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Nitrification is a minor source of nitrous oxide (N,O) in
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1 | INTRODUCTION et al., 2012). Globally, soils are the dominant sources of both anthro-
pogenic and natural emissions of N,O, with 1.7-4.8 Tg N,O-N year’1

Nitrous oxide (N,O) is a potent greenhouse gas with a 100-year emitted by agricultural soils and 3.3-9.0 Tg N,O-N year* from soils

global warming potential ~300 times higher than CO,, and has the under natural vegetation (Ciais et al., 2013).

third largest radiative forcing among the biogenic greenhouse gases Ammonia (NH,) oxidation, the rate-limiting step of nitrification,

(Myhre et al., 2013). N,O also depletes stratospheric ozone (Revell is performed in soil mainly by aerobic ammonia-oxidizing bacteria
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(AOB) and archaea (AOA), and releases N,O during conversion of NH,
to nitrite (NO,) and nitrate (NO;). Although the recently discovered
complete ammonia oxidizers (comammox bacteria) can also produce
N,O abiotically (Kits et al., 2019), only AOB and AOA are known for
potentially significant contributions to global fluxes (Stein, 2020).
Denitrification, performed in soil mainly by heterotrophic bacteria, re-
leases N,O during the stepwise reduction of NO; to N,O and thence
dinitrogen (N,) when soils are anaerobic (Robertson & Groffman, 2021).
Additionally, under hypoxic conditions, AOB that encode nitric oxide
reductase (NorB) can reduce NO, to N,O via NO through the nitrifier
denitrification pathway (Stein, 2019). Nitrification and denitrification,
including nitrifier denitrification, occur in most soils, and understand-
ing the relative contributions of each is important for informing future
N,O mitigation potentials and strategies, and as well for constraining
uncertainties in biogeochemical models of N,O emissions.

Partitioning N,O emission pathways between nitrification and
denitrification in situ have proved historically challenging. Both aer-
obic and anaerobic microsites occur within the same soil volume
such that nitrification and denitrification often occur simultaneously
(Kuenen & Robertson, 1994; Smith, 1980). In general, three types of
approaches have been used to attribute N,O emission sources: spe-
cific inhibitors, stable isotope enrichment, and isotopomer analysis.
Specific inhibitors have mainly been used in short-term laboratory
incubations, where acetylene (C,H,) can be used to selectively in-
hibit NH, oxidation at 10 Pa and N,O reduction at 10 kPa (Robertson
& Tiedje, 1987), and 1-octyne can be used to selectively inhibit AOB
ammonia monooxygenase (AMO; Taylor et al., 2013, 2015). Isotope
enrichment approaches typically use either °N-NH; or >N-NO; to
differentiate nitrification and denitrification-derived N,O in short-
term laboratory experiments (Stevens et al., 1997). Isotopomers of
N,O reflect the differential intramolecular distribution (site prefer-
ence, SP) of 1°N at o and p positions of the N,O molecule (NP-N*-0)
and have been used to differentiate N,O sources in both the labora-
tory (Sutka et al., 2006) and field (Buchen et al., 2018; Opdyke et al.,
2009; Ostrom et al., 2010).

Though helpful for identifying biochemical pathways, the use
and interpretation of inhibitors and isotope enrichment approaches
in situ suffer from the difficulty of achieving homogeneous distribu-
tions of added compounds in intact soils with their heterogeneously
distributed microsites (Groffman et al., 2006). Artifacts of C,H, use
include further concerns of microbial C,H, consumption (Terry &
Duxbury, 1985; Topp & Germon, 1986), and as well heterotrophic ni-
trifiers are resistant to C,H, (Hynes & Knowles, 1982; Schimel et al.,
1984). >N enrichment adds additional N to soils, potentially leading
to overestimated rates of nitrification and denitrification especially
in non-agricultural soils (Baggs, 2008). The isotopomer approaches
can be confounded by the overlap of SP values among different mi-
crobial processes. For example, N,O from fungal denitrification has
an SP of 37%., which is also within the range of nitrification (hy-
droxylamine oxidation; Sutka et al., 2008). An additional limitation
of all three techniques is their short-term nature in light of highly dy-
namic soil processes known to exhibit substantial temporal variation

(Boone et al., 1999) with known effects on N,O emissions.

An alternative method for assessing the maximum potential im-
portance of nitrification versus other N,O generating processes in soil
is to combine soil-specific kinetics of nitrification-derived N,O with
long-term field N,O flux measurements. Nitrification kinetics mea-
sure a soil's existing potential to nitrify NH‘:r to N,O and NO; under
conditions unconstrained by resource limitations (Norton & Stark,
2011; Stark & Firestone, 1996), thus allowing maximum potentials for
nitrification-derived N,O emissions to be estimated. Such potentials, if
stable in time, might then be combined with field-based measurements
of N,O fluxes to allow calculation of the likely maximum percentage of
nitrification-derived N,O in relation to all other N,O sources.

Here we combine measured site-specific nitrification kinetics for
N,O production with over 25 years of field-based N,O fluxes to esti-
mate the maximum potential contribution of nitrification to N,O emis-
sions along a long-term management intensity gradient in the upper
U.S. Midwest. Our replicated ecosystems range from intensively
managed annual cropping systems to an unmanaged late successional
deciduous forest. We first use short-term laboratory incubations to
build Michaelis-Menten kinetics models of NZO—NH‘:r relationships,
and show them to be seasonally stable. Then we predict the potential
maximum nitrification-derived N,O of each ecosystem by assuming
that all microbially available (soil solution phase) NHI can be oxidized
into N,O. Finally, we use a Bayesian approach to calculate the maxi-
mum relative importance of nitrification for N,O emissions from each

ecosystem based on long-term field-based N,O fluxes.

2 | MATERIALS AND METHODS

2.1 | Studysite

This study was conducted in the Main Cropping System Experiment
(MCSE) of the Kellogg Biological Station (KBS) LTER site located in
southwest Michigan (42° 24'N, 85° 23'W). The MCSE was estab-
lished in 1988 and includes, on the same soil series, ecosystems that
form a management intensity gradient: annual cropping systems,
perennial cropping systems, and unmanaged systems at differ-
ent stages of ecological succession (Robertson & Hamilton, 2015).
Most of the ecosystems are replicated in blocks as 1 ha (90 x 110 m)
plots. KBS features a temperate climate with an average of 1005 mm
annual precipitation distributed evenly throughout the year and a
10.1°C mean annual temperature (30-year mean from 1981). Soils
are well-drained Alfisol loams (co-mingled Kalamazoo and Oshtemo
series Typic Hapludalfs), formed from glacial till and outwash with
some intermixed loess (Crum & Collins, 1995; Luehmann et al.,
2016). Average sand and clay contents in surface soils are 43% and
17%, respectively (Robertson & Hamilton, 2015).

