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Abstract

Entropy stable schemes ensure that physically meaningful numerical solutions also satisfy a semi-
discrete entropy inequality under appropriate boundary conditions. In this work, we describe a dis-
cretization of viscous terms in the compressible Navier-Stokes equations which enables a simple and
explicit imposition of entropy stable no-slip and reflective (symmetry) wall boundary conditions for
discontinuous Galerkin (DG) discretizations. Specifically, we derive methods for imposing adiabatic
no-slip and reflective (symmetry) boundary conditions for modal entropy stable DG formulations
which preserve a semi-discrete entropy inequality. Numerical results confirm the robustness and
accuracy of the proposed approaches.

1. Introduction

Computational fluid dynamics (CFD) has relied mainly on first and second order numerical
methods, which are robust and reliable. However, because higher order schemes offer improved ac-
curacy at similar computational costs, they have received significant interest as demand for greater
resolution in engineering simulations increases [1]. Discontinuous Galerkin (DG) schemes are among
the most popular high order schemes for CFD, especially for transient vorticular flows [2, 3]. How-
ever, high order methods typically suffer from issues of robustness, especially in the presence of
shocks and under-resolved solution features. Entropy stable high order DG schemes [4, 5, 6, 7, 8]
provide one way to improve robustness without sacrificing high order accuracy. This improved
robustness can be attributed to the fact that entropy stable schemes are stable in the sense that
they satisfy a semi-discrete entropy inequality, even in the presence of aliasing errors resulting from
under-integration, nonlinear fluxes, and curved geometries [9].

Entropy stable DG schemes for the compressible Euler and Navier-Stokes equations were intro-
duced for tensor product (quadrilateral and hexahedral) meshes by Fisher, Carpenter, and others in
[10, 11, 4] and Gassner, Winters, and Kopriva in [5]. The construction of such schemes utilized con-
nections between nodal DG spectral element methods (DG-SEM) and summation by parts (SBP)
finite difference operators. These schemes were later extended to simplicial meshes in [6, 7] based on
a generalization of SBP operators to the multi-dimensional case [12]. Entropy stable schemes were
then extended to more general “modal” DG formulations in [8, 13, 14]. Other recent entropy stable
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numerical schemes include staggered grid schemes [15, 16], collocation schemes based on Gauss
points [17, 18], and entropy stable reduced order models [19]. Entropy stable schemes have also
been extended to the fully discrete case using entropy conservative and entropy stable relaxation
Runge-Kutta time-stepping methods [20, 21].

For periodic domains, entropy stable schemes automatically guarantee the satisfaction of a
semi-discrete entropy inequality. However, for non-periodic domains, entropy stable schemes must
also be paired with appropriate entropy stable boundary conditions. Boundary conditions for DG
schemes are typically imposed through the solution of appropriate Riemann problems [22], though
not all such boundary conditions are entropy stable. The stability of boundary conditions for the
compressible Navier-Stokes equations has typically been analyzed based on a linearized stability
analysis [23]; however, linearly stable boundary conditions do not necessarily imply entropy stability
either. Instead, more recent work has focused on the construction of nonlinearly stable boundary
conditions for the compressible Euler and Navier-Stokes equations. Inviscid entropy stable wall and
far-field boundary conditions for the compressible Euler equations were investigated in [24, 6, 25],
and viscous entropy stable adiabatic wall boundary conditions were analyzed in [26, 27, 28].

In this work, we focus on the construction of viscous wall boundary conditions for the compress-
ible Navier-Stokes equations which mimic the continuous entropy balance. The key novelty of this
work is a modified DG discretization of the viscous terms which simplifies methods for imposing
viscous wall boundary conditions. In [26, 27, 28], viscous wall boundary conditions are imposed by
transforming between conservative and primitive variables. In this work, we introduce a modified
viscous discretization which is more amenable to modal DG discretizations. We also show this
formulation enables the imposition of no-slip wall boundary conditions in a simple and explicit
fashion while also providing simpler proofs of entropy conservation. Finally, we derive an entropy
stable imposition of reflective symmetry boundary conditions on the viscous stresses, which have
not yet been treated in the literature on entropy stable schemes. We note that we focus only on
the nonlinear stability analysis, and that a linearized stability analysis of the proposed boundary
conditions remains to be done.

The outline of the paper is as follows: Section 2 reviews entropy stability theory for the com-
pressible Navier-Stokes equations, and Section 3 reviews the construction of entropy stable high
order “modal” DG methods. Section 4 describes the the imposition of adiabatic no-slip and sym-
metry wall boundary conditions which mimic the continuous entropy inequality, and discusses the
construction of boundary penalization terms. Section 5 provides numerical experiments which verify
our theoretical results, and we provide conclusions and outlook in Section 6. We also briefly discuss
isothermal boundary conditions in Appendix C. Isothermal wall boundary conditions do not yield
an entropy inequality; however, we provide an imposition of isothermal boundary conditions which
mimics the continuous entropy balance.

2. Entropy stability for the compressible Navier-Stokes equations

Let u denote the vector of conservative variables. In d dimensions, these are

u = {ρ, ρu1, . . . , ρud, E} ∈ R
d+2.

Here, ρ is density, ui denotes the velocity in the ith coordinate direction, and E denotes the
specific total energy. We also introduce the pressure p and temperature T , which are related to the
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conservative variables through the constitutive relations

p = (γ − 1)ρe, E = ρ

(
e+

1

2

d∑

i=1

u2i

)
, e = cvT,

where γ = 1.4, e is the internal energy density, and cv is the specific heat at constant volume. Pr
denotes the Prandtl number, and µ, λ are the dynamic and bulk viscosity coefficients, respectively.
Appendix A provides expressions for these parameters for a specific non-dimensionalization [29].

The compressible Navier-Stokes equations in d dimensions are given by

∂u

∂t
+

d∑

i=1

∂fi

∂xi
=

d∑

i=1

∂gi
∂xi

, (1)

where fi denote the inviscid fluxes in the ith coordinate direction.
In this work, we focus on the two-dimensional compressible Navier-Stokes equations. However,

the main contributions of this paper are straightforward to extend to three dimensions, and we
present results in a dimension-independent manner when possible. For d = 2, the inviscid fluxes fi

are given by

f1 =




ρu1
ρu21 + p
ρu1u2

u1(E + p)


 , f2 =




ρu2
ρu1u2
ρu22 + p
u2(E + p)




The viscous fluxes g1, g2 for d = 2 are given by

g1 =




0
τ1,1
τ2,1∑d

i=1 τi,1ui − κ ∂T
∂x1


 , g2 =




0
τ1,2
τ2,2∑d

i=1 τi,2ui − κ ∂T
∂x2


 . (2)

Here, κ = κ(T ) denotes the thermal conductivity, and τi,j denote the components of the viscous
stress tensor

τi,j = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+δijλ

(
d∑

i=1

∂ui
∂xi

)
, 1 ≤ i, j ≤ d. (3)

We assume Stokes hypothesis in this work, or that λ = 2
3µ.

2.1. Entropy variables and symmetrization

For positive density and pressure, the compressible Navier-Stokes equations admit a mathemat-
ical entropy inequality with respect to the convex scalar entropy function S(u)

S(u) = −ρs,

where s = log
(

p
ργ

)
denotes the physical entropy [30]. For the remainder of the paper, we assume

that any numerical values of the density and pressure are also positive, and note that positivity
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preservation is an ongoing area of research for both high order and entropy stable DG schemes
[31, 32, 33, 34].

The derivative of the entropy with respect to the conservative variables yield the entropy vari-
ables v(u) = ∂S

∂u = {v1, v2, v3, v4}, where

v1 =
ρe(γ + 1− s)− E

ρe
, v1+i =

ρui
ρe

, vd+2 = −
ρ

ρe
(4)

for i = 1, . . . , d. The inverse mapping is given by

ρ = −(ρe)vd+2, ρui = (ρe)v1+i, E = (ρe)

(
1−

∑d
j=1 v

2
1+j

2vd+2

)
,

where i = 1, . . . , d, and ρe and s in terms of the entropy variables are

ρe =

(
(γ − 1)

(−vd+2)
γ

)1/(γ−1)

e
−s
γ−1 , s = γ − v1 +

∑d
j=1 v

2
1+j

2vd+2
.

