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Abstract

The interest in channel models in which the data is sent as an unordered set of binary strings has increased lately, due to
emerging applications in DNA storage, among others. In this paper we analyze the minimal redundancy of binary codes for this
channel under substitution errors, and provide several constructions, some of which are shown to be asymptotically optimal up
to constants. The surprising result in this paper is that while the information vector is sliced into a set of unordered strings, the
amount of redundant bits that are required to correct errors is order-wise equivalent to the amount required in the classical error
correcting paradigm.

I. INTRODUCTION

Data storage in synthetic DNA molecules suggests unprecedented advances in density and durability. The interest in DNA
storage has increased dramatically in recent years, following a few successful prototype implementations [2], [7], [4], [16].
However, due to biochemical restrictions in synthesis (i.e., writing) and sequencing (i.e., reading), the underlying channel
model of DNA storage systems is fundamentally different from its digital-media counterpart.

Typically, the data in a DNA storage system is stored as a pool of short strings that are dissolved inside a solution, and
consequently, these strings are obtained at the decoder in an unordered fashion. Furthermore, current technology does not
allow the decoder to count the exact number of appearances of each string in the solution, but merely to estimate relative
concentrations. These restrictions have re-ignited the interest in coding over sets, a model that also finds applications in
transmission over asynchronous networks (see Section III).

In this model, the data to be stored is encoded as a set of M strings of length L over a certain alphabet, for some
integers M and L such that M < 2%; typical values for M and L are currently within the order of magnitude of 107 and 102,
respectively [16]. Each individual strings is subject to various types of errors, such as deletions (i.e., omissions of symbols,
which result in a shorter string), insertions (which result in a longer string), and substitutions (i.e., replacements of one symbol
by another). In the context of DNA storage, after encoding the data as a set of strings over a four-symbol alphabet, the
corresponding DNA molecules are synthesized and dissolved inside a solution. Then, a chemical process called Polymerase
Chain Reaction (PCR) is applied, which drastically amplifies the number of copies of each string. In the reading process,
strings whose length is either shorter or longer than L are discarded, and the remaining ones are clustered according to their
respective edit-distance'. Then, a majority vote is held within each cluster in order to come up with the most likely origin of
the reads in that cluster, and all majority winners are included in the output set of the decoding algorithm (Figure 1).

One of the caveats of this approach is that errors in synthesis might cause the PCR process to amplify a string that was
written erroneously, and hence the decoder might include this erroneous string in the output set. In this context, deletions and
insertions are easier to handle since they result in a string of length different from? L. Substitution errors, however, are more
challenging to combat, and are discussed next.

A substitution error that occurs prior to amplification by PCR can induce either one of two possible error patterns. In one,
the newly created string already exists in the set of strings, and hence, the decoder will output a set of M — 1 strings. In the
other, which is undetectable by counting the size of the output set, the substitution generates a string which is not equal to
any other string in the set. In this case the output set has the same size as the error free one. These error patterns, which are
referred to simply as substitutions, are the main focus of this paper.

Following a formal definition of the channel model in Section II, previous work is discussed in Section III. Upper and lower
bounds on the amount of redundant bits that are required to combat substitutions are given in Section IV. In Section V we
provide a construction of a code that can correct a single substitution. This construction is shown to be optimal up to some
constant, which is later improved in Appendix C. In Section VI the construction for a single substitution is generalized to
multiple substitutions, and is shown to be order-wise optimal whenever the number of substitutions is a constant. To further
improve the redundancy, we present a sketch of another code construction in Section VII. The code is capable of correcting
with optimal redundancy up to a constant. Finally, open problems for future research are discussed in Section VIII.

Remark 1. The channel which is discussed in this paper can essentially be seen as taking a string of a certain length N as
input. Then, during transmission, the string is sliced into substrings of equal length, and each substring is subject to substitution
errors in the usual sense. Moreover, the order between the slices is lost during transmission, and they arrive as an unordered
set.

IThe edit distance between two strings is the minimum number of deletions, insertions, and substitutions that turn one to another.
2As long as the number of insertions is not equal to the number of deletions, an event that occurs in negligible probability.
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Fig. 1. An illustration of a typical operation of a DNA storage system. The data at hand is encoded to a set of M binary strings of length L each. These strings
are then synthesized, possibly with errors, into DNA sequences, that are placed in a solution and amplified by a PCR process. Then, the DNA sequences are
read, clustered by similarity, and the output set is decided by a majority vote. In the illustrated example, one string is synthesized in error, which causes the
output set to be in error. If the erroneous string happens to be equal to another existing string, the output set is of size M — 1, and otherwise, it is of size M.

It follows from the sphere-packing bound [18, Sec. 4.2] that without the slicing operation, one must introduce at least K log(N')
redundant bits at the encoder in order to combat K substitutions. The surprising result of this paper, is that the slicing operation
does not incur a substantial increase in the amount of redundant bits that are required to correct these K substitutions. In the
case of a single substitution, our codes attain an amount of redundancy that is asymptotically equivalent to the ordinary (i.e.,
unsliced) channel, whereas for a larger number of substitutions we come close to that, but prove that a comparable amount
of redundancy is achievable.

II. PRELIMINARIES

To discuss the problem in its most general form, we restrict our attention to binary strings. For Lintegers M and L such
that’ M < 2" we denote by (1%1J7) the family of all subsets of size M of {0,1}%, and by ({2\5 ) the family of subsets
of size at most M of {0,1}L. In our channel model, a word is an element W € ({0}\1J}L)’ and a code C C ({0}\1J}L) is a set
of words (for clarity, we refer to words in a given code as codewords). To prevent ambiguity with classical coding theoretic
terms, the elements in a word W = {x1,...,x,} are referred to as strings. We emphasize that the indexing in W is merely
a notational convenience, e.g., by the lexicographic order of the strings, and this information is not available at the decoder.

For K < ML, a K-substitution error (K -substitution, in short), is an operation that changes the values of at most K
different positions in a word. Notice that the result of a K -substitution is not necessarily an element of ({O}Vlf}L), and might

be an element of ({Oé}L) for some M — K < T < M. This gives rise to the following definition.

Definition 1. For a word W € ({O}\}}L), a ball Bx(W) C UinM_K ({O’J}L) centered at W is the collection of all subsets
of {0, 1}* that can be obtained by a K-substitution in W.

Example 1. For M =2, L =3, K =1, and W = {001,011}, we have that
By (W) = {{001,011}, {101,011}, {011}, {000,011}, {001, 111}, {001}, {001, 010} }.

