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Abstract

We introduce a new symmetric treatment of anisotropic viscous terms in the viscoelastic wave equation. An
appropriate memory variable treatment of stress-strain convolution terms, result into a symmetric system
of first order linear hyperbolic partial differential equations, which we discretize using a high-order discon-
tinuous Galerkin finite element method. The accuracy of the resulting numerical scheme is verified using
convergence studies against analytical plane wave solutions and analytical solutions of the viscoelastic wave
equation. Computational experiments are shown for various combinations of homogeneous and heterogeneous
viscoelastic media in two and three dimensions.

1. Introduction

Numerical solution of elastic wave equation are essential for various imaging problems arising at different
scales. At global scale, elastic waves travels through the entire Earth and allow geophysicists to infer
properties and structure of the Earth interior. At a macro-scale, elastic waves can be used to image and
characterize oil and gas reservoirs. On a micro or laboratory scale, elastic waves play a major role in studying
the micro-structure of materials. To solve the elastic wave equation accurately, the input model should
be able to accommodate arbitrary variations of petrophysical and lithological properties, as they play an
important role, particularly in the targets of exploration geophysics, i.e., reservoir rocks. To study reservoir
monitoring and evaluation of rock properties in a laboratory setting, lithological and reservoir properties
become more important. Reservoir rocks such as cracked limestones can show effective anisotropy in the
low frequency band. On the other hand, fluid-filled cracked and porous rocks show considerable attenuation
properties, which is not incorporated in vanilla elastic approximation. Experimental work also shows that
anisotropy effects of attenuation are more pronounced than anisotropic elastic effects [1, 2]. Therefore, a
realistic rheology is required to model anisotropic attenuation characteristics.

Various dissipation mechanisms (e.g. Kelvin-Voigt, Maxwell, Zener or Simple Linear Solid) [3], expressed
by a time dependent relaxation function, can be modeled by a viscoelastic constitutive relation. Attenuation
of energy is caused by a large variety of dissipation mechanisms and incorporating all these mechanism
into a general microstructure is very difficult [4]. For example, modeling of dissipation in isotopic media is
very simple and will require only two relaxation functions, one for each decoupled wave modes (dilatational
and shear modes). Therefore, only two relaxation functions are enough to describe anelastic characteristics
of body waves. However, in anisotropic media one has to consider 21 frequency (time) dependent stiffness
parameters to address dissipation mechanism accurately. Subsequently, Mehrabadi and Cowin [5] and Helbig
[6] presented that only six of the 21 stiffness parameters have an intrinsic physical meaning. Motivated
by the studies of of Mehrabadi and Cowin [5] and Helbig [6], Carcione formulated a constitutive model
and wave equations for linear viscoelastic anisotropic media [7]. In a three-dimensional anisotropic media,
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careful attention is required while modeling the properties of the shear modes, as relaxations of the medium
can be different for slow and fast shear modes. Therefore, Carcione [3] used single relaxation function to
model the anelastic properties of the quasi-dilatational mode, whereas he uses three relaxation functions
to control the dissipation of the medium due to shear waves. In this paper, we use the constitutive model
proposed by Caricone [8], paired it with equations of motion described by Newton’s second law of motion and
thereafter symmetrized the system by performing change of variables operation on memory variables induced
by dissipation process. This entire exercise results into a system of first order hyperbolic partial differential
equations (PDEs) with stress, velocity and memory variables (only time dependent) as field variables.

The elastic wave equation is a system of first order hyperbolic partial differential equations, which can
be solved using any suitable numerical method such as finite-differences, finite volumes and finite element
methods. A detailed overview of these methods is given by [9, 10]. The most popular and simple method
is the finite-difference (FD) method, and its application to the elastic wave equation has been studied by
many researchers [11, 12, 13, 14, 15]. A detailed numerical analysis of finite-difference methods is given in
[16]. Although the numerical representation of FD method is very simple, but often comes with significant
numerical dispersion, especially in the modeling of surface waves [12]. Additionally, the implementation of
boundary conditions can require special treatment [17]. FD methods are also difficult to apply to irregular
geometries with out experiencing “staircase effects” [17]. To circumvent the effect of numerical dispersion
and achieve high order accuracy, pseudo-spectral methods were first used by Tessmer and Kosloff [18].
The pseudo-spectral method uses global basis function for approximation of the solutions (e.g., Fourier or
Chebyshev). The pseudo-spectral method requires few grid points per wavelength and produces a high order
solution with less numerical dispersion. However, the choice of the global basis functions restricts the pseudo-
spectral methods to smooth models, as it is difficult to represent materials with the discontinuities or sharp
contrast. This can be addressed somewhat using domain decomposition, where different meshes are used
to represent the different domains. For example, Carcione [19] used Fourier basis functions along directions
with smoothly varying materials properties and Chebyshev basis functions in directions with sharply varying
medium properties.

The finite element method (FEM) discretizes the domain using elements e.g., triangles and quadrilaterals
in 2D and tetrahedral and hexahedrals in 3D and solves the spatial derivatives of PDEs. The wave propaga-
tion in time-domain is expressed by a hyperbolic system of partial differential equations and rarely results
into a stiff system. Therefore, an explicit time integration scheme e.g. Runge-Kutta or Euler schemes, could
be efficiently applied as the requirement of CFL condition for time stability are easily satisfied. However,
pairing of finite-element methods (used for spatial discretization) with an explicit time-integration scheme
requires inversion of a global mass matrix, which causes a computational bottleneck especially for the large
computational domain. However, various methods are proposed to avoid the inversion of global mass ma-
trix. In particular, the approach of diagonal mass lumping [20], which transforms the global mass matrix
into a diagonal matrix by summing all line coefficients of matrix onto the diagonal elements [21]. Finite
element method for elastic wave equation are studied by Marfurt [12] and Bao et al. [22]. In these works,
FEM was shown to accurately represent sharp material properties and irregular geometries. However, the
solution on each element is approximated using a low order polynomials, which results in significant numer-
ical dispersion. In order to recover a more accurate solution high order elements are required which results
into large matrices to be inverted at each time step of time integration. To exploit the spectral properties
in the finite element method, Patera [23] proposed the spectral element method (SEM) to solve fluid flow
problems. Subsequently, the SEM was successfully implemented by Seriani et al. [24] to solve the acoustic
wave equation in a heterogeneous medium. Komatitsch and Vilotte [25] used SEM to solve the elastic wave
equation in a heterogeneous medium, described by a system of the second order PDEs. A detailed review of
methods adopted in wave field modeling is presented by Carcione et al. [26].