It was shown in [30] that the entropy variables symmetrize the viscous fluxes in the sense that

d∑

i=1

∂gi
∂xi

=

d∑

i,j=1

∂

∂xi

(
Kij

∂v

∂xj

)
. (5)

where Kij denote blocks of a symmetric and positive semi-definite matrix K

K =



K11 . . . K1d

...
. . .

...
Kd1 . . . Kdd


 = KT , K � 0.

Formulas for these matrices for d = 2 are given in terms of the entropy variables and physical
parameters

K11 =
1

v34




0 0 0 0
0 −(λ+ 2µ)v24 0 (λ+ 2µ)v2v4
0 0 −µv24 µv3v4
0 (λ+ 2µ)v2v4 µv3v4 −[(λ+ 2µ)v22 + µ(v23)− γµv4/Pr]




K12 =
1

v34




0 0 0 0
0 0 −λv24 λv3v4
0 −µv24 0 µv2v4
0 µv3v4 λv2v4 (λ+ µ)(−v2v3)




K21 =
1

v34




0 0 0 0
0 0 −µv24 µv3v4
0 −λv24 0 λv2v4
0 λv3v4 µv2v4 (λ+ µ)(−v2v3)




K22 =
1

v34




0 0 0 0
0 −µv24 0 µv2v4
0 0 −(λ+ 2µ)v24 (λ+ 2µ)v3v4
0 µv2v4 (λ+ 2µ)v3v4 −[(λ+ 2µ)v23 + µ(v22)− γµv4/Pr]




Similar formulas for the symmetrized matrices Kij in three-dimensions are derived in [30].
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2.2. Continuous entropy balance

An entropy balance equation can be derived by multiplying the compressible Navier-Stokes
equations by the entropy variables and integrating over the domain. We begin by introducing a few
related identities. It can be shown that the following identity is satisfied

vT ∂fi(u)

∂xi
=
∂Fi(u)

∂xi
(6)

Fi(u) = v(u)Tfi(u)− ψi(u),

where Fi(u) and ψi(u) denote scalar entropy fluxes and potentials, respectively. For the compress-
ible Navier-Stokes equations, Fi(u) and ψi(u) are given by [30, 6]

Fi(u) = −
sρui
γ − 1

, ψi(u) = ρui. (7)

Multiplying (1) by vT , integrating over Ω, and using the chain rule and aforementioned identities
then yield

∫

Ω

∂S(u)

∂t
+

∫

∂Ω

d∑

i=1

(
Fi(u)− vTgi

)
ni +

∫

Ω

d∑

i,j=1

(
∂v

∂xi

)T (
Ki,j

∂v

∂xj

)
= 0. (8)

Using that e = cvT , along with definitions of the entropy variables and viscous fluxes gi, we can
show that the boundary contributions vTgi reduce to a scaling by cv of the quantity known as
“heat entropy flow” [28]

vTgi =
1

cvT
κ
∂T

∂xi
. (9)

Thus, the entropy balance for the compressible Navier-Stokes equations is

∫

Ω

∂S(u)

∂t
=

∫

∂Ω

d∑

i=1

(
1

cvT
κ
∂T

∂xi
− Fi(u)

)
ni −

∫

Ω

d∑

i,j=1

(
∂v

∂xi

)T (
Ki,j

∂v

∂xj

)
. (10)

Since the latter term involvingKij is non-positive, we can bound the rate of change of the integrated
entropy by

∫

Ω

∂S(u)

∂t
≤

∫

∂Ω

d∑

i=1

(
1

cvT
κ
∂T

∂xi
− Fi(u)

)
ni. (11)

For certain boundary conditions, both the inviscid and viscous boundary terms in (11) vanish
[24, 26, 6, 27, 28], implying that the solution is entropy stable. More generally, the goal of this work
will be to impose boundary conditions such that the semi-discrete entropy inequality mimics the
continuous entropy balance (10). Let un and ut denote the normal and tangential components of
velocity, respectively. We will focus mainly on two types of boundary conditions: adiabatic no-slip
wall conditions

un = 0, ut = uwall, κ
∂T

∂n

1

T
= g(t),
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and slip (no normal flow or reflective) wall conditions with adiabatic and zero tangential stress
conditions

un = 0, κ
∂T

∂n
= 0,

d∑

i,j=1

tiτi,jnj = 0,

where ni, ti denote the ith component of the normal and tangential vectors. Note that in 3D, the
zero tangential stress condition corresponds to two boundary conditions, as there are two tangential
vectors associated with each point on a surface.

Finally, in Appendix C we briefly discuss isothermal wall boundary conditions

un = 0, ut = uwall, T = Twall.

3. Entropy stable modal DG discretizations

3.1. On notation

The notation in this paper is motivated by notation in [7, 35]. Unless otherwise specified, vector
and matrix quantities are denoted using lower and upper case bold font, respectively. Spatially
discrete quantities are denoted using a bold sans serif font. Finally, the output of continuous
functions evaluated over discrete vectors is interpreted as a discrete vector.

For example, if x denotes a vector of point locations, i.e., (x)i = xi, then u(x) is interpreted as
the vector

(u(x))i = u(xi).

Similarly, if u = u(x), then f(u) corresponds to the vector

(f(u))i = f(u(xi)).

Vector-valued functions are treated similarly. For example, given a vector-valued function f : Rn →
R

n and a vector of coordinates x, we adopt the convention that (f(x))i = f(xi).

3.2. Modal DG discretizations

We now discuss the construction of an entropy stable DG discretization for the compressible
Navier-Stokes equations. For generality, we assume a “modal” framework which is applicable to
a broad range of approximation spaces and quadrature rules. We assume the domain Ω can be
decomposed into non-overlapping elements Dk, each of which is the image of a reference element
D̂ under an invertible mapping Φk. Let n̂i denote the ith component of the outward normal vector
on the boundary of the reference element ∂D̂, and let Ĵf denote the determinant of the Jacobian

of the transformation between a face of D̂ and some reference face. Let x̂,x denote coordinates on
the reference element D̂ and physical element Dk, respectively, such that

x̂ = {x̂1, . . . , x̂d} , x = {x1, . . . , xd} . (12)

We also assume that the boundary of each elementDk is denoted by ∂Dk, and that the outward unit
normal on each face in ∂Dk is denoted by n = {n1, . . . , nd}. Finally, let J

k denote the determinant
of the Jacobian of the mapping Φk, and let Jk

f denote the determinant of the Jacobian of the

mapping from a face of ∂Dk to a reference face.
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Local approximation spaces on each physical element Dk are defined as mappings of a reference
approximation space. For this work, we assume D̂ is the bi-unit right triangle and that the reference
approximation space is the space of total degree N polynomials

PN =
{
x̂i1x̂

j
2, i, j ≥ 0, i+ j ≤ N

}

where x̂i denotes the ith coordinate on the reference element.
Next, we introduce notation for jumps and averages of functions across element interfaces. Let

u(x) be a scalar function on Dk, and let u, u+ denote its “interior” and “exterior” values across
the face shared by neighbor Dk,+

{{u}} =
u+ + u

2
, JuK = u+ − u.

The jump and average of vector-valued functions are defined component-wise. Boundary conditions
are also imposed by specifying appropriate exterior values.

We also assume volume and surface quadrature rules with positive quadrature weights which

are exact for degree 2N polynomials. Let {xi, wi}
Nq

i=1 denote the points and weights of the volume

quadrature rule, and let
{
x
f
i , w

f
i

}Nf
q

i=1
denote the points and weights of the surface quadrature rule.

Now, let {φi(x)}
Np

i=1 denote basis functions for PN . We define the quadrature-based interpolation

matrices Vq,Vf , mass matrix M, and integrated differentiation matrices Q̂
i

(Vq)ij = φj(xi), (Vf )ij = φj

(
x
f
i

)
,

M = V
T
q WVq, W = diag (w) , (Q̂i)jk =

∫

D̂

∂φk
∂x̂i

φj .

Finally, we introduce inner product notation on an element Dk

(u, v)Dk =

∫

Dk

u(x)v(x) dx, 〈u, v〉∂Dk =

∫

∂Dk

u(x)v(x) dx

as well as over the entire domain Ω and its boundary ∂Ω

(u, v)Ω =
∑

k

(u, v)Dk , 〈u, v〉∂Ω =
∑

k

〈u, v〉∂Dk∩∂Ω .

In all numerical experiments, integrals are computed via quadrature approximations, which in turn
induces discrete L2 inner products which approximate continuous L2 inner products over Dk, ∂Dk.
Because the following proofs only use properties of quadrature-based L2 inner products and do not
assume exact integration, all theoretical results also hold under inexact quadrature.

