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Abstract

We introduce a new symmetric treatment of anisotropic viscous terms in the viscoelastic wave equation. An
appropriate memory variable treatment of stress-strain convolution terms, result into a symmetric system
of first order linear hyperbolic partial differential equations, which we discretize using a high-order discon-
tinuous Galerkin finite element method. The accuracy of the resulting numerical scheme is verified using
convergence studies against analytical plane wave solutions and analytical solutions of the viscoelastic wave
equation. Computational experiments are shown for various combinations of homogeneous and heterogeneous
viscoelastic media in two and three dimensions.

1. Introduction

Numerical solution of elastic wave equation are essential for various imaging problems arising at different
scales. At global scale, elastic waves travels through the entire Earth and allow geophysicists to infer
properties and structure of the Earth interior. At a macro-scale, elastic waves can be used to image and
characterize oil and gas reservoirs. On a micro or laboratory scale, elastic waves play a major role in studying
the micro-structure of materials. To solve the elastic wave equation accurately, the input model should
be able to accommodate arbitrary variations of petrophysical and lithological properties, as they play an
important role, particularly in the targets of exploration geophysics, i.e., reservoir rocks. To study reservoir
monitoring and evaluation of rock properties in a laboratory setting, lithological and reservoir properties
become more important. Reservoir rocks such as cracked limestones can show effective anisotropy in the
low frequency band. On the other hand, fluid-filled cracked and porous rocks show considerable attenuation
properties, which is not incorporated in vanilla elastic approximation. Experimental work also shows that
anisotropy effects of attenuation are more pronounced than anisotropic elastic effects [1, 2]. Therefore, a
realistic rheology is required to model anisotropic attenuation characteristics.

Various dissipation mechanisms (e.g. Kelvin-Voigt, Maxwell, Zener or Simple Linear Solid) [3], expressed
by a time dependent relaxation function, can be modeled by a viscoelastic constitutive relation. Attenuation
of energy is caused by a large variety of dissipation mechanisms and incorporating all these mechanism
into a general microstructure is very difficult [4]. For example, modeling of dissipation in isotopic media is
very simple and will require only two relaxation functions, one for each decoupled wave modes (dilatational
and shear modes). Therefore, only two relaxation functions are enough to describe anelastic characteristics
of body waves. However, in anisotropic media one has to consider 21 frequency (time) dependent stiffness
parameters to address dissipation mechanism accurately. Subsequently, Mehrabadi and Cowin [5] and Helbig
[6] presented that only six of the 21 stiffness parameters have an intrinsic physical meaning. Motivated
by the studies of of Mehrabadi and Cowin [5] and Helbig [6], Carcione formulated a constitutive model
and wave equations for linear viscoelastic anisotropic media [7]. In a three-dimensional anisotropic media,
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careful attention is required while modeling the properties of the shear modes, as relaxations of the medium
can be different for slow and fast shear modes. Therefore, Carcione [3] used single relaxation function to
model the anelastic properties of the quasi-dilatational mode, whereas he uses three relaxation functions
to control the dissipation of the medium due to shear waves. In this paper, we use the constitutive model
proposed by Caricone [8], paired it with equations of motion described by Newton’s second law of motion and
thereafter symmetrized the system by performing change of variables operation on memory variables induced
by dissipation process. This entire exercise results into a system of first order hyperbolic partial differential
equations (PDEs) with stress, velocity and memory variables (only time dependent) as field variables.

The elastic wave equation is a system of first order hyperbolic partial differential equations, which can
be solved using any suitable numerical method such as finite-differences, finite volumes and finite element
methods. A detailed overview of these methods is given by [9, 10]. The most popular and simple method
is the finite-difference (FD) method, and its application to the elastic wave equation has been studied by
many researchers [11, 12, 13, 14, 15]. A detailed numerical analysis of finite-difference methods is given in
[16]. Although the numerical representation of FD method is very simple, but often comes with significant
numerical dispersion, especially in the modeling of surface waves [12]. Additionally, the implementation of
boundary conditions can require special treatment [17]. FD methods are also difficult to apply to irregular
geometries with out experiencing “staircase effects” [17]. To circumvent the effect of numerical dispersion
and achieve high order accuracy, pseudo-spectral methods were first used by Tessmer and Kosloff [18].
The pseudo-spectral method uses global basis function for approximation of the solutions (e.g., Fourier or
Chebyshev). The pseudo-spectral method requires few grid points per wavelength and produces a high order
solution with less numerical dispersion. However, the choice of the global basis functions restricts the pseudo-
spectral methods to smooth models, as it is difficult to represent materials with the discontinuities or sharp
contrast. This can be addressed somewhat using domain decomposition, where different meshes are used
to represent the different domains. For example, Carcione [19] used Fourier basis functions along directions
with smoothly varying materials properties and Chebyshev basis functions in directions with sharply varying
medium properties.

The finite element method (FEM) discretizes the domain using elements e.g., triangles and quadrilaterals
in 2D and tetrahedral and hexahedrals in 3D and solves the spatial derivatives of PDEs. The wave propaga-
tion in time-domain is expressed by a hyperbolic system of partial differential equations and rarely results
into a stiff system. Therefore, an explicit time integration scheme e.g. Runge-Kutta or Euler schemes, could
be efficiently applied as the requirement of CFL condition for time stability are easily satisfied. However,
pairing of finite-element methods (used for spatial discretization) with an explicit time-integration scheme
requires inversion of a global mass matrix, which causes a computational bottleneck especially for the large
computational domain. However, various methods are proposed to avoid the inversion of global mass ma-
trix. In particular, the approach of diagonal mass lumping [20], which transforms the global mass matrix
into a diagonal matrix by summing all line coefficients of matrix onto the diagonal elements [21]. Finite
element method for elastic wave equation are studied by Marfurt [12] and Bao et al. [22]. In these works,
FEM was shown to accurately represent sharp material properties and irregular geometries. However, the
solution on each element is approximated using a low order polynomials, which results in significant numer-
ical dispersion. In order to recover a more accurate solution high order elements are required which results
into large matrices to be inverted at each time step of time integration. To exploit the spectral properties
in the finite element method, Patera [23] proposed the spectral element method (SEM) to solve fluid flow
problems. Subsequently, the SEM was successfully implemented by Seriani et al. [24] to solve the acoustic
wave equation in a heterogeneous medium. Komatitsch and Vilotte [25] used SEM to solve the elastic wave
equation in a heterogeneous medium, described by a system of the second order PDEs. A detailed review of
methods adopted in wave field modeling is presented by Carcione et al. [26].

