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Abstract— Control Barrier Functions (CBF) have been re-
cently utilized in the design of provably safe feedback control
laws for nonlinear systems. These feedback control methods
typically compute the next control input by solving an online
Quadratic Program (QP). Solving QPs in real-time can be
a computationally expensive process for resource-constrained
systems. In the presence of disturbances, finding CBF-based
safe control inputs can get even more time consuming as finding
the worst-case of the disturbance requires solving a nonlinear
program in general. In this work, we propose to use imitation
learning to learn Neural Network based feedback controllers
which will satisfy the CBF constraints. In the process, we also
develop a new class of High Order CBF for systems under
external disturbances. We demonstrate the framework on a
unicycle model subject to external disturbances, e.g., wind or
currents.

Index Terms— Barrier Function, Disturbance, Neural Net-
work Controller, Imitation Learning

I. INTRODUCTION

Control Barrier Functions (CBF) have enabled the design
of provable safe feedback controllers for a number of dif-
ferent systems such as adaptive cruise control [3], bipedal
robot walking and long term autonomy [2]. CBF - along with
Control Lyapunov Functions (CLF) - are typically part of
the constraints of a Quadratic Program (QP) whose solution
computes sub-optimal control inputs that guarantee safe
system operation (while stabilizing to a desired operating
point or trajectory [17]). The CBF theory has been instru-
mental in developing safety critical controllers for nonlinear
systems; however, it also has some limitations. First, the
resulting controller may not be robust to external inputs
and parameter or model inaccuracies, and to the best of our
knowledge, robust high order control barrier functions have
not been studied before. Second, finding the sub-optimal
control inputs constrained to the CBF and CLF constraints
requires the online/real-time solution of a QP, which typically
cannot satisfy hard real time constraints.

In this work, first, we design robust control inputs based on
high order control barrier functions, and second, we propose
to use Neural Network (NN) based feedback controllers
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trained using the CBF-based QPs to accelerate computation
of the desired control inputs in the run-time. Shallow NN-
based controllers require limited memory and computational
power and, therefore, they can address the second problem.
In addition, NN-based controllers can be trained using both
simulated and real data. By training the NNs to imitate the
solution of the robust formulation of the CBF-based QPs, it
can be used to quickly compute control inputs that tolerate
model uncertainty and inaccuracies.

In particular, in this work, we make the following contribu-
tions. First, we extend results from CBF [2] and High Order
CBF (HOCBF) [24] to nonlinear systems with affine controls
and external disturbances. Second, we adapt an imitation
learning algorithm ([20]) to train an NN-based controller
from examples generated by the QP-based controller. Even
though in these preliminary results, we did not use real
data, we demonstrate that we can train the NN controller
robustly over non-noisy system trajectories and apply the
resulting controller to a system subject to external distur-
bances. Finally, even though in this paper, we do not address
the provable safety of the resulting NN controller under all
possible initial conditions, in the future, we plan to use tools
like Sherlock [8], [9] to do so.

Related Work: Input-to-state safety of a set C =
{z | h(xz) > 0} which ensures that trajectories of a nonlinear
dynamical system in presence of “actuation errors” stay close
to the set C, has been proved by enforcing the invariance of
a larger set including C' in [15]. The radius of the larger
set depends on the L., norm of the error. In this paper,
firstly we consider a more general class of external inputs
(that can represent measurement, or actuation errors as well
as environment inputs like wind gusts and water currents)
is applied to the system, and secondly, the control input
is designed to reject the worst case disturbance to enforce
invariance of the set C' itself - when A has relative degree
one w.r.t the control input - or its intersection with another
set that depends on the derivatives of h.

The application of NN to control dynamical systems
has a long history [14], [12], [21]. More recently, due to
computational advances and available data [10], there has
been a renewed interest in the utilization of NN in control
systems. The works [26] and [7] utilize counterexample
(adversarial sample) exploration to train NNs that seek to
either satisfy a given property expressed in temporal logic
or follow a reference trajectory. The work by [23] attempts
to learn through simulations barrier certificates that can
establish the safe operation of the closed loop system with an
NN controller. On the other hand, [28] and [6] take a different
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approach: they approximate Model Predictive Controllers
(MPC) using supervised reinforcement learning for an NN.
Here, instead of approximating MPC, we approximate the
solution of a QP constrained by HOCBF.

