978-1-5386-9291-2/19/$31.00 ©2019 IEEE

Download and Access Trade-offs in
Lagrange Coded Computing

Netanel Raviv*, Qian Yu', Jehoshua Bruck*, and Salman Avestimehr!
*Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, CA, USA
tDepartment of Electrical Engineering, University of Southern California, Los Angeles 90089, CA, USA

Abstract—Lagrange Coded Computing (LCC) is a recently
proposed technique for resilient, secure, and private computa-
tion of arbitrary polynomials in distributed environments. By
mapping such computations to composition of polynomials, LCC
allows the master node to complete the computation by accessing
a minimal number of workers and downloading all of their
content, thus providing resiliency to the remaining stragglers.
However, in the most common case in which the number of
stragglers is less than in the worst case scenario, much of the
computational power of the system remains unexploited. To
amend this issue, in this paper we expand LCC by studying a
fundamental trade-off between download and access, and present
two contributions. In the first contribution, it is shown that
without any modification to the encoding process, the master
can decode the computations by accessing a larger number of
nodes, however downloading less information from each node in
comparison with LCC (i.e., trading access for download). This
scheme relies on decoding a particular polynomial in the ideal
that is generated by the polynomials of interest, a technique we
call Ideal Decoding. This new scheme also improves LCC in the
sense that for systems with adversaries, the overall downloaded
bandwidth is smaller than in LCC. In the second contribution
we study a real-time model of this trade-off, in which the data
from the workers is downloaded sequentially. By clustering nodes
of similar delays and encoding the function with Universally
Decodable Matrices, the master can decode once sufficient data is
downloaded from every cluster, regardless of the internal delays
within that cluster. This allows the master to utilize the partial
work that is done by stragglers, rather than to ignore it, a feature
that most past works in coded computing are lacking.

I. INTRODUCTION

The immensity of contemporary datasets no longer allows
computations to be done on a single machine, and distributed
computations are inevitable. Since most users cannot afford to
maintain a network of servers (or workers), burdensome com-
putations are often outsourced to third party cloud services.
However, this approach opens a Pandora’s box of resiliency,
security, and privacy issues. First, it was demonstrated in the
past (e.g. [18]) that a fraction of the servers, referred to as
stragglers, can be 5 to 8 times slower than the average, and
hence computation tasks that rely on successful completion of
all subtasks are destined to be delayed considerably. Second,
many computations are highly susceptible to adversaries, or
Byzantine workers, that might attempt to alter the result of the
computation for their benefit [2]. Third, privacy infringement
is major concern in the information age, and hence privacy-
preserving computation protocols are essential.

The term Coded Computing broadly refers to a family of
techniques that utilize coding to inject computation redun-
dancy in order to alleviate the various issues that arise in
distributed computations. Over the past few years, Coded
Computing has seen a tremendous success in providing el-
egant solutions to the aforementioned issues in various tasks
of interest, such as gradient coding (e.g., [6], [7], [11]), matrix
multiplication (e.g., [3], [5], [19]), and bandwidth reduction
in iterative algorithms (e.g., [8]). More recently, Lagrange
Coded Computing (LCC) has been proposed in [20] as a

1787

universal data encoding technique that can simultaneously
alleviate the issues of resiliency, security, and privacy for arbi-
trary multivariate polynomial computations, hence expanding
coded computing to new domains.

In LCC, the dataset is encoded by evaluations of the well-
known Lagrange polynomial, and each codeword symbol is
stored on a different worker in the distributed system. Then,
the workers apply the multivariate polynomial of interest on
their encoded data, as if no coding is taking place, and return
the computation results back to the master. By viewing the
computation as a composition of a multivariate polynomial
(the computation that is to be executed), and a univariate one
(the encoding Lagrange polynomial), the task of finalizing the
computation in the presence of stragglers and adversaries boils
down to polynomial interpolation with errors and erasures.
Then, the master finalizes the computation by evaluating the
interpolated polynomial at appropriately chosen points. Being
fundamental to our current contribution, the LCC scheme is
described in greater detail in Subsection II-A.