In this paper, a high-order numerical scheme based on the nodal discontinuous Galerkin method is
introduced to solve the symmetrized 3D viscoelastic wave equation. The descretization of the domain is
performed by using unstructured tetrahedron (hexahedra) and and triangular (quadrilateral) meshes in 3D
and 2D, respectively. The implementation of high order methods provide (1) high accuracy in numerical
solution, and (2) flexibility in accommodating unstructured meshes, which are required for discretization of
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complex geometries. The efficacy of discontinuous Galerkin (DG) method in solving linear and non-linear
time-dependent hyperbolic problems is shown by Hesthaven et al. [27]. Additionally, A natural adoption of
DG method on a heterogeneous computing environment (CPU + GPUs) makes them more advantageous in
terms of computational cost while solving time dependent hyperbolic problems [28]. In comparison to low
order methods the DG method offers low numerical dissipation and dispersion [29] resulting into solutions
with high accuracy. The effect of dispersion and dissipation in numerical solutions becomes more troublesome
when long time integration is required, e.g. simulation of elastic wave over the Earth or Tsunami simulation.
However, Wilcox et al. [30] has shown that DG method made it possible to solve the elastic wave equation
over a long time domain with a very high order accuracy. The weak formulation for second order elastic
wave equation proposed by Komatitsch [25] uses discretely orthogonal nodal basis functions along with
under-integrated L2 inner product. This approach produces diagonal mass matrices for quadrilateral and
hexahedral elements. However, in the high order DG methods, locally invertible block diagonal mass matrices
are induced and the inverse of these block diagonal matrices could be computed computed concurrently. The
size of these block diagonal matrices are Np ˆNp, with Np being degree of freedoms over an element. Many
researchers have successfully implemented high order DG methods with simplicial meshes for solution of
elastic and acoustic waves exist in literature [31, 32, 33].

In DG methods, first the solution is approximated locally over the elements. Thereafter, a global ap-
proximation of solution is recovered by imposing (weakly) the continuity of local solutions at opposite faces
(edges in 2D) of the elements through a numerical flux. In particular, the upwind flux (solution of a Riemann
problems) is more frequently employed [34] to recover the global solution. Käser et al. [31] solved the 3D
isotropic viscoelastic wave equation in a strain-velocity formulation using a local space-time DG method
with an upwind flux by solving the exact Riemann problem on inter-element boundaries. In another study,
Lambrecht et al. [35] used a nodal DG method to solve the isotropic viscoelasltic wave equation using the
same formulation proposed by Käser et al. [31]. The choice of numerical flux also results into providing the
stability to numerical scheme and controlling the numerical dissipation. Therefore, choosing the solution of
the Riemann problem as a numerical flux becomes obvious as these are less dissipative than any standard nu-
merical flux. However, the first step for solving the Riemann problem is diagonalization of Jacobian matrices
into polarized wave modes [36], resulting into a computationally intensive process especially for the systems
with unstructured Jacobian matrices. Additionally, solution of Riemann problem for isotropic system does
not extend naturally to anisotropic materials and therefore requires the re-computation of Riemann solvers.
The various studies have been carried out on avoiding the diagonalization of Jacobian matrices using penalty
fluxes based on natural boundary conditions [33, 37, 38, 39]. The penalty fluxes are easy to implement and
provide accuracy and dissipation similar to fluxes based on solution of Riemann problems. In this study, we
implemented similar energy-stable penalty flux for the anisotropic viscoelastic wave equations.

The main new contributions of this paper are a new symmetric form of the anisotropic viscoelastic wave
equation and its discretization using a high order DG method using penalty fluxes. The outline of the paper
is as follows: Section 2 will briefly review the system of equations describing the viscoelastic wave equation.
Section 4 presents an energy stable formulation for the symmetric hyperbolic form of the viscoelastic wave
equations. Finally, numerical results in Section 5 demonstrate the accuracy of this method for several 2D
and 3D problems arising in linear anisotropic viscoelasticity.

2. Constitutive Relations

In this section, subsections (2.1)-(2.4) briefly review the formulations of non-symmteric form of the system
of viscoelastic wave equation obtained by Carcione [8, 7].

2.1. Convolution and Boltzmann relation

The Riemann convolution between time dependent functions f with g is defined as
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f ˚ g “

$
’&
’%

ż t

0

fpτqgpt´ τq dτ : t ě 0

0 : t ă 0,

(1)

where t is the time variable.
The Boltzman operation [40] defines the time derivative of the convolution between Heaviside type

function, f and g as

f ˚ Btg “ f d g “ f̊ g `
´

9fH
¯

˚ g, (2)

where f̊ “ fpt “ 0`q and Hptq is the step function.

2.2. Stress-strain relations

The general constitutive relation for an anisotropic and linear viscoelastic medium can be expressed as
[8]

σ “ 9Ψ ˚ ε (3)

where σ “ rσ11, σ22, σ22, σ23, σ13, σ12sT , ε “ rε11, ε22, ε33, ε23, ε13, ε12sT are stress and strain vectors with
γij “ 2εij , sub-indices 1 to 3 correspond to the three Cartesian coordinates x, y and z, and Ψ is the
symmetric relaxation matrix, expressed as [7]

Ψ “

»
——————–

ψ11 ψ12 ψ13 c14 c15 c16
ψ22 ψ23 c24 c25 c26

ψ33 c34 c35 c36
c44χ2 c45 c46

c55χ3 c56
c66χ4

fi
ffiffiffiffiffiffifl
Hptq,

with

ψipIq “ cIpIq ´D `Kχ1 `
4

3
Gχδ for I “ 1, 2, 3

ψIJ “ cIJ ´D ` 2G`Kχ1 ´
2

3
Gχδ for I, J “ 1, 2, 3; I ‰ J.

The cIJ for I, J “ 1, ...., 6 are the high-frequency limit (unrelaxed) elasticities i.e. t Ñ 0;ω Ñ 8, and

K “ D ´
4

3
G,

where

D “
1

3
pc11 ` c22 ` c33q, G “

1

3
pc44 ` c55 ` c66q.

The χν are dimensionless relaxation function with index ν “ 1 representing the quasi-dilatational mode
and indices ν “ 2, 3, 4 corresponds to shear waves. χδ is a shear relaxation function for δ “ 2, 3, or 4. Hptq
is the Heaviside function.