II. PRELIMINARIES

Consider a nonlinear control system without disturbances
and with affine control inputs:

&= f(z) + g(z)u, (1)

where € X C R” is the system state, v € U C R! is
the control input, and f : R® — R" and g : R® — R™ are
locally Lipschitz functions. Given an initial condition z(0),
we denote the solution of the system at time ¢ with x(t)
A function o : R — R is said to be an extended class K
function iff « is strictly increasing and «(0) = 0 [2].

Definition IL.1 (Set Invariance [5]). A set C C R" is forward
invariant w.r.t the system (1) iff for every x(0) € C, its
solution satisfies x(t) € C for all t > 0.

Definition IL.2 (Barrier Function). Let h : X — R be a
continuously differentiable function, C = {z € X|h(z) >
0}, and o be a locally Lipschitz extended class K function.
h is a barrier function iff for all x € C

h(z) 2 —a(h(x)) )
Lemma IL1 ([11]). If h is a barrier function for C, and «
is as defined in Def. 11.2 then C' is a forward invariant set.

Definition I1.3 (Control Barrier Function [2]). A continuous,
differentiable function h(zx) is a Control Barrier Function
(CBF) for the system (1), if there exist a class K function o
such that for all x € C :

Lih(x) + Lgh(z)u + a(h(x)) >0 (3)

where Lgh(z) = %Tf(x),Lgh(x) = %T
order Lie derivatives of the system.

g(x) are the first

Any Lipschitz continuous controller v € Kppp(z) = {u €
U| L¢h(z)+ Lgh(x)u+ a(h(z)) > 0} results in a forward
invariant set C' for the system of Eq. (1).

Definition I1.4 (Control Input Relative Degree of a Func-
tion). A continuously differentiable function h has a control
input relative degree m w.r.t the system (1), if the first time
that the control u appears in the derivatives of h along the
system dynamics is in its m*" derivative.

If the function & has a relative degree m > 1, Lyh(z) =
L;"_lh(x) = 0. As a result Eq. (3) cannot be directly
used for choosing safe controllers u € K,y (z). High Order
Control Barrier Functions (HOCBF) were introduced in [18],
and [24] to derive necessary conditions for guaranteeing
set invariance. Assuming that the function h has a relative
degree m w.r.t the system (1), define the series of functions
; : R - R4 = 0,1,--- ;m and the corresponding sets

Cy,---,C,, as follows:

Yo(x) = h(z)
() = do(x) + ar(go(z))  Ci={x | to(x) > 0}
o (@) = () + s (Pn(2)) ={z | ¢1(x) > 0}

“4)
Yo (@) = Vs (2) + Q0 (Vs () Cro = {3 | () > 0}
where oy, -+, au, are class K functions of their argu-
ments.

Definition I1.5 (High Order Barrier Functions). A function
h : R™ — R with a control input relative degree m is a High
Order Barrier Function (HOBF) for system (1), if there exist
differentiable class K functions a1, as -+ -, qiy, such that for
all x € C1yNCyN---NCyy, we have: Y, (x) > 0. Under this
condition, the set C1 N Cy N ---NCy, is forward invariant.

Definition I1.6 (High Order Control Barrier Functions [24]).
A function h : R™ — R with a relative degree m is a High
Order Control Barrier Function (HOCBF) for system (1),

if there exist differentiable class IC functions ay,as -+
such that for all x € CyNCyN---NChy:
m(x) = L}"h(m) + LgL}"_lh(a:)u + O(h(x))

where O(.) denotes the remaining Lie derivatives along f
with degree less than or equal to m — 1.

Any Lipschitz controller © € Kpocps(2) {u €
U | LPh(x)+ Ly P~ h(x)u+ O (h(x)) + o wm 1(96) >
0} renders the system safe, and the set C; N Cy N -
forward invariant.

III. CONTROL BARRIER FUNCTIONS IN PRESENCE OF
DISTURBANCE

In this paper, the nonlinear control system (1) is considered
in presence of disturbances as in the following:
X =

f(@) +g(@)u+ Mw, z(0)eXo (6)

where z, u, f, g are defined as for the system of Eq. (1), Xg
is the set of initial conditions, and w € W C R! is the
disturbance input. Each dimension of W which we denote
by W; defines an interval [w;,w;] that the i*" element of w
belongs to, M is a n X [ zero-one matrix with at most one
non-zero element in each row.

