SCALE-LETKF 2.3k 17KB 1.1k 1(1)
MIRANDA 2.3k 17KB 89 2(2)
Pattern-3
Regs/TB SMem/TB Iters/thread = TB(cncr.)/SM
Hurricane 11k 16KB 1.8k 2(2)
NYX 11k 16KB 8.7k 2(2)
SCALE-LETKF 11k 16KB 3.4k 2(2)
MIRANDA 11k 16KB 2.9k 2(2)

can affect our cuZC’s speedup. Specifically, the size and
shape of a dataset determine the number of thread-blocks
per multiprocessor and the number of iterations per thread,
which can potentially impact GPU performance. With pattern
1, small datasets exhibit higher cuZC speedup compared with
ompZC. With pattern 2, a more balanced data shape (cube vs.
cuboid) can lead to a better cuZC performance. With pattern
3, a dataset having shorter length along the z-axis can make
cuZC achieve higher speedup.

V. RELATED WORK

In this section we first discuss the existing lossy compres-
sion assessment systems and then describe current GPU-based
implementations and optimization techniques related to the
three patterns in our cuZ-Checker.

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

To the best of our knowledge, none of the existing lossy
compression assessment platforms or libraries support GPU
accelerators, which leaves a significant gap for comprehen-
sively assessing the emerging GPU-based lossy compressors
such as cuSZ [20] and cuZFP [21]. Z-checker [13] is the
first scientific lossy compression assessment toolkit/library,
which includes many compression-related metrics such as dis-
tribution of errors, MSE, PSNR, derivatives, autocorrelation,
and SSIM. QCAT [41] is a lightweight compression analy-
sis toolkit, which focuses on easy-to-use compression data
analysis. Foresight [14] is a generic framework for analysis
and visualization of lossy compression errors. It does not
provide as compression assessment metrics as comprehensive
as Z-checker requires, while it offers better visualization of
simulation data and compression errors.

CUDA warp-level shuffles with either implicit (before
CUDA 9) or explicit warp synchronization have been broadly
used to improve the performance for a variety of appli-
cations, including sequence alignments [42], sparse matrix
computations [43]-[47], string matchings [48]-[52], graph
traversals [53]-[55], and data scans [56]-[59]. Some works
also propose advanced optimizations for GPU reductions.
Reddy et al. [40] design language constructs allowing arbitrary
reductions to be easily expressed on user-defined data types.
Jradi et al. [60] employ techniques such as loop unrolling and
persistent threads to implement the generic GPU reductions.
De Gonzalo et al. [61] provide a new set of high-level APIs
for domain-specific languages (DSLs) to easily generate warp
shuffle instructions and atomic instructions. Navarro et al. [62]
levarage GPU tensor cores to boost the reduction performance.

GPU-based stencil computations have been intensively stud-
ied. Zhang et al. [63] develop autogeneration and optimization
techniques to autotune 3D stencil computations on GPUs.
Rawat et al. [64] discuss a DSL that can generate effective tiled
code for GPUs stencils. Anjum et al. [65] present a new GPU-
based technique that uses 2D caching to efficiently imple-
ment 3D stencil computations. Matsumura et al. [66] propose
ANSD, an automated framework that can transform C stencil
code to optimized CUDA stencil code. Oh et al. [67] present
GOPipe, a programming framework for efficient pipelined
stencil executions on GPUs that can automatically find task
granularity and dynamically schedule tasks of it.

Although no existing work studied GPU-based 3D SSIM,
the sliding-window algorithm has been implemented on GPUs
for some other applications. Green et al. [68] propose a GPU-
based algorithm for merging two sorted arrays that requires
window sliding. Krizhevsky [69] implements CNN on GPUs
with direct convolution approach that utilizes the filter as a
sliding window to scan the input feature map. De Matteis
et al. [70] present an autotunable general sliding-window
operator for streaming systems. Luo et al. [71] utilize sliding-
window exponentiation to optimize a GPU side-channel timing
attack of the RSA cryptosystem. Cooke et al. [72] optimize
the sliding-window algorithm in general on various platforms
including GPUs.