In this paper, we discuss bounds and constructions of codes in ({O}VII}L) that can correct K substitutions (X -substitution
codes, for short), for various values of K. The size of a code, which is denoted by |C|, is the number of codewords (that is,
sets) in it. The redundancy of the code, a quantity that measures the amount of redundant information that is to be added to
the data to guarantee successful decoding, is defined as 7(C) £ log (3&) —log(|C|), where the logarithms are in base 2.

3We occasionally also assume that M < 2¢L for some 0 < ¢ < 1. This is in accordance with typical values of M and L in contemporary DNA storage
prototypes (see Section I).



A code C is used in our channel as follows. First, the data to be stored (or transmitted) is mapped by a bijective encoding
function to a codeword C' € C. This codeword passes through a channel that might introduce up to K substitutions, and as
a result a word W € Bg/(C) is obtained at the decoder. In turn, the decoder applies some decoding function to extract the
original data. The code C is called a K -substitution code if the decoding process always recovers the original data successfully.
Having settled the channel model, we are now in a position to formally state our contribution.

Theorem 1. (Main) For any integers M, L, and K such that M < 2L/(4K+2), there exists an explicit code construction with
redundancy O(K?log(M L)) (Section VI). For K = 1, the redundancy of this construction is at most six times larger than the
optimal one (Section V). Furthermore, an improved construction for K = 1 achieves redundancy which is at most three times
the optimal one (Appendix C).

In addition, we sketch an additional construction which achieves optimal redundancy for small (but non-constant) values
of K. The full proof will appear in future versions of this paper.

Theorem 2. For integers M, L, and K that satisfy L' + AKL' + 2K log(4KL') < L, where L' = 3log M + 4K? + 1, there
exists an explicit code construction with redundancy 2K log ML+ (12K +2)log M +O(K?3)+O(K loglog M L) (Section VII).
The redundancy is at most 14 times the optimal one.

A few auxiliary notions are used throughout the paper, and are introduced herein. For two strings s, t € {0, 1}¥, the Hamming
distance dy (s, t) is the number of entries in which they differ. To prevent confusion with common terms, a subset of {0, 1}
is called a vector-code, and the set BH(s) of all strings within Hamming distance D or less of a given string s is called the
Hamming ball of radius D centered at s. A linear vector code is called an [n, k], code if the strings in it form a subspace of
dimension k in Fy;, where F is the finite field with ¢ elements.

Several well-known vector-codes are used in the sequel, such as Reed-Solomon codes or Hamming codes. For an integer ¢,
the Hamming code is an [2¢ —1,2¢ —¢—1]5 code (i.e., there are ¢ redundant bits in every codeword), and its minimum Hamming
distance is 3. Reed-Solomon (RS) codes over I, exist for every length n and dimension k, as long as ¢ > n — 1 [18, Sec. 5],
and require n — k redundant symbols in F,. Whenever ¢ is a power of two, RS codes can be made binary by representing each
element of I, as a binary string of length log,(q). In the sequel we use this form of RS code, which requires log(n)(n — k)
redundant bits.

Finally, our encoding algorithms make use of combinatorial numbering maps [10], that are functions that map a number
to an element in some structured set. Specifically, Feom : {1,..., (Aj\g)} —{S:S5c{l,...,N},|S| = M} maps a number
to a set of distinct elements, and Fperp, : {1,..., N!} — Sy maps a number to a permutation in the symmetric group Sy .
The function Fi,,, can be computed using a greedy algorithm with complexity O(M N log N), and the function Fjeppm,
can be computed in a straightforward manner with complexity O(N log N). Using Fom and Fperp, together, we define a
map F: {1,...,(3)M!} — {S:S c {1,...,N},|S| = M} x Sy that maps a number into an unordered set of size M
together with a permutation. Generally, we denote scalars by lower-case letters x,y, ..., vectors by bold symbols x,y,...,
integers by capital letters K, L, ..., and [K] £ {1,2,...,K}.

III. PREVIOUS WORK

The idea of manipulating atomic particles for engineering applications dates back to the 1950’s, with R. Feynman’s famous
citation “there’s plenty of room at the bottom” [5]. The specific idea of manipulating DNA molecules for data storage as been
circulating the scientific community for a few decades, and yet it was not until 2012-2013 where two prototypes have been
implemented [2], [7]. These prototypes have ignited the imagination of practitioners and theoreticians alike, and many works
followed suit with various implementations and channel models [1], [6], [8], [9], [17], [21].

By and large, all practical implementations to this day follows the aforementioned channel model, in which multiple short
strings are stored inside a solution. Normally, deletions and insertions are also taken into account, but substitutions were found
to be the most common form of errors [16, Fig. 3.b], and strings that were subject to insertions and deletions are scarcer, and
can be easily discarded.

The channel model in this work has been studied by several authors in the past. The work of [8] addressed this channel
model under the restriction that individual strings are read in an error free manner, and some strings might get lost as a result
of random sampling of the DNA pool. In their techniques, the strings in a codeword are appended with an indexing prefix, a
solution which already incurs ©(M log M) redundant bits, or log(e)M — o(1) redundancy [14, Remark 1], and will be shown
to be strictly sub-optimal in our case.

The recent work of [14] addressed this model under substitutions, deletions, and insertions. When discussing substitutions
only, [14] suggested a code construction for K = 1 with 2L + 1 bits of redundancy. Furthermore, by using a reduction to
constant Hamming weight vector-codes, it is shown that there exists a code that can correct e errors in each one of the M
sequences with redundancy Melog(L + 1).

The work of [11] addressed a similar model, where multisets are received at the decoder, rather than sets. In addition, errors
in the stored strings are not seen in a fine-grained manner. That is, any set of errors in an individual string is counted as a single



error, regardless of how many substitutions, insertions, or deletions it contains. As a result, the specific structure of {0, 1} is
immaterial, and the problem reduces to decoding histograms over an alphabet of a certain size.

The specialized reader might suggest the use of fountain codes, such as the LT [15] codes or Raptor [19] codes. However,
we stress that these solutions rely on randomness at much higher redundancy rates, whereas this work aims for a deterministic
and rigorous solution at redundancy which is close to optimal.