In this study, the following relaxation functions are used [3]

χνptq “ Lν

˜
Lνÿ

l“1

τ
pνq
εl

τ
pνq
σl

¸ «
1 ´

1

Lν

Lνÿ

l“1

˜
1 ´

τ
pνq
εl

τ
pνq
σl

¸
exp

´
´t{τ

pνq
σl

¯ff
, ν “ 1, ..., 4, (4)
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where τ
pνq
εl and τ

pνq
σl are material relaxation times such that τ

pνq
εl ě τ

pνq
σl . The pair τ

pνq
εl and τ

pνq
σl define a

dissipation mechanism.
Equation (4) describes the relaxation function of generalized standard linear solid (also known as Zener

model) consisting of Lν elements 1 connected in parallel. The complex modulus of the system is [3]

Mνpωq “ F

ˆ
drχνptqHptqs

dt

˙
, (5)

where ω is the angular frequency and Fp¨q represents the time Fourier transform of the variable.
Mνpωq is expressed as

Mνpωq “ Lν

Lνÿ

l“1

1 ` iωτ
pνq
εl

1 ` iωτ
pνq
σl

. (6)

From (6) it can be easily seen that Mνp0q “ 1 as
τ

pνq
εl

τ
pνq
σl

Ñ 1, which gives the low frequency limit. Thus, (6)

is a general relaxation function which can recover all possible type of frequency behavior of attenuation and
velocity dispersion observed in subsurface materials.

2.3. Strain memory variables

The stress–strain relation in time domain is expressed as

σI “ ψIJ ˚ BteJ (7)

Application of the Boltzmann operation (2) to (7) yields

σI “ ψ̊IJeJ `
´

9ψIJH
¯

˚ eJ (8)

Now we use

qφνlptq “ 9χνptq “
1

τ
pνq
σl

˜
Lνÿ

l“1

τ
pνq
εl

τ
pνq
σl

¸ ˜
1 ´

τ
pνq
εl

τ
pνq
σl

¸
exp

´
´t{τ

pνq
σl

¯

and write (8) in matrix form, which is expressed as

σI “ A
pνq
IJ eJ `B

pνq
IJ

Lνÿ

l“1

e
pνq
Jl , (9)

where A1s and B1s are the matrices formed by the combination of elastic constants cIJ and

e
pvq
Jl “ φνlptq ˚ eJ , J “ 1, .., 6, l “ 1, .., Lν , ν “ 1, .., 4,

where φνl “ qφνlptqHptq are the components of 6 ˆ 1 strain memory array e
pνq
l .

In 3D, the symmetric strain memory tensor corresponding to the lth dissipation mechanism of the relax-
ation function χν is expressed as [7]

e
pνq
l

“

»
—–
e

pνq
11l e

pνq
12l e

pνq
13l

e
pνq
22l e

pνq
23l

e
pνq
33l

fi
ffifl “ φνl ˚

»
–
ε11 γ12 γ13

ε22 γ23
ε33

fi
fl (10)

“ φνlptq ˚ eJ . (11)

1A mechanical system in which a spring and a parallel combination of a dashpot and a spring are connected in series.
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The tensor e
pνq
l

contains the past history of material due the dissipation mechanism defined in (4). In the

pure elastic case τ
pνq
εl Ñ τ

pνq
σl , φνl Ñ 0 and e

pνq
l

vanishes.
Similar to the strain tensor, the memory strain variable can be decomposed as

e
pνq
l

“ d
pνq
l `

ˆ
1

3
trpe

pνq
l q

˙
I, tr

´
d

pνq
l

¯
“ 0, (12)

where d
pνq
l is the deviatoric strain memory tensor which is traceless and I is 3 ˆ 3 identity matrix.

Thus, the dilatation and shear memory variables are defined as

e1l “ tr
´
e

p1q
l

¯
, and eijl “

´
d

pνq
l

¯
ij
, (13)

where ν “ δ for i “ j, ν “ 2 for ij “ 23, ν “ 3 for ij “ 13 and ν “ 4 for ij “ 12.
The stress-strain relations in terms of strain components and memory variables with one dissipation

mechanism for each mode are [7]

σ11 “ c11ε11 ` c12ε22 ` c13ε33 ` c14γ23 ` c15γ13 ` c16γ13 `Ke11 ` 2Ge
pδq
111

(14a)

σ22 “ c12ε11 ` c22ε22 ` c23ε33 ` c24γ23 ` c25γ13 ` c26γ12 `Ke11 ` 2Ge
pδq
221

(14b)

σ33 “ c13ε11 ` c23ε22 ` c33ε33 ` c34γ23 ` c35γ13 ` c36γ12 `Ke11 ´ 2G
´
e

pδq
111

` e
pδq
221

¯
(14c)

σ23 “ c14ε11 ` c24ε22 ` c34ε33 ` c44γ23 ` c44e
p2q
231

` c45γ13 ` c46γ13 (14d)

σ13 “ c15ε11 ` c25ε22 ` c35ε33 ` c45γ23 ` c55γ23 ` c55e
p3q
131

` c56γ12 (14e)

σ12 “ c16ε11 ` c26ε22 ` c36ε33 ` c46γ23 ` c56γ13 ` c66γ13 ` c66e
p4q
121

(14f)

(14g)

where cIJ “ ψIJpt “ 0`q are unrelaxed elasticity constant at ω Ñ 8.

2.4. Memory variable equation

Application of the Boltzman equation to the deviatoric part of (11) yields

Btd
pνq
l “ φνlp0qd ` pBt qφνlHq ˚ d. (15)

Here, d denotes the deviatoric strain tensor with elements

d “ ε ´
1

3
VI, (16)

where the strain tensor ε and V are

ε “

»
–
ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

fi
fl , V “ ε11 ` ε22 ` ε33.

Using Bt qφνl “ ´
qφνl
τ

pνq
σl

and substituting it in (15), we recover

Btd
pνq
l “ φνlp0qd ´

1

τ
pνq
σl

d
pνq
l , (17)
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where d
pνq
l “ φνlptq ˚ d, with ν “ 2, 3, and 4. Similarly applying the Boltzmann operation to the non-

deviatoric part trpe
p1q
l q, we get

Bttrpe
p1q
l q “ φ1lp0qtrpeq ´

1

τ
p1q
σl

trpe
p1q
l q (18)

Using (17) and (18), The equations for the memory variables are expressed as

Bte
pδq
111

“ φδ1p0qpε11 ´ ε̄q ´
e

pδq
111

τ
pδq
σ

(19a)

Bte
pδq
221

“ φδ1p0qpε22 ´ ε̄q ´
e

pδq
221

τ
pδq
σ

(19b)

Bte231 “ φ21p0qγ23 ´
e231

τ
p2q
σ

(19c)

Bte131 “ φ31p0qγ13 ´
e131

τ
p3q
σ

(19d)

Bte121 “ φ41p0qγ12 ´
e121

τ
p4q
σ

(19e)

Bte11 “ nφ1lp0qε̄´ e11{τ p1q
σ (19f)

where ε̄ “ trpSq{3 and n is taken as 2 for 2D and 3 for 3D.