In this paper, a high-order numerical scheme based on the nodal discontinuous Galerkin method is
introduced to solve the symmetrized 3D viscoelastic wave equation. The descretization of the domain is
performed by using unstructured tetrahedron (hexahedra) and and triangular (quadrilateral) meshes in 3D
and 2D, respectively. The implementation of high order methods provide (1) high accuracy in numerical
solution, and (2) flexibility in accommodating unstructured meshes, which are required for discretization of



complex geometries. The efficacy of discontinuous Galerkin (DG) method in solving linear and non-linear
time-dependent hyperbolic problems is shown by Hesthaven et al. [27]. Additionally, A natural adoption of
DG method on a heterogeneous computing environment (CPU + GPUs) makes them more advantageous in
terms of computational cost while solving time dependent hyperbolic problems [28]. In comparison to low
order methods the DG method offers low numerical dissipation and dispersion [29] resulting into solutions
with high accuracy. The effect of dispersion and dissipation in numerical solutions becomes more troublesome
when long time integration is required, e.g. simulation of elastic wave over the Earth or Tsunami simulation.
However, Wilcox et al. [30] has shown that DG method made it possible to solve the elastic wave equation
over a long time domain with a very high order accuracy. The weak formulation for second order elastic
wave equation proposed by Komatitsch [25] uses discretely orthogonal nodal basis functions along with
under-integrated L? inner product. This approach produces diagonal mass matrices for quadrilateral and
hexahedral elements. However, in the high order DG methods, locally invertible block diagonal mass matrices
are induced and the inverse of these block diagonal matrices could be computed computed concurrently. The
size of these block diagonal matrices are N,, x N, with N, being degree of freedoms over an element. Many
researchers have successfully implemented high order DG methods with simplicial meshes for solution of
elastic and acoustic waves exist in literature [31, 32, 33].

In DG methods, first the solution is approximated locally over the elements. Thereafter, a global ap-
proximation of solution is recovered by imposing (weakly) the continuity of local solutions at opposite faces
(edges in 2D) of the elements through a numerical flux. In particular, the upwind flux (solution of a Riemann
problems) is more frequently employed [34] to recover the global solution. Késer et al. [31] solved the 3D
isotropic viscoelastic wave equation in a strain-velocity formulation using a local space-time DG method
with an upwind flux by solving the exact Riemann problem on inter-element boundaries. In another study,
Lambrecht et al. [35] used a nodal DG method to solve the isotropic viscoelasltic wave equation using the
same formulation proposed by Késer et al. [31]. The choice of numerical flux also results into providing the
stability to numerical scheme and controlling the numerical dissipation. Therefore, choosing the solution of
the Riemann problem as a numerical flux becomes obvious as these are less dissipative than any standard nu-
merical flux. However, the first step for solving the Riemann problem is diagonalization of Jacobian matrices
into polarized wave modes [36], resulting into a computationally intensive process especially for the systems
with unstructured Jacobian matrices. Additionally, solution of Riemann problem for isotropic system does
not extend naturally to anisotropic materials and therefore requires the re-computation of Riemann solvers.
The various studies have been carried out on avoiding the diagonalization of Jacobian matrices using penalty
fluxes based on natural boundary conditions [33, 37, 38, 39]. The penalty fluxes are easy to implement and
provide accuracy and dissipation similar to fluxes based on solution of Riemann problems. In this study, we
implemented similar energy-stable penalty flux for the anisotropic viscoelastic wave equations.

The main new contributions of this paper are a new symmetric form of the anisotropic viscoelastic wave
equation and its discretization using a high order DG method using penalty fluxes. The outline of the paper
is as follows: Section 2 will briefly review the system of equations describing the viscoelastic wave equation.
Section 4 presents an energy stable formulation for the symmetric hyperbolic form of the viscoelastic wave
equations. Finally, numerical results in Section 5 demonstrate the accuracy of this method for several 2D
and 3D problems arising in linear anisotropic viscoelasticity.

2. Constitutive Relations

In this section, subsections (2.1)-(2.4) briefly review the formulations of non-symmteric form of the system
of viscoelastic wave equation obtained by Carcione [8, 7].

2.1. Convolution and Boltzmann relation

The Riemann convolution between time dependent functions f with g is defined as
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where t is the time variable.
The Boltzman operation [40] defines the time derivative of the convolution between Heaviside type
function, f and g as

frog=F0g=Ffg+ (fH)+g, (2)
where f = f(t = 0T) and H(t) is the step function.

2.2. Stress-strain relations

The general constitutive relation for an anisotropic and linear viscoelastic medium can be expressed as

8]
o=Usxe (3)
where o = [0'11,0'2270'22,0'23,0'1370'12]T, € = [611,622,€33,€23,€13,€12]T are stress and strain vectors with

vij = 2€;, sub-indices 1 to 3 correspond to the three Cartesian coordinates x, y and z, and ¥ is the
symmetric relaxation matrix, expressed as [7]

P11 Y12 Y13 cuia 15 16
o2 P23 Cou C25 Co6
T Y33 C34 35 36 H(t)
CiaaX2  Ca5 C46 ’
C55X3 C56
Ce6 X4
with
4
wi(I):CI(I)_D“‘KXl"'gGXé for I =1,2,3
2
'LZ}IJ:C]J*D+2G+KX1*§GX§ for I,J =1,2,3;1 # J.
The ¢y for I,J = 1,....,6 are the high-frequency limit (unrelaxed) elasticities i.e. ¢ — 0;w — o0, and
4
K=D- -G,
3
where . )
D = g(Cu + Co2 + 033), G = 5(644 + c55 + 666)-

The x, are dimensionless relaxation function with index v = 1 representing the quasi-dilatational mode
and indices v = 2,3, 4 corresponds to shear waves. xs is a shear relaxation function for § = 2,3, or 4. H(t)
is the Heaviside function.

