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Abstract— Control Barrier Functions (CBF) have been re-
cently utilized in the design of provably safe feedback control
laws for nonlinear systems. These feedback control methods
typically compute the next control input by solving an online
Quadratic Program (QP). Solving QPs in real-time can be
a computationally expensive process for resource-constrained
systems. In the presence of disturbances, finding CBF-based
safe control inputs can get even more time consuming as finding
the worst-case of the disturbance requires solving a nonlinear
program in general. In this work, we propose to use imitation
learning to learn Neural Network based feedback controllers
which will satisfy the CBF constraints. In the process, we also
develop a new class of High Order CBF for systems under
external disturbances. We demonstrate the framework on a
unicycle model subject to external disturbances, e.g., wind or
currents.

Index Terms— Barrier Function, Disturbance, Neural Net-
work Controller, Imitation Learning

I. INTRODUCTION

Control Barrier Functions (CBF) have enabled the design

of provable safe feedback controllers for a number of dif-

ferent systems such as adaptive cruise control [3], bipedal

robot walking and long term autonomy [2]. CBF - along with

Control Lyapunov Functions (CLF) - are typically part of

the constraints of a Quadratic Program (QP) whose solution

computes sub-optimal control inputs that guarantee safe

system operation (while stabilizing to a desired operating

point or trajectory [17]). The CBF theory has been instru-

mental in developing safety critical controllers for nonlinear

systems; however, it also has some limitations. First, the

resulting controller may not be robust to external inputs

and parameter or model inaccuracies, and to the best of our

knowledge, robust high order control barrier functions have

not been studied before. Second, finding the sub-optimal

control inputs constrained to the CBF and CLF constraints

requires the online/real-time solution of a QP, which typically

cannot satisfy hard real time constraints.

In this work, first, we design robust control inputs based on

high order control barrier functions, and second, we propose

to use Neural Network (NN) based feedback controllers
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trained using the CBF-based QPs to accelerate computation

of the desired control inputs in the run-time. Shallow NN-

based controllers require limited memory and computational

power and, therefore, they can address the second problem.

In addition, NN-based controllers can be trained using both

simulated and real data. By training the NNs to imitate the

solution of the robust formulation of the CBF-based QPs, it

can be used to quickly compute control inputs that tolerate

model uncertainty and inaccuracies.

In particular, in this work, we make the following contribu-

tions. First, we extend results from CBF [2] and High Order

CBF (HOCBF) [24] to nonlinear systems with affine controls

and external disturbances. Second, we adapt an imitation

learning algorithm ([20]) to train an NN-based controller

from examples generated by the QP-based controller. Even

though in these preliminary results, we did not use real

data, we demonstrate that we can train the NN controller

robustly over non-noisy system trajectories and apply the

resulting controller to a system subject to external distur-

bances. Finally, even though in this paper, we do not address

the provable safety of the resulting NN controller under all

possible initial conditions, in the future, we plan to use tools

like Sherlock [8], [9] to do so.

Related Work: Input-to-state safety of a set C =
{x | h(x) ≥ 0} which ensures that trajectories of a nonlinear

dynamical system in presence of “actuation errors” stay close

to the set C, has been proved by enforcing the invariance of

a larger set including C in [15]. The radius of the larger

set depends on the L∞ norm of the error. In this paper,

firstly we consider a more general class of external inputs

(that can represent measurement, or actuation errors as well

as environment inputs like wind gusts and water currents)

is applied to the system, and secondly, the control input

is designed to reject the worst case disturbance to enforce

invariance of the set C itself - when h has relative degree

one w.r.t the control input - or its intersection with another

set that depends on the derivatives of h.