When disturbance is present, in order to guarantee the
forward invariance of the set C, which we call the safe set,
the condition in inequality (2) needs to be satisfied for all
w € W, including its worst case where it minimizes the left
hand side of the inequality.

Definition III.1. The continuously differentiable function h
with control input relative degree one is a CBF in presence of
Disturbance (CBFD) for the system of Eq. (6), if there exist
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a class K function « such that for all x € C and w € W,
the following inequality is satisfied

Lsh(z) + Lgh(xz)u + Larh(z)w + a(h(z)) >0 (7)

where Lyrh(z) = %TM. Equivalently for all x € C the
following inequality needs to hold:

Lyh(z) + Lgh(z)u + a(h(x)) > F7,, () 8)
where Fy (x) = %av)é(—LMh(m)w)

Definition IIL.2 (Disturbance Relative Degree of a Function).
A continuously differentiable function h has a disturbance
relative degree q w.rt the system (1), if the first time that
the disturbance w appears in the derivatives of h along the
system dynamics is in its ¢'" derivative.

If the disturbance relative degree of h is greater than
I, Lyh(z) = 0 and a CBF is a CBFD too. Otherwise,
since Lpsh(z)w is linear in w, and w € W imposes linear
constraints on w, the program max,ew (—Lash(z)w) is a
linear program for each x € C whose solution can be found
and replaced in inequality (8) to define the set of control
values that satisfy the following inequality:

Keppa(z) ={u e U | Lsh(z) + Lgh(z)u + a(h(z)) >

Fr (@)} 9

Theorem 1. Given a CBFD h from Def. (Ill.1), any Lipschitz
continuous controller u € Keppq(z) renders the set C
forward invariant.

Proof. The proof can be directly derived from Lemma IL1.
To be explicit, if forall z € C'and w € W, h(x) = Lh(z)+
Lyh(z)u + Lash(x)w > —a(h(zx)), then the solutions to

system (6) with z(0) € C, satisfy h(x(t)) > 0. So based on
Def. II.1, C is forward invariant. O

If the function A has a control input relative degree higher
than one, the multiplier of u in Eq. (8), Lyh(x) is equal
to zero, so the choice of u will not affect the satisfaction
of inequality (8). In the following section we will study
HOCBEFs in presence of disturbance.

IV. HIGH ORDER CONTROL BARRIER FUNCTIONS IN
PRESENCE OF DISTURBANCE

Assume that the continously differentiable function h :
R™ — R has control input relative degree m and consider
the series of functions ¥; : R — R,i = 0, ...,m and their
corresponding sets C1, ..., Cy, as defined in Eq. (4).

Definition IV.1. The function h is a High Order Barrier
Function in presence of disturbance (HOBFD) for system (6),
if there exist differentiable class IC functions aq, s, ..., Qny
that define the functions 1, - -+ , ¥, such that for all x €
CiNCyN---NCy,, we have: Y, (xz) >0

Definition IV.2. The function h is a High Order Control
Barrier Function in presence of disturbance (HOCBFD) for
system (6), if there exist differentiable class K functions

A1, ..., that define the functions 1, ...,Ym, s.t for all
reCinNCyNn..NC,, and w e W:

Ym(x) =L} h(x) + LgL}"_lh(a;)u + P(z,w) + O(h(x))+

where P(xz,w) is a function of © and w that separates all
the terms including w in V., (x) from the rest, O(.) denotes
the remaining Lie derivatives along f with degree less than
or equal to m — 1. Since equation (10) needs to be satisfied
for all w € W, we can equivalently write it as:

LPh(x) + LyLT~ h(@)u+ O(h(x)) + am (Ym—1(x)) >
Fp(x) (11)

where Fj(x) = max (—P(z,w))
w

If the disturbance relative degree of h is greater than m,
P(z,w) = 0 and any HOCBF is a HOCBFD, else if the
disturbance relative degree is m, P(z,w) = LML}"_lh(x)w
and max (=P(z,w)) is a linear program. Otherwise

we
P(z,w) is a nonlinear function of w in general, and the so-
lution to the nonlinear program Fj(x) = max (—P(x,w))
we
can be used to find the set of control inputs that satisfy
inequality (11):

Khocvpa(z) ={u e U | LT h(z) + LgL}”_lh(I)u
+ O(h(z)) + am(Ym-1(2)) = Fp(x)}

Theorem 2. Given a HOCBFD h from Def. (IV.2), any
Lipschitz continuous controller u € Kpocp fd(x) renders the
set C1NCsN---NC,y, forward invariant.