2.5. Equation of motion

The conservation of momentum is expressed as

Bσ11
Bx1

`
Bσ12
Bx2

`
Bσ13
Bx3

“ ρ
Bv1
Bt

(20a)

Bσ12
Bx1

`
Bσ22
Bx2

`
Bσ23
Bx3

“ ρ
Bv2
Bt

(20b)

Bσ13
Bx1

`
Bσ23
Bx2

`
Bσ33
Bx3

“ ρ
Bv3
Bt

(20c)

3. Symmetrization of the anisotropic viscoelastic system

In this section, we show how to symmetrize the anisotropic viscoelastic wave equations introduced in
subsections (2.1)-(2.4). In particular, anisotropic viscoelastic terms can be expressed using a symmetric and
negative-definite matrix, which will enable us to construct a high order DG method which is provably energy
dissipative for general frequency-dependent dissipative material properties.

Let us consider the 3D-particle-velocity and stress equations for propagation in an anisotropic medium.
We assign one relaxation mechanism to both dilatational anelastic deformation pν “ 1q and shear anelastic
deformations pν “ 2q. The stress-strain relation is expressed as
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Bσ11
Bt

“ c11
Bv1
Bx1

` c12
Bv2
Bx2

` c13
Bv3
Bx3

`Ke1 ` 2Ge2,

Bσ22
Bt

“ c12
Bv1
Bx1

` c11
Bv2
Bx2

` c13
Bv3
Bx3

`Ke1 ` 2Ge3,

Bσ33
Bt

“ c13
Bv1
Bx1

` c13
Bv2
Bx2

` c33
Bv3
Bx3

`Ke1 ´ 2Gpe2 ` e3q

Bσ23
Bt

“ c44

„ˆ
Bv2
Bx3

`
Bv3
Bx2

˙
` e4


,

Bσ13
Bt

“ c55

„ˆ
Bv1
Bx3

`
Bv3
Bx1

˙
` e5


,

Bσ12
Bt

“ c66

„ˆ
Bv1
Bx2

`
Bv2
Bx1

˙
` e6


.

(21)

Memory variables are expressed as

Be1
Bt

“
1

τ
p1q
σ

«˜
τ

p1q
σ

τ
p1q
ε

´ 1

¸ ˆ
Bv1
Bx1

`
Bv2
Bx2

`
Bv3
Bx3

˙
´ e1

ff
,

Be2
Bt

“
1

3τ
p2q
σ

«˜
τ

p2q
σ

τ
p2q
ε

´ 1

¸ ˆ
2

Bv1
Bx1

´
Bv2
Bx2

´
Bv3
Bx3

˙
´ 3e2

ff
,

Be3
Bt

“
1

3τ
p3q
σ

«˜
τ

p3q
σ

τ
p3q
ε

´ 1

¸ ˆ
2

Bv2
Bx2

´
Bv1
Bx1

´
Bv3
Bx3

˙
´ 3e3

ff
,

Be4
Bt

“
1

τ
p2q
σ

«˜
τ

p2q
σ

τ
p2q
ε

´ 1

¸ ˆ
Bv2
Bx3

`
Bv3
Bx2

˙
´ e4

ff
,

Be5
Bt

“
1

τ
p3q
σ

«˜
τ

p3q
σ

τ
p3q
ε

´ 1

¸ ˆ
Bv1
Bx3

`
Bv3
Bx1

˙
´ e5

ff
,

Be6
Bt

“
1

τ
p4q
σ

«˜
τ

p4q
σ

τ
p4q
ε

´ 1

¸ ˆ
Bv1
Bx2

`
Bv2
Bx1

˙
´ e6

ff
.

(22)

Combining (20)-(22) in matrix form yields

Bq

Bt
` Apxq

Bq

Bx1
` Bpxq

Bq

Bx2
` Cpxq

Bq

Bx3
“ Dpxqq ` f , (23)

where
q “

“
σ11, σ22, σ33, σ23, σ13, σ12, e1, e2, e3, e4, e5, e6, v1, v2, v3

‰
,

8



.

Apxq “ ´

»
——————————————————————————–

0 0 0 0 0 0 0 0 0 0 0 0 c11pxq 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c12pxq 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c13pxq 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c55pxq
0 0 0 0 0 0 0 0 0 0 0 0 0 c66pxq 0
0 0 0 0 0 0 0 0 0 0 0 0 T1pxq 0 0

0 0 0 0 0 0 0 0 0 0 0 0
2

3
T2pxq 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ´
1

3
T3pxq 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 T3pxq
0 0 0 0 0 0 0 0 0 0 0 0 0 T4pxq 0

1{ρpxq 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1{ρpxq 0 0 0 0 0 0 0 0 0
0 0 0 0 1{ρpxq 0 0 0 0 0 0 0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

,

Bpxq “ ´

»
——————————————————————————–

0 0 0 0 0 0 0 0 0 0 0 0 0 c12pxq 0
0 0 0 0 0 0 0 0 0 0 0 0 0 c11pxq 0
0 0 0 0 0 0 0 0 0 0 0 0 0 c13pxq 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c44pxq
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c66pxq 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 T1pxq 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ´
1

3
T2pxq 0

0 0 0 0 0 0 0 0 0 0 0 0 0
2

3
T3pxq 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 T2pxq
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 T4pxq 0 0
0 0 0 0 0 1{ρpxq 0 0 0 0 0 0 0 0 0
0 1{ρpxq 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1{ρpxq 0 0 0 0 0 0 0 0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

,

Cpxq “ ´

»
——————————————————————————–

0 0 0 0 0 0 0 0 0 0 0 0 0 0 c13pxq
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c13pxq
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c33pxq
0 0 0 0 0 0 0 0 0 0 0 0 0 c44pxq 0
0 0 0 0 0 0 0 0 0 0 0 0 c55pxq 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 T1pxq

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´
1

3
T2pxq

0 0 0 0 0 0 0 0 0 0 0 0 0 0
2

3
T3pxq

0 0 0 0 0 0 0 0 0 0 0 0 0 T2pxq 0
0 0 0 0 0 0 0 0 0 0 0 0 T3pxq 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1{ρpxq 0 0 0 0 0 0 0 0 0 0
0 0 0 1{ρpxq 0 0 0 0 0 0 0 0 0 0 0
0 0 1{ρpxq 0 0 0 0 0 0 0 0 0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

,
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Dpxq “ ´

»
—————————————————————————————————————–

0 0 0 0 0 0 Kpxq 2Gpxq 0 0 0 0 0 0 0
0 0 0 0 0 0 Kpxq 0 2Gpxq 0 0 0 0 0 0
0 0 0 0 0 0 Kpxq ´2Gpxq ´2Gpxq 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 c44pxq 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c55pxq 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 c66pxq 0 0 0

0 0 0 0 0 0 ´
1

τ
p1q
σ pxq

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ´
1

τ
p2q
σ pxq

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´
1

τ
p3q
σ pxq

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ´
1

τ
p2q
σ pxq

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ´
1

τ
p3q
σ pxq

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ´
1

τ
p4q
σ pxq

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

,

where Ti “
1

τ
piq
σ pxq

˜
τ

piq
σ pxq

τ
piq
ε pxq

´ 1

¸
.