317

VI. CONCLUSION AND FUTURE WORK

This work presents cuZ-Checker, a GPU-based assessment
system to measure GPU-based lossy compressors’ compres-
sion quality and performance. In our design, we proose a
patten-based approach to maximizes the opportunity for GPU
kernel fusion and data reuse. For each pattern, we provide
fine-grained design and optimization to its CUDA kernel by
leveraging various GPU features. We comprehensively eval-
uate our cuZ-Checker with four real-world scientific datasets
and obtain the following key findings:

e Our cuZ-Checker (cuZC) can achieve 22.6-31.2x overall
speedup over the OpenMP-based multithreading CPU
baseline (ompZC) and 1.49-1.7x overall speedup com-
pared with a GPU counterpart designed using a metric-
oriented approach (moZC).

o Our cuZC exhibits different performances when executing
metrics in different categories. With pattern-1 metrics,
cuZC shows more than 227x and 3.5x speedups over
ompZC and moZC, respectively. With pattern-2 met-
rics, cuZC shows nearly 2x speedup over moZC. With
pattern-3 metrics, FIFO buffer design in cuZC improves
the performance by around 50%.

o With each pattern, the dataset’s size and shape can also
affect cuZC’s performance, since they can determine the
GPU’s number of thread block per multiprocessor and
number of iterations per thread.

In our future work, we will extend our cuZ-Checker to a
multi-node multi-GPU environment, in terms of the funda-
mental single-GPU performance optimization that has been
solved in this paper. Many scientific applications can yield
exascale datasets that far beyond the capacity of any single
GPU. Accordingly, both multi-GPU lossy compressor and
assessment system are desired. Similar to other multi-GPU
implementations [73], [74], the multi-GPU version of cuZ-
Checker needs fine-grained design of inter-GPU synchroniza-
tion and communication to optimize the performance. We
also plan to incorporate cuZ-Checker with cuSZ to make the
assessment more seamless.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations — the Office of Science and
the National Nuclear Security Administration, responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering and early testbed platforms, to support the nation’s
exascale computing imperative. The material was supported
by the U.S. Department of Energy, Office of Science, under
contract DE-AC02-06CH11357, and supported by the Na-
tional Science Foundation under Grant OAC-2003709, OAC-
2042084, OAC-2104023, and OAC-2104024. We acknowledge
the computing resources provided on Bebop (operated by
Laboratory Computing Resource Center at Argonne) and on
Theta operated by Argonne Leadership Computing Facility.

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

[1]
[2]
[3]

[4]

[5]
[6]
[71
[8]
[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22])

(23]

REFERENCES

T. E. Fornek, “Advanced Photon Source Upgrade Project preliminary
design report,” 9 2017.

SLAC National Accelerator Laboratory, “Linac Coherent Light Source
(LCLS-II),” https:/Icls.slac.stanford.edu/, 2017, online.

F. Cappello, S. Di, S. Li, X. Liang, G. M. Ali, D. Tao, C. Yoon Hong, X.-
c. Wu, Y. Alexeev, and T. F. Chong, “Use cases of lossy compression for
floating-point data in scientific datasets,” International Journal of High
Performance Computing Applications (IJHPCA), vol. 33, pp. 1201-
1220, 2019.

M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor
for double-precision floating-point data,” IEEE Transactions on Com-
puters, vol. 58, no. 1, pp. 18-31, Jan 2009.

Zlib, https://www.zlib.net/, online.

L. P. Deutsch, “GZIP file format specification version 4.3,” 1996.
BlosC compressor, http://blosc.org/, online.

Y. Collet, “Zstandard — real-time data compression algorithm,”
http://facebook.github.io/zstd/, 2015.

S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IEEE International Parallel and Distributed Processing
Symposium, 2016, pp. 730-739.

P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer graphics, vol. 20, no. 12,
pp. 2674-2683, 2014.

N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of lossy
compression for application-level checkpoint/restart,” in IPDPS 2015,
2015, pp. 914-922.

