
Quantum Algorithms for Escaping from Saddle Points
Chenyi Zhang∗1, Jiaqi Leng∗2, and Tongyang Li†3,4,5

1Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
2Department of Mathematics and Joint Center for Quantum Information and Computer Science, University of
Maryland, College Park, MD, USA

3Center on Frontiers of Computing Studies, Peking University, Beijing, China
4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
5Department of Computer Science and Joint Center for Quantum Information and Computer Science, University of
Maryland, College Park, MD, USA

We initiate the study of quantum algorithms for escaping from saddle points
with provable guarantee. Given a function f : Rn → R, our quantum algorithm
outputs an ε-approximate second-order stationary point using Õ(log2(n)/ε1.75)1

queries to the quantum evaluation oracle (i.e., the zeroth-order oracle). Com-
pared to the classical state-of-the-art algorithm by Jin et al. with Õ(log6(n)/ε1.75)
queries to the gradient oracle (i.e., the first-order oracle), our quantum algorithm
is polynomially better in terms of log n and matches its complexity in terms of 1/ε.
Technically, our main contribution is the idea of replacing the classical perturba-
tions in gradient descent methods by simulating quantum wave equations, which
constitutes the improvement in the quantum query complexity with log n factors
for escaping from saddle points. We also show how to use a quantum gradient
computation algorithm due to Jordan to replace the classical gradient queries by
quantum evaluation queries with the same complexity. Finally, we also perform
numerical experiments that support our theoretical findings.

1 Introduction
Nonconvex optimization is a central research topic in optimization theory, mainly because
the loss functions in many machine learning models (including neural networks) are typically
nonconvex. However, finding a global optimum of a nonconvex function is NP-hard in general.
Instead, many theoretical works focus on finding local optima, since there are landscape results
suggesting that local optima are nearly as good as the global optima for many learning prob-
lems [11, 35–38, 43]. On the other hand, it is known that saddle points (and local maxima)
can give highly suboptimal solutions in many problems [45, 65]. Furthermore, saddle points
are ubiquitous in high-dimensional nonconvex optimization problems [16, 29, 33].

*Equal contribution.
†Corresponding author. Email: tongyangli@pku.edu.cn
1The Õ notation omits poly-logarithmic terms, i.e., Õ(g) = O(g poly(log g)).

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

00
7.

10
25

3v
3

 [q
ua

nt
-p

h]
 1

9
A

ug
 2

02
1

https://quantum-journal.org/?s=Quantum%20Algorithms%20for%20Escaping%20from%20Saddle%20Points&reason=title-click

Therefore, one of the most important problems in nonconvex optimization is to escape from
saddle points. Suppose we have a twice-differentiable function f : Rn → R such that

• f is `-smooth: ‖∇f(x1)−∇f(x2)‖ ≤ `‖x1 − x2‖ ∀x1,x2 ∈ Rn,

• f is ρ-Hessian Lipschitz: ‖∇2f(x1)−∇2f(x2)‖ ≤ ρ‖x1 − x2‖ ∀x1,x2 ∈ Rn;

the goal is to find an ε-approximate local minimum xε (also known as an ε-approximate
second-order stationary point) such that2

‖∇f(xε)‖ ≤ ε, λmin(∇2f(xε)) ≥ −
√
ρε. (1)

Intuitively, this means that at xε, the gradient is small with norm being at most ε, and the
Hessian is close to be positive semi-definite with the smallest eigenvalue being at least −√ρε.

There have been two main focuses on designing algorithms for escaping from saddle points.
First, algorithms with good performance in practice are typically dimension-free or almost
dimension-free (i.e., having poly(log n) dependence), especially considering that most machine
learning models in the real world have enormous dimensions. Second, practical algorithms
prefer simple oracle access to the nonconvex function. If we are given a Hessian oracle of f ,
which takes x as the input and outputs ∇2f(x), we can find an ε-approximate local minimum
by second-order methods; for instance, Ref. [61] took O(1/ε1.5) queries. However, because the
Hessian is an n × n matrix, its construction takes Ω(n2) cost in general. Therefore, it has
become a notable interest to escape from saddle points using simpler oracles.

A seminal work along this line was by Ge et al. [35], which can find an ε-approximate local
minimum satisfying (1) only using the first-order oracle, i.e., gradients. Although this paper
has a poly(n) dependence in the query complexity of the oracle, the follow-up work by [46]
achieved to be almost dimension-free with complexity Õ(log4(n)/ε2), and the state-of-the-
art result takes Õ(log6(n)/ε1.75) queries [48]. However, these results suffer from a significant
overhead in terms of log n, and it has been an open question to keep both the merits of using
only the first-order oracle as well as being close to dimension-free [49].

On the other hand, quantum computing is a rapidly advancing technology. In particular,
the capability of quantum computers is dramatically increasing and recently reached “quantum
supremacy” [63] by Google [7]. However, at the moment the noise of quantum gates prevents
current quantum computers from being directly useful in practice; consequently, it is also
of significant interest to understand quantum algorithms from a theoretical perspective for
paving its way to future applications.

In this paper, we explore quantum algorithms for escaping from saddle points. This is a
mutual generalization of both classical and quantum algorithms for optimization:

• For classical optimization theory, since many classical optimization methods are physics-
motivated, including Nesterov’s momentum-based methods [62], Hamiltonian Monte
Carlo [34] or stochastic gradient Langevin dynamics [76], etc., the elevation from classical
mechanics to quantum mechanics can potentially bring more observations on designing
fast quantum-inspired classical algorithms. In fact, quantum-inspired classical machine

2In general, we can ask for an (ε1, ε2)-approximate local minimum x such that ‖∇f(x)‖ ≤ ε1 and
λmin(∇2f(x)) ≥ −ε2. The scaling in (1) was first adopted by [61] and is taken as a standard by subsequent
works [1, 18, 31, 46–48, 68, 71, 72].

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 2

learning algorithms have been an emerging topic in theoretical computer science [20–
22, 40, 64, 66, 67], and it is worthwhile to explore relevant classical algorithms for
optimization.

• For quantum computing, the vast majority of previous quantum optimization algorithms
had been devoted to convex optimization with the focuses on semidefinite programs [4,
5, 14, 15, 53] and general convex optimization [6, 19]; these results have at least a

√
n

dependence in their complexities, and their quantum algorithms are far from dimension-
free methods. Up to now, little is known about quantum algorithms for nonconvex
optimization.

However, there are inspirations that quantum speedups in nonconvex scenarios can po-
tentially be more significant than convex scenarios. In particular, quantum tunneling is
a phenomenon in quantum mechanics where the wave function of a quantum particle can
tunnel through a potential barrier and appear on the other side with significant probabil-
ity. This very much resembles escaping from poor landscapes in nonconvex optimization.
Moreover, quantum algorithms motivated by quantum tunneling will be essentially dif-
ferent from those motivated by the Grover search [42], and will demonstrate significant
novelty if the quantum speedup compared to the classical counterparts is more than
quadratic.

1.1 Contributions
Our main contribution is a quantum algorithm that can find an ε-approximate local minimum
of a function f : Rn → R that is smooth and Hessian Lipschitz. Compared to the classical
state-of-the-art algorithm by [48] using Õ(log6(n)/ε1.75) queries to the gradient oracle (i.e.,
the first-order oracle), our quantum algorithm achieves an improvement in query complexity
with log n factors. Furthermore, our quantum algorithm only takes queries to the quantum
evaluation oracle (i.e., the zeroth-order oracle), which is defined as a unitary map Uf on Rn⊗R
such that for any |x〉 ∈ Rn,

Uf (|x〉 ⊗ |0〉) = |x〉 ⊗ |f(x)〉 . (2)

Furthermore, for any m ∈ N, |x1〉 , . . . , |xm〉 ∈ Rn, and c ∈ Cm such that
∑m
i=1 |ci|2 = 1,

Uf
(m∑
i=1

ci |xi〉 ⊗ |0〉
)

=
m∑
i=1

ci |xi〉 ⊗ |f(xi)〉 . (3)

If we measure this quantum state, we get f(xi) with probability |ci|2. Compared to the classical
evaluation oracle (i.e., m = 1), the quantum evaluation oracle allows the ability to query
different locations in superposition, which is the essence of speedups from quantum algorithms.
In addition, if the classical evaluation oracle can be implemented by explicit arithmetic circuits,
the quantum evaluation oracle in (2) can be implemented by quantum arithmetic circuits of
about the same size. As a result, it is the standard assumption in previous literature on
quantum algorithms for various optimization problems, including quadratic forms [51], basin
hopper [17], and general convex optimization [6, 19]. Subsequently, we adopt it here for general
nonconvex optimization.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 3

Theorem 1 (Main result, informal). Our quantum algorithm finds an ε-approximate local
minimum using Õ(log2(n)/ε1.75) queries to the quantum evaluation oracle (2).

Technically, our work is inspired by both the perturbed gradient descent (PGD) algorithm
in [46, 47] and the perturbed accelerated gradient descent (PAGD) algorithm in [48]. To be
more specific, PGD applies gradient descent iteratively until it reaches a point with small
gradient. It can potentially be a saddle point, so PGD applies uniform perturbation in a small
ball centered at that point and then continues the GD iterations. It can be shown that with
an appropriate choice of the radius, PGD can shake the point off from the saddle and converge
to a local minimum with high probability. The PAGD in [48] adopts the similar perturbation
idea, but the GD is replaced by Nesterov’s AGD [62].

Our quantum algorithm is built upon PGD and PAGD and shares their simplicity of being
single-loop, but we propose two main modifications. On the one hand, for the perturbation
steps for escaping from saddle points, we replace the uniform perturbation by evolving a quan-
tum wave function governed by the Schrödinger equation and using the measurement outcome
as the perturbed result. Intuitively, the Schrödinger equation screens the local geometry of a
saddle point through wave interference, which results in a phenomenon that the wave packet
disperses rapidly along the directions with significant function value decrease. Specifically,
quantum mechanics finds the negative curvature directions more efficiently than the classical
counterpart: for a constant ε, the classical PGD and PAGD take O(log n) steps to decrease the
function value by Ω(1/ log3 n) and Ω(1/ log5 n) with high probability, respectively. Quantumly,
the simulation of the Schrödinger equation for time t takes Õ(t log n) evaluation queries,3 but
simulation for time t = O(log n) suffices to decrease the function value by Ω(1) with high
probability. See Proposition 1 and Theorem 4.

In addition, we replace the gradient descent steps by a quantum algorithm for computing
gradients using also quantum evaluation queries. The idea was initiated by Jordan in Ref. [50]
which computed the gradient at a point by applying the quantum Fourier transform on a mesh
near the point. Prior work has applied Jordan’s algorithm to general convex optimization [6,
19]; we follow the same path by conducting a detailed analysis (see Theorem 5) showing how
we replace classical gradient queries by the same number of quantum evaluation queries in
nonconvex optimization.

It is worth highlighting that our quantum algorithm enjoys the following two nice features:

• Classical-quantum hybrid: In Algorithm 3 and Algorithm 4, the transition between con-
secutive iterations is still classical, while the only quantum computing part happens
inside each iteration for replacing the classical uniform perturbation. Such feature is
friendly for the implementation on near-term quantum computers.

• Robustness: Our quantum algorithm is robust from two aspects. On the one hand, we
can even escape from an approximate saddle point by evolving the Schrödinger equation
(see Proposition 1). On the other hand, Theorem 5 essentially shows the robustness of es-

3In general, the query complexity of quantum simulation depends on the properties of the Hamiltonian, i.e.,
norm, sparsity, etc. In our case, the Hamiltonian takes the form H = A+B, where A is of norm αA = poly(n)
but is independent of f , and B is a diagonal matrix (so its sparsity is 1) that encodes the evaluations of f . It
turns out that the interaction picture simulation technique [60] is particularly suitable for this circumstance,
and we only need Õ(t log n) queries to f . For details, see Section 2.1.1.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 4

caping from saddle points by even noisy gradient descents, which may be of independent
interest.

Finally, we perform numerical experiments that support our theoretical findings. Specifi-
cally, we observe the dispersion of quantum wave packets along the negative curvature direction
in various landscapes. In a comparative study, our PGD with quantum simulation outperforms
the classical PGD with a higher probability of escaping from saddle points and fewer iteration
steps. We also compare the dimension dependence of classical and quantum algorithms in a
model question with dimensions varying from 10 to 1000, and our quantum algorithm achieves
a better dimension scaling overall.

Reference Queries Oracle
[28, 61] O(1/ε1.5) Hessian
[1, 18] Õ(log(n)/ε1.75) Hessian-vector product
[46, 47] Õ(log4(n)/ε2) Gradient
[48] Õ(log6(n)/ε1.75) Gradient

this work Õ(log2(n)/ε1.75) Quantum evaluation

Table 1: A summary of the state-of-the-art results on finding approximate second-order stationary points.
The query complexities are highlighted in terms of the dimension n and the precision ε.

1.2 Related Work
Escaping from saddle points by gradients was initiated by [35] with complexity O(poly(n/ε)).
The follow-up work by [55] improved it to O(n3 poly(1/ε)), but it is still polynomial in dimen-
sion n. The breakthrough result by [46, 47] achieves iteration complexity Õ(log4(n)/ε2) which
is poly-logarithmic in n. The best-known result has complexity Õ(log6(n)/ε1.75) by [48] (the
same result in terms of ε was independently obtained by [3, 71]). Besides the gradient oracle,
escaping from saddle points can also be achieved using the Hessian-vector product oracle with
Õ(log(n)/ε1.75) queries [1, 18].

There has also been a rich literature on stochastic optimization algorithms for finding
second-order stationary points only using the first-order oracle. The seminal work [35] showed
that noisy stochastic gradient descent (SGD) finds approximate second-order stationary points
in O(poly(n)/ε4) iterations. This was later improved to Õ(poly(log n)/ε3.5) [2, 3, 31, 68, 72],
and the current state-of-the-art iteration complexity of stochastic algorithms is Õ(poly(log n)/ε3)
due to [30, 77].

Quantum algorithms for nonconvex optimization with provable guarantee is a widely open
topic. As far as we know, the only work along this direction is by [75], which gives a quantum
algorithm for finding the negative curvature of a point in time Õ(poly(r, 1/ε)), where r is the
rank of the Hessian at that point. However, the algorithm has a few drawbacks: 1) The cost is
expensive when r = Θ(n); 2) It relies on a quantum data structure [52] which can actually be
dequantized to classical algorithms with comparable cost [20, 66, 67]; 3) It can only find the
negative curvature for a fixed Hessian. In all, it is unclear whether this quantum algorithm
achieves speedup for escaping from saddle points.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 5

1.3 Open Questions
Our paper leaves several natural open questions for future investigation:

• Can we give quantum-inspired classical algorithms for escaping from saddle points? Our
work suggests that compared to uniform perturbation, there exist physics-motivated
methods to better exploit the randomness in gradient descent. A natural question is to
understand the potential speedup of using (classical) mechanical waves.

• Can quantum algorithms achieve speedup in terms of 1/ε? The current speedup due to
quantum simulation can only improve the dependence in terms of log n.

• Beyond local minima, does quantum provide advantage for approaching global minima?
Potentially, simulating quantum wave equations can not only escape from saddle points,
but also escape from some poor local minima.

1.4 Organization
We introduce quantum simulation of the Schrödinger equation in Section 2.1, and present how
it provides quantum speedup for perturbed gradient descent and perturbed accelerated gradi-
ent descent in Section 2.2 and Section 2.3, respectively. We introduce how to replace classical
gradient descents by quantum evaluations in Section 3. We present numerical experiments in
Section 4. Necessary tools for our proofs are given in Appendix A.

2 Escape from Saddle Points by Quantum Simulation
The main contribution of this section is to show how to escape from a saddle point by replacing
the uniform perturbation in the perturbed gradient descent (PGD) algorithm [47, Algorithm
4] and the perturbed accelerated gradient descent (PAGD) algorithm [48, Algorithm 2] with
a distribution adaptive to the saddle point geometry. The intuition behind the classical algo-
rithms is that without a second-order oracle, we do not know in which direction a perturbation
should be added, thus a uniform perturbation is appropriate. However, quantum mechanics
allows us to find the negative curvature direction without explicit Hessian information.

2.1 Quantum Simulation of the Schrödinger Equation
We consider the most standard evolution in quantum mechanics, the Schrödinger equation:

i
∂

∂t
Φ =

[
− 1

2∆ + f(x)
]
Φ, (4)

where Φ is a wave function in Rn, ∆ is the Laplacian operator, and f can be regarded as the
potential of the evolution. In the one-dimensional case, we can prove that Φ enjoys an explicit
form below if f is a quadratic function:

Lemma 1. Suppose a quantum particle is in a one-dimensional potential field f(x) = λ
2x

2

with initial state Φ(0, x) = (1
2π)1/4 exp

(
−x2/4

)
; in other words, the initial position of this

quantum particle follows the standard normal distribution N (0, 1). The time evolution of this

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 6

particle is governed by (4). Then, at any time t ≥ 0, the position of the quantum particle still
follows normal distribution N

(
0, σ2(t;λ)

)
, where the variance σ2(t;λ) is given by

σ2(t;λ) =


1 + t2

4 (λ = 0),
(1+4α2)−(1−4α2) cos 2αt

8α2 (λ > 0, α =
√
λ),

(1−e2αt)2+4α2(1+e2αt)2

16α2e2αt (λ < 0, α =
√
−λ).