Finally, we also mention the permutation channel [12], [13], [20], which is similar to our setting, and yet it is farther away
in spirit than the aforementioned works. In that channel, a vector over a certain alphabet is transmitted, and its symbols are
received at the decoder under a certain permutation. If no restriction is applied over the possible permutations, than this channel
reduces to multiset decoding, as in [11]. This channel is applicable in networks in which different packets are routed along
different paths of varying lengths, and are obtained in an unordered and possibly erroneous form at the decoder. Yet, this line
of works is less relevant to ours, and to DNA storage in general, since the specific error pattern in each “symbol” (which
corresponds to a string in {0, 1}* in our case) is not addressed, and perfect knowledge of the number of appearances of each
“symbol” is assumed.

IV. BOUNDS

In this section we use sphere packing arguments in order to establish an existence result of codes with low redundancy, and
a lower bound on the redundancy of any K-substitution code. The latter bound demonstrates the asymptotic optimality of the
construction in Section V for K = 1, up to constants, and near-optimality of the code in Section VII. Our techniques rely on
upper and lower bounds on the size of the ball Bx (Definition 1), which are given below. However, since our measure for
distance is not a metric, extra care is needed when applying sphere-packing arguments. We begin with the existential upper
bound in Subsection IV-A, continue to provide a lower bound for &' = 1 in Subsection IV-B, and extend this bound to larger
values of K in Subsection IV-C.

A. Existential upper bound

In this subsection, let K, M, and L be positive integers such that K < ML and M < 2L The subsequent series of lemmas
will eventually lead to the following upper bound.

Theorem 3. There exists a K-substitution code C C ({OﬁI}L) such that r(C) < 2K log(ML) + 3.

We begin with a simple upper bound on the size of the ball Bg.

Lemma 1. For every word W = {x;}M, € ({O}\Z}L) and every positive integer K < ML, we have that |Bxg(W)| <
K (ML

Xm0 (),

Proof. Every word in B (W) is obtained by flipping the bits in x; that are indexed by some J; C [L], for every i € [M],

where Zi\il |J;| < K. Clearly, there are at most Zf:o (M;L) ways to choose the index sets {J; } . O

For W € ({OéﬁL) let R (W) be the set of all words U € ({O’I&[}L) such that W € By (U). That is, for a channel output W,
the set Ry (W) contains all potential codewords U whose transmission through the channel can result in W, given that at
most K substitutions occur. Further, for W € ({O}\Z}L) define the confusable set of W as D (W) £ Uyrep, vy R (W').
It is readily seen that the words in the confusable set D (W) of a word W cannot reside in the same K -substitution code
as W, and therefore we have the following lemma.

Lemma 2. For every K, M, and L such that K < ML and M < 2L there exists a K -substitution code C such that
(2L)
C| > | ML h
IC] > { D J , where

D2 max |[Dg(W)|.
we (1)

Proof. Initialize a list P = ({0.)\14}L)’ and repeat the following process.

1) Choose W € P.
2) Remove Dy (W) from P.

Clearly, the resulting code C is of the aforementioned size. It remains to show that C corrects K substitutions, i.e., that Bx (C)N
Bk (C") = @ for every distinct C,C" € C.

Assume for contradiction that there exist distinct C,C’ € C and V € ({0<}v}[L) such that V' € Bg (C) N Bk (C’), and w.l.o.g
assume that C' was chosen earlier than C’ in the above process. Since V' € B (C), it follows that R (V) C D (C). In
addition, since V' € By (C”), it follows that C' € Ry (V). Therefore, a contradiction is obtained, since C’ is in Dk (C), that

was removed from the list P when C' was chosen. O



Lemma 3. For an nonnegative integer T < K and W € ({]SI{}TL) we have that |[Ri(W)| < 2(2M L)X

Proof. Denote W = {yi,...,ym—71} and let U € Rg(W). Notice that by the definition of Ry (W), there exists a K-
substitution operation which turns U to W. Therefore, every y; in W is a result of a certain nonnegative number of substitutions

in one or more strings in U. Hence, we denote by z1, ... ,z}l the strings in U that resulted in y; after the K-substitution
operation, we denote by z?, ... ,zfQ the strings which resulted in y2, and so on, up to zM T, . ,z% if, which resulted
in ys_7. Therefore, since U = UM T{zl, . ,zﬁj , it follows that there exists a set £ C [M] x [L], of size at most K, such
that
1 L
z! V1 (£)
] :
Zi, y1
2
z y2
: = : ; (1
M—-T—-1
mew,pl YM-T-1
z) YMm-1T
M-T ,
Zi 0 Yum-T

where (-)(‘:) is a matrix operator, which corresponds to flipping the bits that are indexed by £ in the matrix on which it
operates. In what follows, we bound the number of ways to choose £, which will consequently provide a bound on |R x (W)].
First, define P = {p : i, > 1}, and denote P £ |P|. Therefore, since Z;ZIT i; = M, it follows that

Zzpfzz] > ij=M-(M-T—-P)=T+P. 2)

pEP i¢P
Second, notice that for every p € P, the set {z], ... ,zfp} contains %, different strings. Hence, since after the K'-substitution

operation they are all equal to y,, it follows that at least ¢, — 1 of them must undergo at least one substitution. Clearly, there
are (Z lﬁl) = i, different ways to choose who will these 4, — 1 strings be, and additional L»~! different ways to determine
P

the locations of the substitutions, and therefore 4, - L?»~! ways to choose these i, — 1 substitutions.
Third, notice that

K-> (p-1)=K-> i,+PEK T, 3)
peEP peP

and hence, there are at most K — 7" remaining positions to be chosen to £, after choosing the i, — 1 positions for every p € P
as described above.

Now, let Z be the set of all tuples ¢1,...,ip/—7 of positive integers that sum to M (whose size is ( MAf Tl ) by the famous
stars and bars theorem). Let N : Z — N be a function which maps (i1, . ..,ip—7) € Z to the number of different U € R x (W)

for which there exist £ C [M] x [L] of size at most K such that (1) is satisfied. Since this quantity is at most the number of
ways to choose a suitable £, the above arguments demonstrate that

. . ML i
N(’Ll,...,ZM,T)S (K—T) HZPLP 1
peP

Then, we have

. ML .
|RK Z Zl,...,lk[T)§;<K_T> HZPL 1

z peP

Z (ML)YK=T 1201 H < Z (MLYS=TLT H . 4)
s

peP pEP



/P
Since the geometric mean of positive numbers is always less than the arithmetic one, we have (Hpep ip) < % Zpep ips
and hence,

@< YOt (B) TS Sy (4 )Py

< (M]\i[ 7 1_ 1) (ML)X=TLT((T + P)/P)" < (ij> (ML)STLT(T + P)/P)"