A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka,
S. A. Mickelson, J. Edwards, M. Vertenstein, and A. Wegener, “A
methodology for evaluating the impact of data compression on climate
simulation data,” in Proceedings of the 23rd International Symposium
on High-performance Parallel and Distributed Computing, ser. HPDC
’14. New York, NY, USA: ACM, 2014, pp. 203-214. [Online].
Available: http://doi.acm.org/10.1145/2600212.2600217

D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The
International Journal of High Performance Computing Applications,
vol. 33, no. 2, pp. 285-303, 2019.

Los Alamos National Laboratory, “VizAly-Foresight: A compression
benchmark suite for visualization and analysis of simulation data,”
https://github.com/lanl/VizAly-Foresight, 2018, online.

“EXASKY: Computing The Sky at Ex-
treme Scales,” https://www.exascaleproject.org/wp-
content/uploads/2019/10/ExaSky.pdf, 2020, online.

“EXAALT: Malecular dynamics at the ex-
ascale,” https://www.exascaleproject.org/wp-
content/uploads/2019/10/EXAALT.pdf, 2020, online.

“GAMESS: Enabling GAMESS for exascale computing in chemistry
and materials.”

T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, Prabhat, and M. Hous-
ton, “Exascale deep learning for climate analytics,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, ser. SC *18. 1EEE Press, 2018.

A. Li, O. Subasi, X. Yang, and S. Krishnamoorthy, “Density matrix
quantum circuit simulation via the BSP machine on modern GPU
clusters,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2020, pp.
1-15.

J. Tian et al., “CuSZ: An efficient gpu-based error-bounded lossy
compression framework for scientific data,” in Proceedings of the ACM
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT °20, 2020, p. 3-15.

cuZFP, https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp,
online.

R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “FRaZ: A generic
high-fidelity fixed-ratio lossy compression framework for scientific
floating-point data,” https://arxiv.org/abs/2001.06139, 2020, online.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. 1EEE, 2017, pp. 1129-1139.

2020,

318

[24]

[25]

[26]

[27]

[28]

[29]

(30]
(31]

(32]

(33]

[34

[35]
(36]

[37]
[38]

[39]

[40]

[41]

[42]

[44]

[45]

[46]

(48]

[49]

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data. 1EEE, 2018.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600612, 2004.
Lawrence Livermore National Laboratory, “zfp and Derivatives,”
https://computing.llnl.gov/projects/zfp/zfp-and-derivatives, 2021, online.
Z. Wu and N. E. Huang, “A study of the characteristics of white
noise using the empirical mode decomposition method,” Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, vol. 460, no. 2046, pp. 1597-1611, 2004.

Justin ~ Luitjens, “Faster parallel reductions on Kepler,”
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler,

2014, online.

Yuan Lin and Vinod Grover, “Using CUDA warp-level primitives,”
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives,

2018, online.

NVIDIA Research, “CUB documentation,”
https://nvlabs.github.io/cub/index.html, accessed 2021, online.

Mark Harris and Kyrylo Perelygin, “Cooperative groups: Flexible CUDA
thread programming.”

Mark Harris, “Finite difference methods in CUDA C/C++, Part
1,” https://developer.nvidia.com/blog/finite-difference-methods-cuda-cc-
part-1, 2013, online.

K. Hou, H. Wang, and W.-c. Feng, “Gpu-uniache: Automatic code
generation of spatial blocking for stencils on gpus,” in Proceedings of
the computing frontiers conference, 2017, pp. 107-116.

“Hurricane ISABELA simulation dataset in IEEE Visualization 2004
Test,” http://vis.computer.org/vis2004contest/data.html, online.

“NYX simulation,” https://amrex-astro.github.io/Nyx, online.

“The local ensemble transform Kalman filter (letkf) data
assimilation package for the scale-rm weather model,”
https://github.com/gylien/scale-letkf, online.

“Miranda turbulence simulation,” https://wci.llnl.gov/simulation/computer-
codes/miranda, online.