(5)

Lemma 1 shows that the wave function will disperse when the potential field is of negative
curvature, i.e., λ < 0, and the dispersion speed is exponentially fast. Furthermore, we prove
in Appendix A.1 that this “escaping-at-negative-curvature” behavior of the wave function still
emerges given a quadratic potential field f(x) = 1

2xTHx in any finite dimension.
To turn this idea into a quantum algorithm, we need to use quantum simulation. In fact,

quantum simulation in real spaces is a classical problem and has been studied back in the
1990s [70, 73, 74]. There is a rich literature on the cost of quantum simulation [9, 10, 23, 57–
59]; it is typically linear in the evolution time, which is formally known as the “no—fast—
forwarding theorem”, see Theorem 3 of [9], and Theorem 3 of [24]. In Section 2.1.1, we prove
the following lemma about the cost of simulating the the Schrödinger equation using the
quantum evaluation oracle in (2):

Lemma 2. Let f(x) : Rn → R be a real-valued function with a saddle point at x = 0 and
f(0) = 0. Consider the (scaled) Schrödinger equation

i
∂

∂t
Φ =

[
− r2

0
2 ∆ + 1

r2
0
f(x)

]
Φ (6)

defined on the domain Ω = {x ∈ Rn : ‖x‖ ≤ M} (where M > 0 is the diameter that will
be specified later) with periodic boundary condition.4 Given the quantum evaluation oracle
Uf (|x〉 ⊗ |0〉) = |x〉 ⊗ |f(x)〉 in (2) and an arbitrary initial state at time t = 0, the evolution
of (6) for time t > 0 can be simulated using Õ

(
t log n log2(tε)

)
queries to Uf , where ε is the

precision.

Because we have assumed that f is Hessian-Lipschitz, we can use the second-order Taylor
expansion to approximate the function value of f near a saddle point x̃. Such an approximation
is more accurate on a ball centered at x̃ with radius r0 small enough. Regarding this, we scale
the initial distribution as well as the Schrödinger equation to be more localized in terms of r0,
which results in Algorithm 1.

Algorithm 1 is the main building block of our quantum algorithms for escaping from saddle
points, and also the main resource of our quantum speedup.

2.1.1 Quantum Query Complexity of Simulating the Schrödinger Equation

We prove Lemma 2 in this subsection. Before doing that, we want to briefly discuss the
reason why we simulate the scaled Schrödinger equation (6) instead of the common version of

4Actually, we need to put this Ω in a flat n-torus T, i.e., an n-dimensional hybercube with periodic boundary
condition, because the flat torus is readily dealt with the finite difference method (FDM). Given the truncation
of the function f(x) on Ω, we may slightly “mollify” the edge of f |Ω to observe the periodicity. This mollification
will not have a significant impact for optimization because our simulation time is quite short and the wave
function rarely has a chance to hit the boundary ∂Ω.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 7

Algorithm 1: QuantumSimulation(x̃, r0, te, f(·)).
1 Put a Gaussian wave packet into the potential field f , with its initial state being:

Φ0(x) =
(1

2π
)n/4 1

r
n/2
0

exp
(
−(x− x̃)2/4r2

0

)
; (7)

Simulate its evolution in potential field f with the Schrödinger equation for time te;
2 Measure the position of the wave packet and output the measurement outcome.

non-relativistic Schrödinger equation in (4), rewritten below:

i
∂

∂t
Φ =

[
− 1

2∆ + f(x)
]
Φ. (8)

In real-world problems, we are likely to encounter an objective function f(x) with a sad-
dle point at x0 but is not a quadratic form. In this situation, a quadratic approximation is
only valid within a small neighborhood of the first-order stationary point x0, say Ω defined in
Lemma 2. Regarding this issue, it is necessary to scale the spatial variable in order to make
the wave packet more localized. However, the scaling in the spatial variable will simultane-
ously cause a scaling in the time variable under Eq. (4). This is not preferable because the
scaling in time can dramatically change the variance σ(t;λ) in (5), which can cause troubles
when bounding the time complexity in the analysis of algorithms. To leave the time scale
invariant, we introduce a modified Schrödinger equation (6), in which the quantum simulation
is restricted on a domain of diameter O(r0): this localization guarantees that the quantum
wave packet captures the saddle point geometry while not to be significantly affected by other
features on the landscape of f(x), thus simplifying our further analysis. We may justify our
construction of (6) in three aspects:

• Geometric aspect: Eq. (6) is obtained by considering a spatial dilation in the wave
function Φ(t, x) 7−→ Φ(t, x/r) without changing the time scale. This property guarantees
the variance of the Gaussian distribution corresponding to Φ(t, x/r) is just r2 times the
original variance σ2(t;λ) (we will prove this in Proposition 2). Mathematically, this
time-invariant property means the dispersion speed is now an intrinsic quantity as it is
mostly determined by the saddle point geometry.

• Physical aspect: When the wave function is too localized in the position space, due to
the uncertainty principle, the momentum variable will spread on a large domain in the
frequency space. To reconcile this imparity, we want to introduce a small r2 factor for
the kinetic energy operator −1

2∆ in order to balance between position and momentum.

• Complexity aspect: The circuit complexity of simulating Schrödinger equation is linear
in the operator norm of the Hamiltonian. Our scaling in (6) drags down the operator
norm of the Laplacian (we will discretize it when doing simulation) while leaves the
operator norm of the potential field remain O(‖H‖) in a O(r0)-ball. This normalization
effect will help reducing the circuit complexity.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 8

Complexity bounds of quantum simulation is a well-established research topic; see e.g. [9,
10, 23, 57–59] for detailed results and proofs. In this paper, we apply quantum simulation
under the interaction picture [60]. In particular, we use the following result:

Theorem 2 ([60, Lemma 6]). Let A,B ∈ Cd×d be time-independent Hamiltonians that are
promised to obey ‖A‖ ≤ αA and ‖B‖ ≤ αB, where ‖ · ‖ represents the spectral norm. Then
the time-evolution operator e−i(A+B)t can be simulated up to error ε by using

O
(
αBt

log(αBt/ε)
log log(αBt/ε)

)
queries to the unitary oracle OB.5

Our Lemma 2 is inspired by [27] which gives a quantum algorithm for simulating the
Schrödinger equation but without the potential function f . It discretizes the space into grids
with side-length a; in this case, −1

2∆ reduces to − 1
2a2L where L is the Laplacian matrix of the

graph of the grids (whose off-diagonal entries are −1 for connected grids and zero otherwise;
the diagonal entries are the degree of the grids). For instance, in the one-dimensional case,

− 1
a2 [Lφ]j = φj−1 − 2φj + φj+1

a2 , (9)

where φj is the value on the jth grid. When a → 0, this becomes the second derivative of φ;
in practice, as mentioned above, it suffices to take 1/a = poly(log(1/ε)) such that the overall
precision is bounded by ε.

The discretization method used in [27] is just a special example of the finite difference
method (FDM), which is a common method in applied mathematics to discretize the space
of ODE or PDE problems such that their solution is tractable numerically. To be more
specific, the continuous space is approximated by discrete grids, and the partial derivatives
are approximated by finite differences in each direction. There are higher-order approximation
methods for estimating the derivatives by finite difference formulas [56], and it is known that
the number of grids in each coordinate can be as small as poly(log(1/ε)) by applying the
high-order approximations to the FDM adaptively [8]. See also Section 3 of [25] which gave
quantum algorithms for solving PDEs that applied FDM with this poly(log(1/ε)) complexity
for the grids.

We are now ready to prove Lemma 2.

Proof. There are two steps in the quantum simulation of (6): (1) discretizing the spatial
domain using (9) so that the Schrödinger equation (6) is reduced to an ordinary differential
equation (10); (2) simulating (10) under the interaction picture. In each step, we fix the error
tolerance as ε/2. By the triangle inequality, the overall error is ε.

First, we consider the k-th order finite difference method in Section 3 of [25] (the discrete
Laplacian will be denoted as Lk). With the spacing between grid points being a, if we choose

5In fact, Lemma 6 in [60] gives an upper bound for the number of queries to the unitary oracle HAM-T.
Note that the construction of HAM-T only needs 1 query to OB (see Theorem 7), we directly give the query
complexity in terms of OB .

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 9

the mesh number along each direction as 1/a = poly(n) poly(log(2/ε)), the finite difference
error will be of order ε/2. Then the Schrödinger equation in (6) becomes

i
∂

∂t
Φ =

(
− r2

0
2a2Lk +B

)
Φ, (10)

where Lk is the Laplacian matrix associated to the k-th order finite difference method (dis-
cretization of the hypercube Ω) and B is a diagonal matrix such that the entry for the grid at
x is 1

r2
0
f(x). Here, the function evaluation oracle Uf is trivially encoded in the matrix evalua-

tion oracle OB. By [25], the spectral norm of Lk is of order O(n/a2) = poly(n) poly(log(2/ε)),
where n is the spatial dimension of the Schödinger equation.

We simulate the evolution of (10) by Theorem 2 and taking A = − r2
0

2a2Lk therein. Recall
that ‖Lk‖ ≤ poly(n) poly(log(2/ε)). By the `-smooth condition, we have ‖∇f(x)‖ ≤ `M for
x ∈ Ω so that the maximal absolute value of function f(x) on Ω is bounded by `M2 by the
Poincaré inequality. Therefore, we have αA ≤ Cr2

0 poly(n) poly(log(2/ε)) where C > 0 is an
absolute constant, and αB ≤ `(M/r0)2. It follows from Theorem 2 that, to simulate the time
evolution operator e−i(A+B)t for time t > 0, the total quantum queries to OB (or equivalently,
to Uf) is

O

(
`(M/r0)2t

(
log

(
t(Cr2

0 poly(n) poly(log(2/ε))) + `(M/r0)2)/ε) log
(
`(M/r0)2‖t/ε

)
log log(`(M/r0)2t/ε)

)
.

The radius M of the simulation region is chosen large enough such that the wavepacket does
not hit the boundary during simulation. Intuitively, the value of M should be proportional to
the initial variance r0. Quantitatively, it is shown in Section 2.2 such that under our choice
of parameters, M/r0 equals some constant 1/Cr. Absorbing all poly-logarithmic constants in
the big Õ notation, the total quantum queries to f reduces to Õ

(
t log n log2(tε)

)
as claimed in

Lemma 2.

Remark 1. In our scenario of escaping from saddle points, the initial state is a Gaussian
wave packet

(1
2π
)n/4 1

r
n/2
0

exp
(
−(x− x̃)2/4r2

0
)
as in Algorithm 1. It is well-known that a Gaus-

sian state can be efficiently prepared on quantum computers [54]; Gaussian states are also
ubiquitous in the literature of continuous-variable quantum information [69]. However, al-
though when f is quadratic the evolution of the Schrödinger equation keeps the state being a
Gaussian wave packet by Lemma 8, it intrinsically has dependence on f and it is not totally
clear how to prepare the Gaussian wave packet at time t directly by continuous-variable quan-
tum information. It seems that the quantum simulation above using the quantum evaluation
oracle Uf in (2) is necessary for our purpose.

2.2 Perturbed Gradient Descent with Quantum Simulation
We now introduce a modified version of perturbed gradient descent. We start with gradient
descents until the gradient becomes small. Then, we perturb the point by applying Algorithm 1
for a time period te = T ′, perform a measurement on all the coordinates (which gives an
output x0), and continue with gradient descent until the algorithm runs for T iterations. This
is summarized as Algorithm 2.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 10

Algorithm 2: Perturbed Gradient Descent with Quantum Simulation.
1 for t = 0, 1, ..., T do
2 if ‖∇f(xt)‖ ≤ ε then
3 ξ ∼QuantumSimulation

(
xt, r0,T ′, f(x)− 〈∇f(xt),x− xt〉

)
;

4 ∆t ← 2ξ
3‖ξ‖

√
ρ
ε ;

5 xt ← arg minζ∈{xt+∆t,xt−∆t} f(ζ);
6 xt+1 ← xt − η∇f(xt);

Intuitively, in Algorithm 2 QuantumSimulation is applied to find negative curvature of sad-
dle points. Hence in Line 3 we simulate the wavepacket under the potential f(x)−〈∇f(xt),x−
xt〉 instead of f itself, since the first order term in the Taylor expansion of f at xt is not relevant
to the negative curvature, which is characterized by the second-order Hessian matrix. After
negative curvature is specified, we can add a perturbation ∆t in that direction to decrease the
function value and escape from saddle points.

2.2.1 Effectiveness of the Perturbation by Quantum Simulation

We show that our method of quantum wave packet simulation is significantly better than
the classical method of uniform perturbation in a ball. To be more specific, we focus on the
scenarios with ε ≤ l2/ρ (this is the standard assumption adopted in [48]); intuitively, this is
the case when the local landscape is “flat” and the Hessian has a small spectral radius. Under
this circumstance, the classical gradient descent may move slowly, but the quantum Gaussian
wavepacket still disperses fast, i.e., the variance of the probability distribution corresponding
to the wavepacket still has a large increasing rate. Hence, if we let this wavepacket evolve for
a long enough time period, it is drastically stretched in the directions with negative curvature.
As a result, if we measure its position at this time, with high probability the output vector
indicates a negative curvature direction, or equivalently, a direction along which we can de-
crease the function value. We can thus add a large perturbation along that direction to escape
from the saddle point. Formally, we prove:

Proposition 1. For any constant δ0 > 0, we specify our choices for the parameters and
constants that we use:

T ′ := 8
(ρε)1/4 log

(`

δ0
√
ρε

(n+ 2 log(3/δ0))
)

F ′ := 2
81

√
ε3

ρ
(11)

r0 := 4C3
r

9T ′4

(δ0
3 ·

1
n3/2 + 2C0n`(log T ′)α

)2
η := 1

`
(12)

where Cr, C0, α are absolute constants, and the value of α is specified in Lemma 3. Let
f : Rn → R be an `-smooth, ρ-Hessian Lipschitz function. For an approximate saddle point
x̃ satisfying ‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤ −√ρε, Algorithm 2 adds a perturbation by
QuantumSimulation with the radius M of the simulation region being set to M = r0/Cr, and
decreases the function value for at least F ′, with probability at least 1− δ0.

Compared to the provable guarantee from classical perturbation [47, Lemma 22], speaking
only in terms of n, classically it takes T = O(log n) steps to decrease the function value by

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 11

F = Ω(1/ log3 n), whereas our quantum simulation with time T ′ = O(log n) together with
also T ′ subsequent GD iterations decrease the function value by F ′ = Ω(1) with high success
probability.

Intuitively, the proof of Proposition 1 is composed of two parts. If the potential f is
quadratic, we can use Lemma 1 to prove Proposition 2 (both proof details are given in Ap-
pendix A.1), which demonstrates the exponential rate for quantum simulation to escape along
the negative eigen-directions of the Hessian of f . However, the objective function f is rarely
a standard quadratic form in reality, and we cannot expect the quantum wave packet to pre-
serve its shape as a Gaussian distribution. Nevertheless, we are able to show that the quantum
wave packets do not differ significantly from a perfect Gaussian distribution in the course of
quantum simulation, which preserves our quantum speedup in the general case.

Formally, we introduce the following lemma to bound the deviation from perfect Gaussian
in quantum evolution. Before proceeding to its details, we first specify our choice for the
constant Cr. As shown in the statement of Proposition 1, Cr stands for the ratio between
the initial wavepacket variance and the radius of the simulation region. We choose a small
enough constant Cr, such that the simulation region would be much larger than the range of
the wavepacket, during the entire simulation process. Since the function f is `-smooth, the
spectral norm of its Hessian matrix at any point is upper bounded by constant `. Hence, the
small enough constant Cr is independent of f . Then, the radius M of the simulation region
satisfies

M = r0/Cr = 4C2
r

9T ′4

(δ0
3 ·

1
n3/2 + 2C0n`(log T ′)α

)2
≤ 1. (13)

Lemma 3. Let H be the Hessian matrix of f at a saddle point x̃, and define fq(x) :=
f(x̃)+ 1

2(x− x̃)TH(x− x̃) to be the quadratic approximation of the function f near x̃. Denote
the measurement outcome from the quantum simulation (see Algorithm 1) with potential field
f and evolution time te as random variable ξ, and the measurement outcome from the quantum
simulation with potential field fq and the same evolution time te as another random variable
ξ′. Let the law of ξ (or ξ′, resp.) be Pξ (or Pξ′, resp.). If the quantum wave packet is confined
to a hypercube with edge length M , then

TV (Pξ,Pξ′) ≤
(√

nρ

2 + 2Cf `√
r0

(log te)α
)
nMt2e

2 , (14)

where TV (·, ·) is the total variation distance between measures, α is an absolute constant, and
Cf is an f -related constant.