The application of NN to control dynamical systems

has a long history [14], [12], [21]. More recently, due to

computational advances and available data [10], there has

been a renewed interest in the utilization of NN in control

systems. The works [26] and [7] utilize counterexample

(adversarial sample) exploration to train NNs that seek to

either satisfy a given property expressed in temporal logic

or follow a reference trajectory. The work by [23] attempts

to learn through simulations barrier certificates that can

establish the safe operation of the closed loop system with an

NN controller. On the other hand, [28] and [6] take a different
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approach: they approximate Model Predictive Controllers

(MPC) using supervised reinforcement learning for an NN.

Here, instead of approximating MPC, we approximate the

solution of a QP constrained by HOCBF.

II. PRELIMINARIES

Consider a nonlinear control system without disturbances

and with affine control inputs:

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊂ R
n is the system state, u ∈ U ⊂ R

l is

the control input, and f : Rn → R
n and g : Rn → R

m are

locally Lipschitz functions. Given an initial condition x(0),
we denote the solution of the system at time t with x(t).
A function α : R → R is said to be an extended class K
function iff α is strictly increasing and α(0) = 0 [2].

Definition II.1 (Set Invariance [5]). A set C ⊆ R
n is forward

invariant w.r.t the system (1) iff for every x(0) ∈ C, its

solution satisfies x(t) ∈ C for all t ≥ 0.

Definition II.2 (Barrier Function). Let h : X → R be a

continuously differentiable function, C = {x ∈ X|h(x) ≥
0}, and α be a locally Lipschitz extended class K function.

h is a barrier function iff for all x ∈ C

ḣ(x) ≥ −α(h(x)) (2)

Lemma II.1 ([11]). If h is a barrier function for C, and α

is as defined in Def. II.2 then C is a forward invariant set.

Definition II.3 (Control Barrier Function [2]). A continuous,

differentiable function h(x) is a Control Barrier Function

(CBF) for the system (1), if there exist a class K function α

such that for all x ∈ C :

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0 (3)

where Lfh(x) =
∂h
∂x

⊤
f(x), Lgh(x) =

∂h
∂x

⊤
g(x) are the first

order Lie derivatives of the system.

Any Lipschitz continuous controller u ∈ Kcbf (x) = {u ∈
U | Lfh(x)+Lgh(x)u+α(h(x)) ≥ 0} results in a forward

invariant set C for the system of Eq. (1).

Definition II.4 (Control Input Relative Degree of a Func-

tion). A continuously differentiable function h has a control

input relative degree m w.r.t the system (1), if the first time

that the control u appears in the derivatives of h along the

system dynamics is in its mth derivative.

If the function h has a relative degree m > 1, Lgh(x) =
Lm−1
g h(x) = 0. As a result Eq. (3) cannot be directly

used for choosing safe controllers u ∈ Kcbf (x). High Order

Control Barrier Functions (HOCBF) were introduced in [18],

and [24] to derive necessary conditions for guaranteeing

set invariance. Assuming that the function h has a relative

degree m w.r.t the system (1), define the series of functions

ψi : Rn → R, i = 0, 1, · · · ,m and the corresponding sets

C1, · · · , Cm as follows:

ψ0(x) = h(x)

ψ1(x) = ψ̇0(x) + α1(ψ0(x)) C1 = {x | ψ0(x) ≥ 0}

ψ2(x) = ψ̇1(x) + α2(ψ1(x)) C2 = {x | ψ1(x) ≥ 0}
(4)

...
...

ψm(x) = ψ̇m91(x) + αm(ψm91(x)) Cm = {x | ψm91(x) ≥ 0}

where α1, α2 · · · , αm are class K functions of their argu-

ments.

Definition II.5 (High Order Barrier Functions). A function

h : Rn → R with a control input relative degree m is a High

Order Barrier Function (HOBF) for system (1), if there exist

differentiable class K functions α1, α2 · · · , αm such that for

all x ∈ C1∩C2∩· · ·∩Cm, we have: ψm(x) ≥ 0. Under this

condition, the set C1 ∩ C2 ∩ · · · ∩ Cm is forward invariant.

Definition II.6 (High Order Control Barrier Functions [24]).