We studied two annual cropping systems: conventionally man-
aged (Conventional) and biologically managed (Biologically-based)
corn-soybean-winter wheat rotations; a hybrid poplar system
(Poplar); and three successional systems of different ecological age:
an early successional system (Early successional), a never-tilled an-
nually mown grassland system (Grassland), and a late successional
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deciduous forest (Deciduous forest). The Biologically-based system
is certified organic but receives no compost or manure. The two an-
nual cropping systems and the Poplar and Early successional systems
are replicated in each of six randomized blocks; four were selected
for this study. The Grassland system is replicated four times and the
Deciduous forest system is replicated three times.

The Conventional agricultural system received standard rates
of N fertilizer: 137 + 20 kg N ha™ year™ for corn and 77 + 17 kg
N ha™ year‘1 for wheat (Gelfand et al., 2016). Soybeans received
<5 kg N ha™ year'®. Nitrogen fertilizer was mostly applied as urea-
ammonium nitrate (28-0-0). The Biologically-based agricultural sys-
tem received no N fertilizer; instead, winter cover crops included the
legume red clover (Trifolium pratense L.) following wheat prior to corn,
and annual rye grass (Lolium multiflorum L.) following corn prior to
soybean. Red clover was frost-seeded into wheat in March, lay dor-
mant over winter, and was terminated just prior to planting corn the
following spring. Over this period, it fixes ~35-53 kg N ha™ (Snapp
et al., 2017). Both red clover and ryegrass scavenge soil N otherwise
leached or denitrified. Tillage for both systems included chisel plowing
to a depth of 15-18 cm followed by secondary tillage. Herbicides were
used to suppress weeds in the Conventional system and additional till-
age provided weed control in the Biologically-based system.

The Poplar system was planted in 1989 to Populus x canadensis
Moench “Eugenei.” Fertilizer was applied as 123 kg N ha™* ammo-
nium nitrate in the establishment year and the first harvest was in
1999. After the second harvest in 2008 and one fallow year, Populus
nigra x P. maximowiczii “NM6” was planted in 2009. Fertilizer was
then applied once in 2011 at 157 kg N ha™* as ammonium nitrate.

The Early successional system was abandoned from agriculture
in 1989 and has been burned every spring since 1997 to exclude
woody plants. Canada goldenrod (Solidago canadensis L.), Kentucky
bluegrass (Poa pratensis L.), arrow leaved aster (Aster sagittifo-
lius), and timothy grass (Phleum pratense L.) were dominants at the
time of this study (https://Iter.kbs.msu.edu/datatables/237). The
Grassland system was established on a cleared woodlot ca. 1959
and has never been plowed, but likely received manure in the 1960s.
Grass is mown annually to inhibit woody species. Current domi-
nants include smooth brome grass (Bromus inermis Leyss.), Canada
goldenrod (Solidago canadensis L.), tall oatgrass (Arrhenatherum ela-
tius L.), blackberry (Rubus allegheniensis Porter), sassafras (Sassafras
albidum), and Kentucky bluegrass (P. pratensis L.). The late succes-
sional Deciduous forest is unmanaged and has never been cleared or
plowed. Overstory dominant species include red oak (Quercus rubra
L.), pignut hickory (Carya glabra Mill.), white oak (Q. alba L.), and sugar

maple (Acer saccharum Marsh.).

2.2 | Soil sampling

Soils were sampled seasonally for testing nitrification-derived N,O
potentials, once for nitrification-derived N,O kinetics, and once for
solution-phase NH;r partitioning. For nitrification-derived N,O po-
tentials, soils from all systems but the Grassland were sampled in

ST i v

summer (late June 2016), winter (early December 2016), and spring
(early May 2017). Grassland soils were sampled when determining
the kinetics of nitrification-derived N,O, for which samples were
collected in 2017 from all systems from early fall (late September)
to early winter (early December), after having first established no
seasonal patterns for nitrification-derived N, O potentials. For deter-
mining solution-phase NH;r partitioning, soil samples were collected
in summer (late June) 2019 in all systems. For all experiments, five
random samples were taken at either 0-15 cm (N,O potentials and
N,O kinetics experiments) or 0-25 cm (solution-phase NH;r parti-
tioning) depths and composited by field replicate. Soils were passed
through a 4 mm mesh immediately and sieved soils were stored at
4°C before analysis within 4 days.

2.3 | Nitrification potentials

To evaluate potentials for nitrification-derived N,O, 5 g of freshly
sieved soil was placed into a 155 ml Wheaton bottle amended
with 50 ml deionized water containing 10 mM NH,Cl to maximize
nitrification-derived N,O emissions (Figure 1). We used 1-octyne, a
recently developed and tested chemical inhibitor of AOB AMO to
distinguish relative contributions from AOA and AOB (Taylor et al.,
2013, 2015). We used a gradient of octyne concentrations ranging
from O to 10 uM aqueous concentration (Caq) to test for optimal in-
hibition and we found 4 uM C, sufficient to inhibit AOB in all soils
(Liang et al., 2020), which is in agreement with previous studies
(Taylor et al., 2013). Capped bottles with or without 4 uM Caq oc-
tyne were immediately placed on a shaker table and shaken for 24 h
at a constant speed of 200 rpm at room temperature (25°C). This
method inhibits denitrification-derived N,O as soil slurries are con-
tinuously aerated by high-speed shaking.