The proof of Lemma 3 is deferred to Appendix A.2. This lemma shows that the true
perturbation given by quantum simulation ξ ∼ Pξ only deviates from the Gaussian random
vector ξ′ ∼ Pξ′ at a magnitude of Õ(Mn3/2t2e) when te = T ′ = O(log n) in Algorithm 2. Such a
deviation is non-material compared to our choice ofM in (13). Therefore, we may estimate the
performance of our quantum simulation subroutine using a quadratic approximation function
and then bound the error caused by the non-quadratic part, as in the following lemma:

Lemma 4. Under the setting of Proposition 1, let H̃ be the Hessian matrix of f at point
x̃. Then, the output of QuantumSimulation(x̃, r0,T ′) by applying Algorithm 1, denoted as ξ,

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 12

satisfies

ξT H̃ξ
‖ξ‖2

≤ −
√
ρε

3 , (15)

with probability at least 1− δ0.

Proof. Without loss of generality, assume ∇f(xt) = 0. First consider the case where the
potential f is purely quadratic, and add the estimate the error term caused by the non-
quadratic deflation afterwards.

First note that the Hessian matrix H̃ admits the following eigen-decomposition:

H̃ =
n∑
i=1

λiuiuTi , (16)

where the set {ui}ni=1 forms an orthonormal basis of Rn. Without loss of generality, we assume
that the eigenvalues λ1, λ2, . . . , λn corresponding to u1,u2, . . . ,un satisfy

λ1 ≤ λ2 ≤ · · · ≤ λn, (17)

in which λ1 ≤ −
√
ρε. If λn ≤ −

√
ρε/2, Lemma 4 holds directly. Hence, we only need to prove

the case where λn > −
√
ρε/2, in which there exists some p, p′ with

λp ≤ −
√
ρε < λp+1, λp′ ≤ −

√
ρε/2 < λp′+1. (18)

We use S‖, S⊥ to respectively denote the subspace of Rn spanned by

{u1,u2, . . . ,up} , {up+1,up+2, . . . ,un} , (19)

and use S′‖, S
′
⊥ to respectively denote the subspace of Rn spanned by

{
u1,u2, . . . ,up′

}
,
{
up′+1,up+2, . . . ,un

}
. (20)

Furthermore, we define ξ‖ :=
∑p
i=1〈ui, ξ〉ui, ξ⊥ :=

∑n
i=p〈ui, ξ〉ui, ξ‖′ :=

∑p′

i=1〈ui, ξ〉ui, ξ⊥′ :=∑n
i=p′〈ui, ξ〉ui respectively to denote the component of ξ in the subspaces S‖, S⊥, S′‖, S

′
⊥.

Also, we define ξ1 := 〈u1, ξ〉u1 to be the component of ξ along u1, the most negative eigen-
direction.

Under the basis {u1, . . . ,un}, by Proposition 2, the time evolution of the initial wave
function is governed by (6). Then, at te = T ′, the wave function still follows multivariate
Gaussian distribution N (0, r2

0Σ), with the covariance matrix being

Σ = diag(σ2(T ′;λ1), ..., σ2(T ′;λn)), (21)

where the variance σ(T ′;λi) is defined in (5). Denote σi := σ(T ′;λi) for each i ∈ [n]. Then,
for any i ∈ [n] with ui ∈ S′⊥, since λi ≥ −

√
ρε/2, we have

σ2
i ≤

(1− e(4ρε)1/4T ′)2 + ρε(1 + e(4ρε)1/4T ′)2

4ρε · e(4ρε)1/4T ′
. (22)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 13

Due to our choice of the parameter T ′, we can further derive that

σ2
i ≤

(1 + 2ρε)e2(4ρε)1/4T ′

4ρε · e(4ρε)1/4T ′
≤ e(4ρε)1/4T ′

2ρε . (23)

Denote σ′⊥ := e(4ρε)
1/4T ′

2ρε . We define an (n− p′)-dimensional Gaussian distribution p̃(·) in S′⊥:

p̃(y) =
(1

2π
)(n−p′)/2(√n− p′

σ′⊥r0

)
exp

(
− (n− p′)‖y‖2

2σ′⊥2r2
0

)
, (24)

then the actual distribution of ‖ξ⊥′‖ is upper bounded by the distribution of ‖y‖ under
the probability density function p̃(y). Furthermore, by Lemma 12 in Appendix A.3, with
probability at least 1− δ0/3 we have

‖ξ⊥′‖2/r2
0 ≤

n∑
i=p′+1

σ2
i + 2

√√√√log(3/δ0)
n∑

i=p′+1
σ4
i + 2 max

p′+1≤i≤n
σ2
i log(3/δ0) (25)

≤ (n− p′)σ′⊥2 + 2
(√

(n− p′) log(3/δ0) + log(3/δ0)
)
σ′⊥

2 (26)

≤ 2(n+ 2 log(3/δ0))σ′⊥2. (27)

On the other hand, on the most negative direction i = 1, by λ1 ≤ −
√
ρε, we can derive

that

σ2
1 ≥

(1− e2(ρε)1/4T ′)2 + 4ρε(1 + e2(ρε)1/4T ′)2

16ρεe2(ρε)1/4T ′
(28)

≥ e4(ρε)1/4T ′/2 + 4ρεe4(ρε)1/4T ′

16ρεe2(ρε)1/4T ′
(29)

≥ e2(ρε)1/4T ′

32ρε . (30)

Hence, after we measure the wavepacket, ξ1 satisfies

Pr
{
|ξ1| ≥

δ0σ1r0
2

}
=
∫ δ0σ1r0/2

−δ0σ1r0/2

(1
2π
)1/2
· 1
r0σ1

exp
(
− θ2

2r2
0σ

2
1

)
dθ (31)

≥
(1

2π
)1/2
· 2
r0σ1

· δ0σ1r0
2 ≥ δ0

3 . (32)

By the union bound, with probability at least 1− 2δ0/3, the output ξ would satisfy:

‖ξ⊥′‖
‖ξ‖′‖

≤ ‖ξ⊥‖
|ξ1|

≤
√

2(n+ 2 log(3/δ0))
δ0/2

· σ
′
⊥′

σ1
(33)

≤ 3
√

(n+ 2 log(3/δ0))
δ0

· e
(4ρε)1/4T ′/2
√

2ρε ·
√

32ρε
e(ρε)1/4T ′

(34)

≤ 12
√

(n+ 2 log(3/δ0))
δ0

· exp
(
− (1−

√
2/2)(ρε)1/4T ′

)
(35)

≤
√
ρε

12` . (36)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 14

Considering the fact that the function f is not purely quadratic, by Lemma 3 the inequality
above may be violated with probability at most

2
3δ0 + TV (Pξ,Pξ′) ≤

2
3δ0 +

(
√
nρ+ 2C`

√
r0

(log T ′)α
)
nMT ′2

2 , (37)

in which M = r0/Cr due to our parameter choice. Choose the constant C0 in r0 large enough
to satisfy C0 ≥ C. Then with probability at least 1− δ0, we can still have

‖ξ⊥′‖
‖ξ‖′‖

≤
√
ρε

12` , (38)

after counting in the deviation from pure quadratic field. Under this circumstance, use ξ̂ to
denote ξ/‖ξ‖. Observe that

ξ̂T H̃ξ̂ = (ξ̂⊥′ + ξ̂‖′)T H̃(ξ̂⊥′ + ξ̂‖′) = ξ̂T⊥′H̃ξ̂⊥′ + ξ̂T‖′H̃ξ̂‖′ (39)

since H̃ξ̂⊥′ ∈ S′⊥ and H̃ξ̂‖′ ∈ S′‖. Due to the `-smoothness of the function, all eigenvalue of
the Hessian matrix has its absolute value upper bounded by `. Thus we have,

ξ̂T⊥′H̃ξ̂⊥′ ≤ `‖ξ̂T⊥′‖22 = ρε/(144`2). (40)

Further according to the definition of S‖, we have

ξ̂T‖′H̃ξ̂‖′ ≤ −
√
ρε‖ξ̂‖′‖2/2. (41)

Combining these two inequalities together, we can obtain

ξ̂T H̃ξ̂ = ξ̂T⊥′H̃ξ̂⊥′ + ξ̂T‖′H̃ξ̂‖′ ≤ −
√
ρε‖ξ̂‖′‖2/2 + ρε/(144`2) ≤ −√ρε/3. (42)

Now we are ready to prove Proposition 1.

Proof. Without loss of generality, we assume x̃ = 0. By Lemma 4, with probability at least
1 − δ0, the output ξ of QuantumSimulation would be in a negative curvature direction, or
quantitatively,

ξT H̃ξ
‖ξ‖2

≤ −√ρε/3. (43)

Since we choose the one with smaller function value from {∆t,−∆t} to be the perturbation
result, without loss of generality we can assume 〈∇f(0),∆t〉 ≤ 0. Then,

f(∆t)− f(0) =
∫ 1

0
〈∇f(θ∆t),∆t〉dθ, (44)

where the gradient ∇f(θ∆t) can be expressed as

∇f(θ∆t) = ∇f(0) +
∫ θ

0
H(ν∆t)∆tdν, (45)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 15

which leads to

f(∆t)− f(0) = 〈∇f(0),∆t〉+
∫ 1

0
dθ
〈 ∫ θ

0
H(ν∆t)∆tdν,∆t

〉
(46)

≤
∫ 1

0
dθ
∫ θ

0
〈H(ν∆t)∆t,∆t〉dν. (47)

Here, H(ν,∆t) satisfies

‖H(ν∆t)− H̃‖ ≤ ρ‖ν∆t‖ (48)

due to the ρ-Hessian Lipschitz property of f , which indicates

〈H(ν∆t)∆t,∆t〉 = 〈H̃∆t,∆t〉+ 〈(H(ν∆t)− H̃)∆t,∆t〉 (49)
≤ 〈H̃∆t,∆t〉+ ‖H(ν∆t)− H̃‖ · ‖∆t‖2 (50)
≤ 〈H̃∆t,∆t〉+ ρ‖∆t‖3ν, ∀ν > 0. (51)

Hence,

f(∆t)− f(0) ≤
∫ 1

0
dθ
∫ θ

0
〈H(ν∆t)∆t,∆t〉dν (52)

≤
∫ 1

0
dθ
∫ θ

0
〈H̃∆t,∆t〉dν +

∫ 1

0
dθ
∫ θ

0
ρ‖∆t‖3νdν (53)

≤ −
√
ρε

6 · ‖∆t‖2 + ρ

6 · ‖∆t‖3 (54)

= −
√
ρε

6 · 4ε
9ρ + ρ

6 ·
8ε3/2

27ρ3/2 = −F ′. (55)

2.2.2 Proof of Our Quantum Speedup

We now prove the following theorem using Proposition 1:

Theorem 3. For any ε, δ > 0, Algorithm 2 with parameters chosen in Proposition 1 satisfies
that at least one half of its iterations of will be ε-approximate local minima, using

Õ
((f(x0)− f∗)

ε2
· log2 n

)
queries to Uf in (2) and gradients with probability ≥ 1 − δ, where f∗ is the global minimum
of f .

Proof. Set δ0 = 2
81(f(x0)−f∗)

√
ε3

ρ , let the parameters be chosen according to (11) and (12), and
set the total iteration steps T to be:

T = 4 max
{(f(x0)− f∗)

F ′
,

(f(x0)− f∗)
ηε2

}
= Õ

((f(x0)− f∗)
ε2

· log n
)
, (56)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 16

similar to the classical GD algorithm. We first assume that for each xt we apply Quantum-
Simulation (Algorithm 1), we can successfully obtain an output ξ with ξTHξ/‖ξ‖2 ≤ −√ρε/3,
as long as λmin(H(xt)) ≤ −

√
ρε. The error probability of this assumption is provided later.

Under this assumption, Algorithm 1 can be called for at most 81(f(x0)−f∗)
2

√
ρ
ε3 ≤

T
4 times,

for otherwise the function value decrease will be greater than f(x0)−f∗, which is not possible.
Then, the error probability that some calls to Algorithm 1 fail to indicate a negative curvature
is upper bounded by

81(f(x0)− f∗)
2

√
ρ

ε3
· δ0 = δ. (57)

Excluding those iterations that QuantumSimulation is applied, we still have at least 3T/4
steps left. They are either large gradient steps, ‖∇f(xt)‖ ≥ ε, or ε-approximate second-order
stationary points. Within them, we know that the number of large gradient steps cannot be
more than T/4 because otherwise, by Lemma 13 in Appendix A.4:

f(xT) ≤ f(x0)− Tηε2/4 < f∗, (58)

a contradiction. Therefore, we conclude that at least T/2 of the iterations must be ε-
approximate second-order stationary points with probability at least 1− δ.

The number of queries can be viewed as the sum of two parts, the number of queries
needed for gradient descent, denoted by T1, and the number of queries needed for quantum
simulation, denoted by T2. Then with probability at least 1− δ,

T1 = T = Õ
((f(x0)− f∗)

ε2
· log n

)
. (59)

As for T2, with probability at least 1− δ quantum simulation is called for at most 4(f(x0)−f∗)
F ′

times, and by Lemma 2 it takes Õ
(
T ′ log n log2(T ′2/ε)

)
queries to carry out each simulation.

Therefore,

T2 = 4(f(x0)− f∗)
F ′

· Õ
(
T ′ log n log2(T ′2/ε)

)
= Õ

((f(x0)− f∗)
ε1.75 · log2 n

)
. (60)

As a result, the total query complexity T1 + T2 is

Õ
((f(x0)− f∗)

ε2
· log2 n

)
. (61)

2.3 Perturbed Accelerated Gradient Descent with Quantum Simulation
In Theorem 3, the 1/ε2 term is a bottleneck of the whole algorithm, but [48] improved it to
1/ε1.75 by replacing the GD with the accelerated GD by [62]. We next introduce a hybrid
quantum-classical algorithm (Algorithm 3) that reflects this intuition. We make the following
comparisons to [48]:

• Same: When the gradient is large, we both apply AGD iteratively until we reach a point
with small gradient. If the function becomes “too nonconvex” in the AGD, we both reset
the momentum and decide whether to exploit the negative curvature at that point.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 17

• Difference: At a point with small gradient, we apply quantum simulation instead of the
classical uniform perturbation. Speaking only in terms of n, [48] takes O(log n) steps to
decrease the Hamiltonian f(x) + 1

2η‖v‖
2 by Ω(1/ log5 n) with high probability, whereas

our quantum simulation for time T ′ = O(log n) decreases the Hamiltonian by Ω(1) with
high probability.

Algorithm 3: Perturbed Accelerated Gradient Descent with Quantum Simulation.
1 v0 ← 0;
2 for t = 0, 1, . . . , T do
3 if ‖∇f(xt)‖ ≤ ε then
4 ξ ∼QuantumSimulation

(
xt, r0,T ′, f(x)− 〈∇f(xt),x− xt〉

)
;

5 ∆t ← 2ξ
3‖ξ‖

√
ρ
ε ;

6 xt ← arg minζ∈{xt+∆t,xt−∆t} f(ζ);
7 vt ← 0;
8 else
9 yt ← xt + (1− θ)vt, xt+1 ← yt − η′f(yt), and vt+1 ← xt+1 − xt;

10 if f(xt) ≤ f(yt) + 〈∇f(yt),xt − yt〉 − γ
2‖xt − yt‖ then

11 (xt+1,vt+1)←Negative-Curvature-Exploitation(xt,vt, s);

The following theorem provides the complexity of this algorithm:

Theorem 4. Suppose that the function f is `-smooth and ρ-Hessian Lipschitz. We choose
the parameters appearing in Algorithm 3 as follows:

δ0 := 2
81(f(x0)− f∗)

√
ε3

ρ
χ := 1 η := 1

`
(62)

T ′ := 8
(ρε)1/4 log

(`

δ0
√
ρε

(n+ 2 log(3/δ0))
)

η′ := 1
4` F ′ := 2

81

√
ε3

ρ
(63)

r0 := 4C3
r

9T ′4

(δ0
3 ·

1
n3/2 + 2C0n`(log T ′)α

)2
κ := `

√
ρε

θ := 1
4
√
κ

(64)

γ := θ2

η
s := γ

4ρ T :=
√
κ · cA (65)

where cA is chosen large enough to satisfy the condition in Lemma 14, C0 and Cr are constants
specified in Proposition 1. Then, for any δ > 0, ε ≤ `2

ρ , if we run Algorithm 3 with choice of
parameters specified above, then with probability at least 1− δ one of the iterations xt will be
an ε-approximate second-order stationary point, using the following number of queries to Uf
in (2) and classical gradients:

Õ
((f(x0)− f∗)

ε1.75 · log2 n
)
. (66)

Proof. We use T to denote total number of iterations and specify our choice for T as:

T = 3 max
{(f(x0)− f∗)

F ′
,

(f(x0)− f∗)T
E

}
, (67)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 18

where E =
√

ε3

ρ · c
−7
A , the same as our choice for E in Lemma 14. Similar to Proposition 1,

we set the radius M of the simulation region to be r0/Cr. We assume the contrary, i.e., the
outputs of all of the iterations are not ε-approximate second-order stationary points.