A function h : Rn → R with a relative degree m is a High

Order Control Barrier Function (HOCBF) for system (1),

if there exist differentiable class K functions α1, α2 · · · , αm

such that for all x ∈ C1 ∩ C2 ∩ · · · ∩ Cm:

ψm(x) = Lm
f h(x) + LgL

m−1
f h(x)u+O(h(x))

+ αm(ψm−1(x)) ≥ 0 (5)

where O(.) denotes the remaining Lie derivatives along f

with degree less than or equal to m− 1.

Any Lipschitz controller u ∈ Khocbf (x) = {u ∈
U | Lm

f h(x)+LgL
m−1
f h(x)u+O(h(x))+αm(ψm−1(x)) ≥

0} renders the system safe, and the set C1 ∩C2 ∩ · · · ∩Cm

forward invariant.

III. CONTROL BARRIER FUNCTIONS IN PRESENCE OF

DISTURBANCE

In this paper, the nonlinear control system (1) is considered

in presence of disturbances as in the following:

Σ : ẋ = f(x) + g(x)u+Mw, x(0) ∈ X0 (6)

where x, u, f, g are defined as for the system of Eq. (1), X0

is the set of initial conditions, and w ∈ W ⊂ R
l is the

disturbance input. Each dimension of W which we denote

by Wi defines an interval [wi, wi] that the ith element of w

belongs to, M is a n × l zero-one matrix with at most one

non-zero element in each row.

When disturbance is present, in order to guarantee the

forward invariance of the set C, which we call the safe set,

the condition in inequality (2) needs to be satisfied for all

w ∈W , including its worst case where it minimizes the left

hand side of the inequality.

Definition III.1. The continuously differentiable function h

with control input relative degree one is a CBF in presence of

Disturbance (CBFD) for the system of Eq. (6), if there exist
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a class K function α such that for all x ∈ C and w ∈ W ,

the following inequality is satisfied

Lfh(x) + Lgh(x)u+ LMh(x)w + α(h(x)) ≥ 0 (7)

where LMh(x) = ∂h
∂x

⊤
M . Equivalently for all x ∈ C the

following inequality needs to hold:

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ F ∗
LM

(x) (8)

where F ∗
LM

(x) = max
w∈W

(−LMh(x)w)

Definition III.2 (Disturbance Relative Degree of a Function).

A continuously differentiable function h has a disturbance

relative degree q w.r.t the system (1), if the first time that

the disturbance w appears in the derivatives of h along the

system dynamics is in its qth derivative.

If the disturbance relative degree of h is greater than

1, LMh(x) = 0 and a CBF is a CBFD too. Otherwise,

since LMh(x)w is linear in w, and w ∈ W imposes linear

constraints on w, the program maxw∈W (−LMh(x)w) is a

linear program for each x ∈ C whose solution can be found

and replaced in inequality (8) to define the set of control

values that satisfy the following inequality:

Kcbfd(x) = {u ∈ U | Lfh(x) + Lgh(x)u+ α(h(x)) ≥

F ∗
LM

(x)} (9)

Theorem 1. Given a CBFD h from Def. (III.1), any Lipschitz

continuous controller u ∈ Kcbfd(x) renders the set C

forward invariant.

Proof. The proof can be directly derived from Lemma II.1.

To be explicit, if for all x ∈ C and w ∈W , ḣ(x) = Lfh(x)+
Lgh(x)u + LMh(x)w ≥ −α(h(x)), then the solutions to

system (6) with x(0) ∈ C, satisfy h(x(t)) ≥ 0. So based on

Def. II.1, C is forward invariant.

If the function h has a control input relative degree higher

than one, the multiplier of u in Eq. (8), Lgh(x) is equal

to zero, so the choice of u will not affect the satisfaction

of inequality (8). In the following section we will study

HOCBFs in presence of disturbance.