However, LCC allows no flexibility in terms of download-
access trade-off. That is, the master performs the computation
by accessing a minimum number of workers, and downloading
their data in its entirety. As a result, in every scenario with less
than the maximum number of stragglers, some non-stragglers
remain idle during the download process, and the communi-
cation bottleneck intensifies due to unexploited parallel links
between these non-stragglers and the master. Moreover, LCC
considers every worker as being either a straggler or a non-
straggler, and the partial work that is done by stragglers is
ignored. In this paper we improve LCC by addressing these
aspects, the static and the dynamic, of the download-access
trade-off.

In our first contribution, it is shown that with no further
changes in the encoding phase, the decoding phase can be
flexible in terms of the number of workers that are accessed,
and the number of symbols that are downloaded from each
of them. This is done by having the server perform extra
linear computations; these computation turn multiple low-
degree polynomial evaluations (the computation results) to a
smaller number of high-degree polynomial evaluations. These
high-degree polynomials lie in the ideal that is generated by
the lower-degree ones, and hence we term this technique /deal
Decoding. More importantly, the surprising corollary of this
part of the paper is that the overall download bandwidth can
be reduced for systems with adversaries, when compared to
ordinary LCC.

In our second contribution, we consider a dynamic model
of the access-download trade-off, where the master has con-
tinuous access to all servers, and the data arrives sequen-
tially. This model was studied in [4] for the special case
of linear computations. By encoding the polynomial itself
with Universally Decodable Matrices (UDMs), a previously
defined notion, we match the amount of download from

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 18,2021 at 20:12:25 UTC from |IEEE Xplore. Restrictions apply.

ISIT 2019

Fig. 1. Tlustration of LCC. Following the computation, worker n € [N]
holds y,,, which is an evaluation of f o w at ap. The results of the
computation {y; } e[k are obtained by interpolating fou from {¥,, },c[n]-
and evaluating it at 31, ..., Bk

each server to the naturally occurring delays in the system.
Specifically, we cluster the workers in the system according
to the expected computation times, and have workers in the
same cluster operate on the same encoded data. By allowing
the functions that are applied in each cluster to differ, it is
shown that the decoding can be completed once sufficient
information has arrived from each cluster, regardless of the
internal delays within that cluster. Omitted technical details
are readily available online [12].

II. PRELIMINARIES

We use the standard notation [N] for the set {1,..., N},
denote the underlying field! by F, and denote the composition
operation between polynomials by o.

We consider a system with a master node and /N workers,
in which a dataset X = (xq,...,Xg), with x; € FM*! for
every k € [K], is coded as Xi,...,Xy, and each codeword
symbol X,, is stored in one of the N workers. The master node
is interested in the computation results {y, £ f(x)}re(x]
for a polynomial f = (fi,..., fr), where f, : FM — F for
all £ € [L] and G £ max{deg(fe)}¢e(z)- To achieve this, f
is applied by the workers on their stored data, and the results
of the computation {y,, = f(X)}nein) on the codeword
symbols are transmitted back to the master. Many tasks
in coded computation fall under this framework, including
matrix multiplication, and gradient coding whenever the loss
function is a polynomial, or is approximated by one.

For integers A and S, a coding scheme is said to be S-
resilient and A-secure if the master is capable of extract-
ing {y;}re[x)]> even if up to S workers fail to respond in
a timely manner, and up to A workers reply with purposely
erroneous data. In addition, for an integer 1" the scheme is
called T-private if every set of T colluding workers remain
information-theoretically oblivious to the content of X, i.e.,
if I({X¢}+e7;X) = 0 for every 7 C [N] of size at most T,
where I denotes mutual information, and X is seen as chosen
uniformly at random.