3.3. Discretization of inviscid terms

For most numerical methods, the continuous identity (6) for the inviscid fluxes does not hold
at the semi-discrete level. To address this issue, the inviscid terms are discretized using a “flux
differencing” approach involving summation-by-parts (SBP) operators and entropy conservative
fluxes [36]. We briefly review the construction of entropy stable methods for the inviscid case.
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We introduce the quadrature-based projection matrix Pq = M
−1

V
T
q W. Using Pq and Q̂i, we

can construct quadrature-based differentiation and extrapolation matrices Qi, E

Qi = P
T
q Q̂iPq, E = VfPq.

To accomodate general quadrature rules (e.g., both with and without boundary points), we intro-
duce hybridized SBP operators. Let

Bi = diag (wf ◦ n̂i) , Wf = diag (wf ) ,

where wf is a vector of face quadrature weights and n̂i is a vector containing values of the ith scaled

normal component n̂iĴf at surface quadrature points. Then, the hybridized SBP operator Qi,h on

the reference element D̂ is defined as

Qi,h =
1

2

[
Qi − (Qi)

T
E
T
Bi

BiE Bi

]
.

We can construct operators Qk
i,h on each physical element Dk as follows

Q
k
i,h =

d∑

j=1

G
k
ijQj,h,

where Gk
ij are diagonal matrices containing the scaled geometric terms J

∂x̂j

∂xi
Here, x̂j and xi denote

the jth and ith reference and physical coordinates (12). We also introduce physical boundary
matrices

B
k
i = Wfdiag

(
ni ◦ J

k
f

)
,

where ni, J
k
f are vectors containing values of ni and J

k
f at surface quadrature points. It was shown

in [8, 13, 14] that for sufficiently accurate quadrature rules, these operators satisfy a summation by
parts property on isoparametric curved meshes if the geometric terms satisfy appropriate discrete
metric identities.

We now introduce entropy conservative numerical fluxes fi,S(uL,uR) [36], which are bivariate
functions of “left” and “right” states uL,uR. In addition to being symmetric and consistent,
entropy conservative numerical fluxes satisfy an “entropy conservation” property

(vL − vR)
T
fi,S(uL,uR) = ψi(uL)− ψi(uR). (13)

The inviscid flux derivatives are approximated using a “flux differencing” approach. Let Vh be
the interpolation matrix to both volume and surface quadrature points

Vh =

[
Vq

Vf

]

We first introduce the L2 projection of the entropy variables and the “entropy projected” conser-
vative variables ũ

v = Pqv (Vqu) , ũ = u (Vhv) ,

which are defined by evaluating the mapping from entropy to conservative variables using the
projected entropy variables. Note that the projected entropy variables v is a vector corresponding
to modal coefficients, while ũ corresponds to point values at volume and face quadrature points.
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Then, the variational form of the flux derivative ∂fi(u)
∂xi

on an element Dk is discretized by

∂fi(u)

∂xi
⇐⇒ V

T
h

(
2Qk

i,h ◦ Fi

)
1, (Fi)jk = fi,S(ui,uj).

where ◦ denotes the matrix Hadamard product [37, 11, 4]. Since the entries of Fi are vector-valued,

the Hadamard product
(
2Qk

i,h ◦ Fi

)
should be understood as each scalar entry of 2Qk

i,h multiplying

each vector-valued entry of Fi.
Finally, let ũ

+
denote the values of ũ on a neighboring element Dk,+. The inviscid discretization

is completed by specifying interface fluxes which couple neighboring elements together, such that
an entropy stable inviscid scheme over each element Dk is

M
du

dt
+

d∑

i=1

[
V

T
h

(
2Qk

i,h ◦ Fi

)
1+ V

T
f

(
B

k
i

(
fi,S

(
ũ
+
, ũ
)
− fi(u)

))]
− V

T
f Wf

λ

2
JũK = 0.

Here, we have added a simple entropy dissipative Lax-Friedrichs penalization term, where λ is the
maximum of the wavespeed between the exterior and interior solution states ũ

+
and ũ. Note that λ

is a scalar value multiplying the jump term JũK at each face quadrature point. Other penalization
terms such as HLLC and certain matrix penalizations [6, 38] also dissipate entropy.

All that remains for the implementation of the scheme is to specify the entropy conservative
numerical fluxes fS (uL,uR). All experiments in this paper utilize the entropy conservative and ki-
netic energy preserving numerical fluxes of Chandrashekar [39]. These fluxes utilize the logarithmic
mean, which is computed in a numerically stable manner using the expansion derived in [40, 41].

Remark 1. While we have presented entropy stable DG schemes using a general “modal” DG
framework, the formulation reduces to existing methods under appropriate choices of quadrature
and basis. For example, specifying Gauss-Lobatto quadrature on a tensor product element recovers
entropy stable spectral collocation schemes [17]. SBP discretizations without an underlying basis
on simplices [12, 6, 7] can also be recovered for appropriate quadrature rules by redefining the
interpolation and projection matrices Vq,Pq [42].

3.3.1. Entropy stable imposition of inviscid wall conditions

In the inviscid case, slip (no normal flow or reflective) boundary conditions are imposed at solid
walls [24, 6]. These boundary conditions are consistent with all wall boundary conditions considered
in this paper, and are imposed by enforcing

ρ+ = ρ, u+n = −un, ut = ut, p+ = p. (14)

where un, ut denote the normal and tangential components of the velocity. Explicit expressions for
un, ut in 2D are given by

un = u1n1 + u2n2

ut = u1n2 − u2n1.

It was shown in [24, 6] that boundary contributions to the entropy balance equation (11) vanish
under the imposition of reflective boundary conditions (14). For the remainder of this paper, we
will assume that all viscous wall boundary conditions are paired with (and consistent with) these
inviscid wall conditions.
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3.4. Discretization of viscous terms

We discretize the symmetrized viscous terms (5) using a local DG formulation [43, 44], which
is similar to the formulations introduced for nonlinear elliptic PDEs in [45]. We note that, while
we presented the inviscid discretization using matrix notation, we utilize a variational formulation
more familiar to finite element methods to describe the discretization of the viscous terms. We first
write the viscous terms (5) in mixed form:

Θi =
∂v

∂xi
(15)

σi =

d∑

j=1

KijΘj (16)

d∑

i=1

∂gi
∂xi

=

d∑

i,j=1

∂σi

∂xi
. (17)

Next, we introduce a DG approximations of Θ, the gradients of the entropy variables. Let w1,i ∈[
PN

(
D̂
)]4

denote vector-valued test functions for i = 1, . . . , d. The variational definition of Θ is

then given by

(Θi,w1,i)Dk =

(
∂v

∂xi
,w1,i

)

Dk

+
1

2
〈JvKni,w1,i〉∂Dk , i = 1, . . . , d. (18)

The terms Θ1,Θ2 are approximations of derivatives with respect to x1, x2 of the entropy variables
vi. In the next step, we compute σi as the L2 projection of

∑d
j=1 KijΘj for i = 1, 2 onto the

approximation space of each element

(σi,w2,i)Dk =




d∑

j=1

KijΘj ,w2,i




Dk

, i = 1, . . . , d (19)

for all w2,i ∈
[
PN

(
D̂
)]4

. Note that σi is an approximation to the viscous flux functions gi in the

compressible Navier-Stokes equations (1) and (2).
We now introduce Gvisc, which approximates the divergence of σ. Let Λvisc be a positive semi-

definite penalty matrix which is single-valued over each element interface, which we will specify in
Section 4.3. Then, the divergence of the viscous fluxes is approximated by Gvisc as

(Gvisc,w3)Dk =

d∑

i=1

[(
−σi,

∂w3

∂xi

)

Dk

+ 〈{{σi}}ni,w3〉∂Dk

]
− 〈ΛviscJvK,w3〉∂Dk , (20)

for i = 1, . . . , d and for all w3 ∈
[
PN (D̂)

]4
.

Remark 2. Note that (18) involves a jump term while (20) involves the average {{σi}}. This is
because the first term in (20) is integrated by parts. A “strong form” can be derived by integrating
by parts a second time to yield

(Gvisc,w3)Dk =

d∑

i=1

[(
∂σi

∂xi
,w3

)

Dk

+
1

2
〈JσiKni,w3〉∂Dk

]
− 〈ΛviscJvK,w3〉∂Dk .