Samples for N,O were taken at 2 and 24 h and N,,O emission rates
were calculated based on N,O accumulations over 22 h. Slurry pH
was buffered naturally as no apparent pH change was detected during
the incubation. Emissions of N,O in the presence of octyne are at-
tributed to AOA. Emissions of N,O from AOB are calculated as the
difference between N,O without octyne (total nitrification-derived
N,O) minus N,O from AOA. Although comammox could also contrib-
ute to N,O emissions, recent evidence suggests that comammox plays
only a very minor role in soil nitrification (Kits et al., 2019; Robertson
& Groffman, 2021; Wang et al., 2020). N,O samples were stored over-
pressurized in 6 ml N,-flushed glass vials (Exetainers, Labco Ltd). N,O
was measured with a gas chromatograph (Agilent 7890A) coupled to
an autosampler (Gerstel MPS2XL) and equipped with a 53N electron
detector at 350°C and a Porapak Q column (1.8 m, 80/100 mesh) at
80°C (https://Iter.kbs.msu.edu/protocols/159).

2.4 | Nitrification kinetics

We placed 5 g of freshly sieved soil from each ecosystem into a
155 ml Wheaton bottle. We then added (NH,),SO, to make eight
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FIGURE 1 The kinetics of nitrification-derived N,O in soils from different systems varying in management intensities. Michaelis-Menten
models were fit to total nitrification-derived N,O emissions (blue lines) and AOB-derived N,O emissions (orange lines). Blue circles and
orange triangles are the mean N,O emissions from total and AOB-derived nitrification at each ammonium addition, respectively. Note
y-axis scale differs by system. Shaded bands represent 95% confidence intervals. Ammonium additions ranged from 0.05 and 15 mM

for Poplar and annual cropping systems because N,O accumulation at 0.01 mM could not be reliably estimated. For all other systems,
ammonium additions ranged from 0.01 to 15 mM. AOB, ammonia-oxidizing bacteria; N, O, nitrous oxide

different NH‘:r concentrations ranging from 0.01 to 15.0 mM (0.01,
0.05,0.1,0.5,1, 5, 10, and 15 mM NHI) with a final liquid volume of
50 ml. Bottles were capped and placed on a shaker table at a con-
stant speed of 200 rpm at room temperature (25°C) and shaken for
24 h. Initial N,O samples were taken after 2 h, and we then added
either 2.8 ml of octyne stock gas (see Taylor et al., 2013, for octyne
stock gas preparation) to create 4 uM Caq concentrations or 2.8 ml
of air without octyne. Another set of N,O samples were taken at
24 h. Nitrification kinetics were based on measured NH;r concentra-
tions, and included both added NH;r as well as NH‘:r produced from
net N mineralization during the incubation. NH;r concentrations
were measured by a Lachat QuikChem 8500 flow injection analyzer
(Hach).

Kinetics of nitrification-derived N,O emissions were fit to

Michaelis-Menten models using the equation:

(1)

where V is the N,O emission rate from nitrification, V,___is the max-

max

imum N,O emission rate from nitrification under conditions of un-
limited substrate (NH), S is the NH," concentration, and K is the
half-saturation constant that represents the NHL;r concentration when

the N,O emission rate from nitrification is %2 V.. V, . reflects the

ax”

maximum capacity of a soil to oxidize NH‘:r and produce nitrification-
derived N, O, and K reflects the NH‘:r affinity of soil AMO.

In addition, because nitrification can be inhibited at very high NH;r
concentrations (Suwa, 1994), we also fitted data with Haldane models

when appropriate (Koper et al., 2010; Stark & Firestone, 1996):

VinaxS

max

T K, +S+S2/K,

The Haldane model introduces a third parameter K, that reflects
the maximum NH, concentration at which nitrification-derived N,O

emissions rates are % V__ . We performed an Akaike's information

max
criterion (AIC)-based model comparison, followed by an F-test to de-
termine model superiority between Michaelis-Menten and Haldane

kinetics (Table 1).

2.5 | Insitu N,O flux, soil NH;, and soil
bulk density

We used 25 years of in situ N,O flux data (from 1991 to 2016) to
calculate the relative contribution of nitrification to N,O emissions
within each system, except for the Grassland and Deciduous forest
systems for which N,O fluxes were measured from 1992 to 2016 and
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1993 to 2016, respectively. Most of these data have been previously
published (Gelfand et al., 2016; Robertson et al., 2000). From 1991
to 2012, emissions were sampled every 2 weeks from March/April
to November/December with the static chamber method (Holland
et al., 1999). Additional winter samples were taken monthly starting
from 2013. Square chambers (29 x 29 x 14 cm high) were placed on
aluminum bases (28 x 28 x 10 cm high) semi-permanently installed
about 3 cm into soil. Gas samples were taken at approximately
20-min intervals during a 1-h sampling period. Volume-based N,O
fluxes were calculated by linearly regressing headspace N,O con-
centrations over time (ug N,O-N L™ min™), which was then further
converted to area-based N,O fluxes by accounting for the volume of
gas in the chamber and soil surface area covered by the chamber (g
N,O-N ha™? day'l; Kahmark et al., 2020). The few headspace fluxes
that exhibited nonlinearity were not used in the analysis.

Soil cores for inorganic N determinations were taken approxi-
mately biweekly after the soils thawed in the spring, usually in March
or April, and discontinued before soils froze, usually in November. Soils
were sampled to 25 cm depth from 1989 to 2016 except from 1993 to
2016 for the Deciduous forest system. Soil was sieved through a4 mm
sieve and 10 g of fresh soil were extracted with 100 ml 1 M KCI to
determine NH4+ concentrations. Soil bulk density (0-10 cm depth) was
measured in 2013 when collecting deep core soil samples to a depth of
1 m with a hydraulic probe. Soil was sieved through a 4 mm sieve and
then oven-dried at 60°C for 48 h. When present, the weight of gravel
(>4 mm) was recorded separately and then discarded. The gravel-free
bulk density was calculated as the dry mass of the soil (without gravel)

divided by the volume of the core.