< (MLRTT(ML)T((T + P)/P)T < (ML)®((T + P)/P)"

(a)
< (ML)¥2" < (2M L)X, (%)
where (a) will be proved in Appendix D. O

Proof. (of Theorem 3) It follows from Lemma 1, Lemma 3, and from the definition of D that

D< max |Bi(W)-  max |RK<W>|s<Z (Mf)><2ML>K

WE({U}xlf}L) We({o}xlf}L) £=0

Therefore, the code C that is constructed in Lemma 2 satisfies
oL X /ML X
r(C) < log (M) —log|C| < log ((% ( ’ )) (2ML) )
K
(3
0

L

g(K( ))+Klog(ML)+1)

og(K) —log(K!) + log(ML")) + K (log(ML) + 1) < 2K log(ML) + 2. O

<ML ) + K(log(ML) + 1)
M

I /\

I N

B. Lower bound for a single substitution code

Notice that the bound in Lemma 1 is tight, e.g., in cases where dg (x;,x;) > 2K + 1 for all distinct 4, j € [M]. This might
occur only if M is less than the maximum size of a K -substitution correcting vector-code, i.e., when M < 2L/(Zfi0 (f)) [18,
Sec. 4.2]. When the minimum Hamming distance between the strings in a codeword is not large enough, different substitution
errors might result in identical words, and the size of the ball is smaller than the given upper bound.

Example 2. For L = 4 and M = 2, consider the word W = {0110,0111}. By flipping either the two underlined symbols,
or the two bold symbols, the word W' = {0110,1110} is obtained. Hence, different substitution operation might result in
identical words.

However, in some cases it is possible to bound the size of Bx from below by using tools from Fourier analysis of Boolean
functions. In the following it is assumed that M < 20-9L for some 0 < € < 1, and that K = 1. A word W € ({Oi[}L)
corresponds to a Boolean function fy : {£1}* — {1} as follows. For x € {0,1}¥ let X € {1} be the vector which is
obtained from x be replacing every 0 by 1 and every 1 by —1. Then, we define fy (X) = —1 if x € W, and 1 otherwise.
Considering the set {+1}% as the hypercube graph®, the boundary 0 fw of fy is the set of all edges {x;,x2} € ({i;}L) in
this graph such that fy(x1) # fw (x2).

Lemma 4. For every word W € ({OAZ}L) we have that |By(W)| > |0 fw|.

Proof. Every edge e on the boundary of fy corresponds to a substitution operation that results in a word W, € By (W) N
({Oi[}L). To show that every edge on the boundary corresponds to a unique word in By (W), assume for contradiction that W, =
W, for two distinct edges e = {X1,X2} and ¢/ = {¥,,¥,}, where x1,y; € W and x3,y2 ¢ W. Since both W, and W,
contain precisely one element which is not in ¥/, and are missing one element which is in W, it follows that x; = y;
and xo = yo, a contradiction. Therefore, there exists an injective mapping between the boundary of fy and B; (W), and the
claim follows. |

Notice that the bound in Lemma 4 is tight, e.g., in cases where the minimum Hamming distance between the strings of W
is at least 2. This implies the tightness of the bound which is given below in these cases. Having established the connection

4The nodes of the hypercube graph of dimension L are identified by {41}, and every two nodes are connected if and only if the Hamming distance
between them is 1.



between B1 (W) and the boundary of fy, the following Fourier analytic claim will aid in proving a lower bound. Let the total
influence of fy be I(fw) = Zle Prx(fw (x) # fw (x¥7)), where x¥* is obtained from x by changing the sign of the i-th
entry, and x is chosen uniformly at random.

Lemma 5. [3, Theorem 2.39] For every function f : {+1} — R, we have that I(f) > 2alog(1/a), where a = a(f) =
min{Prx(f(x) = 1), Prx(f(x) = —1)}, and x € {£1}* is chosen uniformly at random.
Lemma 6. For every word W € ({OAZ}L) we have that |0 fw| > eM L.

Proof. Since M < 20=9% and a = a( fw) = min{ (2% — M)/2%, M/2"}, it follows that o = M /2" whenever L > L, which
holds for every non-constant L. In addition, since Pry(fi (X) # fw (X®")) equals the fraction of dimension i edges that lie
on the boundary of fi ([3, Fact 2.14]), Lemma 4 implies that

0 fw|

I(fW) = 9L-1 "
Therefore, since M < 20179 and from Lemma 5 we have that |0 fw| = 2° "I (fw) > 2Falog(1/a) = M log(2X /M) >
eML. O

Corollary 1. For integers L and M and a constant 0 < € < 1 such that M < 20=9L any 1-substitution code C C ({O}éj}L)

satisfies that r(C) > log(M L) — O(1).

Proof. According to Lemma 4 and Lemma 6, every codeword of every C excludes at least e M L other words from belonging
L

to C. Hence, we have that |C| < (?\4) /eM L, and by the definition of redundancy, it follows that

r(C) =log (?\/L[) —log(|C]) > log(eM L) =log(ML) — O(1). O

C. Lower bound for more than one substitution

Similar techniques to the ones in Subsection IV-B can be used to obtain a lower bound for larger values of K. Specifically,
we have the following theorem.

Theorem 4. FO); integers L, M, K, and positive constants €,c < 1 such that M < 20-9L gnd K < cev M, a K-substitution
code C C ({0}\14} ) satisfies that r(C) > K (log(M L) — 2log(K)) — O(1).

To prove this theorem, it is shown that certain special K -subsets of J fy correspond to words in B (W), and by bounding
the number of these special subsets from below, the lower bound is attained. A subset of K boundary edges is called special, if
it does not contain two edges that intersect on a node (i.e., a string) in . Formally, a subset S C 0 fyy is special if |S| = K,
and for every {x1,y1}, {x2,y2} € S with fw(X1) = fw(X2) = —1 and fw(¥;) = fw(¥5) = 1 we have that x; # x2. We
begin by showing how special sets are relevant to proving Theorem 4.

Lemma 7. For every word W € ({OAZ}L) we have that |Byx (W)| > l{SgafWE(l;f speczal}|.