10



From this, it follows that (18), (19), (20) are high order accurate approximations of the viscous flux
divergence, since the L2 projection is high order accurate and the jump terms vanish for sufficiently
regular solutions.

This approximation can be shown to be positive semi-definite in the following sense

Lemma 3.1. Let Gvisc be defined by (18), (19), and (20). For periodic boundary conditions, the
viscous entropy dissipation satisfies (Gvisc,v) ≤ 0.

Proof. The proof is similar to those of [45, 46, 44]. Let w3 = v, w1,i = σi, and w2 = θ. Then,
summing up (18), (19) and using (20) yield

(Gvisc,v)Dk =
d∑

i=1

[(
−σi,

∂v

∂xi

)

Dk

+ 〈{{σi}}ni,v〉∂Dk

]
+ 〈ΛviscJvK,v〉∂Dk

d∑

i=1

(Θi,σi)Dk =

d∑

i=1

(
∂v

∂xi
,σi

)

Dk

+
1

2
〈JvKni,σi〉∂Dk ,

d∑

i=1

(σi,Θi)Dk =

d∑

j=1

(KijΘj ,Θi)Dk .

We sum over all elements Dk, substitute the second equation into the first one, and use the third
equation to yield

(Gvisc,v)Dk =
∑

k

d∑

i,j=1

[
− (KijΘj ,Θi)Dk +

1

2
〈JvKnj ,σj〉∂Dk + 〈{{σj}}nj ,v〉∂Dk

]
+ 〈ΛviscJvK,v〉∂Dk .

(21)

What remains is to show that the surface terms vanish when summed up over all elements. For
periodic boundary conditions, all faces are “interior” faces shared by two elements. We split con-
tributions from each surface term and swap them between Dk and the neighboring element Dk,+,
such that

∑

k

1

2
〈JvKni,σi〉∂Dk =

1

2

∑

k

(
1

2
〈JvKni,σi〉∂Dk +

1

2

〈
JvKni,σ

+
i

〉
∂Dk,+

)
=

1

2

∑

k

〈JvKni, {{σi}}〉∂Dk

∑

k

〈{{σi}}ni,v〉∂Dk =
1

2

∑

k

(
〈{{σi}}ni,v〉∂Dk −

〈
{{σi}}ni,v

+
〉
∂Dk,+

)
= −

1

2

∑

k

〈{{σi}}ni, JvK〉∂Dk

∑

k

〈ΛviscJvK,v〉∂Dk =
1

2

∑

k

(
〈ΛviscJvK,v〉∂Dk −

〈
ΛviscJvK,v+

〉
∂Dk,+

)
= −

1

2
〈ΛviscJvK, JvK〉∂Dk

Here, we have used that both ni and JvK change sign between Dk and Dk,+. Thus, the surface
terms cancel, and by the positive semi-definiteness of Kij ,

∑

k

(Gvisc,v)Dk =
∑

k

d∑

i,j=1

− (KijΘj ,Θi)Dk −
1

2
〈ΛviscJvK, JvK〉∂Dk ≤ 0

since Λvisc is a positive semi-definite matrix.

11



Remark 3. The proof of Lemma 3.1 and the formulations (18), (19), (20) presented in this work
rely only on the positive-definiteness, symmetry, and commutativity (e.g., (uv, w) = (u, vw) for
functions u, v, w) properties of L2 inner products. These properties are preserved if all inner prod-
ucts and integrals are computed using quadrature rules with positive quadrature weights. Addition-
ally, Appendix B provides an extension of this formulation to multi-dimensional SBP operators.

4. Entropy stable imposition of wall boundary conditions

We now turn our focus to the entropy stable imposition of adiabatic no-slip wall boundary
conditions for the compressible Navier-Stokes equations, as well as the entropy stable treatment of
slip boundary conditions. Boundary conditions are imposed by choosing appropriate exterior states
ũ+,v+ such that the contributions from the boundary terms in the proof of Lemma 3.1 reduce to
appropriate quantities [47, 48, 49].

Let 〈u, v〉∂Ω =
∫
∂Ω
uv denote the inner product on the domain boundary ∂Ω. For the following

proofs we will assume that Λvisc = 0 on ∂Ω, and postpone the discussion of entropy-dissipative
boundary penalization matrices to Section 4.3. Then, the total viscous entropy contribution is

∑

k

(Gvisc,v)Dk =


∑

k

d∑

i,j=1

− (KijΘj ,Θi)Dk


+

d∑

i=1

[
1

2
〈JvKni,σi〉∂Ω + 〈{{σi}}ni,v〉∂Ω

]
. (22)

Our goal will be to construct exterior states for which the discrete viscous entropy-dissipative terms
(22) mimic the continuous viscous entropy dissipative terms in (10).

In the following sections, we will refer to individual components of the viscous fluxes σi by

(σi)j = σj,i, j = 1, . . . , d,

for consistency with the τi,j notation in (3). We will also restrict ourselves to the two-dimensional
case d = 2 for simplicity of presentation. Recall that the conservative variables are ρ, u1, u2, E, and
the entropy variables correspond to

v1 =
ρe(γ + 1− s)− E

ρe
, v2 =

ρu1
ρe

, v3 =
ρu2
ρe

, v4 = −
ρ

ρe
.

The extension to d = 3 involves straightforward modifications to account for the z-component of
the normal vector and velocity vector.

4.1. Adiabatic no-slip wall boundary conditions

Adiabatic no-slip wall conditions impose zero normal velocity conditions, velocity conditions,
and an “entropy flow” condition on the normal temperature gradient through the wall

un = 0, ut = uwall, κ
∂T

∂n

1

T
= g(t).

where un,ut denote the normal and tangential components of the velocity, respectively. Note that
in 2D, un = u1n1 + u2n2 and ut = u1n2 − u2n1. Recall the continuous entropy balance (11)

∫

Ω

∂S(u)

∂t
≤

∫

∂Ω

d∑

i=1

(
1

cvT
κ
∂T

∂xi
− Fi(u)

)
ni.

12



If g(t) = 0, then
∑d

i=1
1

cvT
κ ∂T
∂xi

ni = 0. The latter term also vanishes since un = 0 and

d∑

i=1

Fi(u)ni = −
sρun
γ − 1

.

Thus, adiabatic no-slip wall boundary conditions yield a continuous entropy inequality if g(t) = 0.
For simplicity of notation, we will convert boundary conditions on normal and tangential com-

ponents to boundary conditions on velocity in each coordinate direction

ui = ui,wall, i = 1, . . . , d.

The terms which naturally appear in the DG formulation involve only traces of entropy variables
and approximations of the viscous fluxes. However, we can impose no-slip velocity conditions by
noting that the entropy variables v2, . . . , v1+d in (4) are the components of the velocity ui scaled
by e−1, and that v4 = −1/e. Then, the velocity boundary conditions can equivalently be imposed
as

v1+i =
ui,wall

e
= −ui,wallv4, i = 1, . . . , d.

We impose these conditions by specifying the exterior states

v+1+i = −2ui,wallv4 − v1+i, i = 1, . . . , d (23)

such that {{v1+i}} = ui,wallv4.
We now consider the adiabatic wall condition. Note that the variables σi in (19) are approxi-

mations to the viscous fluxes gi in (2), which include the heat flux in the last component of gi. In
two dimensions, the definitions of σi,j correspond to

σ2,i = τ1,i

σ3,i = τ2,i

σ4,i = τ1,iu1 + τ2,iu2 − κ
∂T

∂xi
, i = 1, . . . , 2.

We impose adiabatic wall boundary conditions by specifying σ+
4,i as

σ+
4,i = 2

(
u1,wallσ2,i + u2,wallσ3,i +

cvg(t)ni

v4

)
− σ4,i, (24)

such that the average of σ4,i incorporates wall velocities and heat entropy flow into the formula for
the viscous energy flux

{{σ4,i}} = u1,wallσ2,i + u2,wallσ3,i +
cvg(t)ni

v4
.