In this study, the following relaxation functions are used [3]

L, _(v) L, (v)
T 1 T v
Yu(t) =L, (2 6&) [1 - D (1 - E(ly)> exp (—t/ﬁﬂ)} . v=1,..4, (4)
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where Te(l”) and T('l') ) > Téll/)

. are material relaxation times such that 7., >
dissipation mechanism.
Equation (4) describes the relaxation function of generalized standard linear solid (also known as Zener

model) consisting of L, elements ! connected in parallel. The complex modulus of the system is [3]

dlx. () H (t)])
dt ’

. The pair Te(l”) and T(ll') define a

g

M,(w) = F ( (5)

where w is the angular frequency and F(-) represents the time Fourier transform of the variable.
M, (w) is expressed as

) ©)

From (6) it can be easily seen that M, (0) =1 as Te(ly 5~ 1, which gives the low frequency limit. Thus, (6)
T

al
is a general relaxation function which can recover all possible type of frequency behavior of attenuation and
velocity dispersion observed in subsurface materials.

2.8. Strain memory variables

The stress—strain relation in time domain is expressed as
or =1y * ey (7)

Application of the Boltzmann operation (2) to (7) yields

o1 =dryes + <¢1JH) xey (8)
Now we use
; : 1 (o ) )
Pui(t) = xu(t) = N0 Z @) 1- RO exp (—t/ng )
ol =1 "4l ol

and write (8) in matrix form, which is expressed as
L,
or = Afes + BfY Y5, (9)
=1

where A’s and B’s are the matrices formed by the combination of elastic constants ¢y and
eF,lz) = ¢,(t) x ey, J=1,.,6, l=1,.,L,, v=1,..,4,

where ¢,; = (Zl,l(t)H(t) are the components of 6 x 1 strain memory array el(V).
In 3D, the symmetric strain memory tensor corresponding to the [** dissipation mechanism of the relax-

ation function y, is expressed as [7]

) egulg 6%2 e%g €11 Y12 M3
e = €9 € | = Pui* €22 723 (10)
€331 €33
= dui(t) xey. (11)

1A mechanical system in which a spring and a parallel combination of a dashpot and a spring are connected in series.



The tensor egu) contains the past history of material due the dissipation mechanism defined in (4). In the

pure elastic case Te(ly) - T, ,Sj), ¢, — 0 and el(") vanishes.

Similar to the strain tensor, the memory strain variable can be decomposed as
v 1% 1 1% v
eg ) = dl( )+ <3tr(el( ))) I, tr (dl( )) =0, (12)

where dl(l') is the deviatoric strain memory tensor which is traceless and I is 3 x 3 identity matrix.

Thus, the dilatation and shear memory variables are defined as
ey = tr (el(l)> , and eiji = (dl(u)) o (13)
ij
where v = ¢ for i = j, v = 2 for ij = 23, v = 3 for ij = 13 and v = 4 for ij = 12.

The stress-strain relations in terms of strain components and memory variables with one dissipation
mechanism for each mode are [7]

011 = C11€11 + C12€22 + €13€33 + C14Y23 + c15713 + c16713 + Keqr + 2G€§61)1 (14a)
Tag = Crz€11 + Cazenn + Cazens + Coaas + Cosviz + cosma + Kein + 2Gely) (14b)
033 = C13€11 + C23€22 + C33€33 + C347Y23 + C35713 + C36Y12 + Keir — 2G (eﬁ)l + eé(;)l) (14c)
023 = C14€11 + Co4€22 + C34€33 + C447Y23 + 0446%)1 + €45713 + C46713 (144d)
013 = C15€11 + C25€22 + C35€33 + C45723 + C55723 + 0556535,)1 + C56712 (14e)
12 = Crgen + Cagean + Cageas + CagV23 + Cs6V13 + CosMa + o653y (14f)

(14g)

where ¢y = 1r;(t = 0) are unrelaxed elasticity constant at w — o0.

2.4. Memory variable equation

Application of the Boltzman equation to the deviatoric part of (11) yields
0:d"” = $,1(0)d + (0,4, H) = d. (15)
Here, d denotes the deviatoric strain tensor with elements
1
d=¢€— §VI , (16)

where the strain tensor € and V are

€11 €12 €13
€= | €12 €22 €23 |, V = €11 + €22 + €33.
€13 €23 €33

Using 0tg\5yl = —% and substituting it in (15), we recover
Tol

1

=

o,d") = ¢,,(0)d — —d", (17)



where dl(y) = ¢y(t) *d, with v = 2, 3, and 4. Similarly applying the Boltzmann operation to the non-
deviatoric part tr(el(l)), we get

tr(el)) = ¢u(0)tr(e) — %tr(el(l)) (18)

Using (17) and (18), The equations for the memory variables are expressed as

(%)

e
6te§‘?1 = ¢51(0)(€11 — €) — % (19a)
To
(%) et
Jreann = ¢51(0)(e22 — €) — =5 (19b)
To
e
Ore231 = ¢21(0)y23 — % (19¢)
To
e
dre1z1 = ¢31(0) 713 — % (19d)
e
dre121 = ¢a1(0)y12 — % (19e)
To
dre11 = oy (0)e — eqy /78 (191)

where € = tr(S)/3 and n is taken as 2 for 2D and 3 for 3D.