Similar to our analysis in the proof of Theorem 3, we first assume that for each xt we apply
QuantumSimulation (Algorithm 1), we can successfully obtain an output ξ with ξTHξ/‖ξ‖2 ≤
−√ρε/3, as long as λmin(H(xt)) ≤ −

√
ρε. The error probability of this assumption is provided

later.
Under this assumption, Algorithm 1 can be called for at most 81(f(x0)−f∗)

2

√
ρ
ε3 ≤

T
3 times,

for otherwise the function value decrease will be greater than f(x0)−f∗, which is not possible.
Then, the error probability that some calls to Algorithm 1 fails to indicate a negative curvature
is upper bounded by

81(f(x0)− f∗)
2

√
ρ

ε3
· δ0 = δ. (68)

Excluding those iterations that QuantumSimulation is applied, we still have at least 2T/3
steps left, which are all accelerated gradient descent steps.

Since from ε ≤ `2/ρ we have T ′ ≥ T , then we can found at least T
3T disjoint time periods,

each of time interval T . From Lemma 14, during these time intervals the Hamiltonian will
decrease in total at least:

T

3T
× E = f(x0)− f∗, (69)

which is impossible due to Lemma 15, the Hamiltonian decreases monotonically for every
step where quantum simulation is not called, and the overall decrease cannot be greater than
f(x0)− f∗.

Note that the iteration numbers T satisfies:

T = 3 max
{(f(x0)− f∗)

F ′
,

(f(x0)− f∗)T
E

}
= Õ

((f(x0)− f∗)
ε1.75 · log n

)
. (70)

As for the number of queries, it can be viewed as the sum of two parts, the number of queries
needed for accelerated gradient descent, denoted by T1, and the number of queries needed for
quantum simulation, denoted by T2. Then with probability at least 1− δ,

T1 = T = Õ
((f(x0)− f∗)

ε1.75 · log n
)
. (71)

For T2, with probability at least 1 − δ quantum simulation is called for at most (f(x0)−f∗)
F ′

times, and by Lemma 2 it takes Õ
(
T ′ log n log2(T ′2/ε)

)
queries to carry out each simulation.

Therefore,

T2 = 3(f(x0)− f∗)
F ′

· Õ
(
T ′ log n log2(T ′2/ε)

)
= Õ

((f(x0)− f∗)
ε1.75 · log2 n

)
. (72)

As a result, the total query complexity T1 + T2 is

Õ
((f(x0)− f∗)

ε1.75 · log2 n
)
. (73)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 19

Remark 2. Although the theorem above only guarantees that one of the iterations is an
ε-approximate second-order stationary point, it can be easily accessed by adding a proper ter-
mination condition: once the quantum simulation is called, we keep track of the point x̃ prior
to quantum simulation, and compare the function value at x̃ with that of xt after the pertur-
bation. If the function value decreases by at least F ′, then the algorithm has made progress,
otherwise with probability at least 1− δ, x̃ is an ε-approximate second-order stationary point.
Doing so will add an extra register for saving the point but does not increase the asymptotic
complexity.

3 Gradient Descent by the Quantum Evaluation Oracle
Another important contribution of this paper is to show how to replace the classical gradient
queries by quantum evaluation queries. This is shown in the case of convex optimization [6, 19],
and we generalize the same result to nonconvex optimization.

The idea was initiated by [50]. Classically, with only an evaluation oracle, the best way
to construct a gradient oracle is probably to walk along each direction a little bit and com-
pute the finite difference in each coordinate. Quantumly, a clever approach is to take the
uniform superposition on a mesh around the point, query the quantum evaluation oracle (in
superposition) in phase,6 and apply the quantum Fourier transform (QFT). Due to Taylor
expansion,

∑
x
eif(x)x ≈

∑
x

n⊗
k=1

e
i ∂f
∂xk

xkxk, (74)

the QFT can recover all the partial derivatives simultaneously. In this paper, we refer to
Lemma 2.2 of [19] for a precise version of Jordan’s algorithm:

Lemma 5. Let f : Rn → R be an `-smooth function specified by the evaluation oracle in (2)
with accuracy δq, i.e., it returns a value f̃(x) such that |f̃(x) − f(x)| ≤ δq. For any x ∈ Rn,
there is a quantum algorithm that uses one query to (2) and returns a vector ∇̃f(x) s.t.

P
[
‖∇̃f(x)−∇f(x)‖2 > 400ωn

√
δq`
]
< min

{ n

ω − 1 , 1
}
, ∀ω > 1. (75)

The main technical contribution of this section is to replace the gradient descent steps in
Section 2 by Lemma 5. We give error bounds of gradient computation steps in Section 3.1,
and give the proof details of escaping from saddle points in Section 3.2.

3.1 Error Bounds of Gradient Computation Steps
We first give the following bound on gradient descent using Lemma 5:

Lemma 6. Let f : Rn → R be an `-smooth, ρ-Hessian Lipschitz function, and let η ≤ 1/`.
Then the gradient outputted by Lemma 5 satisfies that for any fixed constant c, with probability

6This can be achieved by a standard technique called phase kickback. See more details at [39] and [19].

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 20

at least 1− n

1
Aq

√
2c
η
−1

, any specific step of the gradient descent sequence {xt : xt+1 ← xt−η∇̃xt}

satisfies:

f(xt+1)− f(xt) ≤ −η‖∇f(xt)‖2/2 + c, (76)

where Aq = 400n
√
δq` in the formula stands for a constant of the accuracy of the quantum

algorithm.

Ideally speaking, Aq can be arbitrarily small given a quantum computer that is accurate
enough using more qubits for the precision δq.

Proof. Considering our condition of f being `-smooth, we have

f(xt+1) ≤ f(xt) +∇f(xt) · (xt+1 − xt) + `

2‖xt+1 − xt‖2. (77)

we use g(x) to denote the outcome of the quantum algorithm. Then by the definition of
gradient descent, xt+1 − xt = ηg(xt). Let δ[g(x)] := g(x)−∇f(x). Then we have

f(xt+1) ≤ f(xt) +∇f(xt) · (xt+1 − xt) + `

2‖xt+1 − xt‖2 (78)

≤ f(xt)− η∇f(xt) · (∇f(xt) + δ[g(xt)]) + η

2‖∇f(xt) + δ[g(xt)]‖2 (79)

= f(xt)−
η

2‖∇f(xt)‖2 + η

2‖δ[g(xt)]‖2. (80)

By Lemma 5, for a fixed constant c, the value of η2‖δ[g(xt)]‖2 is smaller than c with probability
at least 1− n

1
Aq

√
2c
η
−1

, completing the proof.

Now, we replace all the gradient queries in Algorithm 2 by quantum evaluation queries,
which results in Algorithm 4. We aim to show that if it starts at x0 and the value of the
objective function does not decrease too much over iterations, then its whole iteration sequence
{xτ}tτ=0 will be located in a small neighborhood of x0. Intuitively, this is a robust version of
the “improve or localize” phenomenon presented in [47].

Algorithm 4: Perturbed Gradient Descent with Quantum Simulation and Gradient
Computation.
1 for t = 0, 1, . . . , T do
2 Apply Lemma 5 to compute an estimate ∇̃f(x) of ∇f(x);
3 if ‖∇̃f(xt)‖ ≤ ε then
4 ξ ∼QuantumSimulation(xt, r0,T ′);
5 ∆t ← 2ξ

3‖ξ‖

√
ρ
ε ;

6 xt ← arg minζ∈{xt+∆t,xt−∆t} f(ζ);
7 xt+1 ← xt − η∇̃f(xt);

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 21

Lemma 7. Under the setting of Lemma 6, for arbitrary t > τ > 0 and arbitrary constant c,
with probability at least 1− nt

1
Aq

√
2c
η
−1

we have

‖xτ − x0‖ ≤ 2
√
ηt|f(x0)− f(xt)|+ 2ηt

√
c, (81)

if quantum simulation is not called during [0, t].

Proof. Observe that

‖xτ − x0‖ ≤
t∑

τ=1
‖xτ − xτ−1‖. (82)

Using the Cauchy-Schwartz inequality, the formula above can be converted to:

‖xτ − x0‖ ≤
t∑

τ=1
‖xτ − xτ−1‖ ≤

[
t

t∑
τ=1
‖xτ − xτ−1‖2

] 1
2
, (83)

in which

xτ − xτ−1 = ηg(xτ−1) = η∇f(xτ−1) + ηδ[g(xτ−1)], (84)

which results in

‖xτ − xτ−1‖2 ≤ η2‖∇f(xτ−1)‖2 + 2η2∇f(xτ−1) · δ[g(xτ−1)] + η2‖δ[g(xτ−1)]‖2 (85)
≤ 2η2‖∇f(xτ−1)‖2 + 2η2‖δ[g(xτ−1)]‖2. (86)

Go back to the first inequality,

‖xτ − x0‖ ≤
[
t

t∑
τ=1
‖xτ − xτ−1‖2

] 1
2 ≤

[
2η2t

t∑
τ=1

(‖∇f(xτ−1)‖2 + ‖δ[g(xτ−1)]‖2)
] 1

2
. (87)

Suppose during each step from 1 to t, the value of ‖δ[g(xτ−1)]‖2 is smaller than the fixed
constant c. From Lemma 5, this condition can be satisfied with probability at least 1 −

nt

1
Aq

√
2c
η
−1

. Then,

‖xτ − x0‖ ≤
[
2η2t

t∑
τ=1

(
‖∇f(xτ−1)‖2 + ‖δ[g(xτ−1)]‖2

)] 1
2 (88)

≤
[
2η2t

(2f(x0)− 2f(xt)
η

+ 2t‖δ[g(xτ−1)]‖2
)] 1

2 (89)

≤ [4ηt(f(x0)− f(xt) + ηtc)]
1
2 (90)

≤ 2
√
ηt|f(x0)− f(xt)|+ 2ηt

√
c. (91)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 22

3.2 Escaping from Saddle Points with Quantum Simulation and Gradient Computation
In this subsection, we prove the result below for escaping from saddle points with both quantum
simulation and gradient computation. Compared to Theorem 3, it reduces classical gradient
queries to the same number of quantum evaluation queries.

Theorem 5. Let f : Rn → R be an `-smooth, ρ-Hessian Lipschitz function. Suppose that we
have the quantum evaluation oracle Uf in (2) with accuracy δq ≤ O

(
δ2ε2

`n4

)
. Then Algorithm 4

finds an ε-approximate local minimum satisfying (1), using

Õ
((f(x0)− f∗)

ε2
· log2 n

)
queries to Uf with probability at least 1− δ, under the following parameter choices:

T ′ := 8
(ρε)1/4 log

(`

δ0
√
ρε

(n+ 2 log(3/δ0))
)

F ′ := 2
81

√
ε3

ρ
(92)

r0 := 4C3
r

9T ′4

(δ0
3 ·

1
n3/2 + 2C0n`(log T ′)α

)2
η := 1

`
(93)

where C0 and Cr are constants specified in Proposition 1, x0 is the start point, and f∗ is the
global minimum of f .

Note that Theorem 5 essentially shows that the perturbed gradient descent method still
converges with the same asymptotic bound if there is a small error in gradient queries. This
robustness of escaping from saddle points may be of independent interest.

Proof. Set δ0 = 1
81(f(x0)−f∗)

√
ε3

ρ and set the quantum accuracy δq ≤ 1
2`

(
δε

1000n2

)2
. Let total

iteration steps T to be:

T = 4 max
{(f(x0)− f∗)

F ′
,

2(f(x0)− f∗)
ηε2

}
= Õ

((f(x0)− f∗)
ε2

· log n
)
, (94)

similar to the classical GD algorithm. The same to Proposition 1, we set the radius M of the
simulation range to be r0/Cr. First assume that for each xt we apply QuantumSimulation
(Algorithm 1), we can successfully obtain an output ξ with ξTHξ/‖ξ‖2 ≤ −√ρε/3, as long as
λmin(H(xt)) ≤ −

√
ρε. The error probability of this assumption is provided later.

Under this assumption, Algorithm 1 can be called for at most 81(f(x0)−f∗)
2

√
ρ
ε3 ≤

T
4 times,

for otherwise the function value decrease will be greater than f(x0)−f∗, which is not possible.
Then, the error probability that some calls to Algorithm 1 fails to indicate a negative curvature
is upper bounded by

81(f(x0)− f∗)
2

√
ρ

ε3
· δ0 = δ/2. (95)

Excluding those iterations that QuantumSimulation is applied, we still have T/2 steps left.
They are either large gradient steps, ‖∇f(xt)‖ ≥ ε, or ε-approximate second-order stationary
points. Within them, for each large gradient steps, by Lemma 6, with probability at least

1− n

1
400n

√
2
δq
· ηε24 − 1

= 1− n
ε

400n

√
1

2δq` − 1
≤ 1− δ/2, (96)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 23

the function value decrease is greater than ηε2/4, there can be at most T/4 steps with large
gradients—otherwise the function value decrease will be greater than f(x0) − f∗, which is
impossible.

In summary, by the union bound we can deduce that with probability at least 1− δ, there
are at most T/2 steps within T ′ steps after calling quantum simulation, and at most T/4
steps have a gradient greater than ε. As a result, the rest T/4 steps must all be ε-approximate
second-order stationary points.

The number of queries can be viewed as the sum of two parts, the number of queries
needed for gradient descent, denoted by T1, and the number of queries needed for quantum
simulation, denoted by T2. Then with probability at least 1− δ,

T1 = T = Õ
((f(x0)− f∗)

ε2
· log n

)
. (97)

As for T2, with probability at least 1− δ quantum simulation is called for at most 4(f(x0)−f∗)
F ′

times, and by Lemma 2 it takes Õ
(
T ′ log n log2(T ′2/ε)

)
queries to carry out each simulation.

Therefore,

T2 = 4(f(x0)− f∗)
F ′

· Õ
(
T ′ log n log2(T ′2/ε)

)
= Õ

((f(x0)− f∗)
ε

· log2 n
)
. (98)

As a result, the total query complexity T1 + T2 is

Õ
((f(x0)− f∗)

ε2
· log2 n

)
. (99)

Theorem 4 and Theorem 5 together imply the main result Theorem 1 of this paper.

Remark 3. One may notice that in Section 3, we only demonstrated the robustness of Al-
gorithm 2 where the classical gradient oracle is replaced by the quantum evaluation oracle.
We argue that the same argument holds for Algorithm 3 because the difference between Algo-
rithm 2 and Algorithm 3 only exists in large gradient steps, while the relative error caused
by Jordan’s algorithm is small since the absolute error remains to be a constant. Hence, in
principle Algorithm 3 satisfies the similar robustness property compared to Algorithm 2 under
the change of gradient oracles.

4 Numerical Experiments
In this section, we provide numerical results that demonstrate the power of quantum simulation
for escaping from saddle points. Due to the limitation of current quantum computers, we
simulate all quantum algorithms numerically on a classical computer (with Dual-Core Intel
Core i5 Processor, 8GB memory). Nevertheless, our numerical results strongly assert the
quantum speedup in small to intermediate scales. All the numerical results and plots are
obtained by MATLAB 2019a.

In the first two experiments, we look at the wave packet evolution on both quadratic and
non-quadratic potential fields. Before bringing out numerical results and related discussions,
we want to briefly discuss the leapfrog scheme [41], which is the technique we employed for

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 24

numerical integration of the Schrödinger equation. We discretize the Schrödinger equation as
a linear system of an ordinary differential equation (for details, see Section 2.1.1):

i
dΨ
dt = HΨ, (100)

where Ψ: [0, T] → CN is a vector-valued function in time. We may have a decomposition
Ψ(t) = Q(t) + iP (t) for Q,P : [0, T] → RN being the real and imaginary part of Ψ, respec-
tively. Then plugging the decomposition into the ODE (100), we have a separable N -body
Hamiltonian system {

Q̇ = HP ;
Ṗ = −HQ.

(101)

The optimal integration scheme for solving this Hamiltonian system is the symplectic integra-
tor [41], and we use a second-order leapfrog integrator for separable canonical Hamiltonian
systems [32] in this section. In all of our PDE simulations, we fix the spatial domain to be
Ω = {(x, y) : |x| ≤ 3, |y| ≤ 3} and the mesh number to be 512 on each edge.

4.1 Dispersion of the Wave Packet
In Proposition 2, we showed that a centered Gaussian wave packet will disperse along the
negative curvature direction of the saddle point. In the numerical simulation presented in
Figure 1, we have a potential function f1(x, y) = −x2/2+3y2/2 and the initial wave function as
described in Proposition 2 (r = 0.5). In each subplot, the Gaussian wave packet (i.e., modulus
square of the wave function Φ(t, x)) at a specific time is shown. The quantum evolution
“squeezes” the wave packet along the x-axis: the variance of the marginal distribution on the
x-axis is 0.25, 0.33, 0.68 at time t = 0, 0.5, 1, respectively.