Proof. Tt is shown that every special set corresponds to a word in By (W), and at most K different special sets can
correspond to the same word (namely, there exists a mapping from the family of special sets to Bx (W), which is at most K%
to 1). Let S = {{x;,yi}}£, be special, where fi/(X;) = —1 and fw(y;) = 1 for every i € [K]. Let Ws € ({OSR]}L)
be obtained from W by removing the x;’s and adding the y;’s, i.e., Ws = (W \ {x}E ) u{y}EL, for some T < K;
notice that there are exactly K distinct x;’s but at most K distinct y;’s, since S is special, and therefore we assume w.l.0.g
that yi,...,yr are the distinct y;’s. It is readily verified that Ws € Bg (W), since Ws can be obtained from W by
performing K substitution operations in W, each of which corresponds to an edge in S. Moreover, every S corresponds to
a unique surjective function fs : [K] — [T] such that fs(i) = j if there exists j < T such that {x;,y;} € S, and hence at
most KT < K¥ different special sets S can correspond to the same word in By (W). O

We now turn to prove a lower bound on the number of special sets.

Lemma 8. If there exists a positive constant ¢ < 1 such that K < ¢ - e\/ M, then there are at least (1 — 02)(‘8{(“") special
sets S C Ofw.

Proof. Clearly, the number of ways to choose a K -subset of Jf;r which is nor special, i.e., contains K distinct edges of 0 fy
but at least two of those are adjacent to the same x € W, is at most

v (z) (W)= () a6




Observe that the multiplier of (laf(w‘) in the above expression can be bounded as follows.

Y L K(K-1) <M L K(K-1)
2) (|9fw]l-K+2)(|ofw|—-K+1) — 2) (eML—-K+2)(eML—-K +1)
K2
€e2M2L2’
where the former inequality follows since |0 fy/| > eM L by Lemma 6; the latter inequality follows since K < cey/M implies

that c ML - K+2>eML—-K+1> % - eM L whenever \;5‘/?1 < L+/M, which holds for every non-constant M and L.
Therefore, since

<M-L?.

9 K? K2 9
M e = =
it follows that these are at least (1 — c2) - (1/%]) special subsets in 8 fy . O

eML

% ) for every W € ({0}\14}L), from which we can prove

Lemma 7 and Lemma 8 readily imply that |Bx (W)| > (1;—}2(2)(
Theorem 4.

Proof. (of Theorem 4) Clearly, no two K-balls around codewords in C can intersect, and therefore we must have |C| <
L
(?w)/ minywec |Br (W)|. Therefore,

rie) = tog (3 ) ~oglel > 10g (L2 (1))

= log (d\éL) — Klog(K) — O(1)

> log <(€ML — 1)K> ~ Klog(K) — O(1)

(%EML)K

KK

> log — Klog(K) —0O(1)

- K (1og(%) + 1og(ML))) — 9K log(K) — O(1)
> Klog(ML) — 2K log(K) — O(K) O

V. CODES FOR A SINGLE SUBSTITUTION

In this section we present a l-substitution code construction that applies whenever M < 25/6 whose redundancy is
at most 3log ML 4 3log M + O(1). For simplicity of illustration, we restrict our attention to values of M and L such
that log M L + log M < M. In the remaining values, a similar construction of comparable redundancy exists.

51,3
Theorem 5. For D = {1,..., (QL;; 1) (M)? . 23M—=3log ML=3log M=6 "there exist an encoding function E : D — ({Oi[}L)

whose image is a single substitution correcting code.

The idea behind Theorem 5 is to concatenate the strings in a codeword C' = {x;}}, in a certain order, so that classic
1-substitution error correction techniques can be applied over the concatenated string. Since a substitution error may affect
any particular order of the x;’s, we consider the lexicographic orders of several different parts of the x;’s, instead of the
lexicographic order of the whole strings. Specifically, we partition the x;’s to three parts, and place distinct strings in each of
them. Since a substitution operation can scramble the order in at most one part, the correct order will be inferred by a majority
vote, so that classic substitution error correction can be applied. ‘ ‘

Consider a message d € D as a tuple d = (di,...,ds), where d; € {1,...,(2LI/;1)}, ds,ds € {1,..., (QLj\;l)M!},
and do,dy, dg € {1,...,2M-log ML=log M=2} " Apply the functions Fiom, Fperm, and F' (see Section II) to obtain

Fcom(dl) = {al,...,aM},
F(d3) = ({bl,...,bM},O'),
F(ds) = ({c1,...,cm}, ), (6)
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Fig. 2. This figure illustrates the three different M Xx L binary matrices which results from placing the strings {xl}g 1 on top of one another in various
orders. That is, every row in the above matrices equals to some x;. Notice that the strings z1, z2, and z3 constitute three M X 1 columns, that contain
the bits of (d2, Fr(d2), Eg(s1)), (d4, Eg(da), Eg(s2)), and (de, Eg(de), Er(s3)) respectively. For example, when sorting the x;’s according to
the a;’s (top figure), the bits of d2, Fr(d2), and Ef(s1) appear consecutively.

where a;, b;, c; € {0,1}/371 for every i € [M], the permutations o and 7 are in Sy, and the indexing of {a;}M,, {b;}£,,

and {c; f‘il is lexicographic. Further, let da, d4, and dg be the binary strings that correspond to ds, d4, and dg, respectively,
and let

s1 = (a1, oA, boay, .- beary, €1y, oo Cxa) )
S2 = (aafl(l)a oo aaa'*l(lbf)abla HR ab]Wa Co—lnm(1)) --- aca'*lﬂ'(lbf))a and
S3 = (aﬂ.71(1), . ,aﬂ.71(jw),bﬂ.710(1), “. ,bﬂ.—lo.(]\/f),C1, ... sCm ) (7)

Without loss of generality’ assume that there exists an integer ¢ for which |s;| = (L —3)M = 2¢ —¢ — 1 for all i € [3].
Then, each s; can be encoded by using a systematic [2t —1,2¢ — ¢ — 1], Hamming code, by introducing ¢ redundant bits. That
is, the encoding function is of the form s; — (s;, Ex(s;)), where Ey(s;) are the ¢ redundant bits, and ¢ < log(M L) + 1.
Similarly, we assume that there exists an integer h for which |d;| = 2" — h — 1 for i € {2,4,6}, and let Ex(d;) be the
corresponding h bits of redundancy, that result from encoding d; by using a [2" — 1,2" — h — 1] Hamming code. By the
properties of a Hamming code, and by the definition of h, we have that h < log(M) + 1.