2.5. Equation of motion

The conservation of momentum is expressed as

00'11 &012 50’13 . 61)1
ors | 0my | dms POt (202)
0012 0022 0093 0vy

= p—- 20b
ors | 0my | dms Pt (20b)
60'13 &023 60'33 (71)3

— 52 2
ors | 0wy | dms Pt (20c)

3. Symmetrization of the anisotropic viscoelastic system

In this section, we show how to symmetrize the anisotropic viscoelastic wave equations introduced in
subsections (2.1)-(2.4). In particular, anisotropic viscoelastic terms can be expressed using a symmetric and
negative-definite matrix, which will enable us to construct a high order DG method which is provably energy
dissipative for general frequency-dependent dissipative material properties.

Let us consider the 3D-particle-velocity and stress equations for propagation in an anisotropic medium.
We assign one relaxation mechanism to both dilatational anelastic deformation (v = 1) and shear anelastic
deformations (v = 2). The stress-strain relation is expressed as



oo ov ov v
atll 26116 ! Jrclga 2 +613T£+K61+2G627
oo ov ov v
6t22 26126 ! JrCHa 2 +61367:CZ+K61+2G63,
oo ov ov v
ng = 6136731‘1 + 613672 + CSBTZ + Key — 2G(62 + 63)
60'23 81}2 61)3 1 (21)
— =Cu||l -t te
ot |\ 0z3 Oy 1’
(90'13 - [ 67)1 (91)3 1
o (axg+ax) e
0oz _ (G 0v2 ]
ot 0|\ oz, " omy o
Memory variables are expressed as
R O S N S RN A N
ot~ 7 [\ 70 oy dmy  dxz) |
der _ 1 |\ [y v o\
ot 370 [\ @ vy Oxy O al
dey _ 1 |\ [y v dws\
at 3.0 |\ dry 01 Oy B
. (22)
dea _ 1|\ (ove dws
ot T(g?) 76(2) Oxrs  0xo o
des _ 1 [(n N (oo dws) ]
o = |\@ 1 aw F ) )
dog 1 [(m? (v dw) |
ot 754) 76(4) Oxry 01y o
Combining (20)-(22) in matrix form yields
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where
q= [ 011, 022, 033, 023, 013, 012, €1, €2, €3, €4, €5, €, V1, VU2, U3 ]7
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To prove stability of the scheme, we express (23) in a form where spatially dependent material coefficient
appear on left side of (25). This will enable us to rewrite (22) without terms involving the spatial derivatives.
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with 7;; being the elements of the inverse of unrelaxed compliance matrix

611(113) 012(58) 613($) 0 0 0
ClQEwg CQQE:B% 6135212; 8 8 8
Co@) = | 0 "0 cu(z) 0 0 :
0 0 0 0 Cs5 (:II) 0
0 0 0 0 0 066(m)

and inverse C), is given in Appendix A.
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We rewrite the system of equations (22) with out spatial derivative using the set of equations in (21), which
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The matrices A; and S are
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— w1 —Wwgy W3 O O O T
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wr wsg Wy 0 0 0
1
0 0 0 <T2 — (2)) 0 0
go2 = To
1
0 0 0 0 <T3 §3)> 0
0 0 0 0 0 T, 1
L W)

where

1 1 1

g1 = <7‘11 - 3d1) , g2 = <7"12 - 3d1) s gs = (7"13 - 3d2> )
1 1 1

g4 = (r12 - 3d1) ) 95 = (7“11 - 3d1> ) g6 = (7“13 - 3d2> )

g7 = Tog1 + T394, gs = Tag2 + T39s, 99 = T>g3 + T3gs,
ty = —(wiTvdy + waTogr + 2wsT3g4), to = —(w1Tidy + waTage + 2wsgs),

t3 = —(wiTidy + waTrgs + 2wsgs), ty = wiTrdy + wsTagr + 2weT394,

ts = wyTidy + wsThgs + 2wegs, te = wyT1ds + wsThgs + 2wegs,

t7 = wiTvdy + wsTagr + 2weT39a, tg = wrT1dy + wsTrge + 2wygs,

to = w7 Tids + wsTsgs + 2wegs.

Here elements of G and g;; are space dependent.

In (22), matrices A; are spatially constant, where as @' and p can vary spatially. We will also assume
that p , Q5! and Q! are positive-definite and bounded pointwise such that

0< Pmin < 0(33) < Pmax < DO

0 < Cmin < uTQs(m)u < Cmax < O
0 < émin < QN (T)U < ax < 0

S

for all € R? and V u € RVe.
Moreover, we assume that S is a semi negative-definite and bounded pointwise such that

—00 < Spmin < 8188 < Sman < 0 VzeRand V u e RN,

4. An energy stable discontinuous Galerkin formulation for the viscoelastic wave equation

In this section, we formulate the energy stable discontinuous Galerkin methods for viscoelastic wave equa-
tion (25). We will first introduce the definitions and notations that will be used in subsequent subsections.

4.1. Notations and definitions for DG

We consider that domain 2 is exactly discretized by a mesh and represented by Q) = Ule DF¥. The Q,

is consist of non-overlapping elements D¥, which are images of a reference element D under a local affine
mapping defined as
k= oFz, zF e DF, zeD.
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Here ¥ = {z* 4} for d = 2 and x* = {2*,y*, 2¥} for d = 3 denote the physical coordinates on element
D¥ and & = {#,9} for d = 2 and Z = {%,7, 2} for d = 3 denote coordinates on the reference element, which
is a bi-unit right angle. Over each element D¥, local approximation space V;,(D¥) is defined as

~ —1 ~ _ ~ ~
Vi (DF) = Vi(D) o (@%) " = (D) 0 (®%) 71, %), € Vi(D)}.
The Vj, (D) is local polynomial approximation space defined in 3D by
Vi(D) = PN(D) = {#572* 0 <i+j+ k < N},

with PN (ﬁ) being the space of polynomials of total degree N on the reference simplex.
The L? inner product between two real vector-valued functions g and h over D* and dD* is expressed

as
(g,h)=J g-hdx,  (g,h)2pr =J g hdz
Dk oDk
The jump and average of a scalar function u € Vi, (§2p) across faces of the elements are defined as
_ ut +u~
[l = —u, gl =
where superscripts “4” and “-” represent neighboring and local traces of solutions over each faces of the

element. Jumps and averages of vector-valued functions u € R™ and and matrix-valued functions S € R™*"
are defined component-wise.