To prove stability of the scheme, we express (23) in a form where spatially dependent material coefficient
appear on left side of (25). This will enable us to rewrite (22) without terms involving the spatial derivatives.

From (21), we compute
Bv1
Bx1

,
Bv2
Bx2

,
Bv3
Bx3

,
Bv2
Bx3

,
Bv3
Bx2

,
Bv1
Bx3

,
Bv3
Bx1

,
Bv1
Bx2

, and
Bv2
Bx1

and substitute in (22), which

yields

Ba1
Bt

“ ´w1pa1 ` z1q ´ w2pa2 ` z2q ´ 2w3pa3 ` z3q

Ba2
Bt

“ w4pa1 ` z1q ` w5pa2 ` z2q ` 2w6pa3 ` z3q

Ba3
Bt

“ w7pa1 ` z1q ` w8pa2 ` z2q ` 2w9pa3 ` z3q

Ba4
Bt

“ T2pa4 ` z4q ´
pa4 ` z4q

τ
p2q
σ

Ba5
Bt

“ T3pa5 ` z5q ´
pa5 ` z5q

τ
p3q
σ

Ba6
Bt

“ T4pa6 ` z6q ´
pa6 ` z6q

τ
p4q
σ

,

(24)

where

a1 “ e1 ´ z1, a2 “ e2 ´ z2, a3 “ e3 ´ z3,

a4 “ e4 ´ z4, a5 “ e5 ´ z5, a6 “ e6 ´ z6,

and
d1 “ r11 ` r12 ` r13, d2 “ r33 ` 2r13,

10



with rij being the elements of the inverse of unrelaxed compliance matrix

Cppxq “

»
——————–

c11pxq c12pxq c13pxq 0 0 0
c12pxq c22pxq c13pxq 0 0 0
c13pxq c13pxq c33pxq 0 0 0

0 0 0 c44pxq 0 0
0 0 0 0 c55pxq 0
0 0 0 0 0 c66pxq

fi
ffiffiffiffiffiffifl
,

and inverse Cp is given in Appendix A.

z1 “ T1pd1pσ11 ` σ22q ` d2σ33q,

z2 “ T2

„ˆ
r11 ´

1

3
d1

˙
σ11 `

ˆ
r12 ´

1

3
d1

˙
σ22 `

ˆ
r13 ´

1

3
d2

˙
σ33


,

z3 “ T3

„ˆ
r12 ´

1

3
d1

˙
σ11 `

ˆ
r11 ´

1

3
d1

˙
σ22 `

ˆ
r13 ´

1

3
d2

˙
σ33


,

z4 “ T2c
´1

44
σ23, z5 “ T3c

´1

55
σ13, z6 “ T4c

´1

66
σ12,

and

w1 “

ˆ
T1pλ `

1

τ
p1q
σ

˙
, w2 “ T1pµ1

, w3 “ T1pµ2
,

w4 “

ˆ
T2pλ

3
´

1

τ
p2q
σ

´Kpr11 ` r12q

˙
, w5 “ pT2pµ1

´Gpr11 ´ r13qq, w6 “ pT2pµ2
´Gpr12 ´ r13qq,

w7 “

ˆ
T3pλ

3
´

1

τ
p3q
σ

´Kpr12 ` r11q

˙
, w8 “ pT3pµ1

´Gpr12 ´ r13qq, w9 “ pT3pµ2
´Gpr11 ´ r13qq,

with
pλ “ Kp2d1 ` d2q, pµ1

“ Gpd1 ´ 2d2q, pµ2
“ 2Gpd1 ´ d2q.

We rewrite the system of equations (22) with out spatial derivative using the set of equations in (21), which
yields

Q´1

s pxq
Bσ

Bt
“

dÿ

i“1

Ai

Bv

Bxi

` Sσ,

ρ
Bv

Bt
“

dÿ

i“1

AT
i

Bσ

Bxi

` f ,

(25)

where, σ “ rσ11, σ22, σ33, σ23, σ13, σ12, a1, a2, a3, a4, a5, a6sT , and v “ rv1, v2, v3sT and

Q´1

s pxq “

»
——–

C´1
p pxq 0

0 I

fi
ffiffifl .
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The matrices Ai and S are

A1 “

»
——————————————————–

1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, A2 “

»
——————————————————–

0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, A3 “

»
——————————————————–

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

,

and S “ Q´1
s G with

G “

»
——–

g116ˆ6
g126ˆ6

g216ˆ6
g226ˆ6

fi
ffiffifl

where

g11 “

»
——————–

T1d1 ` 2GT2g1 KT1d1 ` 2GT2g2 KT1d2 ` 2GT2g3 0 0 0
KT1d1 ` 2GT3g4 KT1d1 ` 2GT3g5 KT1d2 ` 2GT3g6 0 0 0
KT1d1 ´ 2Gg7 KT1d1 ´ 2Gg8 KT1d2 ´ 2Gg9 0 0 0