The data d € D is mapped to a codeword C' = {x3,...,xp} as follows, and the reader is encouraged to refer to Figure 2
for clarifications. First, we place {a;}},, {b;}},, and {c;}}, in the different thirds of the x;’s, sorted by o and 7. That is,

SEvery string can be padded with zeros to extend its length to 2¢ — ¢t — 1 for some t. It is readily verified that this operation extends the string by at most
a factor of two, and by the properties of the Hamming code, this will increase the number of redundant bits by at most 1.



denoting x; = (x; 1,...,%; 1), we define

(%‘,1, s 7$i,L/3—1) = a,,
(T4,0/3415 -+ Ti20./3—1) = bg(s), and
(Ti20/341) - > Ti,L—1) = Cr(i)- (8)

The remaining bits {@; 1,3}, {2i 21,3}, and {z; 1}, are used to accommodate the information bits of dz,d4, ds, and
the redundancy bits { E(s;)};_; and {Er(di)}ic(2,4,6}. in the following manner.

doi, ift <M —logML —logM — 2
T3 = En(d2)i(m—tog ML—10g m—2), if M —log ML —logM —1<i<M —logML~—1,
EH(Sl)i—(]M—logML—l), if M —logML<i<M,
dai, if o71(i) <M —log ML —log M — 2
Tion/3 = Er(da)i(M—tog ML—1log M—2), if M —log ML —logM —1<o""(i) <M —logML—-1,
Er(82)i-(M—-10g ML-1): if M —logML <o~ (i) <M,
de,i if 71(i)) <M —log ML —logM — 2
i, = En(de)i—(M—tog ML—log M—2), if M —log ML —logM —1 <7 '(i)) <M —logML—1. 9)
Er(83)i—(M—log ML—1)5 if M —logML <7 '(i) <M,
That is, if the strings {x;}}£, are sorted according to the content of the bits (21,...,2;/3-1) = a;, then the top
M — log M Llog M — 2 bits of the (L/3)’th column® contain ds, the middle log M + 1 bits contain Ex(ds), and the
bottom log M L + 1 bits contain Ep(s1). Similarly, if the strings are sorted according to (; /341, .., %;21,/3—1) = bs, then

the top M — log M Llog M — 2 bits of the (2L/3)’th column contain d4, the middle log M + 1 bits contain Er(ds), and
the bottom log M L + 1 bits contain Ex(sz2), and so on. This concludes the encoding function E of Theorem 5. It can be
readily verified that £ is injective since different messages result in either different ({a;},{b;}M,.{c;}},) or the same
({a: M, {(b;}M, {c;}M,) with different (d2,d4,ds). In either case, the resulting codewords {x;}}, of the two messages
are different.

To verify that the image of E is a 1-substitution code, observe first that since {a;},, {b;}*,, and {c;}}, are sets, it
follows that any two strings in the same set are distinct. Hence, according to (8), it follows that dg(x;,x;) > 3 for every
distinct ¢ and j in [M]. Therefore, no 1-substitution error can cause one x; to be equal to another, and consequently, the result
of a 1-substitution error is always in ({O}VII}L). In what follows a decoding algorithm is presented, whose input is a codeword
that was distorted by at most a single substitution, and its output is d.

Upon receiving a word C" = {x1,...,x},} € B1(C) for some codeword C' (once again, the indexing of the elements of C’

is lexicographic), we define

a; = (35; 1. -afC;,L/Bﬂ)
b; = (a/,- 1(i),L/34+10 " - -aw/rfl(i),zL/gq) (10)
¢ = (z ; 1(4),2L /3417 vxﬁrl(i),Lq)a
where 7 is the permutation by which {x}}, are sorted according to their L/3+1,...,2L/3—1entries, and p is the permutation
by which they are sorted according to their 2L /341, ..., L—1 entries (we emphasize that 7 and p are unrelated to the original 7

and o, and those will be decoded later). Further, when ordering {x,}}£, by either the lexicographic ordering, by 7, or by p, we
obtain candidates for each one of do, dy4, dg, Er(dz), Fu(ds), En(ds), Fu(s1), Eu(s2), and Eg(ss3), that we similarly
denote with an additional apostrophe’. For example, if we order {x}}} according to 7, then the bottom log(M L) + 1 bits
of the (2L/3)-th column are Ey(s2)’, the middle log M + 1 bits are EH(d4) and the top M — log ML — log M — 2 bits
are d) (see Eq. (9)). Now, let

Sl (317 s 7éMa b'r(l)7 s 7b7'(1b[)a ép(1)7 s 7ép(M))7
52 = (3771(1), N ,é.,_—l(]\/j),bl, N 7b]\/j7 éT*Ip(l)v N ,é.,_—lp(]\/j)), and (1 1)
S/3 = (ép—l(l), 7ép*1(M)abp*1'r(1)7 7bp*1'r(1b[)aéla ,éM)

The following lemma shows that at least two of the above s, are close in Hamming distance to their encoded counter-
part (Si, EH(Si)).

6Sorting the strings {Xz}ﬁ1 by any ordering method provides a matrix in a natural way, and can consider columns in this matrix.
TThat is, each one of d’2, dﬁl, etc., is obtained from dg, d4, etc., by at most a single substitution.



Lemma 9. There exist distinct integers k,{ € [3] such that

dr((sk, Er(sk)'), (s, Er(sk)) < 1, and
du((sy, Er(se)'), (se, Er(si))) < 1.
Proof. If the substitution did not occur at either of index sets {1,...,L/3—1}, {L/3+1,...,2L/3—1},0or {2L/3+1,...,

L — 1} (which correspond to the values of the a;’s, b;’s, and ¢;’s, respectively), then the order among the a;’s, b;’s and ¢;’s
is maintained. That is, we have that

S/l = (ala <o HAM, ba(l)a s )bO‘(M)) Cr(1), s )Cﬂ'(M)))
Sl2 = (3071(1), ce ,aafl(M),bl, . ,bM, Co.—lﬂ.(l), . ,Co.—lﬂ.(M)),
Sé = (aﬂ'*l(l)v s 7a7'r*1(1b1)5b7r*10'(1)5 s abﬂ'*lo'(M)vclv cee ;clﬂ)v

and in this case, the claim is clear. It remains to show the other cases, and due to symmetry, assume without loss of generality
that the substitution occurred in one of the a;’s, i.e., in an entry which is indexed by an integer in {1,...,L/3 —1}.

Let A € {0,1}M*L be a matrix whose rows are the x;’s, in any order. Let Ay be the result of ordering the rows of A
according to the lexicographic order of their 1,...,L/3 — 1 entries. Similarly, let A,,; and A, be the results of ordering
the rows of A by their L/3+1,...,2L/3 —1 and 2L/3 +1,..., L — 1 entries, respectively, and let A, A ;. and A]
defined analogously with {x’}M1 mstead of {x;}M,.