([l =l 1<i<m  ([81) =[3]

4.2. DG formulation

The DG formulation of (25) in strong form with penalty based numerical fluxes is expressed as [38]

) d
Y (@'F.h ) ) A4 A+ 22 A, AT 0], B
, ot 2(Dk . ox; 2 2 2 (A
DkeQy, L2(D*)  pkeq, i=1 L2(DF) L2(oDF)

+ (So'ag)[ﬂ(pk))

ov d oo 1 g
2 (pﬁt’g> = 2 ((2 AiT%+f7g) +<2A£[[0']]+2A£An[[v]],g> ),
DkeQy, L2(Dk) DkeQy, i=1 v L2(Dk) L2(0Dk)

(26)
for all h, g € V(). Here, A, is the normal matrix defined on a face of an element and expressed as

ngy 0 0
0 n, O
0 0 n,
0 n, mny
p n, 0 ng
A=Y ma, = | Sy D O
n 2=1 1 1 O 0 O
0 0 O
0 0 O
0 0 O
0 0 O
| 0 0 0 |
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The factors a,, a,(> 0) are penalty parameters, which are piecewise constant. These parameters are defined
on the faces of the element. A non-dissipative central flux is recovered by choosing a,, «, = 0 whereas
choosing ., «, > 0 results into energy dissipation similar to the upwind flux [27, 39, 41]. In this work, we
take o, = oy, = 1/2 unless stated otherwise. A detail study on choice of penalty parameter and it’s effect
on time step is presented by Chan [37]. The semi-discrete matrix representation for DG formulation in (26)
could be easily followed from [39, 41].

4.3. Energy stability

In the absence of external forces (f = 0) and for free-surface and absorbing boundary conditions, the
DG formulation in (26) can be proven to be energy stable by following the works of [41, 39]. The proof is
straightforward using the techniques from [41, 39], and we do not include it for brevity. Thus the stability
condition for DG formulation in (26) is stated as follows.

Theorem 1. The DG formulation in (26) is energy stable for agy,a, = 0 such that

10, i 2y
D 575 (R0, 0) 2 + (pv,0) 12 (p0) = = )] L (% 14211 + 5 1 Aulol*) do
DkeQy, feTR\oQ
— Qo ’AZO'_|2 dx — J Go ‘AZO'_IZ + |An'v_|2 de
erFan( ) f;wc f< 2 2 )
+ Z J v Sv dx <O0. (27)
DkGQh Dk

The term on the left hand side of (27) is an L?-equivalent norm on (o,v) as Q;! and p are positive
definite. We can easily imply from Theorem 1 that magnitude of the DG solution is non-increasing in time
and for a.-, o, > 0 dissipation is present in the scheme.

5. Numerical experiments

In this section, we provide the stability and accuracy of the DG scheme in (26) in two and three dimensions
by presenting several numerical experiments. This section also includes the confirmation of convergence of the
scheme for an isotropic viscoelastic media with material properties being piecewise constant. In subsequent
examples, the time integration is performed using the low-storage 4" order five-stage Runge-Kutta scheme
[42], with the time step dt expressed as

dt = min fCCFL —
ko max (A)ON |7 o apry 197 | poo oy

(28)

where )\; are wave speeds of the system [26], Cy = O(N?) with N being the order of scheme. Ccry, is a global
CFL constant.The dt in (28) a very conservative estimate [37]. Moreover, due to presence of attenuation in
viscoelastic system, the wave speeds are less than those present in the elastic wave equation, which results
into slightly larger dt required for satisfying the CFL condition.

5.1. Spectra and choice of penalty parameter

The energy stability of proposed DG formulation is verified by computing the eigenvalues of matrix Ay,
induced by the global semi-discrete DG formulation. The semi-discrete representation of DG formulation
(26) is expressed as

oq

M9 _ A
ot rnq,

where q denotes a vector of global degrees of freedom. Eigenvalues of A}, for a = 0 and o = 1 in an isotropic
sandstone (Column 3 of Table 1) are shown in Figure 1. Results in Figure 1 are computed with discretization
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Figure 1: Spectra for isotropic Sandstone (Column 3 of Table 1) with N = 3 and h = 1/2. Largest real part of spectra
Amax = 1.83519e — 14 with ar = o, = 0 and Amax = 2.18232e — 14 with ar = o, = 1.

Table 1: Material properties of anisotropic-viscoelastic media [7]

Properties Clay shale Phenolic Isotropic Sandstone
Elasticities

ps (kg/m?) 2590 1364 2500

c11 (GPa) 66.6 11.7 25.6

c12 (GPa) 19.7 6.7 9.4

c13 (GPa) 39.4 7.0 9.4

Co9 (GPa) 66.6 15.4 25.6

C23 (GP&) 39.4 7.0 9.4

¢33 (GPa) 39.9 17.4 25.6

cas (GPa) 10.9 3.8 16.2

cs5 (GPa) 10.9 3.5 16.2

ces (GPa) 23.4 3.1 16.2

Relaxation time (s)

D 8.00 x 1073 6.4 x 103 3.72 x 103
A 749 x 1073 6.00 x 1073 3.36 x 103
2 8.00x 1073 6.4 x 1073 3.78 x 1073
2 7.25x 1073 5.80 x 103 3.30 x 10~3
& 8.00 x 1073 6.4 x 1073 3.78 x 1073
i 7.25x 1073 5.60 x 1073 3.30 x 10~3
P 8.00 x 1073 6.4 x 1073 3.78 x 1073
) 7.25x 1073 5.30 x 1073 3.30 x 103
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Figure 2: Convergence of L? error for plane wave in a viscoelastic media

parameters of N = 3 and mesh size of h = 1/2. For both sets of penalty parameters, the largest value of real
part of any eigenvalues is O(10~!*%), which proves energy stability of the semi-discrete scheme. It is to be
also noted that some eigenvalues for v = 0 have purely negative real part, corresponding to the dissipation
present in viscoelastic system.