In Section V, it is further assumed that the results
of the computation on the coded data y, = f(x,) =
(fi(Xn)s---, fL(Xn)), from every worker n € [N], arrive at
the master sequentially. That is, f1(X,) arrives, followed by
f2(X5), and so on. In addition, we allow the polynomial f
itself to be coded, and the encoding can potentially differ
from one worker to another. That is, each worker n € [N]
corresponds to L polynomials hy, 1, ..., hy, 1, each of which
is a linear combination of the polynomials { f¢}ecqz)-

A. Lagrange Coded Computing
Lagrange Coded Computing [20] follows the outline that is
described above, and achieves resiliency, security, and privacy

'Our techniques operate over any large enough finite field or any infinite
one. Perfect privacy, however, can only be guaranteed over finite fields.

that is known to be optimal in many cases. LCC relies heavily
on the Lagrange polynomial, as follows.

Given the data matrix X, fix K distinct elements 8 =
(B1,...,BK) and additional N distinct elements o =
(a1,...,ay) in F. By using the well-known Lagrange in-
terpolation formula, define u = ux g as the lowest degree
polynomial over F* such that u(8;,) = x;, for every k € [K];
and it is well known that deg(u) < K —1. Then, in the storage
phase, the polynomial u is evaluated at o, and the evaluation
is sent to worker n, i.e., X,, = u(a,) for every n € [N].

In the computation phase, every worker applies the poly-
nomial f on its stored data, and sends the results back to
the master. Since X, = u(ay,), it follows that f(x,) is an
evaluation at v, of the univariate polynomial f o u, whose
degree is at most G(K — 1). Hence, since u(8) = x;, for
every k € [K], it follows that the results of the computa-
tion {y} }re[k] can be obtained by decoding the coefficients
of f ou, and evaluating it at 31,..., Bk (see Figure 1).

Moreover, whenever there exists a privacy requirement (i.e.,
when 7" > 0 and F is finite), the data matrix X is padded
with T random entries T = (ti,...,tp) € FMXT. The user

fixes B8 = (B1,...,Bx+r) and a such that {Bk}reix) N
{an}nen) = 9, and defines u = uxrg as the unique
polynomial such that w(8;) = x; for every k € [K]

and u(Br4+¢) = t; for every ¢ € [T]. Then, the encoding is
performed by evaluating u at the points of c, and we have the
following theorem (a variant of LCC recovers the conventional
uncoded repetition design, which instead achieves the optimal
performance when no data privacy is required and the number
of workers is small).

Theorem 1. [20] Lagrange Coded Computing provides
an S-resilient, A-secure, and T-private scheme for com-
puting {y,}rex) for any polynomial f, as long as N >
(K+T-1)G+S+2A+1.

Remark 1. LCC has additional applications in obtaining
another aspect of information-theoretic privacy. In the so-
called function-privacy, the identity of the polynomial f
should be kept private from sets of colluding servers. This
problem, that is also known as Private Computation [15], is a
generalization of the well-known Private Information Retrieval
problem, and is studied in [10].

B. Universally Decodable Matrices

Universally Decodable Matrices (UDMs) have been studied
in the past for various applications, such as slow-fading
channels [16], and decoding of scalar codes in the presence of
stragglers [9]. They are tightly connected to various previously
defined notions, such as m-codes [13], and their correspond-
ing metric was thoroughly studied in [1].

Definition 1. For integers L and P, matrices B1,...,Bp €

FLXL are called UDMs if for every nomnegative inte-
gers ny,...,np that sum to L, the matrix—
(b1,17 Cen 7b1,n1 ,bgyl, Ce. ab2,n27 N 7bp’l7 e 7bpy»,”,) (1)

is invertible, where b; ; is the j’th column of B;, indexed from
left to right.

For example, the following matrices are UDMs for L = 4,
P=3and F = GF(2).

B;=1I Bx=J, B3z=

—_

1788

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 18,2021 at 20:12:25 UTC from |IEEE Xplore. Restrictions apply.

where I is the identity matrix and J is the anti-identity
matrix. We focus our attention on the following construction
of UDMs, that assumes a field with nonzero characteristic and
at least P — 2 distinct nonzero elements as, ..., ap. A slight
variant of this construction extends our scheme to character-
istic zero, and the details are given in [12, Appendix B].