It is readily verified that there ex1st permutatlon matrices P, and P, such that A,y = Pi Ajp and Ayigne = P> Ajer. Moreover,
since {b;}M, = {b;} M, and {c;}M, = {&}M,, it follows that A’ ., = P;(A; + R) and Al = Po(Asepp + R), where R €
{0,1}M*L is a matrix of Hamming weight 1; this clearly implies that A’ ., = A,; + PR and that A;ig,n = Ao + P2R.
Now, notice that sy result from vectorizing some submatrix My of A4, and s} result from vectorizing some submatrix M}
of Al ... Moreover, the matrices M, and M are taken from their mother matrix by omitting the same rows and columns,
and both vectorizing operations consider the entries of Ms and M} in the same order. In addition, the redundancies E'y (s2)
and Ey(s3) can be identified similarly, and have at most a single substitution with respect to the corresponding entries in
the noiseless codeword. Therefore, it follows from A/ ., = A,is + Pi R that dg(sh, (s2, Er(s2))) < 1. The claim for s3 is
similar. (|

nght

By applying a Hamming decoder on either one of the s;’s, the decoder obtains possible candidates for {a;}, {b;},, and
{c;}M,, and by Lemma 9, it follows that these sets of candidates will coincide in at least two cases. Therefore, the decoder
can apply a majority vote of the candidates from the decoding of each s/, and the winning values are {a;},, {b;},, and
{c;}M,. Having these correct values, the decoder can sort {x}}M, accordlng to their a; columns, and deduce the values of o
and 7 by observing the resulting permutation in the b; and c; columns with respect to their lexicographic ordering. This
concludes the decoding of the values d;,ds, and d5 of the data d.

We are left to extract da,dy, and dg. To this end, observe that since the correct values of {a;},, {b;}M,, and {c;}}M,
are known at this point, the decoder can extract the true positions of ds,dy4, and dg, as well as their respective redundancy
bits Fr(ds), En(ds), En(dg). Hence, the decoding algorithm is complete by applying a Hamming decoder.

We now turn to compute the redundancy of the above code C. Note that there are two sources of redundancy—the Hamming
code redundancy, which is at most 3(log M L + log M + 2) and the fact that the sets {a;}M,, {b;},, and {c;}}, contain
distinct strings. By a straightforward computation, for 4 < M < 2L/6 we have

9L 9L/3-1\ 3
T(C) — 10g (M) _ 10g ( v ) . (M')2 . 23(]\/I—log ML—log M—2)

M-—1
= log H(2L —log H (2E/3=1 i) —3M + 3log ML + 3log M + 6
M-1 .
= log H 2L/3 =+ 3log ML+ 3log M + 6
L/3
§3Mlogm+3logML+31og+6.
(a)
< 12loge+ 3log ML + 3log M + 6 (12)

where inequality (a) is derived in Appendix B.
For the case when M < log M L + log M, we generate {a;},, {b;}*,, and {c;}M, with length L/3 — [W]
As a result, we have [18MLHos MY bies o, i € {1,...,M}, j € {L/3 - [W} +1,...,L/3} U {2L/3 —



[W] +1,...,2L/3} U{L — [W] +1,...,L} to accommodate the information bits dg, d4,ds and the
redundancy bits {Ep(s;)};_; and {Ep(d;)}ieq2.4,6) in each part.

Remark 2. The above construction is valid whenever M < 2L/3=1 However, asymptotically optimal amount of redundancy
is achieved for M < 2-/6,

Remark 3. In this construction, the separate storage of the Hamming code redundancies Ey(ds), Ep(dys), and Eg(dg) is
not necessary. Instead, storing Ep(da,da,dg) is sufficient, since the true position of those can be inferred after {a;}M,
{b;}M,, and {c;}}, were successfully decoded. This approach results in redundancy of 3log M L + log3M + O(1), and a
similar approach can be utilized in the next section as well.

VI. CODES FOR MULTIPLE SUBSTITUTIONS

In this section we extend the 1-substitution correcting code from Section V to multiple substitutions whenever the number
of substitutions K is at most L/4log M — 1/2. In particular, we obtain the following result.

Theorem 6. For integers M, L, and K such that M < 22<2’%+1> there exists a K-substitution code with redundancy
2K(2K 4+ 1)log ML+ 2K (2K 4+ 1)log M 4+ O(K).

We restrict our attention to values of M, L, and K for which 2K log M L + 2K log M < M. For the remaining values, i.e.,
when 2K log ML + 2K log M > M, a similar code can be constructed. The construction of a K -substitution correcting code
is similar in spirit to the single substitution case, except that we partition the strings to 2/ 4 1 parts instead of 3. In addition,
we use a Reed-Solomon code in its binary representation (see Section II) to combat K -substitutions in the classic sense. The
motivation behind considering 2K + 1 parts is that K substitutions can affect at most K of them. As a result, at least K + 1
parts retain their original order; and that enables a classic RS decoding algorithm to succeed. In turn, the true values of the
parts are decided by a majority vote, which is applied over a set of 2K + 1 values, K + 1 of whom are guaranteed to be
correct.

For parameters M, L, and K as above, let

2K+1

oL/(2K+1)-1
> . (M')2K . 2(2K+1)(M72KlogML72Klog Ib[)}

{ ’ ’ ( M
oL/(2K+1)—1

be the information set. We split a message d € D into d = (d1,...,dsx42), Where d; € {1,.. .,( o )}, d; €
oL/(2K+1)—1

{1,...,(" ", )M for j € {2,....2K + 1}, and d; € {1,...,2@K+D)(M-2Klog ML=2K1og M)} for j € {2K +
2,...,4K 4+ 2}. As in (6), we apply F.onm and F' to obtain
Feom(di) = {a11,...,an1}, where a; ;1 € {0, I}L/(QKH)*1 for all 4, and
F(d;) = ({ar,...,an, },m;) forall j € {2,...,2K + 1}, where a; ; € {0,1}1/CE+D=1 and 7, € Sy,
As usual, the sets {aiyj}fvzfl are indexed lexicographically according to i, i.e., a; ; < ... < aps; for all j. Similar to (8), let
(xi,(j—l)L/(2K+1)+17 cee 7$i,jL/(2K+1)—1) = Qr;(i),5> (&S [M], JE [2K + 1]-

In addition, define the equivalents of (7) as

51 = (a1,17 "')a]\/f,17 aﬂ‘Q(l),Q} sty aﬂ'Q(I\/[)72) ety a7r2K+1(1),2K+17 "'7a7T2K+1(1\/[),2K+1)7
Sg = (aﬁgl(l)y17 SRt AL .oy A, ce aW;1W2K+1(1)12K+1,...,aﬂ;1W2K+1(M)72K+1),
S2K+1 = (aﬂ—;é+1(1)717 s aaﬂ—;;Jrl(M)’la aﬂ—;é+17r2(1)12a BRI aﬂ;é+1ﬂ—2(M)1ga ceey AL 2K 41, cee 7aM,2K+1)-

Namely, for every i € [2K + 1], the elements {a; ; }]Ai1 appear in s; by their lexicographic order, and the remaining ones are
sorted accordingly.