2.6 | Microbially available (solution phase) soiINH;r

We partitioned long-term KCl extracted soil NH;’ poolsinto sorbed-

phase (srtNH,) and solution-phase (sINH}) pools by performing an

oo, MOEMIE

NH;r sorption capacity assay modified from Venterea et al. (2015).
We assume only sINH;r is available to soil nitrifiers. Briefly, for each
ecosystem, we added 10 g of sieved fresh soils into 100 ml of water
containing an NH;r gradient ranging from 0 to 50 mg NHI-N Lo,
5, 10, 20, 30, 40, and 50 mg NH;-N L™ generated by (NH,),SO,
addition). Mixtures were shaken on an orbital shaker table at a con-
stant speed of 100 rpm at room temperature (25°C) for 18 h. We
centrifuged 10 ml aliquots at 10,000 g at room temperature (25°C)
for 15 min. NH;’—N was then analyzed by flow injection analysis as
above after filtering aliquots through a 1 mm glass fiber filter. We
calculated sfNH, as the difference between added NH, (addNH;
) and the sINH} (measured as above) accounting for soil NH, con-
tents (soilNH;):

s0ilNH;" = NHf,., = NH.f, 3

srNH; = addNH; - sINH,; + soilNH; (whenaddNH; > 0) (4)
srNH;" = s0ilNH, (whenaddNH; = 0) (5)

where NHIKCI is the 1 M KCI extractable NH‘:r concentrations and
NH, is the water extractable NH," concentrations at O NH,-N L'! ad-
dition. The relationship between stNH, (mg N kg™!) and sINH (mM) is

usually described by a Langmuir model:

.
srNH, = JxsINH, ©)
K+ sINH

where u (mg N kg™ is the maximum NH;r content adsorbed by soil and
K (mM) is the NH;r concentration in solution phase at which erH;r is
% u. We modeled and plotted stNH," against sINH,/ (Figure S1), which
allows one to convert total KCl-based soil NH;r values into sINH;’ for

every NH‘:r soil measurement taken between 1989 and 2016.

TABLE 1 Comparisons between Michaelis-Menten and Haldane kinetics models for total or AOB-derived N,O emissions from

nitrification

Ecosystem? Nitrification AIC® (Michaelis-Menten) AIC® (Haldane) F-value® p-value®

Poplar Total 111 113 0.188 0.668
AOB 105 106 0.488 0.491

Early successional Total 143 144 0.134 0.718
AOB 130 131 1.13 0.298

Grassland Total 279 28.1 1.70 0.202
AOB 30.2 30.6 1.50 0.233

Deciduous forest Total 109 111 0.001 0.980
AOB 106 108 0.049 0.827

Abbreviations: AIC, Akaike information criterion; AOB, ammonia-oxidizing bacteria; N,O, nitrous oxide.

2Data from Conventional and Biologically-based systems were not fit to Haldane models because no signs of inhibition of nitrification-derived N,O

were found.
®Models with lower AIC were considered superior.

“Models were also compared based on F-test. A p-value > .05 supports the minimal model as the adequate model.
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2.7 | Statistical analysis
2.71 | ANOVA for seasonal nitrification-
derived N,O

We converted gravimetric N,O emissions from the nitrification
potential experiment into areal N,O emissions based on soil depth
(15 cm) and bulk density:

N2Oarea = N2Omass x DP x % (7)
where N,O
pressed as ng N,O-N g ! dry soil day™, DP is the soil depth in cm, and

is expressed as g N,O-N ha™ day™ and N,O, __ is ex-

area mass

BD (0-10 cm depth) is the bulk density expressed as g cm™.

Potentials for nitrification-derived N,O were analyzed with PROC
GLIMMIX of SAS 9.4 (SAS Institute). The statistical model included 5
ecosystem types x3 seasons x 2 sources of nitrification-derived N, O,
and the interaction among them was considered fixed factors. Field
replicates nested within ecosystem types and the interaction between
field replicates and seasons nested within ecosystem types were con-
sidered random factors. Analysis of variance (ANOVA) was performed
by considering ecosystem types as a whole plot factor and season and
sources of nitrification-derived N,O as subplot and sub-subplot fac-
tors. Homogeneity of variance assumptions was checked by Levene's
test and normality of residuals was visually inspected. No violations
of assumptions were detected. Pairwise comparisons among different
ecosystems were conducted and we refer to p < .05 (two-sided) as

significantly different throughout the paper.

2.7.2 | Model comparisons and kinetic parameters

Total or AOB-derived N,O emissions from nitrification were fit to
both Michaelis-Menten and Haldane kinetics models. We first used
the “nls” function in R (version 3.5.0; R Core Team, 2020) to obtain

AIC values for each kinetics model. Then we conducted an F-test

TABLE 2 AIC of field-based nitrous oxide fluxes from different
ecosystems fitted with different distributions

Distribution
Ecosystem Log-normal Gamma  Weibull Normal
Conventional 4602 5038 4915 7922
agriculture
Biologically- 5030 5489 5344 8629
based
agriculture
Poplar 2303 2881 2659 6378
Early 2591 2804 2808 4392
successional
Grassland 1733 1872 1865 3106
Deciduous forest 2452 2690 2648 4687

Abbreviation: AIC, Akaike information criterion.

to further determine model superiority using the “anova” function.
Models with lower AIC were considered superior, and a p-value > .05
supports the minimal model (Michaelis-Menten) as the adequate
model (Table 1). Once the appropriate kinetics model (Michaelis-
and K for total and AOB-derived N,O
emissions from nitrification for each ecosystem were estimated by
the “nls” function (Table 3).

Menten) was selected, V..

2.7.3 | Distribution for field N,O fluxes

In situ N,O fluxes typically show a highly skewed distribution with
a long tail of high values, which makes constraining the range of the
mean fluxes challenging (Cowan et al., 2017). N,O emissions can be
assumed proportional to the product of the interactions of multiple
biological and environmental variables such as population sizes and
activities of soil nitrifiers and denitrifiers, soil moisture, soil temper-
ature, soil inorganic N contents, and soil oxygen status. Thus, we
consider multiplicative processes to influence N,O emissions, which

follow log-normal distributions (Limpert et al., 2001):
Fi,0 ~ lognorm (x,s?) (8)

where X and s are the mean and standard deviation of log-transformed

N,O emissions, respectively.

The mean of a log-normal distribution (without log-
transformation) is usually described as follows:
— 52
u=exp|(x+ 5) 9)

TABLE 3 Michaelis-Menten kinetic parameters of total or AOB-
derived N,O emissions from nitrification. V. represents maximum
nitrification-derived N,O emissions (g N,O-N ha™ day™) and K.,
represents half saturation constant (mM). Numbers within the

parentheses represent standard errors

Ecosystem Nitrification Vax K.,
Conventional Total 12.7 (0.6) 0.20(0.06)
agriculture AOB 11.4(0.6) 0.24 (0.06)
Biologically- Total 15.1 (1.2) 0.079 (0.042)
e AOB 13.8(1.3)  0.088(0.056)
agriculture
Poplar Total 3.48 (0.40) 0.025(0.019)
AOB 2.92(0.36)  0.033(0.026)
Early successional  Total 4.54(0.52) 0.009 (0.008)
AOB 3.31(0.47) 0.012(0.011)
Grassland Total 1.59 (0.08) 0.012 (0.004)
AOB 0.49 (0.09)  0.002 (0.002)
Deciduous forest Total 4.12(0.61) 0.031 (0.026)
AOB 3.01(0.58)  0.042(0.045)

Abbreviations: AOB, ammonia-oxidizing bacteria; N, O, nitrous oxide.
’K,, value was estimated by constraining estimate >0.
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Here, we estimated log-normal means of N,O fluxes using a
Bayesian approach by evaluating the parameters in Equation (9). We
chose vague prior probability distributions to reduce their impact on
the inference.