Theorem 2. [17, Prop. 14] For positive integers P and L,

element o € F, the matrices By =1, Bo = J, and B3, ... ,Bp
are UDMs, where (Bpyo)in = (flj)agi;n) for (p,n.k) €

[P — 2] x [L] x [L].

A crucial ingredient of the proof of Theorem 2 is the
following proposition, which utilizes the notion of Hasse
derivative. For a nonnegative integer n, the n’th Hasse deriva-
tive of a polynomial ((z) = Zf;ol zipat is (M (x) =
Zf;ol (:L)Zi+13fi_n (for i < n we have (fl) = 0). Note
that {(z) has a zero of multiplicity m at a point v € F if and
only if (™ (y) = 0 for every 0 < n < m, and ("™ (y) # 0
[17, Lemma 13]. In addition, we define (™ (c0) = z1_,.

Proposition 1. Let v; = 0,72 = oo, and 7, = « for p €
{3,...,P}. For a polynomial ((x) = Zf;ol 212t and
integers p € [P] and { € [L], we have that (z1,...,z1)-bpe =
C(Zil)(%))-

Intuitively, to prove Theorem 2, Proposition 1 is used to
show that if (21, ..., zr)-B’ = 0, where B’ is of the form (1),
then the respective polynomial ((x) must have more roots
than its degree, and hence all its coefficients must be zero.

III. OUR CONTRIBUTION

In order to successfully interpolate the polynomials { f o
u} ¢e(z) in LCC (Subsection II-A), the user must download the
results f1(Xy,), ..., foL(X,) from at least (K+7—1)G+2A+1
workers n € [N]. In Section IV, we provide a scheme which
enables to complete the computation on Lagrange encoded
data in many other points of the download-access trade-off.
In what follows, we let H £ G(K +T — 1) + 1.

Theorem 3. In Lagrange Coded Computing, it is possible to
complete the computation by downloading L/ R symbols from
any set of RH + 2A workers, for every rational R = %: >1
such that R.|L, R4|H, and N > RH + 2A.

It will be clear in the sequel that the requirements R.|L
and R4|H are mere convenience, and can be alleviated at the
price of rounding operations. Theorem 3 is proved by using
a technique we term Ideal Decoding. In this technique, every
server n € [N] linearly combines the results {n.¢}se[z)s
together with powers of «,,, to produce evaluations of certain
polynomials {g;};c[/r), Which lie in the ideal which is
generated by { feou} ez in the ring of univariate polynomials
over F. These g;’s are interpolated by the master from their
evaluations, and the original {f¢ o u}s(r) are obtained by
computing some polynomial combinations of the g;’s. We
emphasize that this final polynomial computation can be done
by a combination of shifts, additions, and negations of field
elements, and does not require polynomial multiplications.
Having obtained {f; o u},c[z), the master finalizes the com-
putation as in ordinary LCC.

A surprising corollary of Theorem 3 is that for systems with
adversaries, the overall download of our suggested scheme
outperforms that of ordinary LCC (see Remark 2).

While the scheme of Theorem 3 enables the user to
download fewer symbols from every worker than in ordinary

LCC, computing these symbols requires the computation of
all functions f; on the coded data. Furthermore, the reduction
factor R must be known a priori, and hence, this scheme is
not suitable to handle run-time delays in the system.

To amend these issues, in the second part of this paper
(Section V), we consider systems in which the workers are
arranged in clusters. Then, the data is encoded by an LCC
scheme whose code length is the number of clusters (rather
than the number of workers), and all servers in a cluster
store the same codeword symbol (we refer to such systems
as clustered LCC). By encoding f with UDMs, it is shown
that the computation can be completed by downloading L
elements from each cluster, regardless of their exact source
within the cluster. This scheme enables stronger stragglers
tolerance, in the sense that it exploits the partial work that is
done by the stragglers, in a way that can accommodate any
possible combination of delays within each cluster.

Theorem 4. In clustered LCC, it is possible to complete the
computation by downloading L sequentially arriving symbols

from each one of H + 2A clusters.