Figure 1: Dispersion of wave packet over the potential field f1(x, y). We use the finite difference method
(5-point stencil) and the Leapfrog integration to simulate the Schrödinger equation (6) on a square domain
(center = (0, 0), edge = 6), up to T = 1. The mesh number is 512 on each edge. The average runtime
for this simulation is 43.7 seconds.

In the preceding experiment, we have provided a numerical simulation of the dispersion
of the Gaussian wave packet on a quadratic potential field. Next, we only require that the
function is Hessian-Lipschitz near the saddle point. This is enough to promise that the second-
order Taylor series is a good approximation near a small neighborhood of the saddle point.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 25

4.2 Quantum Simulation on Non-quadratic Potential Fields
Now, we explore the behavior of the wave packet on non-quadratic potential fields. It is worth
noting that: (1) the wave packet is not necessarily Gaussian during the time evolution; (2) for
practical reason, we will truncate the unbounded spatial domain R2 to be a bounded square Ω
and assume Dirichlet boundary conditions (Φ(t, x) = 0 on ∂Ω for all t ∈ [0, T]). Nevertheless,
it is still observed that the wave packet will be mainly confined to the “valley” on the landscape
which corresponds to the direction of the negative curvature.

We will run quantum simulation (Algorithm 1) near the saddle point of two non-quadratic
potential landscapes. The first one is f(x, y) = 1

12x
4 − 1

2x
2 + 1

2y
2. The Hessian matrix of

f(x, y) is

∇2f(x, y) =
(
x2 − 1 0

0 1

)
. (102)

It has a saddle point at (0, 0) and two global minima (±
√

3, 0). The minimal function value
is −3/4. This is the landscape used in the next experiment in which a comparison study
between quantum and classical is conducted. We claimed that the wave packet will remain
(almost) Gaussian at te = 1.5. This claim is confirmed by the numerical result illustrated
in Figure 2. The wave packet has been “squeezed” along the x-axis, the negative curvature
direction. Compared to the uniform distribution in a ball used in PGD, this “squeezed”
bivariant Gaussian distribution assigns more probability mass along the x-axis, thus allowing
escaping from the saddle point more efficiently.

Figure 2: Quantum simulation on landscape 1: f(x, y) = 1
12x

4 − 1
2x

2 + 1
2y

2. Parameters: r0 = 0.5,
te = 1.5. Left: The contour of the landscape is placed on the background with labels being function values;
the thick blue contours illustrate the wave packet at te = 1.5 (i.e., modulus square of the wave function
Φ(te, x, y)).
Right: A surface plot of the same wave packet at te = 1.5. The average runtime for this simulation is
60.70 seconds.

The second landscape we explore is g(x, y) = x3 − y3 − 2xy + 6. Its Hessian matrix is

∇2g(x, y) =
(

6x −2
−2 −6y

)
. (103)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 26

It has a saddle point at (0, 0) with no global minimum. This objective function has a circular
“valley” along the negative curvature direction (1, 1), and a “ridge” along the positive curvature
direction (1,−1). We aim to study the long-term evolution of the Gaussian wave packet on
the landscape restricted on a square region. The evolution of the wave packet is illustrated
in Figure 3. In a small time scale (e.g., t = 1), the wave packet disperses down the valley on
the landscape, and it preserves a bell shape; waves are reflected from the boundary and an
interference pattern can be observed near the upper and left edges of the square. Dispersion
and interference coexist in the plot at t = 2, in which the wave packet splits into two symmetric
components, each locates in a lowland. Since the total energy is conserved in the quantum-
mechanical system, the wave packet bounces back at t = 5, but is blurred due to wave
interference. In the whole evolution in t ∈ [0, 5], the wave packet is confined to the valley area
of the landscape (even after bouncing back from the boundary). This evidence suggests that
Gaussian wave packet is able to adapt to more complicated saddle point geometries.

t = 0

-10

-1
0

-1
0

0
0

0

6

6

6

2
0

20

3
0

30

-2 -1 0 1 2
X

-2

-1

0

1

2

Y

0

0.2

0.4

0.6

0.8

1
t = 1

-10

-1
0

-1
0

0
0

0

6

6

6

2
0

20

3
0

30

-2 -1 0 1 2
X

-2

-1

0

1

2
Y

0

0.2

0.4

0.6

0.8

1

t = 2

-10

-1
0

-1
0

0
0

0

6

6

6

2
0

20

3
0

30

-2 -1 0 1 2
X

-2

-1

0

1

2

Y

0

0.2

0.4

0.6

0.8

1
t = 5

-10

-1
0

-1
0

0
0

0

6

6

6

2
0

20

3
0

30

-2 -1 0 1 2
X

-2

-1

0

1

2

Y

0

0.2

0.4

0.6

0.8

1

Figure 3: Quantum simulation on landscape 2: g(x, y) = x3− y3− 2xy+ 6. Parameters: r0 = 0.5, te = 5.
In each subplot, a colored contour plot of the wave packet at a specific time is shown, and the landscape
contour is placed on top of the wave packet for quick reference. The average runtime for this simulation is
209.95 seconds.

4.3 Comparison Between PGD and Algorithm 2
In addition to the numerical study of the evolution of wave packets, we compare the perfor-
mance of the PGD algorithm [46] with Algorithm 2 on a test function f2(x, y) = 1

12x
4− 1

2x
2 +

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 27

1
2y

2.
In this experiment and the last one in this section, we only implement a mini-batch from

the whole algorithm (for both classical PGD and PGD with quantum simulation). In fact, a
mini-batch is good enough for us to demonstrate the power of quantum simulation as well as
the dimension dependence in both algorithms. A mini-batch in the experiment is defined as
follows:

• Classical algorithm (PGD) mini-batch [following Algorithm 4 of 47]: x0 is uniformly
sampled from the ball B0(r) (saddle point at the origin), and then run Tc gradient
descent steps to obtain xTc . Record the function value f(xTc). Repeat this process M
times. The resulting function values are presented in a histogram.

• Quantum algorithm mini-batch (following Algorithm 2): Run the quantum simulation
with evolution time te to generate a multivariate Gaussian distribution centered at 0.
x0 is sampled from this multivariate Gaussian distribution. Run Tq gradient descent
steps and record the function value f(xTq). Repeat this process M times. The resulting
function values are also presented in a histogram, superposed to the results given by the
classical algorithm.

The experimental results from 1000 samples are illustrated in Figure 4. Although the test
function is non-quadratic, the quantum speedup is apparent.

-2 -1.5 -1 -0.5 0
X

-0.5

-0.25

0

0.25

0.5

Y

Typical GD paths

-0
.7

3

-0
.7

-0
.7

-0
.5

-0
.3

-0
.3

-0
.2

-0
.2

-0
.1

-0
.1

0

0

(-0.01,-0.45)

(-0.35,0.07)

path 1
path 2

descent value

(-0.75,-0.5](-0.5,-0.25](-0.25,0]>0
Function value

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

PGD+QSimulation
PGD

Figure 4: Left: Two typical gradient descent paths on the landscape of f2 illustrated as a contour plot.
Path 1 (resp. 2) starts from (−0.01, 0.45) (resp. (−0.35, 0.07)); both have step length η = 0.2 and T = 20
iterations. Note that path 2 approaches the local minimum (−

√
3, 0), while path 1 is still far away. In PGD,

path 1 and 2 will be sampled with equal probability by the uniform perturbation, whereas in Algorithm 2,
the dispersion of the wave packet along the x-axis enables a much higher probability of sampling a path
like path 2 (that approaches the local minimum).
Right: A histogram of function values f2(xTc

) (PGD) and f2(xTq
) (Algorithm 2). We set step length

η = 0.05, r = 0.5 (ball radius in PGD and r0 in Algorithm 1), M = 1000, Tc = 50, Tq = 10, te = 1.5.
Although we run five more times of iterations in PGD, there are still over 70% of gradient descent paths
arriving the neighborhood of the local minimum, while there are less than 70% paths in Algorithm 2
approaching the local minimum. The average runtime of this experiment is 0.02 seconds.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 28

4.4 Dimension Dependence
Recall that n is the dimension of the problem. Classically, it has been shown in [47] that the
PGD algorithm requires O(log4 n) iterations to escape from saddle points; however, quantum
simulation for time O(log n) suffices in our Algorithm 2 by Theorem 3. The following experi-
ment is designed to compare this dimension dependence of PGD and Algorithm 2. We choose
a test function h(x) = 1

2x
THx where H is an n-by-n diagonal matrix: H = diag(−ε, 1, 1, ..., 1).

The function h(x) has a saddle point at the origin, and only one negative curvature direction.
Throughout the experiment, we set ε = 0.01. Other hyperparameters are: dimension n ∈ N,
radius of perturbation r > 0, classical number of iterations Tc, quantum number of iterations
Tq, quantum evolution time te, number of samples M ∈ N, and GD step size (learning rate)
η. For the sake of comparison, the iteration numbers Tc and Tq are chosen in a manner such
that the statistics of the classical and quantum algorithms in each category of the histogram
in Figure 5 are of similar magnitude.

dim = 10

(-5e-3,-4e-3](-4e-3,-3e-3](-3e-3,-2e-3](-2e-3,-1e-3]>-1e-3
0

200

400

600 QSimulation
PGD

dim = 100

(-1e-2,-8e-3](-8e-3,-6e-3](-6e-3,-4e-3](-4e-3,-2e-3]>-2e-3
0

200

400

600

fr
eq

ue
nc

y QSimulation
PGD

dim = 1000

(-0.25,-0.2](-0.2,-0.15](-0.15,-0.1](-0.05,-0.1]>-0.1
0

500

1000
QSimulation
PGD

Figure 5: Dimension dependence of classical and quantum algorithms. We set ε = 0.01, r = 0.1, n = 10p

for p = 1, 2, 3. Quantum evolution time te = p, classical iteration number Tc = 50p2 + 50, quantum
iteration number Tq = 30p, and sample size M = 1000. The average runtime for this simulation is 90.92
seconds.

The numerical results are illustrated in Figure 5. The number of dimensions varies drasti-
cally from 10 to 1000, while the distribution patterns in all three subplots are similar: setting
Tc = Θ(log2 n) and Tq = Θ(log n), the PGD with quantum simulation outperforms the clas-
sical PGD in the sense that more samples can escape from the saddle point (as they have
lower function values). At the same time, under this choice of parameters, the performance of
the classical PGD is still comparable to that of the PGD with quantum simulation, i.e., the
statistics in each category are of similar magnitude. This numerical evidence might suggest

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 29

that for a generic problem, the classical PGD method in [47] has better dimension dependence
than O(log4 n).

Acknowledgement
We thank Andrew M. Childs, András Gilyén, Aram W. Harrow, Jin-Peng Liu, Ronald de Wolf,
and Xiaodi Wu for helpful discussions. We also thank anonymous reviewers for helpful sugges-
tions on earlier versions of this paper. JL was supported by the National Science Foundation
(grant CCF-1816695). TL was supported by an IBM PhD Fellowship, an QISE-NET Triplet
Award (NSF grant DMR-1747426), the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Quantum Algorithms Teams program, NSF grant
PHY-1818914, and a Samsung Advanced Institute of Technology Global Research Partnership.

References
[1] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma, Find-

ing approximate local minima faster than gradient descent, Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 1195–1199, 2017,
arXiv:1611.01146. https://doi.org/10.1145/3055399.3055464

[2] Zeyuan Allen-Zhu, Natasha 2: Faster non-convex optimization than SGD, Advances in
Neural Information Processing Systems, pp. 2675–2686, 2018, arXiv:1708.08694.

[3] Zeyuan Allen-Zhu and Yuanzhi Li, Neon2: Finding local minima via first-order or-
acles, Advances in Neural Information Processing Systems, pp. 3716–3726, 2018,
arXiv:1711.06673.

[4] Joran van Apeldoorn and András Gilyén, Improvements in quantum SDP-solving with
applications, Proceedings of the 46th International Colloquium on Automata, Lan-
guages, and Programming, Leibniz International Proceedings in Informatics (LIPIcs),
vol. 132, pp. 99:1–99:15, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019,
arXiv:1804.05058. https://doi.org/10.4230/LIPIcs.ICALP.2019.99

[5] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf, Quan-
tum SDP-solvers: Better upper and lower bounds, 58th Annual Symposium on Founda-
tions of Computer Science, IEEE, 2017, arXiv:1705.01843. https://doi.org/10.22331/
q-2020-02-14-230

[6] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf, Convex
optimization using quantum oracles, Quantum 4 (2020), 220, arXiv:1809.00643. https:
//doi.org/10.22331/q-2020-01-13-220

[7] Frank Arute et al., Quantum supremacy using a programmable superconducting processor,
Nature 574 (2019), no. 7779, 505–510, arXiv:1910.11333. https://doi.org/10.1038/
s41586-019-1666-5

[8] Ivo Babuška and Manil Suri, The h-p version of the finite element method with quasiu-
niform meshes, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation
Mathématique et Analyse Numérique 21 (1987), no. 2, 199–238.

[9] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders, Efficient
quantum algorithms for simulating sparse Hamiltonians, Communications in Mathemati-

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 30

http://arxiv.org/abs/arXiv:1611.01146
https://doi.org/10.1145/3055399.3055464
http://arxiv.org/abs/arXiv:1708.08694
http://arxiv.org/abs/arXiv:1711.06673
http://arxiv.org/abs/arXiv:1804.05058
https://doi.org/10.4230/LIPIcs.ICALP.2019.99
http://arxiv.org/abs/arXiv:1705.01843
https://doi.org/10.22331/q-2020-02-14-230
https://doi.org/10.22331/q-2020-02-14-230
http://arxiv.org/abs/arXiv:1809.00643
https://doi.org/10.22331/q-2020-01-13-220
https://doi.org/10.22331/q-2020-01-13-220
http://arxiv.org/abs/arXiv:1910.11333
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5

cal Physics 270 (2007), no. 2, 359–371, arXiv:quant-ph/0508139. https://doi.org/10.
1007/s00220-006-0150-x

[10] Dominic W. Berry, Andrew M. Childs, and Robin Kothari, Hamiltonian simulation with
nearly optimal dependence on all parameters, Proceedings of the 56th Annual Symposium
on Foundations of Computer Science, pp. 792–809, IEEE, 2015, arXiv:1501.01715. https:
//doi.org/10.1109/FOCS.2015.54

[11] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro, Global optimality of local
search for low rank matrix recovery, Advances in Neural Information Processing Systems,
pp. 3880–3888, 2016, arXiv:1605.07221.

[12] Jean Bourgain, Growth of Sobolev norms in linear Schrödinger equations with quasi-
periodic potential, Communications in Mathematical Physics 204 (1999), no. 1, 207–247.
https://doi.org/10.1007/s002200050644

[13] Jean Bourgain, On growth of Sobolev norms in linear Schrödinger equations with smooth
time dependent potential, Journal d’Analyse Mathématique 77 (1999), no. 1, 315–348.
https://doi.org/10.1007/BF02791265

[14] Fernando G.S.L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M.
Svore, and Xiaodi Wu, Quantum SDP solvers: Large speed-ups, optimality, and appli-
cations to quantum learning, Proceedings of the 46th International Colloquium on Au-
tomata, Languages, and Programming, Leibniz International Proceedings in Informatics
(LIPIcs), vol. 132, pp. 27:1–27:14, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019, arXiv:1710.02581. https://doi.org/10.4230/LIPIcs.ICALP.2019.27

[15] Fernando G.S.L. Brandão and Krysta Svore, Quantum speed-ups for semidefinite program-
ming, Proceedings of the 58th Annual Symposium on Foundations of Computer Science,
pp. 415–426, 2017, arXiv:1609.05537. https://doi.org/10.1109/FOCS.2017.45

[16] Alan J. Bray and David S. Dean, Statistics of critical points of Gaussian fields
on large-dimensional spaces, Physical Review Letters 98 (2007), no. 15, 150201,
arXiv:cond-mat/0611023. https://doi.org/10.1103/PhysRevLett.98.150201

[17] David Bulger, Quantum basin hopping with gradient-based local optimisation, 2005,
arXiv:quant-ph/0507193.