IV. HIGH ORDER CONTROL BARRIER FUNCTIONS IN

PRESENCE OF DISTURBANCE

Assume that the continously differentiable function h :
R

n → R has control input relative degree m and consider

the series of functions ψi : R
n → R, i = 0, ...,m and their

corresponding sets C1, . . . , Cm as defined in Eq. (4).

Definition IV.1. The function h is a High Order Barrier

Function in presence of disturbance (HOBFD) for system (6),

if there exist differentiable class K functions α1, α2, . . . , αm

that define the functions ψ1, · · · , ψm, such that for all x ∈
C1 ∩ C2 ∩ · · · ∩ Cm, we have: ψm(x) ≥ 0

Definition IV.2. The function h is a High Order Control

Barrier Function in presence of disturbance (HOCBFD) for

system (6), if there exist differentiable class K functions

α1, ..., αm that define the functions ψ1, ..., ψm, s.t for all

x ∈ C1 ∩ C2 ∩ ... ∩ Cm and w ∈W :

ψm(x) =Lm
f h(x) + LgL

m−1
f h(x)u+ P (x,w) +O(h(x))+

αm(ψm−1(x)) ≥ 0 (10)

where P (x,w) is a function of x and w that separates all

the terms including w in ψm(x) from the rest, O(.) denotes

the remaining Lie derivatives along f with degree less than

or equal to m− 1. Since equation (10) needs to be satisfied

for all w ∈W , we can equivalently write it as:

Lm
f h(x) + LgL

m−1
f h(x)u+O(h(x)) + αm(ψm−1(x)) ≥

F ∗
P (x) (11)

where F ∗
P (x) = max

w∈W
(−P (x,w))

If the disturbance relative degree of h is greater than m,

P (x,w) = 0 and any HOCBF is a HOCBFD, else if the

disturbance relative degree is m, P (x,w) = LML
m−1
f h(x)w

and max
w∈W

(−P (x,w)) is a linear program. Otherwise

P (x,w) is a nonlinear function of w in general, and the so-

lution to the nonlinear program F ∗
P (x) = max

w∈W
(−P (x,w))

can be used to find the set of control inputs that satisfy

inequality (11):

Khocbfd(x) = {u ∈ U | L
m
f h(x) + LgL

m−1
f h(x)u

+O(h(x)) + αm(ψm−1(x)) ≥ F
∗
P (x)}

Theorem 2. Given a HOCBFD h from Def. (IV.2), any

Lipschitz continuous controller u ∈ Khocbfd(x) renders the

set C1 ∩ C2 ∩ · · · ∩ Cm forward invariant.

Proof. Any controller u ∈ Khocbfd(x) enforces ψm(x) ≥ 0
or equivalently ψ̇m−1(x) ≥ −αm(ψm−1(x)) irrespective of

the value of w ∈ W . Assuming that x(0) ∈ C1 ∩ C2 ∩
· · · ∩ Cm, and hence x(0) ∈ Cm, we have ψm−1(x(0)) ≥ 0
which based on lemma II.1, leads to ψm−1(x) ≥ 0 (x ∈ Cm)

or equivalently ψ̇m−2(x) ≥ −αm−1(ψm−2(x)), again since

x(0) ∈ Cm−1 this results in ψm−2(x) ≥ 0 (x ∈ Cm−1).

Continuing this reasoning, we can prove that C1∩C2∩· · ·∩
Cm is forward invariant.