Proof. Any controller v € Kpocppq(2) enforces ¢, (z) > 0
or equivalently ¢y, _1(x) > —au (Ym_1(z)) irrespective of
the value of w € W. Assuming that z(0) € C; N Cy N
.-+ N Chy, and hence z(0) € C,,, we have ¢,,_1(z(0)) >0
which based on lemma IL.1, leads to ¢, —1(x) > 0 (z € Cy,)
or equivalently ¢, _2(x) > —0—1(¥m—2(x)), again since
2(0) € Cp,—1 this results in ¥,,—o(z) > 0 (x € Cyp_1).
Continuing this reasoning, we can prove that C; NCyN---N
C,, is forward invariant. O

Remark 3. The functions F} ., Fp(x) are Lipschitz and
hence, it is possible to find Lipschitz continuous controllers
u € Keppa(x) or v € Kpoappa(x). In the following we
prove Lipschitz continuity of , F'js(x). Lipschitz continuity of
Fr () will follow.

[[Fp(2) = Fp(z1)]] = || max(—P(z2, w)) — max(—P(z1, w))|| =

|| max(—P (w2, w) + P(z1,w) — P(z1,w)) — max(—P(z1,w))]| <

[ max(P(z1,w) = P(z2, w)) + max(—P(z1, w)) — max(—P(z1, w))||

= || max(P(z1, w) — Pz, w)|| < Lp|lzz — 1]

The first inequality is true since max(f + g)(w) <
max f(w) + max g(w), and the second inequality is true
since for all w including the one that maximizes (P(x1,w)—

P(z2,w)), we have ||(P(z2,w) — P(z1,w))|| < Ly||z2 —
x1|| where Ly, is the Lipschitz constant for P.
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Remark 4. In order to use HOCBFDs to prove that all
the trajectories of the system 6 starting from Xo will never
exit Cy, the sets C1,Cy, -+ ,C,, should have a nonempty
interior, and the set of initial conditions of the system, X,
should be a subset of C1NCyN- - -NCYy,. Note that if Xy C C
(h(z(0)) > 0) except for special cases (see [24]) which we
do not consider here, we can always choose a1, s -+ |y,
such that o € CoN---NC,.

Note that the problem max (=P(z,w)), is in general
we

a nonlinear program and finding its optimal - or even
suboptimal - solution can be time consuming. A special case
of the problem is if we consider the linear class K functions
ai,- - ,au,—1 which will form Exponential Control Barrier
Functions [2]. This makes P(z,w) a polynomial function
of degree at most m in w. In case of polynomial functions
a1, Qm, Pz, w) will be a polynomial function of w -
potentially of higher degree than m.

A special case is when m = 2, and «y, - - - , o, are linear
functions. In this case P(z,w) is a quadratic function of w,
and max (=P(z,w)) is a QP for each z € X that can be

solved efficiently.
Example 1. Consider the system 1 = x2 + w, T2 = u
with w € [w,®W|. The control input should be designed such

that the function h(x) = 23 — 1 is a HOCBFD. We consider

a;(y) =y,i = 1,2, so we have o(y) = aao;i =1, and as a

result:

Ya(x) = h(@) + o (h(z)h(x) + az(h(z) + o1 (h(x)))
= 2zu + (4o + 4a1)w + 2w —&—21‘% + 4wy + 2t — 1

P(z,w)

observing that wep, = argmax (—2w? — (4xe + 4x1)w)
w<w<w
is a quadratic program that can be solved at each x, any
Lipschitz controller in the set Kpoepra() = {2z1u + 223 +
drywy + a7 — 1 > —2w?,;, — (4o + 4x1)Wwop } will make
the set C1 N Cy = {z | h(x) > 0} N {z | h(x) + h(z) > 0}
forward invariant, hence any trajectory starting from this
set will never exit the set even in presence of the worst case
disturbance. When w = —0.1,w = 0.1, this set is shown in

Fig. 1.