Further, in cases where the number of adversaries per
cluster is known, we have the following.

Theorem 5. In clustered LCC with at most A; adversaries in
each cluster i, it is possible to complete the computation by
downloading (2A; + 1)L sequentially arriving symbols from
cluster v for each one of H clusters.

IV. ACHIEVING A DOWNLOAD-ACCESS TRADE-OFF

In this section we prove Theorem 3 by introducing extra
linear computations at the workers. Let R > 1 be the required
reduction factor, which is known to all workers, and for now
assume that it is an integer (fractional reduction factors will
be treated in the sequel). In addition, for every ¢ € [L]
denote fy o u by 7¢. Following the storage phase and the
computation phase, every server n € [N] contains {#y ¢ }ec[L],
and computes

R _(i—1)H -
%izl (,5_51); Yn.i g1(om)
Yicionw nrei | o | 92(em)

221 O"Eziil)Hﬂn,LfRﬂ gr/r(an)

Since §, ¢ = r¢(ov,) and deg(ry) < H—1 forevery ¢ € [L],
it follows that each server n € [N] now holds L/R evaluations
at a, of the polynomials { gl}f“:/fc , each of which is of degree
at most RH — 1. Hence, having received the responses from
any set of at least RH + 2A servers, the user is able to
obtain the coefficients of all g;’s by Reed-Solomon decoding.
Now, it is readily verified that for every ¢ € [L/R] the
first H coefficients of g; coincide with those of r(;_1)ry1,
the next H with those of r(;_1)ry2, and so on. Hence, all
the polynomials {r},c[z] can be found, and the scheme is
finalized by evaluating them at (1,...,Ok.

It is apparent from the simple case of an integer R that
the gist of the extra linear computations by the workers is to
obtain polynomial evaluations of some higher degree g;’s in
the ideal which is generated by the r;’s. Then, after obtaining
the coefficients of the g;’s, the coefficients of the r;’s can be
trivially extracted.

Now, let R be fractional. In this case, one must choose
different polynomials {g;};c(z/r) judiciously, so that this
extraction is still possible. In what follows, the polynomials g;

1789

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 18,2021 at 20:12:25 UTC from |IEEE Xplore. Restrictions apply.

are defined anew so that some overlap exists between the coef-
ficients of the r;’s in them. Then, after the interpolation by the
master, this overlap is resolved by performing a polynomial
combination of the g;’s. We begin with an illustrative example.

Example 1. Let H =4, R=11/4, A=0, and L = 22. For
every n € [N], the n’th server computes

é gn,l + aignﬁ + a:ﬂjn,B

gnvS + angnA + a?,,ﬂn,s + CYZQn,G

:&71,,6 + aignﬂ + aggnﬁ + O‘ZLgn,Q

~ 3 ~ 7~
Yn,9 + @pYn,10 + Ay Yn,11-

9in
92.n
93.n

9an

> e 11>

It is readily verified that for every i and n, the value g;,
is an evaluation at o, of a polynomial g;, whose degree is
at most 10. Hence, all g;’s can be extracted from RH = 11
workers. Then, the master computes

3

i 75 4 8 12 16
E (=1)2Ygjp1=ri+aro—arg —x rs + 2 0ry
i=0

24

20 28
+xrg —xryg — x°°r1y.

Since deg(r;) < 3 for all i, the coefficients of 1, T2, T4, T5,
r7,78,T10 and r11 in the above expression do not overlap, and
can therefore be extracted. Then, r5 can be found from g1,7r1
and ro; rg from go, 13,74, and 5, T9 from gs, ve, 17, and rs;
and finally, r9 from g4, 710, and r11. To obtain ria, ..., 199,
we define gs,...,gs similarly by using rio,...,7r22, and
conclude the scheme by evaluating all r;’s. Overall, we have
accessed 11 workers and downloaded 8 elements from each,
instead of accessing 4 workers and downloading 22 elements
from each.