[18] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford, Accelerated methods
for nonconvex optimization, SIAM Journal on Optimization 28 (2018), no. 2, 1751–1772,
arXiv:1611.00756. https://doi.org/10.1137/17M1114296

[19] Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi Wu, Quan-
tum algorithms and lower bounds for convex optimization, Quantum 4 (2020), 221,
arXiv:1809.01731. https://doi.org/10.22331/q-2020-01-13-221

[20] Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao
Wang, Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing
quantum machine learning, Proceedings of the 52nd Annual ACM Symposium on Theory
of Computing, pp. 387–400, ACM, 2020, arXiv:1910.06151. https://doi.org/10.1145/
3357713.3384314

[21] Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and Chunhao
Wang, Quantum-inspired algorithms for solving low-rank linear equation systems with
logarithmic dependence on the dimension, Proceedings of the 31st International Sympo-
sium on Algorithms and Computation, vol. 181, p. 47, Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020. https://doi.org/10.4230/LIPIcs.ISAAC.2020.47

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 31

http://arxiv.org/abs/arXiv:quant-ph/0508139
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1007/s00220-006-0150-x
http://arxiv.org/abs/arXiv:1501.01715
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1109/FOCS.2015.54
http://arxiv.org/abs/arXiv:1605.07221
https://doi.org/10.1007/s002200050644
https://doi.org/10.1007/BF02791265
http://arxiv.org/abs/arXiv:1710.02581
https://doi.org/10.4230/LIPIcs.ICALP.2019.27
http://arxiv.org/abs/arXiv:1609.05537
https://doi.org/10.1109/FOCS.2017.45
http://arxiv.org/abs/arXiv:cond-mat/0611023
https://doi.org/10.1103/PhysRevLett.98.150201
http://arxiv.org/abs/arXiv:quant-ph/0507193
http://arxiv.org/abs/arXiv:1611.00756
https://doi.org/10.1137/17M1114296
http://arxiv.org/abs/arXiv:1809.01731
https://doi.org/10.22331/q-2020-01-13-221
http://arxiv.org/abs/arXiv:1910.06151
https://doi.org/10.1145/3357713.3384314
https://doi.org/10.1145/3357713.3384314
https://doi.org/10.4230/LIPIcs.ISAAC.2020.47

[22] Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang, Quantum-inspired
sublinear algorithm for solving low-rank semidefinite programming, 45th International
Symposium on Mathematical Foundations of Computer Science, 2020, arXiv:1901.03254.
https://doi.org/10.4230/LIPIcs.MFCS.2020.23

[23] Andrew M. Childs, Lecture notes on quantum algorithms, https://www.cs.umd.edu/
%7Eamchilds/qa/qa.pdf, 2017.

[24] Andrew M. Childs and Robin Kothari, Limitations on the simulation of non-sparse
Hamiltonians, Quantum Information & Computation 10 (2010), no. 7, 669–684,
arXiv:0908.4398.

[25] Andrew M. Childs, Jin-Peng Liu, and Aaron Ostrander, High-precision quantum algo-
rithms for partial differential equations, 2020, arXiv:2002.07868.

[26] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu, Theory
of Trotter error with commutator scaling, Physical Review X 11 (2021), no. 1, 011020,
arXiv:1912.08854. https://doi.org/10.1103/PhysRevX.11.011020

[27] Pedro C.S. Costa, Stephen Jordan, and Aaron Ostrander, Quantum algorithm for simu-
lating the wave equation, Physical Review A 99 (2019), no. 1, 012323, arXiv:1711.05394.
https://doi.org/10.1103/PhysRevA.99.012323

[28] Frank E. Curtis, Daniel P. Robinson, and Mohammadreza Samadi, A trust region al-
gorithm with a worst-case iteration complexity of O(ε−3/2) for nonconvex optimiza-
tion, Mathematical Programming 162 (2017), no. 1-2, 1–32. https://doi.org/10.1007/
s10107-016-1026-2

[29] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Gan-
guli, and Yoshua Bengio, Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Advances in Neural Information Processing Sys-
tems, pp. 2933–2941, 2014, arXiv:1406.2572.

[30] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang, Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator, Advances in Neu-
ral Information Processing Systems, pp. 689–699, 2018, arXiv:1807.01695.

[31] Cong Fang, Zhouchen Lin, and Tong Zhang, Sharp analysis for nonconvex SGD es-
caping from saddle points, Conference on Learning Theory, pp. 1192–1234, 2019,
arXiv:1902.00247.

[32] Mauger François, Symplectic leap frog scheme, https://www.mathworks.com/
matlabcentral/fileexchange/38652-symplectic-leap-frog-scheme, 2020.

[33] Yan V. Fyodorov and Ian Williams, Replica symmetry breaking condition exposed
by random matrix calculation of landscape complexity, Journal of Statistical Physics
129 (2007), no. 5-6, 1081–1116, arXiv:cond-mat/0702601. https://doi.org/10.1007/
s10955-007-9386-x

[34] Xuefeng Gao, Mert Gürbüzbalaban, and Lingjiong Zhu, Global convergence of
stochastic gradient Hamiltonian monte carlo for non-convex stochastic optimiza-
tion: Non-asymptotic performance bounds and momentum-based acceleration, 2018,
arXiv:1809.04618.

[35] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan, Escaping from saddle points – online
stochastic gradient for tensor decomposition, Conference on Learning Theory, pp. 797–842,
2015, arXiv:1503.02101.

[36] Rong Ge, Jason D. Lee, and Tengyu Ma, Matrix completion has no spurious local

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 32

http://arxiv.org/abs/arXiv:1901.03254
https://doi.org/10.4230/LIPIcs.MFCS.2020.23
https://www.cs.umd.edu/%7Eamchilds/qa/qa.pdf
https://www.cs.umd.edu/%7Eamchilds/qa/qa.pdf
http://arxiv.org/abs/arXiv:0908.4398
http://arxiv.org/abs/arXiv:2002.07868
http://arxiv.org/abs/arXiv:1912.08854
https://doi.org/10.1103/PhysRevX.11.011020
http://arxiv.org/abs/arXiv:1711.05394
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1007/s10107-016-1026-2
https://doi.org/10.1007/s10107-016-1026-2
http://arxiv.org/abs/arXiv:1406.2572
http://arxiv.org/abs/arXiv:1807.01695
http://arxiv.org/abs/arXiv:1902.00247
https://www.mathworks.com/matlabcentral/fileexchange/38652-symplectic-leap-frog-scheme
https://www.mathworks.com/matlabcentral/fileexchange/38652-symplectic-leap-frog-scheme
http://arxiv.org/abs/arXiv:cond-mat/0702601
https://doi.org/10.1007/s10955-007-9386-x
https://doi.org/10.1007/s10955-007-9386-x
http://arxiv.org/abs/arXiv:1809.04618
http://arxiv.org/abs/arXiv:1503.02101

minimum, Advances in Neural Information Processing Systems, pp. 2981–2989, 2016,
arXiv:1605.07272.

[37] Rong Ge, Jason D. Lee, and Tengyu Ma, Learning one-hidden-layer neural networks
with landscape design, International Conference on Learning Representations, 2018,
arXiv:1711.00501.

[38] Rong Ge and Tengyu Ma, On the optimization landscape of tensor decompositions, Ad-
vances in Neural Information Processing Systems, pp. 3656–3666, Curran Associates Inc.,
2017, arXiv:1706.05598.

[39] András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe, Optimizing quantum op-
timization algorithms via faster quantum gradient computation, Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1425–1444, Society for In-
dustrial and Applied Mathematics, 2019, arXiv:1711.00465. https://doi.org/10.1137/
1.9781611975482.87

[40] András Gilyén, Zhao Song, and Ewin Tang, An improved quantum-inspired algorithm for
linear regression, 2020, arXiv:2009.07268.

[41] Stephen K. Gray and David E. Manolopoulos, Symplectic integrators tailored to the time-
dependent Schrödinger equation, The Journal of chemical physics 104 (1996), no. 18,
7099–7112. https://doi.org/10.1063/1.471428

[42] Lov K. Grover, A fast quantum mechanical algorithm for database search, Proceedings
of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219,
ACM, 1996, arXiv:quant-ph/9605043. https://doi.org/10.1145/237814.237866

[43] Moritz Hardt, Tengyu Ma, and Benjamin Recht, Gradient descent learns linear dynamical
systems, Journal of Machine Learning Research 19 (2018), no. 29, 1–44, arXiv:1609.05191.

[44] Daniel Hsu, Sham Kakade, and Tong Zhang, A tail inequality for quadratic forms of
subgaussian random vectors, Electronic Communications in Probability 17 (2012), 1–6,
arXiv:1110.2842. https://doi.org/10.1214/ECP.v17-2079

[45] Prateek Jain, Chi Jin, Sham Kakade, and Praneeth Netrapalli, Global convergence of
non-convex gradient descent for computing matrix squareroot, Artificial Intelligence and
Statistics, pp. 479–488, 2017, arXiv:1507.05854.

[46] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan, How
to escape saddle points efficiently, Conference on Learning Theory, pp. 1724–1732, 2017,
arXiv:1703.00887.

[47] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan, On Non-
convex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points,
Journal of the ACM 68.2 (2021), 1–29. arXiv:1902.04811. https://doi.org/10.1145/
3418526

[48] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan, Accelerated gradient descent escapes
saddle points faster than gradient descent, Conference on Learning Theory, pp. 1042–1085,
2018, arXiv:1711.10456.

[49] Michael I. Jordan, On gradient-based optimization: Accelerated, distributed, asyn-
chronous and stochastic optimization, https://www.youtube.com/watch?v=VE2ITg%
5FhGnI, 2017.

[50] Stephen P. Jordan, Fast quantum algorithm for numerical gradient estimation, Physical
Review Letters 95 (2005), no. 5, 050501, arXiv:quant-ph/0405146. https://doi.org/
10.1103/PhysRevLett.95.050501

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 33

http://arxiv.org/abs/arXiv:1605.07272
http://arxiv.org/abs/arXiv:1711.00501
http://arxiv.org/abs/arXiv:1706.05598
http://arxiv.org/abs/arXiv:1711.00465
https://doi.org/10.1137/1.9781611975482.87
https://doi.org/10.1137/1.9781611975482.87
http://arxiv.org/abs/arXiv:2009.07268
https://doi.org/10.1063/1.471428
http://arxiv.org/abs/arXiv:quant-ph/9605043
https://doi.org/10.1145/237814.237866
http://arxiv.org/abs/arXiv:1609.05191
http://arxiv.org/abs/arXiv:1110.2842
https://doi.org/10.1214/ECP.v17-2079
http://arxiv.org/abs/arXiv:1507.05854
http://arxiv.org/abs/arXiv:1703.00887
http://arxiv.org/abs/arXiv:1902.04811
https://doi.org/10.1145/3418526
https://doi.org/10.1145/3418526
http://arxiv.org/abs/arXiv:1711.10456
https://www.youtube.com/watch?v=VE2ITg%5FhGnI
https://www.youtube.com/watch?v=VE2ITg%5FhGnI
http://arxiv.org/abs/arXiv:quant-ph/0405146
https://doi.org/10.1103/PhysRevLett.95.050501
https://doi.org/10.1103/PhysRevLett.95.050501

[51] Stephen P. Jordan, Quantum computation beyond the circuit model, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 2008, arXiv:0809.2307.

[52] Iordanis Kerenidis and Anupam Prakash, Quantum recommendation systems, Proceedings
of the 8th Innovations in Theoretical Computer Science Conference, pp. 49:1–49:21, 2017,
arXiv:1603.08675. https://doi.org/10.4230/LIPIcs.ITCS.2017.49

[53] Iordanis Kerenidis and Anupam Prakash, A quantum interior point method for LPs
and SDPs, ACM Transactions on Quantum Computing, pp. 1–32, ACM, 2020,
arXiv:1808.09266. https://doi.org/10.1145/3406306

[54] Alexei Kitaev and William A. Webb, Wavefunction preparation and resampling using a
quantum computer, 2008, arXiv:0801.0342.

[55] Kfir Y. Levy, The power of normalization: Faster evasion of saddle points, 2016,
arXiv:1611.04831.

[56] Jianping Li, General explicit difference formulas for numerical differentiation, Journal of
Computational and Applied Mathematics 183 (2005), no. 1, 29–52. https://doi.org/
10.1016/j.cam.2004.12.026

[57] Seth Lloyd, Universal quantum simulators, Science 273 (1996), no. 5278, 1073. https:
//doi.org/10.1126/science.273.5278.1073

[58] Guang Hao Low and Isaac L. Chuang, Optimal Hamiltonian simulation by quantum signal
processing, Physical Review Letters 118 (2017), no. 1, 010501, arXiv:1606.02685. https:
//doi.org/10.1103/PhysRevLett.118.010501

[59] Guang Hao Low and Isaac L. Chuang, Hamiltonian simulation by qubitization, Quantum
3 (2019), 163, arXiv:1610.06546. https://doi.org/10.22331/q-2019-07-12-163

[60] Guang Hao Low and Nathan Wiebe, Hamiltonian simulation in the interaction picture,
2018, arXiv:1805.00675.

[61] Yurii Nesterov and Boris T. Polyak, Cubic regularization of Newton method and its global
performance, Mathematical Programming 108 (2006), no. 1, 177–205. https://doi.org/
10.1007/s10107-006-0706-8

[62] Yurii E. Nesterov, A method for solving the convex programming problem with convergence
rate O(1/k2), Soviet Mathematics Doklady, vol. 27, pp. 372–376, 1983.

[63] John Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018), 79,
arXiv:1801.00862. https://doi.org/10.22331/q-2018-08-06-79

[64] Changpeng Shao and Ashley Montanaro, Faster quantum-inspired algorithms for solving
linear systems, 2021, arXiv:2103.10309.

[65] Ju Sun, Qing Qu, and John Wright, A geometric analysis of phase retrieval, Foundations
of Computational Mathematics 18 (2018), no. 5, 1131–1198, arXiv:1602.06664. https:
//doi.org/10.1007/s10208-017-9365-9

[66] Ewin Tang, Quantum-inspired classical algorithms for principal component analysis and
supervised clustering, 2018, arXiv:1811.00414.

[67] Ewin Tang, A quantum-inspired classical algorithm for recommendation systems, Pro-
ceedings of the 51st Annual ACM Symposium on Theory of Computing, pp. 217–228,
ACM, 2019, arXiv:1807.04271. https://doi.org/10.1145/3313276.3316310

[68] Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I. Jordan,
Stochastic cubic regularization for fast nonconvex optimization, Advances in Neural In-
formation Processing Systems, pp. 2899–2908, 2018, arXiv:1711.02838.

[69] Christian Weedbrook, Stefano Pirandola, Raúl García-Patrón, Nicolas J. Cerf, Timo-
thy C. Ralph, Jeffrey H. Shapiro, and Seth Lloyd, Gaussian quantum information, Re-

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 34

http://arxiv.org/abs/arXiv:0809.2307
http://arxiv.org/abs/arXiv:1603.08675
https://doi.org/10.4230/LIPIcs.ITCS.2017.49
http://arxiv.org/abs/arXiv:1808.09266
https://doi.org/10.1145/3406306
http://arxiv.org/abs/arXiv:0801.0342
http://arxiv.org/abs/arXiv:1611.04831
https://doi.org/10.1016/j.cam.2004.12.026
https://doi.org/10.1016/j.cam.2004.12.026
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
http://arxiv.org/abs/arXiv:1606.02685
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
http://arxiv.org/abs/arXiv:1610.06546
https://doi.org/10.22331/q-2019-07-12-163
http://arxiv.org/abs/arXiv:1805.00675
https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1007/s10107-006-0706-8
http://arxiv.org/abs/arXiv:1801.00862
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/arXiv:2103.10309
http://arxiv.org/abs/arXiv:1602.06664
https://doi.org/10.1007/s10208-017-9365-9
https://doi.org/10.1007/s10208-017-9365-9
http://arxiv.org/abs/arXiv:1811.00414
http://arxiv.org/abs/arXiv:1807.04271
https://doi.org/10.1145/3313276.3316310
http://arxiv.org/abs/arXiv:1711.02838

views of Modern Physics 84 (2012), no. 2, 621, arXiv:1110.3234. https://doi.org/10.
1103/RevModPhys.84.621

[70] Stephen Wiesner, Simulations of many-body quantum systems by a quantum computer,
1996, arXiv:quant-ph/9603028.

[71] Yi Xu, Rong Jin, and Tianbao Yang, NEON+: Accelerated gradient methods for extracting
negative curvature for non-convex optimization, 2017, arXiv:1712.01033.

[72] Yi Xu, Rong Jin, and Tianbao Yang, First-order stochastic algorithms for escaping from
saddle points in almost linear time, Advances in Neural Information Processing Systems,
pp. 5530–5540, 2018, arXiv:1711.01944.

[73] Christof Zalka, Efficient simulation of quantum systems by quantum computers,
Fortschritte der Physik: Progress of Physics 46 (1998), no. 6-8, 877–879. https://doi.
org/10.1002/(SICI)1521-3978(199811)46:6/8<877::AID-PROP877>3.0.CO;2-A

[74] Christof Zalka, Simulating quantum systems on a quantum computer, Proceedings of the
Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 454
(1998), no. 1969, 313–322, arXiv:quant-ph/9603026. https://doi.org/10.1098/rspa.
1998.0162

[75] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, and Dacheng Tao, Quantum algorithm for find-
ing the negative curvature direction in non-convex optimization, 2019, arXiv:1909.07622.

[76] Yuchen Zhang, Percy Liang, and Moses Charikar, A hitting time analysis of stochas-
tic gradient Langevin dynamics, Conference on Learning Theory, pp. 1980–2022, 2017,
arXiv:1702.05575.