Remark 3. The functions F ∗
LM

, F ∗
P (x) are Lipschitz and

hence, it is possible to find Lipschitz continuous controllers
u ∈ Kcbfd(x) or u ∈ Khocbfd(x). In the following we
prove Lipschitz continuity of , F ∗

P (x). Lipschitz continuity of
F ∗
LM

(x) will follow.

||F
∗

P (x2) − F
∗

P (x1)|| = ||max
w

(−P (x2, w)) − max
w

(−P (x1, w))|| =

||max
w

(−P (x2, w) + P (x1, w) − P (x1, w)) − max
w

(−P (x1, w))|| ≤

||max
w

(P (x1, w) − P (x2, w)) + max
w

(−P (x1, w)) − max
w

(−P (x1, w))||

= ||max
w

(P (x1, w) − P (x2, w))|| ≤ Lp||x2 − x1||

The first inequality is true since max(f + g)(w) ≤
max f(w) + max g(w), and the second inequality is true

since for all w including the one that maximizes (P (x1, w)−
P (x2, w)), we have ||(P (x2, w) − P (x1, w))|| ≤ Lp||x2 −
x1|| where Lp is the Lipschitz constant for P .

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on October 18,2021 at 20:07:20 UTC from IEEE Xplore.  Restrictions apply. 



Remark 4. In order to use HOCBFDs to prove that all

the trajectories of the system 6 starting from X0 will never

exit C1, the sets C1, C2, · · · , Cm should have a nonempty

interior, and the set of initial conditions of the system, X0,

should be a subset of C1∩C2∩· · ·∩Cm. Note that if X0 ⊂ C1

(h(x(0)) ≥ 0) except for special cases (see [24]) which we

do not consider here, we can always choose α1, α2 · · · , αm

such that x0 ∈ C2 ∩ · · · ∩ Cm.

Note that the problem max
w∈W

(−P (x,w)), is in general

a nonlinear program and finding its optimal - or even

suboptimal - solution can be time consuming. A special case

of the problem is if we consider the linear class K functions

α1, · · · , αm−1 which will form Exponential Control Barrier

Functions [2]. This makes P (x,w) a polynomial function

of degree at most m in w. In case of polynomial functions

α1, · · · , αm, P (x,w) will be a polynomial function of w -

potentially of higher degree than m.

A special case is when m = 2, and α1, · · · , αm are linear

functions. In this case P (x,w) is a quadratic function of w,

and max
w∈W

(−P (x,w)) is a QP for each x ∈ X that can be

solved efficiently.

Example 1. Consider the system ẋ1 = x2 + w, ẋ2 = u

with w ∈ [w,w]. The control input should be designed such

that the function h(x) = x21− 1 is a HOCBFD. We consider

αi(y) = y, i = 1, 2, so we have α′
i(y) =

∂αi

∂y
= 1, and as a

result:

ψ2(x) = ḧ(x) + α′
1(h(x))ḣ(x) + α2(ḣ(x) + α1(h(x)))

= 2x1u+ (4x2 + 4x1)w + 2w2

︸ ︷︷ ︸

P (x,w)

+2x22 + 4x1x2 + x21 − 1

observing that wopt = argmax
w<w<w

(−2w2 − (4x2 + 4x1)w)

is a quadratic program that can be solved at each x, any

Lipschitz controller in the set Khocbfd(x) = {2x1u+2x22 +
4x1x2 + x21 − 1 ≥ −2w2

opt − (4x2 + 4x1)wopt} will make

the set C1 ∩ C2 = {x | h(x) ≥ 0} ∩ {x | ḣ(x) + h(x) ≥ 0}
forward invariant, hence any trajectory starting from this

set will never exit the set even in presence of the worst case

disturbance. When w = −0.1, w = 0.1, this set is shown in

Fig. 1.

V. CONTROL OPTIMIZATION PROBLEM WITH CBF

CONSTRAINTS

In order to find safe sub-optimal controllers, many recent

works [16], [24], [3], [27], formulate optimization problems

with quadratic costs in the control input u subject to CLF

and CBF constraints (each CBF constraints corresponds to an

unsafe set) which are linear in u. These QPs are solved every

time new information about the states x is received, and the

resulting control value u is used in the time period before

new information is received. In presence of disturbances,

in order to formulate the QPs with constraints of type (8)

or (11), wopt should be computed as a prerequisite. To

compute wopt one need to solve max
w∈W

(−LMh(x)w) or

Fig. 1: The invariant sets of Example 1 for the worst case

disturbance w ∈ [−0.1, 0.1].

max
w∈W

(−P (x,w)) - depending on the relative degree m - for

each barrier function or unsafe set. After computing wopt it

can be used in the following QP to find the semi-optimal

CBFD-based control input:

min
u∈U

uTQu

s.t. Eq (8) if m = 1 or Eq. (11) if m > 1

As a result, formulating the quadratic program and solving

it for evaluating the control input u may not be possible at

run-time. In the following section, we present a paradigm for

training NN controllers that predict the value of the control

input resulting from the quadratic programs.