An efficient DG scheme based on penalty fluxes requires that the selection of penalty parameters a should
ensure that the magnitude of the spectral radius for o > 0 is of the same order as the case when o« = 0
[37, 41]. For example, in isotropic Sandstone and for o = 0, the spectral radius p(Ay) is 13.5653 which is
O(N?/h). However, p(Ay) for ar,a, = 0.5 and o, a, = 1 are 45.6388 [O(N?/h)] and 93.1184 [O(N?/h)],
respectively. This also confirms that the choice of « for viscoelastic wave equation should be based on the
same guiding principles as for the cases of acoustic [37], elastic [33, 39] and poroelastic wave equation [41].

5.2. Convergence for a plane wave in viscoelastic medium
The analytical solution to (23) for a plane wave is given as

q(z,t) = ¢ exp[i- (wt — k- x)] (29)
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Figure 3: Snapshots of particle velocities in orthotropic shale (column 1 of Table 1), computed at ¢t = 0.22 s, where (a) and (b)
corresponds to v1 and vz components. The central frequency of the forcing function is 20 Hz corresponding to the relaxation
peak of materials. The point source is located in the center of the domain. The solution is computed using polynomials of
degree N = 3 and K = 32,768.

where gV is the initial amplitude of stress and velocity components; w are wave frequencies; k is the wavevector
defining the direction of wave propagation.

To incorporate all the wave modes present in viscoelastic system, we superimpose two plane waves (P and
S waves) of the form expressed by (29). The computation of wave frequencies w is performed by following
the approach presented by Toro [43].

To study the accuracy and convergence of proposed numerical scheme (26), we computed relative L2
errors between actual and numerical solution of all components of g corresponding to a plane wave in an
isotropic sandstone (Table 1 and Column 3). The L? error is expressed as

m 2 1/2
”q - Qh”L2(Q) B (Zi:l ”‘Ji —dqi,h |L2(Q))
ql12 - m 1/2
lallz2 ) (Zi=1 Hq@'“i?(a))

We show L? errors in Figure 2 which is computed for monochromatic plane waves at 7' = 1. To compute
the error, we discretized the domain using uniform triangular meshes. Figure 2a shows error plots for
a =0 (CFL = 1) (the central flux). The convergence rates of O(h™) or O(hN*1) are observed for odd-even
N, respectively. The convergence plots for « = 0.5 (CFL = 0.5), and 1 (CFL = 0.8) with N = 1,...,5
are shown in Figure 2a and 2b. Figure 2a and 2b depict convergence rate of O(hN*1) and confirms with
theoretical convergence rate [27].

5.3. Application examples

In this section, we present physics of the waves propagation in linear and isotropic viscoelastic materials
computed from presented DG scheme in (26). Results presented in this section accurately resolves the
two types of elastic waves, P or longitudinal waves and shear or S waves, exhibiting anisotropic dissipative
phenomena as they propagate in the medium.
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Figure 4: Snapshots of particle velocities in Phenolic material (column 2 of Table 1), computed at ¢ = 53.2 us, where (a) and
(b) corresponds to v1 and v2 components. The central frequency of the forcing function (fo) is 250 kHz which also corresponds
to relaxation peak of the material. The point source is located in the center of the domain. The solution is computed using
polynomials of degree N = 3 and K = 131,072.

In following examples, forcing functions are applied to both the horizontal and vertical components of
stress i.e. (011,033). The forcing function are expressed as

fl@,t) = (1= 2(mfo(t — t0))?) exp[—(m fo(t — t0))*]8(x — o), (30)

where xq is the location of the point source and fj is the central frequency and § is Dirac-delta function.

5.8.1. 2D Orthotropic shale

To illustrate the effect of anisotropic dissipation in a viscoelastic medium, we perform a computational
experiment in orthotropic shale with material properties given in Table 1 (Column 1). The size of the
computational domain is 2 km x 2 km. The domain is discretized with uniform triangular elements with a
minimum edge length of 15.625 m. Figures 3(a)-(b) show the x— and z— components of the particle velocity
of the orthotropic shale, respectively. The central frequency of the forcing function is fy = 20 Hz, which
is also the frequency for relaxation peak of the material. Polynomials of degree N = 3 are used for the
simulation, and the propagation time is 0.22 s. Both wave modes can be observed: the P mode and the
shear mode (S, inner wavefront). A shear wave cusp is clearly observed in Figure 3a and 3b.

5.8.2. 2D Phenolic material

To further validate our numerical scheme, we perform a computational experiment in Phenolic material
which has a high relaxation frequency of 250 kHz with material properties given in Table 1 (Column 2).
The size of the computational domain is 40 cm x 40 cm. The domain is discretized with uniform triangular
elements with a minimum edge length of 0.1562 cm. Figures 4(a)-(b) represent the x— and z— components
of the particle velocity of the Phenolic material, respectively. The central frequency of the forcing function is
fo =250 kHz (the frequency for relaxation peak). Polynomials of degree N = 3 are used for the simulation.
The propagation time is 53.2 ps. Both modes of waves can be observed.
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Figure 5: A comparison of the time history of particle velocities for both elastic and viscoelastic approximations. Subfigures
(a) and (b) represent the horizontal and vertical particle velocities, respectively. A difference between elastic and viscoelastic
approximation is clearly visible in both by phase and amplitude difference between the traces.
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Figure 6: A comparison between numerical and analytical solution of viscoelastic wave equation in a homogeneous media.
Subfigures (a) and (b) represent the horizontal and vertical particle velocities, respectively. Numerical solution is computed in
2D and for polynomials of degree N = 3.