“Scientific data reduction benchmark,” https://sdrbench.github.io/, on-
line.

K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and
F. Cappello, “SDRBench: Scientific data reduction benchmark for lossy
compressors,” in 2020 IEEE International Conference on Big Data (Big
Data), 2020, pp. 2716-2724.

C. Reddy, M. Kruse, and A. Cohen, “Reduction drawing: Language
constructs and polyhedral compilation for reductions on GPU,” in Pro-
ceedings of the 2016 International Conference on Parallel Architectures
and Compilation, 2016, pp. 87-97.
“Quick Compression Analysis
https://github.com/szcompressor/qcat.

J. Wang, X. Xie, and J. Cong, “Communication optimization on GPU:
A case study of sequence alignment algorithms,” in 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). 1EEE,
2017, pp. 72-81.

X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao, “cuART: Fine-
Grained Algebraic Reconstruction Technique for Computed Tomography
Images on GPUs,” in 2016 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2016.

Y. Tao and H. Zhi-Bin, “Shuffle reduction based sparse matrix-vector
multiplication on Kepler GPU,” International Journal of Grid and
Distributed Computing, vol. 9, no. 10, pp. 99-106, 2016.

X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao, “An enhanced image
reconstruction tool for computed tomography on GPUs,” in Proceedings
of the Computing Frontiers Conference, ser. CF’17. ACM, 2017.

C. Yang, A. Bulug, and J. D. Owens, “Design principles for sparse
matrix multiplication on the GPU,” in European Conference on Parallel
Processing. Springer, 2018, pp. 672-687.

X. Yu, H. Wang, W.-c. Feng, H. Gong, and G. Cao, “GPU-based iter-
ative medical CT image reconstructions,” Journal of Signal Processing
Systems, vol. 91, no. 3-4, pp. 321-338, 2019.

X. Yu and M. Becchi, “Exploring Different Automata Representations
for Efficient Regular Expression Matching on GPUs,” SIGPLAN Not.,
2013.

, “GPU Acceleration of Regular Expression Matching for Large
Datasets: Exploring the Implementation Space,” in Proceedings of the

Toolkit (QCAT);”

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

ACM International Conference on Computing Frontiers, ser. CF *13.
New York, NY, USA: ACM, 2013, pp. 18:1-18:10.

S. Koibuchi, K. Ikeuchi, S. Ishida, and H. Nishi, “GPU-based string
matching method using warp shuffle instructions for network intrusion
detection system on routers,” IEICE Technical Report; IEICE Tech. Rep.,
vol. 114, no. 155, pp. 113-118, 2014.

X. Yu, Deep packet inspection on large datasets: algorithmic and
parallelization techniques for accelerating regular expression matching
on many-core processors. University of Missouri-Columbia, 2013.

T. Ho, S.-R. Oh, and H. Kim, “A parallel approximate string matching
under Levenshtein distance on graphics processing units using warp-
shuffle operations,” PloS one, vol. 12, no. 10, p. e0186251, 2017.

F. Busato and N. Bombieri, “BFS-4K: an efficient implementation of
BFS for kepler GPU architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 7, pp. 1826-1838, 2014.

K. Shirahata, H. Sato, and S. Matsuoka, “Out-of-core GPU memory
management for MapReduce-based large-scale graph processing,” in
2014 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2014, pp. 221-229.

M. Nourian, X. Wang, X. Yu, W.-c. Feng, and M. Becchi, “Demystifying
automata processing: Gpus, fpgas or micron’s ap?” in Proceedings of
the International Conference on Supercomputing, 2017, pp. 1-11.

A. P. Diéguez, M. Amor, and R. Doallo, “Efficient scan operator methods
on a GPU,” in 2014 IEEE 26th International Symposium on Computer
Architecture and High Performance Computing. 1EEE, 2014, pp. 190—
197.

K. Hou, W. Liu, H. Wang, and W.-c. Feng, “Fast segmented sort on
GPUs,” in Proceedings of the International Conference on Supercom-
puting, 2017, pp. 1-10.