Finally, since no boundary conditions are imposed on σ2,i, σ3,i, and v4, we simply set the exterior
values equal to the interior values for i = 1, 2

σ+
2,i = σ2,i, σ+

3,i = σ3,i, v+4 = v4 (25)

such that the average quantities are {{σj,i}} = σj,i for j = 2, 3 and {{v4}} = v4. Note that v+
1 can

be arbitrarily chosen since σ1,i = 0 due to the fact that the corresponding rows of Kij are zero.
Based on these exterior states, we have the following theorem:

13



Theorem 4.1. Let Gvisc denote viscous contributions from (18), (19), and (20). If adiabatic no-slip
wall boundary conditions are imposed using exterior states for i = 1, . . . , d in d = 2 dimensions

v+1+i = −2ui,wallv4 − v1+i

v+4 = v4

σ+
2,i = σ2,i,

σ+
3,i = σ3,i,

σ+
4,i = 2

(
u1,wallσ2,i + u2,wallσ3,i +

cvg(t)ni

v4

)
− σ4,i,

then the viscous contribution Gvisc mimics the entropy balance such that

∑

k

(Gvisc,v)Dk =

d∑

i=1

〈cvg(t), 1〉∂Ω −
∑

k




d∑

i,j=1

(KijΘj ,Θi)Dk


 .

Proof. Plugging the exterior values into the boundary terms in (22) simplify to

d∑

i=1

[
1

2
〈JvKni,σi〉∂Ω + 〈{{σi}}ni,v〉∂Ω

]
=

d∑

i=1

〈−u1,wallv4 − v2, σ2,ini〉∂Ω + 〈σ2,ini, v2〉∂Ω

+

d∑

i=1

〈−u2,wallv4 − v3, σ3,ini〉∂Ω + 〈σ3,ini, v3〉∂Ω

+
d∑

i=1

〈
u1,wallσ2,i + u2,wallσ3,i +

cvg(t)ni
v4

, v4ni

〉

∂Ω

= 〈cvg(t), 1〉∂Ω .

As noted in [28], if g(t) = 0, then the boundary term resulting from Theorem 4.1 vanishes and
the resulting discretization is entropy stable.

Remark 4. At first glance, it may appear that we have specified too many boundary conditions in
Theorem 4.1. However, not all exterior states correspond to the imposition of boundary conditions.
For example, setting the exterior states v+4 = v4, σ

+
2,i = σ2,i, and σ

+
3,i = σ3,i is simply a convenient

method of enforcing that {{v4}} = v4, {{σ2,i}} = σ2,i, and {{σ3,i}} = σ3,i on a boundary.
Moreover, while we set 2 exterior states via

σ+
4,i = 2

(
u1,wallσ2,i + u2,wallσ3,i +

cvg(t)ni

v4

)
− σ4,i, i = 1, . . . , d, (26)

only the normal component of
∑d

i=1 σ
+
4,ini appears in the DG formulation through

∑d
i=1 {{σ4,i}}ni.

Thus, specifying σ+
4,i via (26) is equivalent to imposing a single condition on the normal flux

∑d
i=1 {{σ4,i}}ni

d∑

i=1

{{σ4,i}}ni =

d∑

i=1

(u1,wallσ2,i + u2,wallσ3,i)ni +
cvg(t)

v4
.
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In summary, the choice of exterior states for the adiabatic no-slip wall corresponds to the imposition
of three boundary conditions in 2D (four boundary conditions in 3D).

4.2. Slip/reflective wall (symmetry) conditions

We also consider reflective boundary conditions, which are the viscous extension of the reflective
wall boundary conditions for the inviscid case of the compressible Euler equations [24, 6, 50]. In
the context of viscous flows, these boundary conditions can be used to enforce symmetry conditions
or free surfaces. Recall from Section 3.3.1 that inviscid reflective wall boundary conditions are
enforced by setting exterior values for the convective flux

ρ+ = ρ, u+n = −un, ut = ut, p+ = p

We note that these conditions correspond to continuous boundary conditions for zero the normal
velocity, zero normal heat flux (since p+ = p), and zero tangential-normal stress (which is consistent
with the zero normal velocity condition un = 0)

un = 0, κ
∂T

∂n
= 0,

d∑

i,j=1

tiτi,jnj = 0. (27)

where ni, ti denote the ith component of the normal and tangential vector in 2D. Recall that, since
un = 0 and κ∂T

∂n = 0, the continuous entropy balance (11) becomes an entropy inequality

∫

Ω

∂S(u)

∂t
≤

∫

∂Ω

d∑

i=1

(
1

cvT
κ
∂T

∂xi
− Fi(u)

)
ni =

∫

∂Ω

(
1

cvT
κ
∂T

∂n
−
sρun
γ − 1

)
= 0.

Let n1, n2 denote the components of the unit normal vector. The zero normal velocity condition
implies that the velocity reduces to its tangential component. This is enforced by setting

ui
+ = ui − 2unni, i = 1, . . . , d, un =

d∑

i=1

uini,

such that
∑d

i=1 {{ui}}ni = 0 and the normal component of the averaged velocity vanishes.
Since e = cvT > 0 for T > 0, the second and third entropy variables v2, v3 = u/e, v/e are well-

defined. Thus, reflective wall boundary conditions are also equivalent to the following conditions
on the second and third entropy variables

vi
+ = vi − 2vnni, (28)

where vn = v2n1 + v3n2 in 2D.
We now consider viscous contributions. Note that {{σ1,j}} = 0 since there is no mass diffusion,

and terms involving σ1 vanish. We thus begin by considering fields corresponding to i = 2, 3. Using
(28), the boundary terms involving JviK for i = 2, 3 in (22) can be expanded out as

∑

i=1,2

〈
1

2
Jv1+iK,

d∑

j=1

σ1+i,jnj

〉
=

1

2

〈
vn,

d∑

i,j=1

σ1+i,jninj

〉

∂Ω

=
1

2

〈
v2n1 + v3n2,

d∑

i,j=1

σ1+i,jninj

〉

∂Ω

.
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We can write this in matrix form using the unit normal vector n = [n1, n2]
T

1

2

〈
v2n1 + v3n2,

d∑

i,j=1

σ1+i,jninj

〉

∂Ω

=
1

2

〈[
v2
v3

]
· n,nT

([
σ2,1 σ2,2
σ3,1 σ3,2

]
n

)〉

∂Ω

(29)

Recall that in 2D, the boundary contributions involving {{σi,j}} are

∑

i=1,2

〈
d∑

j=1

{{σ1+i,j}}nj , v1+i

〉

∂Ω

=
1

2

〈[
v2
v3

]
,

[
{{σ2,1}} {{σ2,2}}
{{σ3,1}} {{σ3,2}}

]
n

〉

∂Ω

.

These contributions will cancel with (29) if the tangential-normal component of the stress vanishes.
This condition is equivalent to the stress on the boundary reducing to the normal-normal component

[
{{σ2,1}} {{σ2,2}}
{{σ3,1}} {{σ3,2}}

]
n = nnT

[
σ2,1 σ2,2
σ3,1 σ3,2

]
n.

Thus, we enforce the zero tangential-normal stress condition by expressing {{σ1+i,j}} purely in
terms of the normal stress

{{σ1+i,j}} = njσn,j (30)

σn,j =

d∑

i=1

σ1+i,jni, i = 1, . . . , d. (31)

Finally, we consider contributions involving v4 and σ4,i

d∑

j=1

〈{{σ4,j}}nj , v4〉∂Ω +

〈
1

2
Jv4K, σ4,jnj

〉

∂Ω

. (32)

Since v4 = −1/e and ρ+, p+ = ρ, p from the inviscid wall boundary conditions, we set the exterior
state v+4 = v4. The remaining boundary term in (32) vanishes if we also take σ+

4,i = −σ4,i. While

not obvious at first glance, this is consistent with a zero normal heat flux condition κ∂T
∂n = 0. Recall

from (24) that at the continuous level, σ4,i = u1σ2,i + u2σ3,i − κ ∂T
∂xi

, such that

d∑

j=1

σ4,jnj =




d∑

i,j=1

uiσi+1,jnj


− κ

∂T

∂n
. (33)

By the zero tangential-normal stress condition (27), the stress reduces to the normal-normal stress
on the boundary. Consequentially, the first term of (33) vanishes, which we can see by rewriting
the expression using the velocity vector u = [u1, u2]

T

d∑

i,j=1

uiσi+1,jnj =

[
u1
u2

]T
nnT

[
σ2,1 σ2,2
σ3,1 σ3,2

]
n =

(
uTn

)(
nT

[
σ2,1 σ2,2
σ3,1 σ3,2

]
n

)
= 0
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and noting that
(
uTn

)
= un = 0 by the reflective wall boundary condition (27). Thus, on reflective

(symmetry) boundaries,
∑d

i=1 σ4,jnj reduces to the normal heat flux

d∑

j=1

σ4,jnj = −κ
∂T

∂n

such that σ+
4,i = −σ4,i is consistent with the imposition of a zero adiabatic wall condition. We

summarize this as follows:

Theorem 4.2. Let Gvisc denote viscous contributions from (18), (19), and (20). Let vn be analo-
gous to the normal velocity, such that vn and the normal stresses σn,j are defined as

vn =

d∑

i=1

v1+ini, σn,j =
d∑

i=1

σ1+i,jni, i = 1, . . . , d.