0 0 0 T2c
´1

44
0 0

0 0 0 0 T3c
´1

55
0

0 0 0 0 0 T4c
´1

66

fi
ffiffiffiffiffiffifl
,

g12 “

»
——————–

K 2G 0 0 0 0
K 0 2G 0 0 0
K ´2G ´2G 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

fi
ffiffiffiffiffiffifl
,

g21 “

»
————————————–

t1 t2 t3 0 0 0
t4 t5 t6 0 0 0
t7 t8 t9 0 0 0

0 0 0

ˆ
T2 ´

1

τ
p2q
σ

˙
T2{c44 0 0

0 0 0 0

ˆ
T3 ´

1

τ
p3q
σ

˙
T3{c55 0

0 0 0 0 0

ˆ
T4 ´

1

τ
p4q
σ

˙
T4{c66

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

,
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g22 “

»
————————————–

´w1 ´w2 w3 0 0 0
w4 w5 w6 0 0 0
w7 w8 w9 0 0 0

0 0 0

ˆ
T2 ´

1

τ
p2q
σ

˙
0 0

0 0 0 0

ˆ
T3 ´

1

τ
p3q
σ

˙
0

0 0 0 0 0

ˆ
T4 ´

1

τ
p4q
σ

˙

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

where

g1 “

ˆ
r11 ´

1

3
d1

˙
, g2 “

ˆ
r12 ´

1

3
d1

˙
, g3 “

ˆ
r13 ´

1

3
d2

˙
,

g4 “

ˆ
r12 ´

1

3
d1

˙
, g5 “

ˆ
r11 ´

1

3
d1

˙
, g6 “

ˆ
r13 ´

1

3
d2

˙
,

g7 “ T2g1 ` T3g4, g8 “ T2g2 ` T3g5, g9 “ T2g3 ` T3g6,

t1 “ ´pw1T1d1 ` w2T2g1 ` 2w3T3g4q, t2 “ ´pw1T1d1 ` w2T2g2 ` 2w3g5q,

t3 “ ´pw1T1d2 ` w2T2g3 ` 2w3g6q, t4 “ w4T1d1 ` w5T2g1 ` 2w6T3g4,

t5 “ w4T1d1 ` w5T2g2 ` 2w6g5, t6 “ w4T1d2 ` w5T2g3 ` 2w6g6,

t7 “ w7T1d1 ` w8T2g1 ` 2w9T3g4, t8 “ w7T1d1 ` w8T2g2 ` 2w9g5,

t9 “ w7T1d2 ` w8T2g3 ` 2w9g6.

Here elements of G and gij are space dependent.

In (22), matrices Ai are spatially constant, where as Q´1
s and ρ can vary spatially. We will also assume

that ρ , Q´1
s and Q´1

s are positive-definite and bounded pointwise such that

0 ă ρmin ď ρpxq ď ρmax ă 8

0 ă cmin ď uTQspxqu ď cmax ă 8

0 ă ĉmin ď uTQ´1

s pxqu ď ĉmax ă 8

for all x P R
d and @ u P R

Nd .
Moreover, we assume that S is a semi negative-definite and bounded pointwise such that

´8 ă smin ď sTSs ď smax ă 0 @ x P R
d and @ u P R

Nd .

4. An energy stable discontinuous Galerkin formulation for the viscoelastic wave equation

In this section, we formulate the energy stable discontinuous Galerkin methods for viscoelastic wave equa-
tion (25). We will first introduce the definitions and notations that will be used in subsequent subsections.

4.1. Notations and definitions for DG

We consider that domain Ω is exactly discretized by a mesh and represented by Ωh “
ŤK

k“1
Dk. The Ωh

is consist of non-overlapping elements Dk, which are images of a reference element pD under a local affine
mapping defined as

xk “ Φk px, xk P Dk, px P pD.

13



Here xk “ txk, yku for d “ 2 and xk “ txk, yk, zku for d “ 3 denote the physical coordinates on element
Dk and x̂ “ tx̂, ŷu for d “ 2 and px “ tpx, py, pzu for d “ 3 denote coordinates on the reference element, which
is a bi-unit right angle. Over each element Dk, local approximation space VhpDkq is defined as

VhpDkq “ Vhp pDq ˝
`
Φk

˘´1

“ tpvh ˝ pΦkq´1, pvh P Vhp pDqu.

The Vhp pDq is local polynomial approximation space defined in 3D by

Vhp pDq “ PN p pDq “ tpxipyjpxk, 0 ď i` j ` k ď Nu,

with PN p pDq being the space of polynomials of total degree N on the reference simplex.
The L2 inner product between two real vector-valued functions g and h over Dk and BDk is expressed

as

pg,hq “

ż

Dk

g ¨ h dx, 〈g,h〉L2pBDkq “

ż

BDk

g ¨ h dx

The jump and average of a scalar function u P VhpΩhq across faces of the elements are defined as

JuK “ u` ´ u´, ttuuu “
u` ` u´

2
,

where superscripts “+” and “-” represent neighboring and local traces of solutions over each faces of the
element. Jumps and averages of vector-valued functions u P R

m and and matrix-valued functions S̃ P R
mˆn

are defined component-wise.

pJuKqi “ JuiK, 1 ď i ď m
´
JS̃K

¯
ij

“ JS̃K

4.2. DG formulation

The DG formulation of (25) in strong form with penalty based numerical fluxes is expressed as [38]

ÿ

DkPΩh

ˆ
Q´1

s

Bσ

Bt
,h

˙

L2pDkq

“
ÿ

DkPΩh

˜˜
dÿ

i“1

Ai

Bv

Bxi

,h

¸

L2pDkq

`

B
1

2
AnJvK `

ασ

2
AnA

T
n JσK,h

F

L2pBDkq

` pSσ, gqL2pDkq

¸

ÿ

DkPΩh

ˆ
ρ

Bv

Bt
, g

˙

L2pDkq

“
ÿ

DkPΩh

˜˜
dÿ

i“1

Ai
T Bσ

Bxi

` f , g

¸

L2pDkq

`

B
1

2
AT

n
JσK `

αv

2
AT

nAnJvK, g

F

L2pBDkq

¸
,

(26)
for all h, g P VhpΩhq. Here, An is the normal matrix defined on a face of an element and expressed as

An “
dÿ

i“1

niAi “

»
——————————————————–

nx 0 0
0 ny 0
0 0 nz
0 nz ny

nz 0 nx

ny nx 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

.
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The factors ατ , αvpě 0q are penalty parameters, which are piecewise constant. These parameters are defined
on the faces of the element. A non-dissipative central flux is recovered by choosing ατ , αv “ 0 whereas
choosing ατ , αv ą 0 results into energy dissipation similar to the upwind flux [27, 39, 41]. In this work, we
take ατ “ αv “ 1{2 unless stated otherwise. A detail study on choice of penalty parameter and it’s effect
on time step is presented by Chan [37]. The semi-discrete matrix representation for DG formulation in (26)
could be easily followed from [39, 41].

4.3. Energy stability

In the absence of external forces pf “ 0q and for free-surface and absorbing boundary conditions, the
DG formulation in (26) can be proven to be energy stable by following the works of [41, 39]. The proof is
straightforward using the techniques from [41, 39], and we do not include it for brevity. Thus the stability
condition for DG formulation in (26) is stated as follows.