X. Yu, F. Wei, X. Ou, M. Becchi, T. Bicer, and D. D. Yao, “GPU-based
static data-flow analysis for fast and scalable android app vetting,” in The
34th IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 1IEEE, 2020.

X. Yu, “Algorithms and frameworks for accelerating security applica-
tions on HPC platforms,” Ph.D. dissertation, Virginia Tech, 2019.

W. A. R. Jradi, H. A. D. do Nascimento, and W. S. Martins, “A fast
and generic GPU-based parallel reduction implementation,” in 2018
Symposium on High Performance Computing Systems (WSCAD). 1EEE,
2018, pp. 16-22.

S. G. De Gonzalo, S. Huang, J. Gémez-Luna, S. Hammond, O. Mutlu,
and W.-m. Hwu, “Automatic generation of warp-level primitives and
atomic instructions for fast and portable parallel reduction on GPUs,”
in 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2019, pp. 73-84.

C. A. Navarro, R. Carrasco, R. J. Barrientos, J. A. Riquelme, and
R. Vega, “GPU tensor cores for fast arithmetic reductions,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
72-84, 2020.

Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3D stencil
codes on GPU clusters,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization, 2012, pp. 155-164.
P. S. Rawat, M. Vaidya, A. Sukumaran-Rajam, M. Ravishankar,
V. Grover, A. Rountev, L.-N. Pouchet, and P. Sadayappan, “Domain-
specific optimization and generation of high-performance GPU code for
stencil computations,” Proceedings of the IEEE, vol. 106, no. 11, pp.
1902-1920, 2018.

O. Anjum, G. de Gonzalo Simon, M. Hidayetoglu, and W.-M. Hwu, “An
efficient GPU implementation technique for higher-order 3D stencils,”
in 2019 IEEE 2lIst International Conference on High Performance
Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). 1EEE, 2019, pp. 552-561.

K. Matsumura, H. R. Zohouri, M. Wahib, T. Endo, and S. Matsuoka,
“An5d: automated stencil framework for high-degree temporal blocking
on GPUs,” in Proceedings of the 18th ACM/IEEE International Sympo-
sium on Code Generation and Optimization, 2020, pp. 199-211.

C. Oh, Z. Zheng, X. Shen, J. Zhai, and Y. Yi, “GOPipe: a granularity-
oblivious programming framework for pipelined stencil executions on
GPU,” in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, 2020, pp. 43-54.

O. Green, R. McColl, and D. A. Bader, “GPU merge path: a GPU
merging algorithm,” in Proceedings of the 26th ACM international
conference on Supercomputing, 2012, pp. 331-340.

319

[69]

[70]

(71]

[72]

(73]

[74]

A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

T. De Matteis, G. Mencagli, D. De Sensi, M. Torquati, and M. Danelutto,
“Gasser: An auto-tunable system for general sliding-window streaming
operators on GPUSs,” IEEE Access, vol. 7, pp. 48 753-48 769, 2019.

C. Luo, Y. Fei, and D. Kaeli, “Side-channel timing attack of RSA on
a GPU,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 16, no. 3, pp. 1-18, 2019.

P. Cooke, J. Fowers, G. Brown, and G. Stitt, “A tradeoff analysis
of FPGAs, GPUs, and multicores for sliding-window applications,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 8, no. 1, pp. 1-24, 2015.

X. Yu, V. Nikitin, D. J. Ching, S. Aslan, D. Gursoy, and T. Bicer,
“Scalable and accurate multi-gpu based image reconstruction of large-
scale ptychography data,” arXiv preprint arXiv:2106.07575, 2021.

X. Yu, T. Bicer, R. Kettimuthu, and I. Foster, “Topology-aware optimiza-
tions for multi-gpu ptychographic image reconstruction,” in Proceedings
of the ACM International Conference on Supercomputing, 2021, pp.
354-366.

Authorized licensed use limited to: Washington State University. Downloaded on October 18,2021 at 17:51:05 UTC from IEEE Xplore. Restrictions apply.