In general, for ¢ € [L] and h € [H], define g(®™"™) as
i1
G+l > @M g +all Vg, @)
=0
where j' = j’(h) £ [R — h/H) — 1. Further, for i € [L/R),
let
hi 2 H(|(i —1DR| — (i —1)R+ 1), and
ji 2 5 (hi) = [R—hi/H] = 1.
Finally, let £, £ 1, and for i € {2,...,L/R} define

if hy #£ H

if h; = H.

g 8 Jlisit i+l
’ L1+ Jio1+2

Following the computation of ¢, ¢ for every ¢ € [L], every
server n computes {g(e?'*hi’">}zj}::/f2 and sends the results to
the master. It follows from (2) that for every ¢ € [L/R)], the
expression g(é-"™) is an evaluation at o, of

Ji—1
A h; jH H(R—1
gi =Ty, +T v E ! To+j+1 + T ()T@H‘jntlv
j=0

and deg(g;) < HR — 1. Hence, all polynomials g;(x) can
be interpolated from the responses of HR + 2A workers. It
remains to show how the coefficients of the r;’s can be found
from the g;’s.

We show how certain 7;’s are extracted from {g;(x)}i_,,
where 4’ is an integer such that ha, ..., hy # H and hy 1 =
H (this 7' clearly exists, and it is at most Rq + 1). The
remaining 7;’s are extracted similarly. Given g¢i,...,¢s,

the master computes the following sum, in which the last
term 21(=Dy, 11 of g; cancels out the first term 7y
of gi41, for every i € [i' —1].

i+1

i —1 j1—1
i jH(R—1 . _h iH .
DR g = 2 Y a0
j=0 Jj=0
j2—1
H(R—1)+h iH .
— g0 N " ity i
j=0
Jz—1
2H(R—1)+h iH .
AL W TR
j=0
Jir—1
i’ =1, .(i'=1)H(R—1)~+h, j H
+(71)z .ZL'(Z VH()+hy Z xJ 0, 441 (3)
7=0
1 i'—1, i H(R—1) X 4
+ (=) Te,tjo+1- (4)

Therefore, to show that all r;’s in the above expression can be
extracted, it is shown that the monomial degrees in the above
sums, as are the ones in the first and the last summand, do
not overlap. Since (¢1,h;1) = (1, H) and deg(r;) < H —1 for
all 4, it follows that r,, and xhlrgﬁ.l do not share a common
monomial, and hence the first sum does not overlap 7y,.
For k € [i’ — 1], in order to show that the k’th sum does
not share a common monomial with the (k + 1)’th sum, we
must show that

(k—1DHR-1)4+h+(Gr—1)H+H-1<
EH(R—1)+ hpy1,)

which readily follows from the definitions (see [12, Ap-
pendix A]). Finally, to show that the last sum (3) does not
share a common monomial with the last summand (4), we
ought to show that

(' —1)H(R-1)+hy + (s —)H+H—1<iHR—-1),

and this inequality follows from the definitions as well
(see [12, Appendix A]).

Thus, we have obtained the coefficients of all involved r;’s,
except for r¢,,7y,,...,7¢,, that were canceled out in (4).
However, ry, can be extracted from ¢; and 74 ,...,7¢,—-1;
T¢, can be extracted from gy and 7y,,...,7¢,—1; and so on.

Remark 2. In cases where A > 0, the download bandwidth of
the suggested scheme strictly outperforms the one in ordinary
LCC. In LCC, the user downloads L symbols from each one
of H+2A workers, L(H+2A) symbols overall. In our scheme
however, the user downloads L/R symbols from RH + 2A
workers, L(H + 2A/R) symbols overall.

For instance, if Example 1 is accompanied by A = 1
adversary, then the g;’s are interpolated by accessing 13
workers, and downloading 8 symbols from each, an overall
of 104 symbols. In ordinary LCC, the 22 polynomials r; are
interpolated by accessing 6 workers, and downloading 22
symbols from each, an overall download of 132 symbols.