5.3.83. Comparison of elastic and viscoelastic models

To show the effect of the attenuation on wave propagation, we compare numerical solutions of elastic and
viscoelastic wave equation in an isotropic sandstone with material properties given in Table 1 (Column 3).
Numerical solution are computed in a domain of dimension [—1 km, 1 km] x [—1 km, 1 km], and discretized
with uniform triangular elements with a minimum edge length of 20.833 m. Figure 5 shows a comparison
between the numerical solutions of particle velocities for elastic and viscoelastic equation with x— and z—
components represented in Figure 5a and 5b, respectively. The central frequency of the forcing function is
fo = 20 Hz. Polynomials of degree N = 3 are used for the simulation. The solution are stored at receiver
position (250 m, 250 m) with source located at (0 m,0 m). A difference between the amplitude of elastic and
viscoelastic solutions in Figure 5 is due to the attenuation brought in to the system due to the relaxation.
The relaxation also results into decreasing the velocity of waves (when compared against the pure elastic
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Figure 7: Snapshots of particle velocities in the layered model with (a) and (b) showing vi and v2 components at ¢t = 0.4 s. The
central frequency of the forcing function is 20 Hz. The point source is located at (1.5 km, 1.8 km).The solution is computed
using polynomials of degree N = 3 and K = 32, 768.

or loss-less case), which is clearly reflected by the difference in phases between the elastic and viscoelastic
solutions, shown in Figure 5.

5.8.4. Comparisons of analytical and numerical solutions

Now, we compare the analytical and numerical solution, computed from our DG method, of 2D vis-
coelastic wave equation. (25). The analytical solution of isotropic viscoelastic wave equation is computed by
Carcione [3] using correspondence principle [4]. The derivation of analytical solution in a homogeneous and
isotropic medium is given in Appendix B. The following forcing function is used to compute the analytical
solution

Aw?(t —tg)?

f@,t) = exp [— :

] cos|@(t — tp)]d(x — xo), (31)
where @ = 27 fy is central angular frequency with Aw = )

To compute the analytical solution one required the frequency spectrum of (31), which is expressed as

Flw) = g (exp [— (“’ Atf’)] + exp [— (‘” A_WQ)D exp(—iwto). (32)

Equation (32) also satisfies the condition F(w + Aw) = F(@)/e, which is the requirement to compute the
analytical solution. Figures 6 shows a comparison between time histories of numerical and analytical solutions
of viscoelastic wave equation with z— and z— components being represented in Figure 6a and 6b, respectively.
Numerical solution are computed in a domain of dimension [—0.5 km, 0.5 km] x [—0.5 km, 0.5 km], which is
discretized with uniform triangular elements with a minimum edge length of 4 m. The material properties of
isotropic sandstone (Table 1, Column 3) is used to compute the solutions. The central frequency fq of forcing
function is 45 Hz, which is located at (0 m,0 m). The forcing function is added to the force corresponding
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Figure 8: Snapshots of particle velocities in a 3D homogeneous Orthotropic shale with material properties shown in columns
1 of Table 1. Sub figures (a), (b), and (c) are showing v1, v2 and v3 components at ¢t = 0.48 s. The central frequency of the
forcing function is 20 Hz. The point source is located at the center of the domain. The solution is computed using polynomials
of degree N = 3 and h = 32.5 m.

to 092. Polynomials of degree N = 3 are used for the simulation. The solution is stored at the node with
coordinate (250 m, 250 m). Figure 6a and 6b show a very good agreement between and analytical and
numerical solutions and thus validating the accuracy of the proposed numerical method.

5.8.5. 2D Isotropic-anisotropic layered model

Now, we demonstrate the effect of an interface between two layers of viscoelastic media. In this 2D layered
model, the top and bottom layers correspond to isotropic sandstone and orthotropic shale, with material
properties given in Column 3 and Column 1 of Table 1, respectively. The domain size is 3 km x 3 km. The
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(a) v2

Figure 9: Snapshots of particle velocities in a 3D anisotropic heterogeneous two layer model of size 3 km x 3 km x 3 km. Sub
figures (a), and (b) are represnt v and vz components at ¢t = 0.4 s. The central frequency of the forcing function is 20 Hz. The
point source is located in the domain at (0 km,0 km, 0.3 km). The solution is computed using polynomials of degree N = 3
and h = 32.5 m.

minimum edge size of the triangular elements used to discretized the domain is 23.4375 m and polynomials of
degree N = 3 is used for approximation of numerical solutions. The point source is located at (1.5 km, 1.8 km)
with a Ricker wavelet of frequency 20 Hz. The total propagation time is 0.4 s. Snapshots of the z and z
components of the particle velocity are shown in Figures 7a and 7b, respectively. The presence of interface
results into reflected wavefronts in addition to the direct and transmitted wavefronts and all these three
wavefront are clearly shown in Figure 7.

5.8.6. 3D Orthotropic material

Now, we validate our numerical scheme in a homogeneous and anisotropic 3D model. First, we per-
form a 3D computational experiment for orthotropic shale with the material properties given in Table 1
(Column 1). The size of the computational domain is 4 km x 4 km x 4 km and is discretized by tetra-
hedral element with a minimum edge length of 32.5 m. The central frequency of the forcing function is
fo = 20 Hz (the frequency for relaxation peak). Polynomials of degree N = 3 are used for the simulation.
The propagation time is 0.48 us. Figures 8(a), (b) and (c¢) represent the z—, y— and z— components of the
particle velocity of the orthotropic material, respectively. Both modes of waves along with anisotropy can be
observed: the P mode and the shear mode (S, inner wavefront). Figure 8 shows that the plane perpendicular
to z— direction is a plane of symmetry, as the plane is represented isotropic phenomena.