Although fitting log-normal distributions for N,O fluxes makes
biological and theoretical sense, there are other distributions that
describe continuous positive data with large variances well. Thus,
we also fit N,O data with other candidate distributions including
Gamma and Weibull distributions using the “fitdistrplus” package for
R (Delignette-Muller & Dutang, 2015; Table 2).

2.74 | Estimation of contributions from nitrification

Similar to N,O emissions from nitrification potentials, before fitting
Michaelis-Menten models we converted gravimetric N,O emissions
from each nitrification kinetics experiment into areal N,O emissions
using Equation (7) based on soil depth (15 cm) and bulk density.
We then used the “nls” function in R (version 3.5.0; R Core Team,
2020) to estimate V. .« and K. and their associated standard errors,
which were then specified as prior information when we conducted
a Markov Chain Monte Carlo simulation to sample posterior param-
eter distributions with the “jagsUl” package (Kellner, 2017) for R. We
ran three chains of 15,000 iterations with 2000 burn-in iterations
with a thinning rate of three, which yielded 13,002 total samples for

posterior distribution.

S v

Based on the Michaelis-Menten model, we developed for each
ecosystem, long-term solution-phase NH‘:r data were applied to
predict maximum potential N,O emissions from nitrification. The
potential maximum contribution of nitrification to total N,O was
estimated with the mean of the predicted nitrification-derived N,O
divided by the log-normal mean of field N,O measurements for
Conventional, Biologically-based, Poplar, Grassland, and Deciduous
forest systems. Because the contribution from nitrification cannot
be >100%, we constrained our analysis with contributions ranging
between 0 and 1. Overall, over 96% of the posterior distributions for
contributions from total nitrification and over 99% of the posterior
distributions for contributions from AOB-derived nitrification were

included.

3 | RESULTS

3.1 | Seasonal N,O emissions from nitrification
potential

Across all seasons examined, soils from the Conventional and
Biologically-based annual cropping systems had the highest
nitrification-derived N,O potentials (Figure 2), ranging from 17.6 to
24.8 and from 13.1 to 24.6 g N,O-N ha™ day ™", respectively. In com-
parison, Deciduous forest soils exhibited the lowest total and AOB-
derived N,O potentials: 2.39 + 0.67 (standard error of the mean)
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FIGURE 2 Seasonal potential N,O production from nitrification (total or AOB-derived) across a management intensity gradient. Bars
represent standard errors (for total, n = 4 except deciduous forest n = 3; for AOB, n = 3-4 except deciduous forest n = 2-3). No significant
differences among seasons were detected (p = .30). AOB, ammonia-oxidizing bacteria; N,O, nitrous oxide
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and 2.98 + 1.28 g N,O-N ha™ day™, respectively, for spring, and
1.56 +0.60 and 2.93 + 0.60 g N,O-N ha™ day™ for winter. Although
seasonal nitrification-derived N,O potentials from the Conventional
and Biologically-based systems were significantly higher than from
the Early successional or Deciduous forest (p < .05) systems, the
differences between the two agricultural systems were not signifi-
cant (p > .30) for two out of three seasons. Similarly, N,O potentials
via nitrification were generally indistinguishable among Poplar, Early
successional, and Deciduous forest systems (p > .15) in any given
season.

No significant overall seasonal differences of nitrification-
derived N,O potentials were observed (p = .30, Figure 2). There
were also no significant interaction effects between sources of
N,O and seasons (p = .76) nor interactions among ecosystem types,
sources of N,O, and seasons (p=.73).

3.2 | Kinetics of nitrification-derived N,O

Michaelis-Menten models fit nitrification-derived N,O data well
(Figure 1; Table 1). The Conventional and Biologically-based crop-
ping systems exhibited the highest values of V,__ (Table 3), ranging
from 12.7 to 15.1 g N,O-N ha™ day™ for total nitrification-derived
N,O, and 11.4 to 13.8 g N,O-N ha™ day " for AOB-derived N,O. The
Grassland system had the lowest V, _ , 1.59 + 0.08 N,O-N haday™
and 0.49 + 0.09 g N,O-N ha™ day™ for total and AOB-derived

N,O, respectively, followed by Poplar but with a V,__ 2-6 times
higher than the Grassland system. V, . for Early successional and
Deciduous forest systems were similar, ranging from 3.01 to 3.31
and 4.12 to 4.54 g N,O-N ha™ day™* for AOB and total nitrification-
derived N,O, respectively.

K., values indicate how quickly NH‘:r saturates nitrification-
derived N,O (Table 3). The Conventional agricultural system had
the highest K for both total and AOB-derived N,O, reaching
0.20 +0.06 and 0.24 + 0.06 MM NHI, respectively, which was about
2.5 times higher than the Biologically-based system, and 5-20 times
higher than for all other systems.

3.3 | Therelative importance of AOA and AOB for
nitrification-derived N,O

Based on the posterior distributions of V. we found that com-

max’
pared to AOA, AOB were the major contributors to nitrification-
derived N,O in most soils, accounting for more than 70% of total
nitrification-derived N,O (Figure 3) in all but the Grassland system,
where the contribution from AOB averaged only 32 + 4%. In addi-
tion, there was a decreasing trend of AOB’s contribution to N,O
along the management gradient: about 90% of the nitrification-
derived N,O was from AOB in row crop systems, whereas in the
Early successional and Deciduous forest systems, AOB’s con-

tribution decreased to about 70% of total N,O. Concomitantly,
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FIGURE 3 Relative contributions of AOA and AOB to nitrification-derived N,O emissions in systems that differ in management
intensities. Contributions from AOB (%, orange) were calculated with posterior distributions of V... derived from Michaelis-Menten
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the contribution of AOA to nitrification-derived N,O generally
increased from the intensively managed row crop to unmanaged

Grassland and Deciduous forest.