V. UTILIZING PARTIAL WORK BY UDMS

In this section we prove Theorem 4 and Theorem 5 by
adding a layer of encoding. That is, we encode the polyno-
mial f itself by using UDMs, and apply the encoded polyno-
mials on a partially replicated Lagrange code. The approaches
towards proving both theorems are similar. However, in one
the error correction is performed between the clusters, and in
the other, within each cluster. We begin by proving Theorem 5,

1790

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 18,2021 at 20:12:25 UTC from |IEEE Xplore. Restrictions apply.

and then proceed to show that Theorem 4 is an easy corollary
of it.

We partition the N workers to C different clusters
Ci,...,Cc of varying sizes P, ..., Pc, respectively. Broadly
speaking, one should group together slow workers to large
clusters, and fast workers to small ones. In addition, for
every i € [C] assume that there are at most A; adversaries in
cluster C;, for some A; such that 0 < A4; < L%j

First, the data matrix X is encoded by using a Lagrange
code of length C, producing codeword symbols X1, ...,Xc.
For every i € [C], the codeword symbol X; is replicated P;
times and each copy is stored on a different server in C;.
Second, in the computation phase, every server computes L
functions on its stored codeword symbol. These L functions
are linear combinations of the polynomials {f;}Z ;, and are
unique to each server. The precise functions h; 1, ..., h; 1 of
worker ¢ can either be agreed upon in advance, be transmitted
by the master to the worker incrementally or together, or be
computed at the worker after receiving the polynomials f;.

For i € [C] identify the workers in C; by the inte-
gers1,2,..., P, and let By,...,Bp, be L x L UDMs over F.
The L functions of server j in C; are

hin) £ (fi-o. fu) - By

Then, each server j computes hj,l(ii), transmits the result to
the master, continues to compute and transmit 2 2(X;), and so
on. In what follows, it is shown that once at least (24;+ 1)L
responses are received from cluster ¢ for at least H clusters,
regardless of their particular source within each cluster, the
master is capable of finalizing the computation. The decod-
ing process operates in two steps. In one, the true value
of y; = f(X;) is extracted from the partial responses of every
server in C;. Then, these error free results are given to a
decoding algorithm for LCC of length C, which finalizes the
computation. Hence, we focus on the decoding process at the
cluster level, which is identical in all clusters.

For a given cluster C; and j € [P;], let u; be the number
of responses that were obtained from worker j up to a given
point in time, and notice that 0 < u; < L for every j. Thus,
the response from C; can be written as a sum of a codeword

JwN) 2 (i, G (6)
(b1,17~~ . 7b1,u17~ ..
P;

where b; ; is the j’th column of B; and N’ £ 3% u;, and
a vector e of noise that is introduced by the adversaries.

Lemma 6. For every i € [C), if N' > (2A;+1)L, then f(x;)
is decodable.

(}L]'J, ..

(wl,...

7bP7'.,17 cee 7bP1,uFi)7

For lack of space we only sketch the proof, and full details
are given in [12, Appendix A].

Proof sketch. 1t suffices to show that no two distinct code-
words (w1, ...,wns) and (w],...,w),) can be made equal
by an addition of an error vector which results from the
presence of A; adversaries in the cluster. Thanks to linearity,
this is equivalent to obtaining the zero codeword by encod-
ing {Jie}ecr) that are not all zero, and introducing 24;
adversaries. If such a scenario is possible, one uses Propo-
I L—1 ~ 5. .
sition 1 to get that ijo ¥i,j+127 is the zero polynomial, a
contradiction. O
Therefore, once at least (24; + 1)L responses has arrived at
the master from each one of at least H clusters C;, the master
obtains the respective f(X;) = (f1(X;),..., fL(X:)), and the
computation can be finalized by LCC decoding.

Now, to prove Theorem 4, observe that if there are no
stragglers in a given cluster C;, then L responses from it
suffice to obtain y,. Furthermore, if there are at most A
adversaries overall in the system, in the worst case there
will be at most one adversary in each cluster, and hence the
master may potentially fail to produce y, in at most A clusters.
Therefore, having obtained y, from at least H 4 2A clusters 4,
at most A of which are potentially erroneous, the master can
apply LCC decoding, and the theorem follows.