VI. LEARNING NN CONTROLLERS FROM CONTROL

BARRIER FUNCTIONS USING THE DAGGER ALGORITHM

Imitation learning methods, which use expert demonstra-

tions of good behavior to learn controllers, have proven

to be very useful in practice [13], [1], [4], [19], [22].

While a typical method to imitation learning is to train a

classifier/regressor to predict an expert’s behavior given data

from the encountered observations and expert’s actions in

them, it’s been shown in [20] that using this framework,

small errors made by the learner can lead to large errors

over time. The reason is that in this scenario, the learner can

encounter completely different observations than those it has

been trained with, leading to error accumulation. Motivated

by this, [20] presents an algorithm called DAGGER (Dataset

Aggregation) that iteratively updates the training dataset

with new observations encountered by the learner and their

corresponding expert’s actions and retrains the learner.

As described in Section V, formulating and solving the

required quadratic programs may not be feasible at run-time.

As a result, we use an algorithm inspired by the DAGGER

algorithm to train NN controllers that predict the outcome of

the quadratic program. In this regard, the QP acts as an expert

that a NN imitates. An NN controller that has been trained

offline can be used in a feedback loop to produce the desired

control values online. The NN training algorithm is described

in Alg. 1 in which it is assumed that π∗(x,Σ, U,W ) is an
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Algorithm 1 Data set Aggregation for training NN using

Quadratic Programs

Data: The dynamical system (6), the set of admissible

control inputs U , the set of external inputs W , the

set of initial conditions X0, the constant 0 < p < 1,

maximum number of iterations N

Randomly choose the set Xs
0 by sampling from X0

Sample trajectories of the system (6) with initial conditions

in Xs
0 and input π0 = π∗(x,Σ, U,W )

Initialize D with the pairs of visited states and correspond-

ing control inputs: D = (x, π∗(x,Σ, U,W ))
Train NN controller π̂1 on D

for i = 1, ..., N do

β = pi

Sample trajectories of the system (6) with x(0) ∈ Xs
0

and input πi = βπ∗(x,Σ, U,W ) + (1− β)π̂i(x)
Get dataset Di = (x, π∗(x,Σ, U,W )) of visited states

and corresponding control inputs

Aggregate datasets: D ← D ∪Di

Train NN controller π̂i on D
end

return the best π̂i on validation

expert that given the system Σ,W , and U performs the QP

routine at x to output the desired control value.

VII. REACH AVOID PROBLEM OF A WATER VEHICLE

MODEL

Consider the model of a surface water vehicle subject to

wind gusts and water currents as:

ẋ =

[
ẋ1

ẋ2

θ̇

]

=

[
v cos(θ)
v sin(θ)

0

]

+

[
0
0
1

]

u+

[
1
1
0

]

w, x(0) ∈ X0

(12)

where the state x ∈ R
3 consists of vehicle location (x1, x2)

and the heading angle θ. The control input u ∈ R is

the vehicle’s steering angle. The velocity v is assumed to

be constant (v = 1) as it has a different relative degree

from the steering angle u1. The external disturbance is

w ∈ [−0.1, 0.1]. System trajectories starting from the set

X0 = [8, 9]× [5, 11]× [−π, π] should avoid the unsafe sets

Ui, i = 1, ..., 5 and reach the goal set G:

Ui ={x : (x1 − pi(1))
2 + (x2 − pi(2))

2 < ri},

G ={x : (x1 − xg,1)
2 + (x2 − xg,2))

2 < 0.3}

where p1 = (4, 2.5), r1 = 0.7, p2 = (5, 6.5), r2 =
0.5, p3 = (7, 4.75), r3 = 0.4, p4 = (2.5, 5), r4 =
0.3, p5 = (7.5, 2.5), r5 = 0.5, and xg,1 = xg,2 = 1.