3.4 | Contribution of nitrification to long-term
N,O emissions

Among all ecosystems, row crop systems appear to have the lowest
maximum potential N,O contributed from nitrification. The percent-
age of 25th-75th posterior intervals from nitrification, assuming all
soil NH‘;r is available only to nitrifiers, ranged between 13.1% and
16.7% for the Conventional agricultural system and 27.4%-41.6%
for the Biologically-based system (Figure 4a). For the Poplar and
Grassland systems, a maximum potential of 52.0% and 54.8%
of field-based N,O fluxes can be attributed to nitrification. The
Deciduous forest system was associated with the highest maximum
potential contribution from nitrification, with the percentage of
25th-75th posterior intervals ranging between 51.2% and 76.9% for
total nitrification-derived N,O and 27.2%-49.6% for AOB-derived
N,O (Figure 4a,b). For all ecosystems, the median maximum poten-
tial contributions of AOB to N,O were below 40%, ranging from
11.4% to 36.4% (Figure 4b).

4 | DISCUSSION

Soils from different ecosystems showed distinct patterns of
Michaelis-Menten kinetics for nitrification-derived N,O emissions,

ST v

with highest and lowest V. and K observed in the row crop and
the Grassland ecosystems, respectively. Combining kinetic param-
eters with 25 years of in situ N,O flux and solution-phase in situ soil
NHL;r measurements suggests that nitrification is a minor source of
N,O in these ecosystems. Results also show AOB rather than AOA
are the dominant source of nitrification-derived N,O in all ecosys-

tems but the mown grassland.

4.1 | Seasonal nitrification-derived N,O emissions
from AOA and AOB

Seasonal nitrification-derived N,O potentials from AOB were 5-26
times higher than from AOA in Conventional and Biologically-based
systems (Figure S2), suggesting a greater capacity of AOB for emit-
ting nitrification-derived N,O from agricultural soils. Wang et al.
(2016) have also reported the dominance of AOB over AOA for N,O
produced in soils amended with inorganic ammonium fertilizer, al-
though their study was conducted in static microcosms rather than
in microcosms on shaker tables, so results could have been con-
founded by nitrifier denitrification since hypoxic conditions can de-
velop in soil aggregates during static incubations (Lu et al., 2018;
Stein, 2019).

Taken together, results suggest that low soil ammonium, in
unfertilized systems derived primarily from soil organic matter
mineralization, promotes a greater relative contribution of AOA
to nitrification-derived N,O as also found by Hink et al. (2018).
Additionally, nitrifier community compositions in unfertilized
systems could be very different from row crop systems, which,
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FIGURE 4 Contribution of nitrification to N,O production. Maximum relative contributions of (a) total nitrification and (b) AOB-derived
nitrification to long-term field N,O emissions in systems that differ in management intensities assuming all solution-phase in situ ammonium
is oxidized and no nitrification-derived N,O is reduced. Field-based N,O fluxes were estimated assuming log-normal distributions. Vertical
lines indicate the median contribution for each system. Values in parentheses indicate the 25th-75th posterior intervals, respectively. Note
that the Early successional system is not included as 95% of the posterior nitrification-derived N,O was higher than the field fluxes. AOB,

ammonia-oxidizing bacteria; N,O, nitrous oxide
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in turn, could affect relative N,O production. Upon fertilization,
nitrifier community composition appears to favor AOB and in
particular Nitrosospira spp., with no similar consistent changes
in AOA vyet identified (Bertagnolli et al., 2016; Kong et al.,,
2019; Phillips et al., 2000; Wu et al., 2011; Xue et al., 2016).
Soil Nitrosospira spp. have been shown to positively respond to
urea and as well are associated with increased N,O emissions
(Cassman et al., 2019).

The absence of seasonal effects suggests that the composi-
tion and capacity for soil nitrifiers to produce N,O remain rea-
sonably constant throughout any given year. These findings are
consistent with a year-round metagenomic study reporting re-
markably stable nitrifier community composition and abundance
in a US Midwest agricultural soil (Orellana et al., 2018). Similarly,
both abundance and community structure of amoA genes of AOA
and AOB have been shown to be stable across seasons in two
acid forest soils (Qin et al., 2019). Thus, it seems reasonable to
conclude that long-term management practices in our ecosys-
tems have selected soil nitrifier populations that are adapted to
seasonal environmental fluctuations such as soil temperature
(Séneca et al., 2020).

4.2 | Theresponses of N,O kinetics to
management intensities

The Conventional and Biologically-based agricultural systems were
associated with the highest values for V,_  and K, suggesting a
greater capacity of row crop soils to emit nitrification-derived N,O
thansoilsfrom our other systems. Notably, the Biologically-based sys-
tem had asimilar vV, butlower K, compared with the Conventional
system. This difference may be because in the Biologically-based
system, the slower-paced release of NH;r from decomposing cover
crop and other residues has selected nitrifier communities with high
NH, affinities (Hink et al., 2017, 2018) and less tolerance for high
NH‘:r input as compared to nitrifiers from the Conventional system.
Thelow V,__ and K in Early successional, Grassland, and Deciduous
forest systems may reflect their histories of no fertilizer inputs, re-
sulting in a low capacity to produce nitrification-derived N,O even
under substrate-unlimited conditions.

Existing studies of nitrification kinetics have mainly focused on
the effects of NH‘:r onNO; + NO; accumulation. Koper et al. (2010)
reported that the V,__of soils receiving ammonium sulfate at 200 kg
N per hectare for 6 years was about twice higher than the V. of non-
fertilized soils, but no significant differences in K were detected. It is
possible that substrate affinity responds to fertilizer more slowly than
maximum nitrification rate. In addition, although V__ and K., of AOB
and total nitrification could be boosted significantly within a month of
fertilization, they can also decline rapidly within 3 months of fertilizer
application (Ouyang et al., 2017). Together, these results suggest that
long-term management practices shaped differences in V,__ and K|

responses among ecosystems varying in management intensity.