ACKNOWLEDGMENTS

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. HR001117C0053, ARO award W911NF1810400,
NSF grants CCF-1703575, ONR Award No. N00014-16-1-
2189, and CCF-1763673. The views, opinions, and/or findings
expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government.

REFERENCES

[1] A. Barg and W. Park, “On linear ordered codes,” IEEE Int. Symp. on
Inf. Th. (ISIT), vol. 33, p. 34, 2015.

[2] P. Blanchard, R. Guerraoui, and J. Stainer, “Machine learning with

adversaries: Byzantine tolerant gradient descent,” Adv. in Neural Inf.

Proc. Sys. (NIPS), pp. 119-129, 2017.

S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear

transforms distributedly using coded short dot products,” Adv. in Neural

Inf. Proc. Sys. (NIPS) pp. 2100-2108, 2016.

[4] N.Ferdinand and S. C. Draper, “Hierarchical coded computation,” IEEE
Int. Symp. on Inf. Th. (ISIT), pp. 1620-1624, 2018.

[5] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” IEE Int. Symp. on Inf. Th. (ISIT), pp. 2418-2422, 2017.

[6] K.Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
on Inf. Th., vol. 64, no. 3, pp. 1514-1529, 2018.

[7] S.Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, ‘“Near-
optimal straggler mitigation for distributed gradient methods,” IEEE Int.
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 857-866, 2018.

[8] S. Li, M. A. Maddah-Ali, Q. Yu, A. S. Avestimehr, “A Fundamental
Tradeoff Between Computation and Communication in Distributed
Computing,” IEEE Trans. on Inf. Th., vol. 64, no. 1, pp. 109-128, 2018.

[9] N. Raviv, Y. Cassuto, R. Cohen and M. Schwartz, “Erasure correction

of scalar codes in the presence of stragglers,” IEEE Int. Symp. on Inf.

Th. (ISIT), pp. 1983-1987, 2018.

N. Raviv and D. A. Karpuk, “Private polynomial computation from

Lagrange encoding,” arXiv:1812.04142, 2018.

N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding

from cyclic MDS codes and expander graphs,” Int. Conf. on Machine

Learning (ICML), 2018.

N. Raviv, Q. Yu, J. Bruck, and S. Avestimehr, “Download and access

trade-offs in Lagrange coded computing,” www.paradise.caltech.edu/etr.

html.

M. Y. Rosenbloom and M. A. Tsfasman, “Codes for the m-metric,”

Problemy Peredachi Informatsii, vol. 33, no. 1, pp. 55-63, 1997.

A. Shamir, “How to share a secret,” Comm. of the ACM, vol. 22, no. 11,

pp. 612-613, 1979.

H. Sun and S. A. Jafar,

arXiv:1710.11098, 2017.

S. Tavildar and P. Viswanath, “Approximately universal codes over

slow-fading channels,” IEEE Trans. on Inf. Th., vol. 52, no. 7, pp. 3233—

3258, 2006.

P. O. Vontobel and A. Ganesan, “On universally decodable matrices for

spacetime coding,” Designs, Codes and Cryptography, vol. 41, no. 3,

pp. 325-342, 2006.

N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, and R. Katz, “Multi-task

learning for straggler avoiding predictive job scheduling,” The Journal

of Machine Learning Research, vol. 17, no. 1, pp. 3692-3728, 2016.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:

an optimal design for high-dimensional coded matrix multiplication,”

Adv. in Neural Inf. Proc. Systems (NIPS), pp. 4403-4413, 2017.

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, S. Aves-

timehr, “Lagrange Coded Computing: Optimal design for resiliency,

security, and privacy”, arXiv:1806.00939, to appear in The International

Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

3

[10]

[11]

[12]

[13]
[14]

[15] “The capacity of private computation,”

[16]

[17]

[18]

[19]

[20]

1791

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 18,2021 at 20:12:25 UTC from |IEEE Xplore. Restrictions apply.