In d = 2 dimensions, if reflective (symmetry) boundary conditions are imposed by setting the exterior
states for i = 1, . . . , d

v+1+i = v1+i − 2vnni

v+4 = v4

σ+
1+i,j = 2niσn,j − σ1+i,j

σ+
4,i = −σ4,i,

then the viscous contribution Gvisc mimics the entropy balance such that

∑

k

(Gvisc,v)Dk = −
∑

k




d∑

i,j=1

(KijΘj ,Θi)Dk


 .

Moreover, these exterior states correspond to imposing zero normal flow, zero tangential-normal
stress, and zero adiabatic wall conditions.

4.3. Entropy dissipative boundary penalization matrices

Since boundary conditions are imposed weakly, it can be useful to penalize the deviation of the
solution from the boundary data. To do so, we modify the penalization matrix Λvisc on boundary
faces. The resulting matrix is non-symmetric on boundary faces in order to account for the fact
that Λvisc now only incorporates contributions from one element, as opposed to interior interfaces
which include contributions from both an element and its neighbor.

Let Λvisc be defined on boundary faces as

Λvisc = α




0
−1

−1
{{v2}}
v4

{{v3}}
v4

Jv4K
2v4


 (34)

where α ≥ 0 is a scalar penalization parameter.
Note that division by v4 is well-defined if the temperature T > 0 since v4 = −1/T < 0. We then

have the following result:
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Theorem 4.3. Let Λvisc be given by (34). Then, the penalty term is entropy dissipative in that

−〈ΛviscJvK,v〉∂Ω = −
α

2
(〈Jv2K, Jv2K〉∂Ω + 〈Jv3K, Jv3K〉∂Ω + 〈Jv4K, Jv4K〉∂Ω) ≤ 0.

Proof. Plugging in the values for v+2 , v
+
3 , v

+
4 , the penalty term reduces to

−〈ΛviscJvK,v〉∂Ω = −α (〈−Jv2K, v2〉∂Ω + 〈−Jv3K, v3〉∂Ω) (35)

− α

〈
Jv2K

{{v2}}

v4
+ Jv3K

{{v3}}

v4
, v4

〉

∂Ω

(36)

− α

〈
Jv4K

v4
Jv4K, v4

〉

∂Ω

Omitting α for now, the final term reduces to
〈

Jv4K
2v4

Jv4K, v4

〉
∂Ω

= 1
2 〈Jv4K, Jv4K〉∂Ω, while the third

term reduces to
〈

Jv2K
{{v2}}

v4
+ Jv3K

{{v3}}

v4
, v4

〉

∂Ω

= 〈Jv2K, {{v2}}〉+ 〈Jv3K, {{v3}}〉∂Ω .

Using this, adding together (35) and (36) then yields

〈ΛviscJvK,v〉∂Ω = −α [〈Jv2K, {{v2}} − v2〉∂Ω + 〈Jv3K, {{v3}} − v3〉∂Ω]

= −
α

2
[〈Jv2K, Jv2K〉∂Ω + 〈Jv3K, Jv3K〉∂Ω] .

Remark 5. When imposing heat entropy flux wall boundary conditions in Theorem 4.1, Jv4K = 0
and no penalization is applied to the component v4 = −1/T .

Remark 6. We can relate Λvisc to the choice of penalty matrix in [28] if α ∝ −1/v4 = e > 0 and
µ = 1, λ = 0. For our numerical experiments, we choose α = − 1

(Re)v4
> 0, which mimics the scaling

with respect to Reynolds number and T of the penalization introduced in [28]. A simpler choice of
α as an O(1) constant does not increase stiffness or produce significantly different results for the
numerical experiments reported in this work; however, more detailed experiments would need to be
done before drawing conclusions.

5. Numerical experiments

In this section, we present numerical experiments which verify the theoretical results proven
in this work.1 Unless otherwise specified, all numerical experiments utilize the adaptive 5th order
Dormand-Prince time integration [51] to advance the solution forward in time. The error control
parameters were taken to be the default values in the libParanumal library [52].

1The codes and drivers used to generate the results in this paper are available at

https://github.com/yiminllin/ESDG-CNS
https://github.com/yiminllin/ESDG-CNS/tree/main/examples/CompressibleNS
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All numerical experiments also utilize a Lax-Friedrichs penalization [6, 8], where the maximum
wavespeed is estimated as the maximum of the wavespeeds evaluated at the left and right states
[53]. For viscous interior dissipation, we simply take Λvisc to be

Λvisc = α

[
0

I(d+1)×(d+1)

]
,

where α is a scalar value as discussed in Remark 6. This results in an entropy dissipation which is
proportional to the norms of Jv2K, Jv3K, Jv4K over each element interface.

5.1. Verification of high order accuracy

To verify the high order accuracy of our viscous discretization, we test our scheme on an analyt-
ical viscous shock tube solution [54, 55]). We use degree N = 1, . . . , 4 modal ESDG schemes (with
(N + 2)-point Gauss quadrature) to evolve the solution until final time Tfinal = 1 on the domain
[−2, 2]. The Mach number and viscosity are taken to be Ma = 3 and µ = 1/10. The remaining
problem parameters and setup are the same as in [56].

The solution is evolved using a 3-stage 3rd order SSP Runge-Kutta method, and the timestep is
taken proportional to O(h2) to ensure stability in the viscous regime. We estimate the L1, L2, and
L∞ errors using quadrature, which are reported in Table 1. We observe convergence rates between
O(hN+1/2) and O(hN+1) for each norm, with errors in the L1 and L2 norm converging at slightly
higher rates compared with errors in the L∞ norm.

5.2. Verification of boundary condition accuracy

We begin by testing convergence of the difference between the numerical solution and the im-
posed boundary conditions. Recall that for DG methods, the boundary conditions are imposed
weakly, such that the solution does not satisfy the boundary conditions exactly. We examine con-
vergence of the solution to zero wall boundary conditions for a simple periodic channel setup on
[−2, 2] × [−1, 1]. Periodic boundary conditions are imposed in the x direction and zero adiabatic
wall boundary conditions are imposed on the top and bottom walls. Simulations are run until final
time Tfinal = .5 and compute the L2 error (in other words, the L2 norm of the x and y velocities)
for the initial conditions

ρ = 1, u1 =
1

10
sin
(πx

2

)
cos
(πy

2

)
, u2 =

1

10
cos
(πx

2

)
sin (πy) , p =

1

Ma2γ
.

We utilize Ma = .1 and Re = 50. The boundary penalization described in Theorem 4.3 is also
applied. Each mesh is constructed by subdividing a quadrilateral mesh of 2K1D × K1D elements
to produce a triangular mesh. Moreover, to ensure that viscous effects near the boundary did not
impact convergence, we utilized graded meshes constructed by transforming the y-coordinates a
uniform triangular mesh via ỹ = y + .25 sin(πy) (see Figure 1).