4.3 | Contribution of AOAand AOBtoV,
along the management intensity gradient

We used a Bayesian approach to calculate the relative contributions
of AOA versus AOB to nitrification-derived N,O based on posterior
distributions of V, _ for each ecosystem, which is different from the
traditional method of separating AOA from AOB based on 1 mM NH;r
addition (Lu et al., 2015; Ouyang et al., 2016; Taylor et al., 2010). As
noted earlier, 1 mM NH‘;r additions did not always yield the highest
N,O emissions in our systems (Figure 1), especially for agricultural
soils. Thus, partitioning sources of nitrification-derived N,O with
V,.ax derived from substrate kinetics aligns with the concept of ni-
trification potential assays, which reflect the maximum nitrification-
derived N,O from nitrifier communities (Norton & Stark, 2011).

The declining importance of AOB to N,O production along the
management intensity gradient likely reflects different strategies of
soil nitrifiers’ responding to different agronomic practices. First, the
Conventional system constantly receives high N inputs, which favor
AOB activity or population size in agricultural soils (Habteselassie
et al.,, 2013; Jia & Conrad, 2009; Shen et al., 2008; Taylor et al.,
2010, 2013). In contrast, AOA’s contribution is more important in
systems where the major NH;r source is via decomposition of soil
organic matter. Thus, the speed of NH4+ supply to soil seems import-
ant for shaping the dynamics of AOA versus AOB N,O-generating
activities. Indeed, Hink et al. (2018) observed that AOA dominated
nitrification-derived N,O in incubated soils receiving slow-release
fertilizer instead of free urea.

A second major difference between row crop and unfertil-
ized systems is the history of tillage. Both the Conventional and
Biologically-based systems have been either moldboard or chisel-
plowed since well before 1988. In contrast, the Early successional
and Poplar systems have been untilled since 1989 and the Deciduous
forest and Grassland systems have never been tilled. Tillage accel-
erates soil organic matter turnover, which results in more pulse-like
releases ofNHI in soil compared with non-tilled systems. As a result,
AOB likely also outcompetes AOA following tillage-induced pulses
of NH,.

The dominance of AOA for nitrification-derived N,O in the
Grassland system seems anomalous and might be attributed to dif-
ferential inhibition of AOB versus AOA induced by root-released ni-
trification inhibitors known to occur in at least one grass species.
While we have no direct evidence of inhibitors produced by grasses
in our study sites, in a 3-year field study, Subbarao et al. (2009)
showed that brachialactone, a root exudate isolated from the forage
grass Brachiaria sp., inhibited 90% of in situ NH‘:r oxidation and over
90% of cumulative N,O emissions in a tropical pasture. Moreover,
the inhibition seemed to be specific to AOB rather than AOA.
Historically, among all of our ecosystems, the Grassland system has
always had the highest monthly soil NH;r concentrations and exhib-
ited the lowest relative nitrification potentials (Millar & Robertson,
2015). Since root exudates of Bromus spp., a dominant species in

the Grassland system, have been reported to significantly inhibit
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nitrification in vitro in both AOB culture and whole soils (O'Sullivan

et al., 2017), we suspect AOB inhibition in the Grassland system.

4.4 | Long-term contribution of nitrification to in
situ N, O fluxes

Seasonally stable nitrification-derived N,O fluxes allow us to apply
kinetics models to predict potential maximum N,O emissions from
nitrification and, subsequently, the theoretical maximum relative
contribution of nitrification to field-based N,O emissions assuming
nitrifiers has exclusive access to solution-phase NHI. Since the ki-
netics results are based on aerobic incubations of shaken soil slurries
that eliminate both N,O reduction and N,,O from nitrifier denitrifica-
tion (Wrage et al., 2001; Wrage-Ménnig et al., 2018), N,O rates can
be considered nitrifier nitrification rather than nitrifier denitrifica-
tion, and when applied to historical solution-phase in situ NH4+ pools,
reveal maximum potential nitrification-derived N,O in situ.

An important consideration in whole-soil kinetic assays is that
they ignore the likelihood that some taxa will be nitrifying at rates
lower than their maximum possible as nitrifiers exhibit significant
phylogenetic and physiological diversity (Hazard et al., 2021). That
said, whole-community incubations under laboratory conditions
that favor nitrification in general, allow us to identify the maximum
likely rates of whole-soil nitrification, were such conditions possible
in the field. So though our controlled laboratory conditions might
be suboptimal for some taxa, the assay overall seems a reasonable,
conservative proxy for obtaining maximum whole-community nitri-
fication rates under different substrate conditions.

The finding that total nitrification contributed a theoretical max-
imum of 13%-17% of field-based N,O fluxes in the Conventional
agricultural system suggests that nitrification is unlikely to be a sig-
nificant source of N,O in long-fertilized systems. That a theoretical
maximum of only 27%-42% of field-based fluxes were nitrification-
derived in the Biologically-based system suggests that nitrification
is likewise unlikely to be a dominant N,O source in even unfertil-
ized annual cropping systems. Using N,O SP analysis, Opdyke et al.
(2009) and Zou et al. (2014) reported a small role for nitrification in
N,O produced by agricultural soils (including ours), although these
studies were short-term snapshots. Similarly, AOB-derived nitrifica-
tion is unlikely to be the major process leading to N,O production in
any of our ecosystems regardless of management. These results are
also consistent with Buchen et al. (2018), who also used SP in situ
to suggest that >80% of N,O can be attributed to denitrification
(whether heterotrophic or nitrifier-derived) in managed grasslands.

Since our Michaelis-Menten models were necessarily developed
under laboratory conditions that favored nitrification, the calculated
contributions of nitrification to N,O reflect maximum in situ poten-
tials that assume all solution-phase NH;’ is available exclusively to
nitrifiers and no nitrification-derived N,O is further denitrified to
N,. Neither of these assumptions are realistic in situ. Soils are rarely

completely aerobic, and even if in situ nitrification emitted N,O

oo, NSRS

equivalent to the amount from shaken soil slurries, some of the N,O
will be captured by denitrifiers and reduced to N, before being emit-
ted to the atmosphere (Decock & Six, 2013; Lewicka-Szczebak et al.,
2017; Shcherbak & Robertson, 2019).