In order to reach the goal set, instead of using CLF based

constraints, we formulate the stabilizing condition in the

1Considering v as an input will make CBF constraints nonlinear in v, and
the resulting problem will not be a quadratic program anymore. While this
nonlinear program can be solved offline in this framework, in this paper we
assume v is constant for simplicity.

objective function. The desired heading angle is θref (x) =
arctan(

xg,2−x2

xg,1−x1

), and the desired input u to force θ to follow

θref is uref (x) = K(θref (x) − θ) where K is a positive

constant, here we choose K = 1. The barrier function

corresponding to the unsafe set Uj is hj(x) = (x1−pj(1))
2+

(x2 − pj(2))
2 − rj which has relative degree 2 w.r.t to the

steering angle u. We consider α1(y) = α2(y) = 2y. The

function ψ̇2,j corresponding to each hj can be computed

based on Eq. (4) using Matlab’s Symbolic toolbox, for

example:

ψ̇2,1 = −(2 sin(θ)(x1 − 4)− 2 cos(θ)(x2 − 2.5))u
︸ ︷︷ ︸

LgLfh1(x)u

+ 4w2 + 4(cos(θ) + sin(θ) + 2((x1 − 4) + (x2 − 2.5)))w
︸ ︷︷ ︸

P1(x,w)

+ 4(x1 − 4)2 + 4(x2 − 2.5)2 + 4(cos(θ))(2x1 − 8)

+ 4(sin(θ))(2x2 − 5)− 0.8

The functions Pj(x,w) corresponding to each unsafe set

are quadratic in w. Let’s call the portion of ψ̇2,j that

only depends on x, Ψj . Note that Ψj(x) = L2
fhj(x) +

O(hj(x)) + α2(ψ1,j(x)). As a result, in order to reach the

goal set while avoiding the unsafe sets, first F ∗
P,j(x) =

max
−0.1<w<0.1

(−Pj(x,w)) needs to be computed and then the

following quadratic program needs to be solved:

min
u

(u− uref (x))
2 (13)

s.t LgLfhj(x)u+Ψj(x) ≥ F
∗
P,j(x) ∀j = 1, ..., 5

This QP is solved at each state visited by the vehicle

under the controller πi until reaching the goal set G as

described in Alg. 1, to train NN controllers that can predict

the expert’s action online. Figure 2.(a) shows the trajectories

of the system (12) guided by the solutions to QPs in Eq.

(13) when w = 0. The NN controller successfully imitates

the QPs at the 11th iteration of the for loop in Alg. 1. Figure

2.(b) shows the system trajectories guided by the trained

NN controller when randomized disturbance is applied to the

system. As it is clear from the figures the controller is robust

to disturbances as it has been trained with controllers that are

able to compensate for the disturbance in the worst-case. It is

worth mentioning that the inputs to the NN are the location

states (x1, x2) in addition to (sin(θ), cos(θ)) - instead of

the state θ itself. This data processing helps remove the

discontinuities than happen when mapping θ to [−π, π] and

helps NN understand that −π and π are indeed equivalent.

Also, even-though input constraints are not enforced in

this example, they can be added to problem (13) as linear

constraints and considered in the NN architecture by adding

a saturation function in the output.

VIII. CONCLUSIONS

In this work, we studied Control Barrier Functions (CBF)

in presence of disturbances. These functions define con-

straints on the control input that can be used in an opti-

mization problem to find safe sub-optimal control inputs. As
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