[77] Dongruo Zhou and Quanquan Gu, Stochastic recursive variance-reduced cubic regulariza-
tion methods, International Conference on Artificial Intelligence and Statistics, pp. 3980–
3990, 2020, arXiv:1901.11518.

A Auxiliary Lemmas
In this appendix, we collect all auxiliary lemmas that we use in the proofs.

A.1 Schrödinger Equation with a Quadratic Potential
In this subsection, we prove several results that lay the foundation of the quantum algorithm
described in Section 2.

Lemma 1. Suppose a quantum particle is in a one-dimensional potential field f(x) = λ
2x

2

with initial state Φ(0, x) = (1
2π)1/4 exp

(
−x2/4

)
; in other words, the initial position of this

quantum particle follows the standard normal distribution N (0, 1). The time evolution of this
particle is governed by (4). Then, at any time t ≥ 0, the position of the quantum particle still
follows normal distribution N

(
0, σ2(t;λ)

)
, where the variance σ2(t;λ) is given by

σ2(t;λ) =


1 + t2

4 (λ = 0),
(1+4α2)−(1−4α2) cos 2αt

8α2 (λ > 0, α =
√
λ),

(1−e2αt)2+4α2(1+e2αt)2

16α2e2αt (λ < 0, α =
√
−λ).

(5)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 35

http://arxiv.org/abs/arXiv:1110.3234
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
http://arxiv.org/abs/arXiv:quant-ph/9603028
http://arxiv.org/abs/arXiv:1712.01033
http://arxiv.org/abs/arXiv:1711.01944
https://doi.org/10.1002/(SICI)1521-3978(199811)46:6/8<877::AID-PROP877>3.0.CO;2-A
https://doi.org/10.1002/(SICI)1521-3978(199811)46:6/8<877::AID-PROP877>3.0.CO;2-A
http://arxiv.org/abs/arXiv:quant-ph/9603026
https://doi.org/10.1098/rspa.1998.0162
https://doi.org/10.1098/rspa.1998.0162
http://arxiv.org/abs/arXiv:1909.07622
http://arxiv.org/abs/arXiv:1702.05575
http://arxiv.org/abs/arXiv:1901.11518

Proof. Due to the well-posedness of the Schrödinger equation, if we find a solution to the
initial value problem (4), this solution is unique. We take the following ansatz

Φ(t, x) =
(1
π

)1/4 1√
δ(t)

exp(−iθ(t)) exp
(
−x2

2δ(t)2

)
, (104)

with θ(0) = 0, δ(0) =
√

2.
In this Ansatz, the probability density pλ(t, x), i.e., the modulus square of the wave

function, is given by

pλ(t, x) := |Φ(t, x)|2 = 1√
π

1
|δ(t)| exp

(
2 Im(θ(t))

)
exp

(
− x2 Re(1/y(t))

)
, (105)

where y(t) = δ2(t).
If the ansatz (104) solves the Schrödinger equation, we will have the conservation of

probability, i.e., ‖Φ(t, x)‖2 = 1 for all t ≥ 0; in other words, the
∫
R pλ(t, x)dx = 1 for all t ≥ 0.

It is now clear that (105) is the density of a Gaussian random variable with zero mean and
variance

σ2(t;λ) = 1
2 Re(1/y(t)) . (106)

Therefore, it is sufficient to compute y(t) in order to obtain the distribution of the quantum
particle at time t ≥ 0. For simplicity, we will not compute the global phase θ(t) as it is not
important in the the variance.

Substituting the ansatz (104) to (4) with potential function f(x) = λ
2x

2, and introduc-
ing change of variables y(t) = δ2(t), we attain the following system of ordinary differential
equations 

y′ + iλy2 − i = 0,
θ′ = i

4
y′

y + 1
2

1
y ,

θ(0) = 0, y(0) = 2.
(107)

Case 1: λ = 0. The system (107) is linear with solutions

y(t) = 2 + it. (108)

It follows that
1
y(t) = 2

4 + t2
− i t

4 + t2
, (109)

And by Equation (106), the variance is

σ2(t; 0) = 1 + t2

4 . (110)

Case 2: λ 6= 0. The equation y′ + iλy2 − i = 0 in (107) is a Riccati equation. Using the
standard change of variable y = −i

λ
u′

u , we transfer the Riccati equation into a second-order
linear equation

u′′ + λu = 0. (111)

Clearly, the sign of λ matters.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 36

Case 2.1: λ > 0. Let α =
√
λ, the solution to (111) is u(t) = c1e

iαt + c2e
−iαt (c1, c2 are

constants), and

y(t) = −i
λ

u′

u
= 1
α

c1e
iαt − c2e

−iαt

c1eiαt + c2e−iαt
. (112)

Provided the initial condition y(0) = 2, we choose c1 = 1, β := c2 = (1 − 2α)/(1 + 2α), and
it turns out that

y(t) = 1
α

(e2iαt − β
e2iαt + β

)
. (113)

By (106) and (113), we attain the variance when λ > 0.
Case 2.2: λ < 0. Let α =

√
−λ > 0, similar as Case 2.1, we have

y(t) = i

α

e2αt − β
e2αt + β

, (114)

where β = 1+2iα
1−2iα . And the variance σ(t;λ) for λ < 0 can be obtained from (106) and (114).

Remark 4. Essentially, the three cases λ = 0, λ > 0, and λ < 0 in Eq. (5) can be written
as a simple expression following (113) and (114). Here we present these cases separately to
explicitly demonstrate that when λ < 0, the variance σ2(t;λ) grows exponentially fast in t.

Furthermore, we prove that the argument applies to n-dimensional cases in general:

Lemma 8 (n-dimensional evolution). Let H be an n-by-n symmetric matrix with diago-
nalization H = UTΛU , with Λ = diag(λ1, ..., λn) and U an orthogonal matrix. Suppose
a quantum particle is in an n-dimensional potential field f(x) = 1

2xTHx with initial state
Φ(0, x) = (1

2π)n/4 exp
(
−‖x‖2/4

)
; in other words, the initial position of this quantum particle

follows multivariate Gaussian distribution N (0, I). Then, at any time t ≥ 0, the position
of the quantum particle still follows multivariate Gaussian distribution N (0,Σ(t)), with the
covariance matrix

Σ(t) = UT diag(σ2(t;λ1), ..., σ2(t;λn))U. (115)

The function σ(t;λ) is defined in (5).

Proof. The proof follows the same idea in Lemma 1. We take the following ansatz

Φ(t,x) =
(1
π

)n/4
(detD(t))−1/4 exp(−iθ(t)) exp

[
−1

2xT
(
D(t)

)−1x
]
, (116)

with θ(0) = 0, D(0) =
√

2I, and D(t) = UT diag(δ2
1(t), ..., δ2

n(t))U .
The global phase parameter θ(t), together with the factor

(
1
π

)n/4
(detD(t))−1/4, will con-

tribute to a scalar factor in the probability density function such that the L2-norm of the wave
function (116) will remain unit 1. It is the matrix D(t) that controls the covariance matrix
(see Eqn. 121). Regarding this, we do not delve into the derivation of θ(t) in this proof.

Substituting the ansatz (116) to the Schrödinger equation (4), we have the following system
of ordinary differential equations:

d
dt
(
D(t)−1

)
+ iD(t)−2 − iH = 0, (117)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 37

θ̇ = i

4 (detD(t))−1 d
dt (D(t)) + 1

2 Tr[D(t)−1]. (118)

We immediately observe that Eq. (117) is a decoupled system

d
dt

(
1

δj(t)2

)
+ i

1
(δj(t))4 − iλj = 0, for j = 1, ..., n. (119)

Again, introduce change of variables yj(t) = δ2
j (t), we have

ẏj + iλjy
2 − i = 0, for j = 1, ..., n. (120)

They are precisely the same as the first equation in (107), thus the calculation of one-
dimensional case in Lemma 1 applies directly to (120).

Given the ansatz (116), it is clear that the probability density of the quantum particle in
Rn is an n-dimensional Gaussian with mean 0 and covariance matrix

Σ(t) =
(
2 ReD−1(t)

)−1
= UT

(1
2 Re(1/y1(t)) , ...,

1
2 Re(1/yn(t))

)
U. (121)

It follows from (106) and (5) that the covariance matrix is given as (115).

Finally, we state the following proposition with different scales:

Proposition 2. Let H be an n-by-n symmetric matrix with diagonalization H = UTΛU ,
with Λ = diag(λ1, ..., λn) and U an orthogonal matrix. Suppose a quantum particle is in an
n-dimensional potential field f(x) = 1

2xTHx with the initial state being

Φ(0,x) =
(1

2π
)n/4

r−n/2 exp
(
−‖x‖2/4r2

)
; (122)

in other words, the initial position of the particle follows multivariate Gaussian distribution
N (0, r2I). The time evolution of this particle is governed by (6). Then, at any time t ≥ 0, the
position of the quantum particle still follows multivariate Gaussian distribution N (0, r2Σ(t)),
with the covariance matrix

Σ(t) = UT diag(σ2(t;λ1), ..., σ2(t;λn))U. (123)

The function σ(t;λ) is the same as in (5).

Proof. Here, we only prove the one-dimensional case, as the n-dimensional case follows almost
the same manner, together with a similar argument from the proof of Lemma 8. Let Φ(t, x)
be the wave function as in Lemma 1, namely, it satisfies the standard Schrödinger equation
(4). Define Ψ(t, x) = 1√

r
Φ(t, xr). Since ‖Φ(t, ·)‖2 = 1 for all t ≥ 0, the factor 1√

r
ensures the

L2-norm of Ψ(t, x) is always 1.
We claim that Ψ(t, x) satisfies the modified Schrödinger equation (6). To do so, we

substitute Ψ(t, x) back to (6). Its LHS is just i ∂∂t
1√
r
Φ(t, x/r), whereas the RHS is

[
− r2

2 ∆ + 1
r2 f(x)

]
Ψ(t, x) = 1√

r

[
− 1

2∆ + 1
2

(x
r

)T
H
(x
r

)]
Φ
(
t,
x

r

)
. (124)

Since Φ(t, x) satisfies (4), it turns out that the LHS equals to the RHS. Furthermore, the
variance of Φ(t, x) is σ2(t;λ), and that of Ψ(t, x) = 1√

r
Φ(t, x/r) is simply r2σ2(t;λ).

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 38

Throughout the discussion, we only concern the evolution of the wave packet when it
happens to center on the saddle point. However, in reality, the exact location of the saddle
point is rarely known and the initial Gaussian wave may be slightly off the saddle point. In
the following proposition, we investigate this more general situation in which the potential
function is shifted by a distance of d. It turns out that the wave packet remains Gaussian
with exactly the same rate of dispersion in its variance, while the mean of the Gaussian wave
behaves like the trajectory of a classical particle, i.e., governed by the Hamiltonian mechanics
Ẍ = −∇f(X). Thus, we believe the source of quantum speedup in our algorithm is the
variance dispersion along the negative curvature direction.

Proposition 3. Suppose a quantum particle is in a one-dimensional potential field f(x) =
λ
2 (x− d)2 with initial state Φ(0, x) = (1

2π)1/4 exp
(
−x2/4

)
; in other words, the initial position

of this quantum particle follows the standard normal distribution N (0, 1). The time evolution
of this particle is governed by (4). Then, at any time t ≥ 0, the position of the quantum
particle still follows normal distribution N

(
µ(t;λ), σ2(t;λ)

)
, where the mean µ(t;λ) is given

by

µ(t;λ) =


0 (λ = 0),
d(1− cos(αt)) (λ > 0, α =

√
λ),

d(1− cosh(αt)) (λ < 0, α =
√
−λ),

(125)

while the variance σ2(t;λ) is exactly the same as in (5).

Proof. The main idea of the proof is to use the undetermined coefficient method similar to
the proof of Lemma 1, though we will use a different ansatz with more parameters:

Φ(t, x) = exp
(
−a(t)x2 + b(t)x+ c(t)

)
, (126)

where a(t), b(t), and c(t) are complex-valued functions. For simplicity, the normalization
constant is absorbed in the c(t) term. The probability density pλ(t, x), i.e., the modulus
square of the wave function, is then given by

pλ(t, x) := |Φ(t, x)|2 = exp
(
−
(
x−B(t)/A (t)

)2
1/2A (t) +

(
B(t)2/2A (t) + 2C (t)

))
, (127)

where A (t), B(t), and C (t) are the real parts of the functions a(t), b(t), and c(t), respectively.
One can readily observe that pλ(t, x) is a Gaussian density function with mean and variance
being µ(t;λ) = B(t)

2A (t) ,

σ2(t;λ) = 1
4A (t) .

(128)

It turns out that the distribution of the quantum particle is completely determined by the
mean µ(t) and variance σ2(t) if we can show that the ansatz function (126) indeed solves the
Schrödinger equation (4) with a potential field f(x) = λ

2 (x− d)2.
Substituting the ansatz (126) to the Schrödinger equation (4), we obtain the following

system of ordinary differential equations:
−iȧ = −2a2 + λ

2 ,

iḃ = 2ab− λd,
iċ = a− 1

2b
2 + λ

2d
2,

(129)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 39

subject to the initial condition a(0) = 1/4, b(0) = 0, and c(0) = − log(2π)/4. The last
equation says c(t) can be directly integrated as long as a(t) and b(t) are known. In other
words, c(t) exists given that a(t) and b(t) are determined, and we do not care about the exact
value of c(t) because it sheds no light on either the mean µ(t;λ) nor the variance σ2(t;λ). To
prove the lemma, it suffices to calculate a(t) and b(t).

The first equation in the system (129) is a Riccati equation; by the change of variable
a = − i

2
u̇
u , the Riccati equation is transformed into a second-order linear equation ü+λu = 0.

Then, similarly, we shall discuss three cases λ = 0, λ > 0, and λ < 0. Here, we only do the
λ > 0 case, as the other two cases are solved following essentially the same procedures.

Before we proceed with the calculation of a(t), we discuss how the change of variable
a = − i

2
u̇
u simplifies the second equation in the system (129). With the change of variable into

iḃ = 2ab− λd and proper algebraic manipulation, we end up with the nice form

u̇b+ uḃ = iλdu, (130)

Note that the left hand side is simply d
dt(ub), and hence the function b(t) can be expressed in

terms of u(t):

b(t) = iλd ·
∫ t

0 u(s)ds+ C

u(t) , (131)

where C is a constant.
Now, we are ready to compute both the mean and variance for the case λ > 0. Suppose

α =
√
λ, we have

u(t) = eiαt + ce−iαt, with c = (1− 2α)/(1 + 2α). (132)

This particular choice of c will give rise to the function a(t) satisfying the initial condition
a(0) = 1/4, which reads

a(t) = α

2
e2iαt − c
e2iαt + c

, with c = (1− 2α)/(1 + 2α). (133)

Similarly, we substitute the solution of u(t) (132) back into the formula for b(t) (131),
together with the initial condition b(0) = 0, we can write down the closed form of b(t):

b(t) = αr
e2iαt − c+ (c− 1)eiαt

e2iαt + c
, with c = (1− 2α)/(1 + 2α). (134)

The real parts of a(t) and b(t) can then be computed as follows
A (t) = Re (a(t)) = (1−c2)α

2(1+c2+2 cos(2αt)) ,

B(t) = Re (b(t)) = αd
(1−c2)

(
1−cos(αt)

)
1+c2+2 cos(2αt) ,

(135)

and the mean µ(t;λ) and variance σ2(t;λ) follows from (128).

A.2 Bounding the deviation from perfect Gaussian in quantum evolution
In what follows, we will use ‖ · ‖p to denote the Lp-norm of an integrable function g : Ω→ R:

‖g‖p :=
(∫

Ω
|g|p dx

)1/p
, (136)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 40

where 1 ≤ p <∞. For a continuous function g : Ω→ R, the L∞ norm is ‖g‖∞ = supx∈Ω |g(x)|.
For a finite-dimensional vector ~v, we simply use ‖~v‖ to denote its `2-norm (or the Euclidean
norm):

‖~v‖ :=

∑
j

|vj |2
1/2

. (137)

For a vector-valued function G : Ω→ Rn, we also define its Lp-norm for 1 ≤ p <∞:

‖G‖p :=

∫
Ω

n∑
j=1
|Gj(x)|p dx

1/p

, (138)

where Gj(x) is the j-th component of the function G(x). The L∞-norm is defined in the same
manner: ‖G‖∞ = max1≤j≤n ‖Gj‖∞.