V. CONTROL OPTIMIZATION PROBLEM WITH CBF
CONSTRAINTS

In order to find safe sub-optimal controllers, many recent
works [16], [24], [3], [27], formulate optimization problems
with quadratic costs in the control input u subject to CLF
and CBF constraints (each CBF constraints corresponds to an
unsafe set) which are linear in u. These QPs are solved every
time new information about the states x is received, and the
resulting control value u is used in the time period before
new information is received. In presence of disturbances,
in order to formulate the QPs with constraints of type (8)
or (11), wep: should be computed as a prerequisite. To
compute w,y,; one need to solve max (—Lah(x)w) or

Fig. 1: The invariant sets of Example 1 for the worst case
disturbance w € [—0.1,0.1].

max (=P(z,w)) - depending on the relative degree m - for
we
each barrier function or unsafe set. After computing wep; it

can be used in the following QP to find the semi-optimal
CBFD-based control input:
T
iy’ Qu
st. Eq 8)if m=1or Eq. (11) if m > 1

As a result, formulating the quadratic program and solving
it for evaluating the control input v may not be possible at
run-time. In the following section, we present a paradigm for
training NN controllers that predict the value of the control
input resulting from the quadratic programs.

VI. LEARNING NN CONTROLLERS FROM CONTROL
BARRIER FUNCTIONS USING THE DAGGER ALGORITHM

Imitation learning methods, which use expert demonstra-
tions of good behavior to learn controllers, have proven
to be very useful in practice [13], [1], [4], [19], [22].
While a typical method to imitation learning is to train a
classifier/regressor to predict an expert’s behavior given data
from the encountered observations and expert’s actions in
them, it’s been shown in [20] that using this framework,
small errors made by the learner can lead to large errors
over time. The reason is that in this scenario, the learner can
encounter completely different observations than those it has
been trained with, leading to error accumulation. Motivated
by this, [20] presents an algorithm called DAGGER (Dataset
Aggregation) that iteratively updates the training dataset
with new observations encountered by the learner and their
corresponding expert’s actions and retrains the learner.

As described in Section V, formulating and solving the
required quadratic programs may not be feasible at run-time.
As a result, we use an algorithm inspired by the DAGGER
algorithm to train NN controllers that predict the outcome of
the quadratic program. In this regard, the QP acts as an expert
that a NN imitates. An NN controller that has been trained
offline can be used in a feedback loop to produce the desired
control values online. The NN training algorithm is described
in Alg. 1 in which it is assumed that 7*(x, X, U, W) is an
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Algorithm 1 Data set Aggregation for training NN using
Quadratic Programs
Data: The dynamical system (6), the set of admissible
control inputs U, the set of external inputs W, the
set of initial conditions Xy, the constant 0 < p < 1,
maximum number of iterations [NV
Randomly choose the set X by sampling from X
Sample trajectories of the system (6) with initial conditions
in X§ and input my = 7*(z, X, U, W)
Initialize D with the pairs of visited states and correspond-
ing control inputs: D = (z, 7*(x, 2, U, W))
Train NN controller 7; on D
fori=1,....,N do
p=rp
Sample trajectories of the system (6) with z(0) € X§
and input 7; = Sr* (z, 2, U, W) + (1 — B)7;(x)
Get dataset D; = (z,7*(x, 3, U, W)) of visited states
and corresponding control inputs
Aggregate datasets: D <~ DU D,
Train NN controller 7; on D

end
return the best 7; on validation

expert that given the system X, W, and U performs the QP
routine at = to output the desired control value.