Table 2 shows computed errors ewall =
(∫

∂Ωwall
u2 + v2

)1/2
for the velocity on the wall boundary

∂Ωwall at y = ±1. We observe asymptotic convergence rates between O(hN+1) and O(hN+2). We
note that these rates are slightly higher than the optimal O(hN+1) L2 rate of convergence (which
was observed in [26] for zero no-slip boundary conditions) due to the fact that the exact velocity
is zero and is exactly representable by the DG approximation space. We also performed additional
experiments which suggest that removing boundary penalization does not affect numerical behavior
significantly, producing slightly larger errors on the coarsest meshes and roughly the same level of
error on finer meshes.
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h
N

N = 1 Rate N = 2 Rate N = 3 Rate N = 4 Rate

1/4 0.0773 0.0318 0.00566 0.0052
1/8 0.0227 1.770 0.00306 3.376 0.000462 3.616 0.000185 4.814
1/16 0.00559 2.019 0.00033 3.213 5.22e-05 3.146 5.18e-06 5.157
1/32 0.00145 1.944 4.5e-05 2.874 3.13e-06 4.060 1.81e-07 4.842
1/64 0.000383 1.922 5.81e-06 2.952 2.1e-07 3.898 6.24e-09 4.856

(a) L1 errors

h
N

N = 1 Rate N = 2 Rate N = 3 Rate N = 4 Rate

1/4 0.122 0.0639 0.00916 0.011
1/8 0.0395 1.623 0.00631 3.339 0.00103 3.156 0.000449 4.618
1/16 0.0104 1.922 0.000853 2.887 0.000162 2.665 1.38e-05 5.020
1/32 0.00272 1.937 0.000132 2.694 9.71e-06 4.062 6.19e-07 4.483
1/64 0.000731 1.898 1.73e-05 2.931 6.87e-07 3.821 2.16e-08 4.839

(b) L2 errors

h
N

N = 1 Rate N = 2 Rate N = 3 Rate N = 4 Rate

1/4 0.306 0.209 0.0212 0.0315
1/8 0.125 1.293 0.0198 3.402 0.00336 2.656 0.00143 4.458
1/16 0.0425 1.556 0.00459 2.109 0.000699 2.265 7.14e-05 4.329
1/32 0.0116 1.868 0.000604 2.926 6.12e-05 3.513 3.45e-06 4.370
1/64 0.00339 1.777 8.77e-05 2.782 4.72e-06 3.696 1.39e-07 4.633

(c) L∞ errors

Table 1: L1, L2, and L∞ errors for the viscous shock tube problem.

K1D

N 1 Rate 2 Rate 3 Rate 4 Rate

2 3.97e-4 4.68e-4 4.32e-4 4.56e-4
4 3.45e-4 .205 5.31e-4 -.181 3.26e-4 .401 1.08e-4 2.08
8 3.20e-4 .106 7.30e-5 2.86 6.57e-6 5.63 6.29e-7 7.42
16 7.74e-5 2.05 5.35e-6 3.77 1.73e-7 5.25 1.71e-8 5.20

(a) Ma = .1

K1D

N 1 Rate 2 Rate 3 Rate 4 Rate

2 8.32e-3 1.16e-2 8.81e-3 4.88e-3
4 6.95e-3 .256 2.19e-3 2.41 2.53e-4 5.12 1.21e-4 5.34
8 1.13e-3 2.63 6.18e-5 5.14 1.26e-5 4.32 1.55e-6 6.29
16 1.97e-4 2.52 4.67e-6 3.73 4.66e-7 4.76 2.23e-8 6.12

(b) Ma = .3

Table 2: L2 errors for the imposition of no-slip velocity boundary conditions for Re = 50 at Tfinal = 1/2.
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Figure 1: Examples of two meshes in the sequence of meshes used for the convergence study.

(a) Re = 100 (b) Re = 1000 (c) Re = 10000

Figure 2: Norm of velocity for the lid-driven cavity problem for Ma = .1 and Tfinal = 100.

5.3. Lid-driven cavity

We now test the imposition of viscous boundary conditions on the lid-driven cavity problem.
This problem is typically used to benchmark incompressible fluid solvers [58], though numerical
experiments have also been performed for compressible flows [59]. The domain is the bi-unit box
[−1, 1]2, and zero no-slip conditions are imposed on the left, right, and bottom boundaries. For
all experiments, we take Ma = .1 and impose u1 = 1 and u2 = 0 on the top boundary. Initial
conditions are set to be

ρ = 1, u1 = u2 = 0, p =
1

Ma2γ
.

We also augment the velocity boundary conditions with adiabatic temperature boundary conditions
to test the new entropy stable wall boundary conditions derived in this work.

We first consider the imposition of adiabatic boundary conditions with g(t) = 0. All triangular
meshes are constructed by bisecting a uniform quadrilateral mesh of K1D×K1D elements. Figure 2
shows the norm of the velocity at final time Tfinal = 100 for Re = 100, 1000, 10000. Simulations
are performed using degree N = 3 polynomials and K1D = 16. While most solution features for
Re = 100, 1000 are well-resolved, we note that there is under-resolution near the top left and right
hand corners of the domain. This is due to the fact that the velocity boundary conditions are
discontinuous between the left and right walls and the lid. However, the simulation remains stable
despite this under-resolution.

The solutions are similar to solutions found in the literature; however, our main goal is to verify
the entropy balance results proven in Theorem 4.1. We solve the lid-driven cavity problem with
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(a) r(t) over time for g(t) = 0 (b) r(t) for g(t) = 10−4 sin (4πx)

Figure 3: Evolution of r(t) for the lid-driven cavity under zero (adiabatic) and non-zero heat entropy flow g(t) 6= 0.

Ma = .1,Re = 1000, N = 3, and K1D = 16 to compute the “viscous entropy residual” r(t)

r(t) =
∑

k


(Gvisc,v)Dk +

d∑

i,j=1

(KijΘj ,Θi)


 . (37)

According to Theorem 4.1, r(t) = 〈cvg(t), 1〉∂Ω in the absence of viscous penalization terms. The-
orem 4.3 implies that with viscous penalization terms, r(t) should be equal to 〈cvg(t), 1〉∂Ω plus
some negative semi-definite quantity which dissipates entropy.

Figure 3a shows the evolution of r(t) over time for g(t) = 0 with and without viscous boundary
penalization. Without viscous penalization, r(t) is near machine precision. With viscous penaliza-
tion, r(t) is negative, indicating entropy dissipation. Following [28], we also consider a non-zero
heat entropy flow g(t) = 10−4 sin (4πx) at the cavity lid. Here, we remove viscous penalization
terms and plot both r(t) and the boundary contribution −〈cvg(t), 1〉∂Ω. We observe that the two
components are equal and opposite in sign, and adding them together yields a contribution which
is again near machine precision.

5.4. Slip wall boundary conditions

We next test the imposition of slip wall boundary conditions. We consider a channel domain
[−2, 2] × [−1, 1] with an adiabatic no-slip wall on the bottom boundary and symmetry boundary
conditions on the remaining faces of the channel. We take Ma = 1.5 and Re = 100, 1000 with an
initial condition

ρ =

{
5, x < 0

1, x ≥ 0
, u1 = u2 = 0, p =

1

Ma2γ
ρ.

Figure 4 shows the squared norm of the velocity as well as the evolution of the viscous entropy
residual r(t) defined in (37) for a degree N = 3 simulation. The domain is meshed using a bisected
uniform quadrilateral mesh of 2K1D×K1D elements with K1D = 16. No-slip wall effects are clearly
visible on the bottom boundary, while the symmetry boundary condition at the top of the domain
leaves the shock undisturbed in the normal direction. The viscous entropy residual is zero up to
machine precision in the absence of boundary penalization, as predicted by Theorem 4.2. We also
observe that adding boundary penalization produces a small amount of entropy dissipation, which
is more pronounced near the start of the simulation and for the under-resolved case of Re = 1000.
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(a) Norm of velocity u2
1
+ u2

2
, Re = 100 (b) Norm of velocity u2

1
+ u2

2
, Re = 1000

(c) r(t) for Re = 100 (d) r(t) for Re = 1000

Figure 4: Solutions at time t = .4 and evolution of the viscous entropy residual r(t) over time for Re = 100, 1000.

5.5. Supersonic flow over a square cylinder

We conclude by investigating supersonic flow from a square cylinder, which includes a variety
of physical phenomena including shocks and vorticular features [26, 28]. Following [26, 28], we take
Re = 104 and Ma = 1.5 and impose zero adiabatic no-slip solid wall boundary conditions on the
cylinder wall. The free-stream values are taken to be

ρ = 1, u1 = 1, u2 = 0, p =
1

Ma2γ
.

Both the initial condition and the exterior states on the left, top, and bottom boundaries are set
using free-stream values. For the outflow boundary on the right, we utilize a simple “extrapolation”
condition and set the exterior value equal to the interior value (we note that this is not provably
entropy stable). Figure 5 shows the density for a degree N = 3 simulation at Tfinal = 100, as well
as the triangular mesh of 16574 elements generated by Gmsh [60]. Shocks and and trailing vortices
behind the square cylinder are both visible in the numerical solution.

For clearer visualization, we use a color range of [.5, 1.5]. The simulation remains stable without
additional artificial viscosity or limiting, though some numerical artifacts are observable (e.g., Gibbs
oscillations in the vicinity of shock discontinuities, striations originating from the bow shock).