Theorem 1. The DG formulation in (26) is energy stable for ασ, αv ě 0 such that

ÿ

DkPΩh

1

2

B

Bt

`
pQ´1

s σ,σqL2pDkq ` pρv,vqL2pDkq

˘
“ ´

ÿ

fPΓhzBΩ

ż

f

´ασ

2

ˇ̌
AT

n JσK
ˇ̌2

`
αv

2
|AnJvK|2

¯
dx

´
ÿ

fPΓσ

ż

f

´
ασ

ˇ̌
AT

nσ
´

ˇ̌2¯
dx ´

ÿ

fPΓabc

ż

f

´ασ

2

ˇ̌
AT

nσ
´

ˇ̌2
`
αv

2

ˇ̌
Anv

´
ˇ̌2¯

dx

`
ÿ

DkPΩh

ż

Dk

vTSv dx ď 0. (27)

The term on the left hand side of (27) is an L2-equivalent norm on pσ,vq as Q´1
s and ρ are positive

definite. We can easily imply from Theorem 1 that magnitude of the DG solution is non-increasing in time
and for ατ , αv ě 0 dissipation is present in the scheme.

5. Numerical experiments

In this section, we provide the stability and accuracy of the DG scheme in (26) in two and three dimensions
by presenting several numerical experiments. This section also includes the confirmation of convergence of the
scheme for an isotropic viscoelastic media with material properties being piecewise constant. In subsequent
examples, the time integration is performed using the low-storage 4th order five-stage Runge-Kutta scheme
[42], with the time step dt expressed as

dt “ min
k

CCFL

max pλiqCN }Jf }L8pBDkq }J´1}L8pDkq

(28)

where λi are wave speeds of the system [26], CN “ OpN2q with N being the order of scheme. CCFL is a global
CFL constant.The dt in (28) a very conservative estimate [37]. Moreover, due to presence of attenuation in
viscoelastic system, the wave speeds are less than those present in the elastic wave equation, which results
into slightly larger dt required for satisfying the CFL condition.

5.1. Spectra and choice of penalty parameter

The energy stability of proposed DG formulation is verified by computing the eigenvalues of matrix Ah

induced by the global semi-discrete DG formulation. The semi-discrete representation of DG formulation
(26) is expressed as

Bq

Bt
“ Ahq,

where q denotes a vector of global degrees of freedom. Eigenvalues of Ah for α “ 0 and α “ 1 in an isotropic
sandstone (Column 3 of Table 1) are shown in Figure 1. Results in Figure 1 are computed with discretization
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(a) α “ 0, central flux (b) α “ 1, penalty flux

Figure 1: Spectra for isotropic Sandstone (Column 3 of Table 1) with N “ 3 and h “ 1{2. Largest real part of spectra
λmax “ 1.83519e ´ 14 with ατ “ αv “ 0 and λmax “ 2.18232e ´ 14 with ατ “ αv “ 1.

Table 1: Material properties of anisotropic-viscoelastic media [7]

Properties Clay shale Phenolic Isotropic Sandstone

Elasticities
ρs pkg/m3q 2590 1364 2500
c11 (GPa) 66.6 11.7 25.6
c12 (GPa) 19.7 6.7 9.4
c13 (GPa) 39.4 7.0 9.4
c22 (GPa) 66.6 15.4 25.6
c23 (GPa) 39.4 7.0 9.4
c33 (GPa) 39.9 17.4 25.6
c44 (GPa) 10.9 3.8 16.2
c55 (GPa) 10.9 3.5 16.2
c66 (GPa) 23.4 3.1 16.2

Relaxation time (s)

τ
p1q
ε 8.00 ˆ 10´3 6.4 ˆ 10´3 3.72 ˆ 10´3

τ
p1q
σ 7.49 ˆ 10´3 6.00 ˆ 10´3 3.36 ˆ 10´3

τ
p2q
ε 8.00 ˆ 10´3 6.4 ˆ 10´3 3.78 ˆ 10´3

τ
p2q
σ 7.25 ˆ 10´3 5.80 ˆ 10´3 3.30 ˆ 10´3

τ
p3q
ε 8.00 ˆ 10´3 6.4 ˆ 10´3 3.78 ˆ 10´3

τ
p3q
σ 7.25 ˆ 10´3 5.60 ˆ 10´3 3.30 ˆ 10´3

τ
p4q
ε 8.00 ˆ 10´3 6.4 ˆ 10´3 3.78 ˆ 10´3

τ
p4q
σ 7.25 ˆ 10´3 5.30 ˆ 10´3 3.30 ˆ 10´3
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Figure 2: Convergence of L2 error for plane wave in a viscoelastic media

parameters of N “ 3 and mesh size of h “ 1{2. For both sets of penalty parameters, the largest value of real
part of any eigenvalues is Op10´14q, which proves energy stability of the semi-discrete scheme. It is to be
also noted that some eigenvalues for α “ 0 have purely negative real part, corresponding to the dissipation
present in viscoelastic system.

An efficient DG scheme based on penalty fluxes requires that the selection of penalty parameters α should
ensure that the magnitude of the spectral radius for α ą 0 is of the same order as the case when α “ 0
[37, 41]. For example, in isotropic Sandstone and for α “ 0, the spectral radius ρpAhq is 13.5653 which is
OpN2{hq. However, ρpAhq for ατ , αv “ 0.5 and ατ , αv “ 1 are 45.6388 rOpN2{hqs and 93.1184 rOpN2{hqs,
respectively. This also confirms that the choice of α for viscoelastic wave equation should be based on the
same guiding principles as for the cases of acoustic [37], elastic [33, 39] and poroelastic wave equation [41].

5.2. Convergence for a plane wave in viscoelastic medium

The analytical solution to (23) for a plane wave is given as

qpx, tq “ q0 expri ¨ pωt´ k ¨ xqs (29)
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(a) v1 for elastic and vosocelastic approximation (b) v3 for elastic and vosocelastic approximation

Figure 5: A comparison of the time history of particle velocities for both elastic and viscoelastic approximations. Subfigures
(a) and (b) represent the horizontal and vertical particle velocities, respectively. A difference between elastic and viscoelastic
approximation is clearly visible in both by phase and amplitude difference between the traces.

(a) Analytical vs numerical simulation for v1 (b) Analytical vs numerical simulation for v2

Figure 6: A comparison between numerical and analytical solution of viscoelastic wave equation in a homogeneous media.
Subfigures (a) and (b) represent the horizontal and vertical particle velocities, respectively. Numerical solution is computed in
2D and for polynomials of degree N “ 3.