First, we prove the following vector norm error bound of quantum simulation:

Lemma 9 (Vector norm error bound). Let H1, H2 be two Hermitian operators and H =
H1 +H2. Then, for any t > 0 and an arbitrary vector |ϕ〉, we have∥∥∥e−iH1te−iH2t |ϕ〉 − e−iHt |ϕ〉

∥∥∥ ≤ t2

2 sup
τ1,τ2∈[0,t]

∥∥∥[H1, H2]e−iH2τ2e−iH1τ1 |ϕ〉
∥∥∥ . (139)

Proof. By [26, Proposition 15], we have the variation-of-parameter formula

e−iH1te−iH2t = e−iHt +
∫ t

0
dτ1

∫ τ1

0
dτ2 e

−iH(t−τ1)e−iH2τ1e−iH2τ2 [H1, H2]e−iH2τ2e−iH1τ1 . (140)

Thus, for an arbitrary vector |ϕ〉, we have(
e−iH1te−iH2t − e−iHt

)
|ϕ〉

=
∫ t

0
dτ1

∫ τ1

0
dτ2 e

−iH(t−τ1)e−iH2τ1e−iH2τ2 [H1, H2]e−iH2τ2e−iH1τ1 |ϕ〉 . (141)

Since the spectral norm of the vector in the integrand is upper bounded by

sup
τ1,τ2∈[0,t]

∥∥∥[H1, H2]e−iH2τ2e−iH1τ1 |ϕ〉
∥∥∥ , (142)

and
∫ t

0 dτ1
∫ τ1

0 dτ2 = t2

2 , we obtain the desired vector norm error bound (139).

Second, we observe the following fact:

Theorem 6 ([12, Theorem 2, informal]). For Schrödinger equations of the form

i
∂

∂t
u+ ∆u+ V (x, t)u = 0, (143)

defined over an arbitrary finite-dimensional space with periodic boundary condition, let u(x, t)
be the solution at time t. If V (x, t) is smooth in space and periodic in time, and the initial
condition u(x, 0) is smooth, then we have

‖∇u(t)‖2 ≤ C(log t)α‖∇u(0)‖2, (144)

where C and α are absolute constants.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 41

Remark 5. The original Theorem 2 in [12] actually proved the logarithmic growth in Sobolev
norm ‖u(t)‖Hs for all s > 0, while we only cite the special case s = 1. The ‖∇u(0)‖2 term was
absorbed in the constant factor in the original statement, while we feel necessary to expand it
out because it may introduce dependence on n and r0. It is worth noting that the theorem was
proven for two-dimensional Schrödinger equations with quasi-periodic potential field V (x, t),
while it has been made clear in the context that this result holds for arbitrary-dimensional
cases if V is periodic. Bourgain also explicitly discussed the periodic-V case in [13].

Corollary 1. For a quadratic function of the form fq = 1
2(x− x̃)TH(x− x̃) + F where H is

a Hermitian matrix and F is a constant, consider the Schrödinger equation of the form

i
∂

∂t
Φ =

[
−r

2
0
2 ∆ + 1

r2
0
fq

]
Φ, (145)

with periodic boundary conditions and initial condition Φ0(x) defined in (7) (i.e., the initial
state of the quantum simulation Algorithm 1), then we have

‖∇Φ(t)‖2 ≤ C
√
n

r0
(log t)α, (146)

where C and α are absolute constants.

Proof. Note that the constant F just adds a global phase to the solution which does not
influence either ‖Φ(t)‖2 or ‖∇Φ(t)‖, and the Schrödinger equation is translation-invariant
under x→ x− x̃, we may assume without loss of generality that fq = 1

2xTHx.
Define a new function u(x, t) = Φ

(
r0x√

2 , t
)
, and it is straightforward to verify that

i
∂

∂t
u+ ∆u− 1

r2
0
fq

(
r0x√

2

)
u = 0. (147)

Note that the function fq(x) is quadratic, so 1
r2
0
fq
(
r0x√

2

)
= 1

2fq(x), which is a constant multiple
of fq. Thus, we may directly invoke Theorem 6 to yield

‖∇u(t)‖2 ≤ C (log t)α ‖∇u(0)‖2, (148)

where the ‖∇u(0)‖2 can be directly calculated as follows:

‖∇u(0)‖2 ≤

 n∑
j=1

∫
Rn
|uxj (x, 0)|2 dx

1/2

= r0√
2

 n∑
j=1

∫
Rn
|(Φ0)xj (r0x/

√
2, 0)|2 dx

1/2

(149)

=
√
r0

21/4

 n∑
j=1

∫
Rn
|(Φ0)xj (x, 0)|2 dx

1/2

(150)

=
√
r0

21/4
1

2r2
0

 n∑
j=1

∫
R

1√
2πr0

e−(xj−x̃j)2/2r2
0(xj − x̃j)2 dxj

1/2

= 1
25/4

√
n

r0
. (151)

Absorbing the 2−5/4 factor into the absolute constant C, we complete the proof.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 42

Now, we are ready to prove Lemma 3, our result of bounding the deviation from perfect
Gaussian in quantum evolution.

Lemma 3. Let H be the Hessian matrix of f at a saddle point x̃, and define fq(x) :=
f(x̃)+ 1

2(x− x̃)TH(x− x̃) to be the quadratic approximation of the function f near x̃. Denote
the measurement outcome from the quantum simulation (see Algorithm 1) with potential field
f and evolution time te as random variable ξ, and the measurement outcome from the quantum
simulation with potential field fq and the same evolution time te as another random variable
ξ′. Let the law of ξ (or ξ′, resp.) be Pξ (or Pξ′, resp.). If the quantum wave packet is confined
to a hypercube with edge length M , then

TV (Pξ,Pξ′) ≤
(√

nρ

2 + 2Cf `√
r0

(log te)α
)
nMt2e

2 , (14)

where TV (·, ·) is the total variation distance between measures, α is an absolute constant, and
Cf is an f -related constant.

Proof. Define the following (Hermitian) operators:

A = −r
2
0
2 ∆, B = 1

r2
0
f, B′ = 1

r2
0
fq, (152)

H = A+B, H ′ = A+B′, E = H −H ′ = 1
r2

0
(f − fq). (153)

Let |Φ(t)〉 = e−iHt |Φ0〉 be the wave function generated by the quantum simulation with
potential field f and evolution time t, and similarly, |Φ′(t)〉 := e−iH

′t |Φ0〉 as the wave function
generated by the quantum simulation with potential field fq and the evolution time t.

By Lemma 9, and notice that E is a scalar-valued function, we have∥∥∥e−iEte ∣∣Φ′(te)〉− |Φ(te)〉
∥∥∥

2
≤ t2e

2 sup
τ1,τ2∈[0,t]

∥∥∥[H ′, E]e−iEτ2e−iH′τ1 |Φ0〉
∥∥∥

2
(154)

= t2e
2 sup
τ1∈[0,t]

∥∥∥[H ′, E]e−iH′τ1 |Φ0〉
∥∥∥

2
. (155)

Denote |Ψ(τ1)〉 := e−iH
′τ1 |Φ0〉. Note that [H ′, E] = [A+B′, E] and B′ commutes with E, we

have

sup
τ1∈[0,t]

∥∥[H ′, E]Ψ(τ1)
∥∥

2 = 1
2 sup
τ1∈[0,t]

‖[−∆, f − fq]Ψ(τ1)‖2 (156)

= 1
2 sup
τ1∈[0,t]

‖−∆(f − fq)Ψ(τ1)− 2∇(f − fq) · ∇Ψ(τ1)‖2 (157)

≤ 1
2‖∆(f − fq)‖∞ + ‖∇(f − fq)‖∞‖∇Ψ(τ1)‖2. (158)

The second equality follows from the fact that [−∆, g]ϕ = −(∆g)ϕ − 2∇g · ∇ϕ for smooth
functions g and ϕ. The last step follows from the triangle inequality (and the fact that
‖Ψ(τ1)‖ = 1). By the ρ-Hessian Lipschitz condition of f , we have

|∆(f(x)− fq(x))| =
∣∣∣tr(∇2f(x)−∇2fq(x)

)∣∣∣ =
∣∣∣tr(∇2f(x)−∇2f(x̃)

)∣∣∣ (159)

≤ n‖∇2f −∇2f(x̃)‖ ≤ n3/2ρM, (160)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 43

where the second equality holds because fq is a quadratic form and ∇2fq(x) = H = ∇2f(x̃).
Note that the diameter of the hypercube domain is n1/2M , and the last step follows from the
ρ-Hessian Lipschitz condition. It turns out that

‖∆(f − fq)‖∞ ≤ n3/2ρM. (161)

Next, we bound the L∞-norm of the gradient of f − fq:

‖∇f −∇fq‖∞ ≤ sup
x
‖∇f(x)−∇fq(x)‖ = sup

x
‖∇f(x)−H(x− x̃)‖ (162)

≤ sup
x
‖∇f(x)‖+ sup

x
‖H(x− x̃)‖, (163)

where the last step uses the triangle inequality. Note that x̃ is a stationary point of f , so
∇f(x̃) = 0. By the `-smoothness condition of f , we obtain

sup
x
‖∇f(x)‖ = sup

x
‖∇f(x)−∇f(x̃)‖ ≤ ` sup

x
‖x− x̃‖ ≤ `n1/2M. (164)

Meanwhile, the `-smoothness of f implies that ‖∇2f(x)‖ ≤ ` for all x ∈ Rn, therefore
‖H‖ ≤ ` and

sup
x
‖H(x− x̃)‖ ≤ `n1/2M. (165)

Plugging (164) and (165) to (163), we end up with

‖∇(f − fq)‖∞ ≤ 2`n1/2M. (166)

The upper bound for supτ1 ‖∇Ψ(τ1)‖2 is given by Corollary 1. Combining all three bounds,
we end up with

∥∥∥e−iEte ∣∣Φ′(te)〉− |Φ(te)〉
∥∥∥

2
≤
(√

nρ

2 + 2C`
√
r0

(log te)α
)
nMt2e

2 . (167)

In what follows, we will simply write Ψ′ for Ψ′(te). We also denote |Ψ′′〉 := e−iEte |Ψ′〉.
Note that e−iEte is actually a scalar function with modulus 1, hence the two wave functions
|Ψ′〉 and |Ψ′′〉 yield the same probability density, i.e., |Ψ′|2 = |Ψ′′|2. By the definition of total
variation distance,

TV (Pξ,Pξ′) = TV (|Ψ|2, |Ψ′′|2) (168)

= 1
2

∫
x∈Rn

∣∣∣ΨΨ−Ψ′′Ψ′′
∣∣∣ dx (169)

≤ 1
2

∫
x∈Rn

∣∣∣(Ψ−Ψ′′)Ψ
∣∣∣ dx+ 1

2

∫
x∈Rn

∣∣∣Ψ′′(Ψ−Ψ′′)
∣∣∣ dx (170)

≤
(∫

x∈Rn
|Ψ−Ψ′′|2dx

)1/2
≤
(√

nρ

2 + 2C`
√
r0

(log te)α
)
nMt2e

2 . (171)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 44

A.3 Variance of Gaussian Wave Packets
Although the variance of the Gaussian wave packet σ(λ; t) is explicitly given in (5), it is a
bit heavy to use in analysis. In this subsection, we prove several lemmas that can be utilized
to estimate the variance σ(λ; t). Based on these lemmas, it is then possible to quantify the
performance of Algorithm 2.

Lemma 10. When λ > 0,

min
{

1, 1
2α
}
≤ σ(t;λ) ≤ max

{
1, 1

2α
}
. (172)

When λ < 0, let α =
√
−λ,

1√
2
ϕ(t;α) ≤ σ(t;λ) ≤ ϕ(t;α), (173)

with ϕ(t;α) = 1
2α sinh(αt) + cosh(αt).

Proof. The first estimate follows from cos 2αt ∈ [0, 1], while the second estimate follows from
the inequality

a+ b

2 ≤

√
a2 + b2

2 ≤ a+ b√
2
. (174)

Lemma 11. When λ < 0,

σ2(t;λ) ≥ 1 + t2

4 . (175)

Proof. Recall (5) that σ(t;λ) equals to:

σ2(t;λ) = (1− e2αt)2 + 4α2(1 + e2αt)2

16α2e2αt , (176)

in which α =
√
−λ. The equation above can be converted to:

σ2(t;λ) = (1 + 4α2)e4αt + (1 + 4α2)− 2(1− 4α2)e2αt

16α2e2αt (177)

= (1 + 4α2)e2αt + (1 + 4α2)e−2αt − 2(1− 4α2)
16α2 . (178)

We denote µ := 2αt. Note that µ > 0. By the Taylor expansion of eµ with Lagrange form of
remainder, there exists real numbers ζ, ξ ∈ (0, µ) such that

eµ = 1 + µ+ µ2

2 + µ3

6 + eζ

24µ
4; (179)

e−µ = 1− µ+ µ2

2 −
µ3

6 + e−ξ

24 µ
4. (180)

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 45

Adding these two equations, we have

eµ + e−µ ≥ 2 + µ2 + µ4

24(eζ + e−ξ) ≥ 2 + µ2 + µ4

24(1 + e−µ) ≥ 2 + µ2. (181)

In other words,

e2αt + e−2αt ≥ 2 + (2αt)2, (182)

which results in

(1 + 4α2)e2αt + (1 + 4α2)e−2αt − 2(1− 4α2)
16α2 ≥ (1 + 4α2)(2 + 4α2t2)− 2(1− 4α2)

16α2 (183)

≥ 16α2 + 4α2t2

16α2 (184)

= 1 + t2

4 ; (185)

or equivalently,

σ2(t;λ) ≥ 1 + t2

4 . (186)

In the proof of Proposition 1, we will also use the following fact about multivariate Gaussian
distributions:

Lemma 12 ([44, Proposition 1]). Let A ∈ Rm×n be a matrix, and let Σ := ATA. Let
x = (x1, · · · , xn) be an isotropic multivariate Gaussian random vector with mean zero. For
all t > 0:

P
(
‖Ax‖2 > tr(Σ) + 2

√
tr(Σ2)t+ 2‖Σ‖t

)
≤ e−t. (187)

A.4 Existing Lemmas
In this subsection, we list existing lemmas from [47, 48] that we use in our proof.

First, we use the following lemma for the large gradient scenario of gradient descent method:

Lemma 13 ([47, Lemma 19]). If f(·) is `-smooth and ρ-Hessian Lipschitz, η = 1/`, then the
gradient descent sequence {xt} satisfies:

f(xt+1)− f(xt) ≤ η‖∇f(x)‖2, (188)

for any step t in which quantum simulation is not called.

The next lemmas are frequently used in the large gradient scenario of the accelerated
gradient descent method:

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 46

Lemma 14 ([48, Lemma 7]). Consider the setting of Theorem 4. If we have ‖∇f(xτ)‖ ≥ ε
for all τ ∈ [0,T], then there exists a large enough positive constant cA0, such that if we choose
cA ≥ cA0, by running Algorithm 3 we have ET − E0 ≤ −E , in which E =

√
ε3

ρ · c
−7
A , and Eτ

is defined as:

Eτ := f(xτ) + 1
2η′ ‖vτ‖

2 (189)

where η′ = 1
4` as in Theorem 4.

Note that this lemma is not exactly the same as Lemma 7 of [48]: to be more specific, they
have an extra ι−5 term appearing in the E . However, this term actually only appears when
we need to escape from a saddle point using the original AGD algorithm. In large gradient
scenarios where the gradient is greater than ε, it does not make a difference if we ignore this
ι−5 term.

Lemma 15 ([48, Lemma 4 and Lemma 5]). Assume that the function f is `-smooth. Consider
the setting of Theorem 4, for every iteration τ where quantum simulation was not called, we
have

Eτ+1 ≤ Eτ , (190)

where Eτ is defined in (189) in Lemma 14.

The correctness of these two lemmas above is guaranteed by two mechanisms. If the
function does not have a large negative curvature between xt and yt in the current iteration,
the AGD will simply make the Hamiltonian decrease efficiently. Otherwise, the Negative-
Curvature-Exploitation procedure in Line 11 of Algorithm 3 will be triggered (same as in [48])
and decrease the Hamiltonian by either finding the minimum function value in the nearby
region of xt if vt is small, or directly resetting vt = 0 if it is large.

Accepted in Quantum 2021-08-06, click title to verify. Published under CC-BY 4.0. 47

	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Open Questions
	1.4 Organization

	2 Escape from Saddle Points by Quantum Simulation
	2.1 Quantum Simulation of the Schrödinger Equation
	2.1.1 Quantum Query Complexity of Simulating the Schrödinger Equation

	2.2 Perturbed Gradient Descent with Quantum Simulation
	2.2.1 Effectiveness of the Perturbation by Quantum Simulation
	2.2.2 Proof of Our Quantum Speedup

	2.3 Perturbed Accelerated Gradient Descent with Quantum Simulation

	3 Gradient Descent by the Quantum Evaluation Oracle
	3.1 Error Bounds of Gradient Computation Steps
	3.2 Escaping from Saddle Points with Quantum Simulation and Gradient Computation

	4 Numerical Experiments
	4.1 Dispersion of the Wave Packet
	4.2 Quantum Simulation on Non-quadratic Potential Fields
	4.3 Comparison Between PGD and [algo:PGD+QS]Algorithm 2
	4.4 Dimension Dependence

	A Auxiliary Lemmas
	A.1 Schrödinger Equation with a Quadratic Potential
	A.2 Bounding the deviation from perfect Gaussian in quantum evolution
	A.3 Variance of Gaussian Wave Packets
	A.4 Existing Lemmas