6. Conclusion

In this paper, we present an entropy stable approach for discretizing viscous terms and enforcing
wall boundary conditions for the compressible Navier-Stokes equations. This approach decouples the
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We can then non-dimensionalize pressure, internal energy, and bulk viscosity with respect to com-
binations of reference quantities

p∗ =
p

ρ∞U2
∞

, e =
e

U2
∞

, λ∗ =
λ

µ∞
.

We introduce the Reynolds and free-stream Mach numbers

Re =
ρ∞U∞L

µ∞
, Ma =

U∞√
γ(γ − 1)cvT∞

. (A.3)

Note that the reference Mach number is the ratio of the free-stream velocity to the free-stream
speed of sound a∞

a∞ =

√
γp∞
ρ∞

=
√
γ(γ − 1)cvT∞,

since p = (γ − 1)ρe and e = cvT .
The non-dimensionalized equations take the same form as the original equations if we define

new physical parameters

µ̃ =
µ∗

Re
, λ̃ =

λ∗

Re
, c̃v =

1

γ(γ − 1)Ma2
, κ̃ =

γc̃vµ̃

Pr
.

Under these new parameter definitions, one can drop both the tilde and the ∗ superscript and
assume all variables to refer to their nondimensionalized quantities.

Appendix B. Extension to general summation-by-parts schemes

In this section, we discuss how to extend the viscous discretizations (18), (19), (20) to multi-
dimensional SBP discretizations [12, 61]. For simplicity of presentation, we restrict ourselves to
diagonal-norm SBP discretizations. These discretizations include several operators: a norm matrix
M̂ and differentation matrices Q̂i on the reference element. We also assume that we are given a
face “interpolation” matrix Ef which maps values at volume nodes to values at face nodes, as well

as a surface diagonal norm matrix M̂f which approximates the L2 inner product over the surface
of the reference element.

These matrices are assumed to approximate inner products as follows:

(u, v)D̂ ≈ v
T
M̂u,

(
∂u

∂xi
, v

)

D̂

≈ v
T
Q̂iu, 〈u, v〉∂D̂ ≈ (Efv)

T
M̂fEfu.

SBP operators on each mapped physical element Dk can then be constructed by multiplying the
reference SBP operators with the appropriate geometric scalings as was done in Section 3.3; see
also [13, 7, 62] for more details. Let M,Mf , Qi denote physical norm matrices and SBP operators
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on an element Dk. Then the matrix forms of (18), (19), (20) are given by

MΘi = Qiv +
1

2
E
T
f Mf JvK ◦ ni

MΣi =
d∑

j=1

MKijΘi

MGvisc =

d∑

j=1

−Q
T
i Σi + E

T
f Mf {{Σi}} ◦ ni − E

T
f MfΛviscJvK.

Here, ni denotes the ith component of the outward normal scaled by the surface Jacobian, and
Θi,Σi, Gvisc, Kij , and Λvisc denote discrete versions of Θi,σi, Gvisc, Kij , and Λvisc in (18), (19),
(20). The corresponding SBP version of Lemma 3.1 is

∑

k

v
T
MGvisc =

∑

k




d∑

i,j=1

−Θ
T
i MKijΘj −

1

2
JvKTMfΛviscJvK


 ≤ 0

We also note that this SBP discretization of the viscous terms differs from [61] in the treatment of
the spatially varying coefficients; whereas the spatially varying coefficients are incorporated into the
interface SBP-SATs (simultaneous approximation terms) in [61], we “lump” the spatially varying
coefficients Kij into the Σ variables.

This framework is applicable to SBP nodal distributions both with and without boundary nodes.
For SBP nodal distributions with collocated face nodes (e.g., “diagonal-E” nodal distributions in
[16]), then the viscous discretization given by (18), (19),(20) reduces to the viscous discretization
described in [4]. If Λvisc = 0, we recover the entropy stable BR1 discretization in [63].

Appendix C. Isothermal no-slip wall conditions

We briefly mention the case of isothermal no-slip wall boundary conditions, which impose tan-
gential wall velocity conditions and a fixed temperature at the wall

ui = ui,wall, i = 1, . . . , d, T = Twall.

Under these conditions, the continuous entropy balance (11) yields

∫

Ω

∂S(u)

∂t
≤

∫

∂Ω

d∑

i=1

(
1

cvT
κ
∂T

∂xi
− Fi(u)

)
ni =

∫

∂Ω

d∑

i=1

1

cvT
κ
∂T

∂xi

where the latter term vanishes by the definition of Fi(u) (7) and un = 0. However, since the sign
of the former term cannot be determined, this boundary condition does not result in an entropy
inequality. However, it is possible to impose boundary conditions such that the resulting semi-
discrete entropy balance mimics this continuous entropy balance.

To impose T = Twall, we use that v4 = −1/e = −1/(cvT ) and set the exterior state v+4 as

v+4 = −
2

cvTwall
− v4, σ+

4,i = σ4,i, i = 1, 2,
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such that {{v4}} = −1/(cvTwall) and {{σ4,i}} = σ4,i. We also incorporate Twall into the exterior
values v+2 , v

+
3 .

We have the following theorem characterizing entropy balance under isothermal wall boundary
conditions:

Theorem Appendix C.1. Let Gvisc denote viscous contributions from (18), (19), and (20). If
isothermal no-slip wall boundary conditions are imposed by setting the exterior states for i = 1, . . . , d
in d = 2 dimensions

v+1+i =
2ui,wall

cvTwall
− v1+i

v+4 = −
2

cvTwall
− v4

σ+
2,i = σ2,i,

σ+
3,i = σ3,i,

σ+
4,i = σ4,i,

then the viscous contribution Gvisc mimics the entropy balance such that

∑

k

(Gvisc,v)Dk =

d∑

i=1

〈
qn

cvTwall
, 1

〉

∂Ω

−
∑

k




d∑

i,j=1

(KijΘj ,Θi)Dk


 .

Here, we have introduced the normal heat flux qn =
∑d

i=1 qini, where qi is defined as

qi = −σ4,i + u1,wallσ2,i + u2,wallσ3,i ≈ −κ
∂T

∂xi
.

Proof. Under this choice of exterior states, the boundary terms in (22) simplify to

d∑

i=1

[
1

2
〈JvKni,σini〉∂Ω + 〈{{σi}}ni,v〉∂Ω

]
=

d∑

i=1

〈
u1,wall

cvTwall
− v2, σ2,ini

〉

∂Ω

+ 〈σ2,ini, v2〉∂Ω

+

d∑

i=1

〈
u2,wall

cvTwall
− v3, σ3,ini

〉

∂Ω

+ 〈σ3,ini, v3〉∂Ω

+

d∑

i=1

〈
−

1

cvTwall
− v4, σ4,ini

〉

∂Ω

+ 〈σ4,i, v4ni〉∂Ω

=
d∑

i=1

〈
−σ4,i + u1,wallσ2,i + u2,wallσ3,i︸ ︷︷ ︸

qi

,
1

cvTwall
ni

〉

∂Ω

=

〈
qn

cvTwall
, 1

〉

∂Ω

.
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(a) r(t) and
〈

qn
cvTwall

, 1
〉

∂Ω

(b) (Gvisc,v)Ω

Figure C.6: Evolution of the viscous entropy dissipation (Gvisc,v)Ω and viscous entropy residual r(t) for the lid-
driven cavity under an isothermal wall boundary condition of T = 1.

Since the wall temperature Twall is assumed to be positive, this boundary contribution does
not vanish and the resulting discretization cannot be proven to be entropy stable. However, the
boundary contribution mimics the boundary terms in the continuous entropy balance equation
(10), which do not vanish at isothermal walls. We note that this mimetic property is not unique
to our imposition of boundary conditions, and that the method of imposing isothermal boundary
conditions in [28] also semi-discretely mimics the continuous entropy inequality.

We now present numerical results for isothermal boundary conditions. We verify Theorem Ap-
pendix C.1 using an isothermal lid-driven cavity problem with temperature T = 1 imposed on all
boundaries. The solutions at Tfinal = 100 are nearly identical visually to the solutions in Figure 2,
and are not shown for brevity. Figure C.6a shows the evolution of the viscous entropy residual r(t)

and the boundary contribution
〈

qn
cvTwall

, 1
〉
∂Ω

over time. These two quantities are identical up to

machine precision. Finally, Figure C.6b shows the viscous entropy dissipation (Gvisc,v)Ω. Since
isothermal boundary conditions do not result in provably entropy dissipative boundary contribu-
tions, we see that this contribution is positive near the beginning of the simulation.
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