5.3.3. Comparison of elastic and viscoelastic models

To show the effect of the attenuation on wave propagation, we compare numerical solutions of elastic and
viscoelastic wave equation in an isotropic sandstone with material properties given in Table 1 (Column 3).
Numerical solution are computed in a domain of dimension r´1 km, 1 kms ˆ r´1 km, 1 kms, and discretized
with uniform triangular elements with a minimum edge length of 20.833 m. Figure 5 shows a comparison
between the numerical solutions of particle velocities for elastic and viscoelastic equation with x´ and z´
components represented in Figure 5a and 5b, respectively. The central frequency of the forcing function is
f0 “ 20 Hz. Polynomials of degree N “ 3 are used for the simulation. The solution are stored at receiver
position p250 m, 250 mq with source located at p0 m, 0 mq. A difference between the amplitude of elastic and
viscoelastic solutions in Figure 5 is due to the attenuation brought in to the system due to the relaxation.
The relaxation also results into decreasing the velocity of waves (when compared against the pure elastic
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5.4. A large 3D heterogeneous subsurface model

We use a 3D reservoir model from Shukla et al. [41]. The model is characterized by rock layers, dis-
continuity, and a surface with undulated topography. The discretized model is shown in Figure 10a. The
dimension of the model is p22.8kmˆ 17.4 kmˆ 8.0 kmq in x, y and z directions, respectively. The domain is
discretized with tetrahedral elements with a minimum edge length of 125 m. The top surface of the model
is perturbed so that the effects of the topography, assumed as a free surface, could be incorporated into
numerical simulations. The central frequency of the forcing function is 20 Hz and polynomials of degree
N “ 3 are used for simulation. Figure 10(b) represent the z- component of the particle velocity at 3.5 s.
The various modes of transmissions, reflections and scattering can be clearly seen in Figure 10b.

6. Conclusions

This work presents a high order discontinuous Galerkin method for a new symmetric form of the linear
anisotropic viscoelastic wave equations. The method is energy stable and high order accurate for arbitrary
stiffness tensors. We confirm the high-order accuracy of the numerical method using an analytic plane
wave solution in a viscoelastic media. Finally, we provide computational results for various combinations of
homogeneous and heterogeneous medium.
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Appendix A. Inverse of compliance matrix C

The expressions for rij in (24) are

r11 “ ´
pc11c33 ´ c213q

pc11 ´ c12qpc11c33 ` c12c33 ´ 2c2
13

q
(A.1)

r12 “ ´
pc12c33 ´ c213q

pc11 ´ c12qpc11c33 ` c12c33 ´ 2c2
13

q
(A.2)

r13 “ ´
c13

pc11c33 ` c12c33 ´ 2c2
13

q
(A.3)

r33 “
pc11 ` c12q

pc11c33 ` c12c33 ´ 2c2
13

q
(A.4)

Appendix B. Analytic solution in a homogeneous viscoelastic media

The solution of the elastic wave equation in an 2-D isotropic medium for an impulsive point force is given
by Eason et al. [44]. For a force acting in the positive x3-direction, displacement solutions are expressed as
[3]

u1pr, tq “

ˆ
F0

2πρ

˙
xz

r2
rG1pr, tq `G3pr, tqs ,

u3pr, tq “

ˆ
F0

2πρ

˙
1

r2

“
z2G1pr, tq ´ x2G3pr, tq

‰
,

(B.1)

where F0 is a the magnitude of the force and r2 “ x2 ` z2, and G1pr, tq and G3pr, tq are Green’s function
expresses as

G1pr, tq “
1

c2p
pt2 ´ τ2p q´1{2Hpt´ τpq `

1

r2
pt2 ´ τ2p q1{2Hpt´ τpq ´

1

r2
pt2 ´ τ2s q1{2Hpt´ τsq,

G3pr, tq “ ´
1

c2s
pt2 ´ τ2s q´1{2Hpt´ τsq `

1

r2
pt2 ´ τ2p q1{2Hpt´ τpq ´

1

r2
pt2 ´ τ2s q1{2Hpt´ τsq,

(B.2)

where τp “
r

cp
, τs “

r

cs
with cp and cs being phase velocities of the compressional and shear waves.

Hptq is Heaviside function. To recover the anelastic solution the correspondence principle [3] is applied on
frequency domain representation of (B.2). We also use following identities of transform pairs of zero- and
first-order Hankel function of the second kind

ż 8

´8

1

τ2

`
t2 ´ τ2

˘1{2
Hpt´ τq exppiωtqdt “

iπ

2ωτ
H

p2q
1

pωτq,

ż 8

´8

1

τ2

`
t2 ´ τ2

˘´1{2
Hpt´ τq exppiωtqdt “ ´

iπ

2ωτ
H

p2q
0

pωτq.

(B.3)

Now, Fourier transform of (B.2) with respect to time yields

pG1pr, ω, cp, csq “ ´
iπ

2

„
1

pcppωqq2
H

p2q
0

ˆ
ωr

cp

˙
`

1

ωrcspωq
H

p2q
1

ˆ
ωr

cspωq

˙
´

1

ωrcppωq
H

p2q
1

ˆ
ωr

cppωq

˙
, (B.4)

pG3pr, ω, cp, csq “
iπ

2

„
1

pcspωqq2
H

p2q
0

ˆ
ωr

cspωq

˙
´

1

ωrcspωq
H

p2q
1

ˆ
ωr

cspωq

˙
`

1

ωrcppωq
H

p2q
1

ˆ
ωr

cppωq

˙
, (B.5)
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where cppωq “

c
pc11 ` c33qM1pωq ` c33M2pωq

ρ
, and cspωq “

c
c33M2pωq

ρ
where M1 and M2 are recovered

from (6), which for isotropic case are as follows,

MνPt1,2u “
τ

pνq
σ

τ
pνq
ε

ˆ
1 ` iωτνε
1 ` iωτνσ

˙
.

Now, taking the Fourier transform of (B.1) and using (B.4) and (B.5), we get

u1pr, ω, cp, csq “

ˆ
F0

2πρ

˙
xz

r2

”
pG1pr, ω, cp, csq ` pG3pr, ω, cp, csq

ı

u3pr, ω, cp, csq “

ˆ
F0

2πρ

˙
1

r2

”
z2 pG1pr, ω, cp, csq ´ x2 pG3pr, ω, cp, csq

ı (B.6)

To ensure that solution is real in time, we express (B.6) as

u1,3pωq “

#
u1,3pr, ω, cp, csq, ω ě 0,

u˚
1,3pr,´ω, cp, csq, ω ă 0,

(B.7)

where asterisk p˚q denotes the complex conjugate. Multiplying (B.7) with frequency domain representation
of a source time function and then taking the inverse Fourier transform will yield time-domain analytical
displacement solution of 2D viscoelastic wave equation (25). The pG1 and pG3 are considered as zeros due to
Hankel’s functions being singular.
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