Malhi and McGill (1982) estimated that the daily maximum NH;r
-N oxidation rate is <10% of available NH,-N (100 pg N g ) based on
laboratory incubations. Prosser et al. (2020) reported pure culture
N,O yields for AOB and AOA to be only 0.1%-8% and 0.04%-0.3%,
respectively, although a greater diversity of nitrifiers in situ (Amann
et al.,, 1995) will reflect a wider range. Hence, our assumption of
100% of daily NH‘:r is oxidized and consequently eligible for transfor-
mation to N,O is undoubtedly an overestimate by a factor of 10 to
100 or more. That said, our conclusion of nitrification being a minor
source of N, O in these ecosystems is conservative by nature. Actual
contributions of nitrification to measured N,O fluxes in situ are likely
to be only 0.1%-10% of the potential maximum rates we identify.

By way of example, the least-constrained nitrifier contribution to
N,O fluxes was measured in Early successional and Deciduous for-
est soils where 51%-77% of total N,O fluxes might potentially derive
from nitrification in the Deciduous forest system (Figure 4a), and
over 95% of the predicted nitrification-derived N,O was higher than
the field fluxes in the Early successional system. But here, perhaps
especially, the extrapolation assumptions seem severe. The Early
successional and Deciduous forest soils have high concentrations of
macroaggregates (2000-8000 um; Grandy & Robertson, 2007) and
thus a larger volume fraction of anoxic centers (Schliter et al., 2018),
which contribute to high measured denitrification rates (Robertson
& Tiedje, 1984). So even in our systems with the greatest percentage
of N,O contributed by nitrifiers based on Michaelis—-Menten kinet-
ics, actual results will be but a fraction.

Overall, we conclude that nitrification is a minor source of N,O
emissions in all of the systems examined. This finding has significant
implications for biogeochemical N,O flux models that assume a sig-
nificant fraction of emissions are nitrifier derived (e.g. Parton et al.,
2001). Our findings further suggest that taxa-specific N,O mitiga-
tion might better target processes other than nitrification, except
insofar as nitrification makes nitrate available to denitrifiers.
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R scripts for estimating the log-normal mean and the maximum contribution of
nitrification to in situ N,O fluxes

library(jagsUI)
library(fitdistrplus)

#First, estimate parameters for log-normal distribution
# file namel is the positive long-term in situ N2O fluxes
N20O_In<- fitdist(file namel1$N20,"Inorm")

#Second, estimate parameters for Michaelis-Menten equations
# file name2 and file name3 are the total and AOB-derived N2O from nitrification
P1 _total parm<-nls(n2o~ a*amo/(b + amo),data= file_name2,start = list(a=10,b=.5),
algorithm = "port", trace = F, na.action = na.omit, model=T,
control = nls.control(maxiter = 1000, warnOnly = F))
P1_aob_parm<-nls(n20~ a*amo/(b + amo),data= file name3,start = list(a=10,b=.5),
algorithm = "port", trace = F, na.action = na.omit, model=T,
control = nls.control(maxiter = 1000, warnOnly = F))

#Third, estimate the maximum contribution of nitrification to total N2O fluxes
sink("your file name.txt")
cat("

model {

# Likelihood-N20

for(1in1:Q) {

y[i] ~ dlnorm( muOfLogY, 1/sigmaOfLogY"2)

h

# Likelihood-nitrification-total

for (k in 1:M) {

mu[k] <- al *ammonia[k]/(b1+ammonia[k])
n[k] ~ dnorm(mu[k],tau0)

n.p[k] ~ dnorm(mu[k],tau0)

h

# Likelihood-nitrification-aob

for (j in 1:N) {

c[j] <- a2*ammonial[j]/(b2+ammonial[j])
nl[j] ~dnorm(c[j],tauc)

nl.p[j] ~dnorm(c[j],tauc)

}

# Priors
sigmaOfLogY ~ dunif( 0.001*sdOfLogY , 1000*sdOfLogY)
muOfLogY ~ dnorm(meanOfLogY, 1/(10*sdOfLogY)"2)

4



al ~ dnorm (meanl ,taul)
bl ~ dnorm (mean2,tau2)
a2 ~ dnorm (mean3,tau3)
b2 ~ dnorm (mean4,tau4)
tau0 <- 1/(sigma0*sigma0)
tauc <- 1/(sigmac*sigmac)
taul <- 1/(sigmal*sigmal)
tau2 <- 1/(sigma2*sigma2)
tau3 <- 1/(sigma3*sigma3)
taud <- 1/(sigmad*sigma4)
sigma0 ~ dunif(0,5)
sigmac ~ dunif(0,5)

# Derived quantities
muOfY <- exp(muOfLogY+sigmaOfLogY"2/2)
for (min 1:P) {
nitri_total[m]<- al*x[m]/(b1+x[m])
nitri_aob[m]<- a2*x[m]/(b2+x[m])}
total avg <- mean(nitri_total[])
aob_avg <- mean(nitri_aob[])
con_totall <- total avg/muOfY
con_aobl <- aob_avg/muOfY
major_aob <- a2/al
}
" fill=TRUE)

sink()

#jags data

jags.data <- list(y = file_ name1$N20,
Q = length(file_name1$N20),
ammonia= file name2$amo,
ammonial= file name3$amo,
n = file_name2$n2o,
nl = file_ name3$n2o,
M = nrow(file_name?2),
N = nrow(file_name3),
x = file_name4$ Ammonia,
#file_name4 is the in situ long-term solution-phase NH4" concentrations
P = nrow(file name4),
meanOfLogY = N20O InS$estimate[1],
sdOfLogY = N20 InS$estimate[2],
meanl=coef(summary(P1_total parm))[1,1],
mean2=coef(summary(P1 _total parm))[2,1],
mean3=coef(summary(P1_aob parm))[1,1],
meand=coef(summary(P1 _aob parm))[2,1],
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sigmal=coef(summary(P1 total parm))[1,2],
sigma2=coef(summary(P1_total parm))[2,2],
sigma3=coef(summary(P1_aob_parm))[1,2],
sigma4=coef(summary(P1_aob parm))[2,2])

# Initial values

inits <- function() list(al=runif(1, 8, 10),
bl=runif(1, 0.1, 0.3),
a2=runif(1, 8, 10),
b2=runif(1, 0.1, 0.3),
sigmaOfLogY=1)

# Parameters monitored
params <- c¢("al", "b1","a2", "b2","total avg","aob avg","muOfY","con totall",
"con_aobl","major_aob")

# MCMC settings

ni <- 15000

nt <-3

nb <- 2000

nc <-3

max_contribution <- jags(jags.data, inits, params, "your file name.txt ", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb)