5.8.7. 8D isotropic-anisotropic layered model

In this example, we illustrate the effect of a two dimensional interface between two layers of the 3D
viscoelastic media. The top and bottom layer of 3D model are comprised of isotropic sandstone and or-
thotropic shale, respectively. The size of the computational domain is 3 km x 3 km x 3 km in the z, y and
z directions, respectively. The minimum edge size of the triangular elements used to mesh the domain is
32.5 m. The point source is located at (0 km, 0 km 0.4, km) with a Ricker wavelet of frequency 20 Hz. The
propagation time is 0.4 s. The simulation is performed using polynomials of degree N = 3. Snapshots of the
y and z components of the particle velocity are shown in Figures 9a and 9b, respectively. Figure 9 clearly
demonstrate the effect the interface responsible for reflected wavefronts of P and shear waves.
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5.4. A large 8D heterogeneous subsurface model

We use a 3D reservoir model from Shukla et al. [41]. The model is characterized by rock layers, dis-
continuity, and a surface with undulated topography. The discretized model is shown in Figure 10a. The
dimension of the model is (22.8km x 17.4 km x 8.0 km) in x, y and z directions, respectively. The domain is
discretized with tetrahedral elements with a minimum edge length of 125 m. The top surface of the model
is perturbed so that the effects of the topography, assumed as a free surface, could be incorporated into
numerical simulations. The central frequency of the forcing function is 20 Hz and polynomials of degree
N = 3 are used for simulation. Figure 10(b) represent the z- component of the particle velocity at 3.5 s.
The various modes of transmissions, reflections and scattering can be clearly seen in Figure 10b.

6. Conclusions

This work presents a high order discontinuous Galerkin method for a new symmetric form of the linear
anisotropic viscoelastic wave equations. The method is energy stable and high order accurate for arbitrary
stiffness tensors. We confirm the high-order accuracy of the numerical method using an analytic plane
wave solution in a viscoelastic media. Finally, we provide computational results for various combinations of
homogeneous and heterogeneous medium.

7. Acknowledgments

The authors gratefully thank the sponsors of the Geo-Mathematical Imaging Group at Rice University
for providing the resources to carry out this work. Jesse Chan gratefully acknowledges support from the NSF
under awards DMS-1719818 and DMS-1712639. MVdH gratefully acknowledges support from the Simons
Foundation under the MATH + X program and the NSF under grant DMS-1815143. The authors gratefully
acknowledge Dr. José M Carcione of INOGS Italy, for his help in deriving and implementing the analytical
solution in a 2D viscoelastic medium.

24



®ITm)

-400000

“1.16e48

(b) Snapshot of vz at t =3.5s

Figure 10: A 3D snapshot of v3 for a 3D heterogeneous model constructed with topography on the top surface and a discontinuity
in lower most layer. Subfigure (a) shows the 3D model of domain size (22.8 km, 17.4 km 8.0 km) and discretized with tetrahedral
element with a minimum edge length of element being h = 125 m. Subfigure (b) shows the snapshot of vz at 3.5 s. The point
source is located in the domain at (11.4 km, —8.7 km, —50 m) . The solution is computed using polynomials of degree N = 3.
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Appendix A. Inverse of compliance matrix C

The expressions for r;; in (24) are

Py o= — (611033 - 0%3) (A 1)
(c11 — c12)(c11633 + c1ac33 — 2¢35)

Pl = — (612033 - C%S) (A 2)
(c11 — c12)(c11633 + c1ac33 — 2¢35)

C13

r13 = — A3

(c11¢33 + c12c33 — 2¢5) (4.3)
(c11 + c12)
r33 = 5.2 (A4)
(c11€33 + c12¢33 — 2¢i3)

Appendix B. Analytic solution in a homogeneous viscoelastic media

The solution of the elastic wave equation in an 2-D isotropic medium for an impulsive point force is given
by Eason et al. [44]. For a force acting in the positive zs-direction, displacement solutions are expressed as

3]

up(r,t) = (FO> % [G1(r,t) + Gs(r,t)],
2p ) T (B.1)
uz(r,t) = (2};./)) %2 [zQGl(r, t) — x2Gs(r, t)] ,

where Fy is a the magnitude of the force and r? = 2? + 22, and G1(r,t) and Gs(r,t) are Green’s function
expresses as

1 _ 1 1
Gi(rt) = (B =78 VPH( =) + (= ) P H(E — 1) — (7 — 72 PH(E - 7)),
pl 1 1 (B.2)
Gs(r,t) = —C—z(t2 - 7'82)_1/2H(t —7s) + 70—2(152 — Tp2)1/2H(t —Tp) — 71—2(752 - 7'52)1/2H(t —Ts),
where 7, = L, Ts = - with ¢, and cs; being phase velocities of the compressional and shear waves.

P Cs
H(t) is Heaviside function. To recover the anelastic solution the correspondence principle [3] is applied on
frequency domain representation of (B.2). We also use following identities of transform pairs of zero- and
first-order Hankel function of the second kind

i

2
2wt Hl( )(WT>7

oe]
J 1 (t* —77) 12 H(t — 7) exp(iwt)dt =
L a\-12 . T @) (3
J — (—=77) H(t — 7) exp(iwt)dt = *ﬂHO (wT).
T

Now, Fourier transform of (B.2) with respect to time yields

= (2) bt (2?25 o0

~ im

Golrwcpea) =5 [ui»H() (o?m) o™ (iw)) * o (iw))] (B3
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(c11 + c33) M1 (w) + czzMa(w) 33 Mo (w)

where ¢,(w) = , and c¢s(w) = 4| ————= where M; and M are recovered

P
from (6), which for isotropic case are as follows,

u B Téy) 1 +iwr?
ve{l,2} = E 71 T iwrY .
Now, taking the Fourier transform of (B.1) and using (B.4) and (B.5), we get

A~

> % [él(r,wa Cp, CS) + GS(T7W7CIJ3 Cs)]

r2

Fo

ul(r,w,cp,cs) = <27Tp

Fi 1 N ~
ug(r,w,cp,cs) = <27T0p> ﬁ |:Z2G1(T,W7Cp,cs) - $2G3(T7W,Cp,cs):|

To ensure that solution is real in time, we express (B.6) as

U (w) _ u1,3(7”,w,cp,cs), w =0,
1,3 ui?’(ﬁ —W,Cp,cs)7 w < ()7

(B.7)

where asterisk (*) denotes the complex conjugate. Multiplying (B.7) with frequency domain representation
of a source time function and then taking the inverse Fourier transform will yield time-domain analytical
displacement solution of 2D viscoelastic wave equation (25). The G; and G3 are considered as zeros due to

Hankel’s functions being singular.
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