VII. REACH AvOID PROBLEM OF A WATER VEHICLE
MODEL

Consider the model of a surface water vehicle subject to
wind gusts and water currents as:

1 v cos(6) 0 1
= |22 = |vsin(@) | + |0| u+ [1|w, z(0) € Xo
0 0 1 0

12)
where the state € R? consists of vehicle location (1, z2)
and the heading angle 6. The control input v € R is
the vehicle’s steering angle. The velocity v is assumed to
be constant (v = 1) as it has a different relative degree
from the steering angle u'. The external disturbance is
w € [—0.1,0.1]. System trajectories starting from the set
Xo = [8,9] x [5,11] x [—m, 7] should avoid the unsafe sets
U;,i=1,...,5 and reach the goal set G:

Uy ={x : (1 = pi(1)) + (22 — pi(2))* < 13},
G={z:(r1—241)%+ (72 —7,2))* < 0.3}

where p; = (4,2.5), r = 0.7, po = (5,6.5), ro =
0.5, pP3 = (7,475), r3 = 0.4, P4 = (2.5,5), Ty =
0.3, Ps = (75,25), rs = 05, and LTg,1 = Tg2 = 1.

In order to reach the goal set, instead of using CLF based
constraints, we formulate the stabilizing condition in the

IConsidering v as an input will make CBF constraints nonlinear in v, and
the resulting problem will not be a quadratic program anymore. While this
nonlinear program can be solved offline in this framework, in this paper we
assume v is constant for simplicity.

objective function. The desired heading angle is 6,.¢(x) =
arctan(izf%zf), and the desired input u to force 6 to follow
Ores i Upes() = K(Orep(x) — ) where K is a positive
constant, here we choose K = 1. The barrier function
corresponding to the unsafe set U; is h;(z) = (x1—p;(1))?+
(z2 — p;(2))? — r; which has relative degree 2 w.r.t to the
steering angle u. We consider a;(y) = aa(y) = 2y. The
function 1/}2,]» corresponding to each h; can be computed
based on Eq. (4) using Matlab’s Symbolic toolbox, for
example:

o1 = —(2sin(0)(z; — 4) — 2cos(0) (zy — 2.5))u
LyLshi(z)u
+ 4w? + 4(cos(0) + sin(0) + 2((x1 — 4) + (w2 — 2.5)))w
Py (z,w)
+4(z1 — 4) + 4(wz — 2.5)% + 4(cos(0)) (221 — 8)
+ 4(sin(6)) (222 — 5) — 0.8

The functions P;(z,w) corresponding to each unsafe set
are quadratic in w. Let’s call the portion of 1), ; that
only depends on z, U,. Note that U,(z) = L?hj(ar) +
O(hj(x)) + aa(1,j(z)). As a result, in order to reach the
goal set while avoiding the unsafe sets, first Fp () =
o fnax 1(—Pj(a:, w)) needs to be computed and then the
fol.lowing.quadratic program needs to be solved:

(u = ures(2))* (13)
st LgLghj(z)u+V;(x) > Fp,(z) Yji=1,..,5

min
u

This QP is solved at each state visited by the vehicle
under the controller 7; until reaching the goal set G as
described in Alg. 1, to train NN controllers that can predict
the expert’s action online. Figure 2.(a) shows the trajectories
of the system (12) guided by the solutions to QPs in Eq.
(13) when w = 0. The NN controller successfully imitates
the QPs at the 11*” iteration of the for loop in Alg. 1. Figure
2.(b) shows the system trajectories guided by the trained
NN controller when randomized disturbance is applied to the
system. As it is clear from the figures the controller is robust
to disturbances as it has been trained with controllers that are
able to compensate for the disturbance in the worst-case. It is
worth mentioning that the inputs to the NN are the location
states (21, 22) in addition to (sin(6),cos(f)) - instead of
the state 6 itself. This data processing helps remove the
discontinuities than happen when mapping 6 to [—7, 7] and
helps NN understand that —7 and 7 are indeed equivalent.
Also, even-though input constraints are not enforced in
this example, they can be added to problem (13) as linear
constraints and considered in the NN architecture by adding
a saturation function in the output.

VIII. CONCLUSIONS

In this work, we studied Control Barrier Functions (CBF)
in presence of disturbances. These functions define con-
straints on the control input that can be used in an opti-
mization problem to find safe sub-optimal control inputs. As
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Fig. 2: Trajectories initiated from X as guided by (a) the
QPs as expert when w = 0 and (b) the trained NN controller
when random disturbance is applied to system

solving these optimization problems might not be possible in
real-time, we presented a framework to train NN controllers
that can be used online to predict the outcome of the
optimization problems. Future work will use methods like
[9] to establish safety of the learned controller and counter-
example generation methods as in [25] to speed up training.
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