To state the equivalent of (9), for a binary string t let RSk (t) be the redundancy bits that result from K-substitution
correcting RS encoding of t, in its binary representation®. In particular, we employ an RS code which corrects K substitutions,

and incurs 2K log(|t|) bits of redundancy. Then, the remaining bits {z; _r_ Mo EA Mooz}, are defined

8To avoid uninteresting technical details, it is assumed henceforth that RS encoding in its binary form is possible, i.e., that log(\t\? is an integer that
divides t; this can always be attained by padding with zeros. Furthermore, the existence of an RS code is guaranteed, since ¢ = log () jg larger than the
length of the code, which is [t|/log(|t]).



as follows. In this expression, notice that |s;| = M (L — 2K — 1) for every i and |d;| < M for every j. As a result, it follows
that |[RSk(d;)| < 2K log M for every j € {2K + 2,...,4K + 2}, and |RSk (s;)| < 2K log ML for every i € 2K + 1].

djtor+1,i if ;7 1(i) < M — 2K log M — 2K log M L
; r =\ RSk(djrart1)i-miak o M2k log M, if M —2Klog M —2Klog ML +1 < 71 (i) < M — 2K log ML .
RSk (8)i M2k log ML if M —2Klog ML+1 < (i)

13)

To verify that the above construction provides a K -substitution code, observe first that {a; ]} ~ , 1s a set of distinct integers
for all 4 € [2K + 1], and hence dp (x;,x;) > 2K + 1 for all distinct ¢ and j in [M]. Thus, a K-substitution error cannot turn
one x; into another, and the result is always in ({oi[}L)'

The decoding procedure also resembles the one in Section V. Upon receiving a word C' = {x1,...,x),} € Bg(C) for
some codeword C', we define
), for j € 2K + 1], and i € [M]

JL gt
12K +1

A / /
a; ;s —\Tr _ P S I
ij = ( O e A P )

— 1 entries (7 is the identity
2K Jrl fOr

where 7; is the permutation by which {x/}M | are sorted according to their (g Ki)l +1,...,5 K 1

permutation, compare with (10)). In addmon sorting {x.}M, by either one of 7; yields candidates for { RSk (si)}i~
{d;}i5)%2 o. and for { RSk (d;)}5552, 5. The respective {s]}7"" are defined as

G=2K+2>
, o o N
st = (ay1, -+ @M1, Ar,(1),25 ceey Ary(M),25 -
aT2K+1(1),2K+17 ety aT2K+1(1\/[),2K+1))
A o o N
Sg = (3751(1)71a ---va-,-gl(M)Jv a2, ceey AM 2,
A e (2K 0 At () 2K1)s
/ A A~ A A
S = la_- cee A — a_— ceey, A_—
2K+1 ( 72K1+1(1)717 P 7—2I<1+1(M),1’ T2K1+1'rg(1),2’ ’ 7'2K1+1T2(M)-,27
a1 2K+1; ) aM.,2K+1)-

Lemma 10. There exist K + 1 distinct integers {1, ..., lxt1 such that dy((sy,, RSk (se;)'), (se;, RSk(se;))) < K for
every j € [K +1].

Proof. Analogous to the proof of Lemma 9. See Appendix A for additional details. O

By applying an RS decoding algorithm on each of {s]}>*/** we obtain candidates for the true values of {a;;}iL, for

every i € [2K +1]. According to Lemma 10, at least K + 1 of these candidate coincide, and hence the true value of {a; ; }Jj\il
can be deduced by a majority Vote Once these true values are known, the decoder can sort {x,}M by its a; ; entries (i.e.,
the entries indexed by 1,..., 57755 K 7 — 1), and deduce the values of each 7, ¢ € {2,...,2K + 1} according to the resulting
permutation of {a;,}}Z, in comparison to their lexicographic one. Having all the permutatlons {ﬂJ}QK ;F1, the decoder can
extract the true positions of {d; jf;;? 4o and {RSk(d;) jK;I? 4o- and apply an RS decoder to correct any substitutions that
might have occurred.

Remark 4. Notice that the above RS code in its binary representation consists of binary substrings that represent elements in
a larger field. As a result, this code is capable of correcting any set of substitutions that are confined to at most K of these
substrings. Therefore, our code can correct more than K substitutions in many cases.

For 4 < M < 2L/2(2K+1) the total redundancy of the above construction C is given by

9L oL/(2K+1)—1y 2K+1
T(C) — 10g (M) _ 10g ( v ) M!2K2(2K+1)(M—2Klog ML—-2K log M)

b)
< (2K +1)loge+2K(2K +1)log ML+ 2K (2K + 1) log M. (14)
where the proof of inequality (b) is given in Appendix B.

Remark 5. As mentioned in Remark 3, storing RSk (d;) separately in each part j € {2K +2,...,4K + 2} is not necessary.
Instead, we store RSk (dak+2,...,dary2) in a single part j = 2K + 1, since the position of the binary strings d; for j €
{2K+2,...,4K+2} and the redundancy RSk (dax +2, . .., dax+2) can be identified once {a; ;i< nr j<2K+1 are determined.
The redundancy of the resulting code is 2K (2K + 1)log ML 4+ 2K log(2K + 1) M.



For the case when M < 2K log ML + 2K log M, we generate sequences a; ;, ¢ € {1,...,M}, j € {1,...,2K + 1}

with length L/(2K + 1) — [2810e MEA2Kl0g M Then, the length [2K10e MEL2K T8 M ) oquences ; 5, i € {1,..., M}, j €
U1 — 1)L/ (2K + 1) — [2EleaMIt2Kloa M7 4 1 JL /(2K + 1)} are used to accommodate the information bits

3 i and the redundancy bits K(Si)f:_ an k(d;)§.2 1n each part.
d;};5572, 5 and the redundancy bits {RS JA and {RSk(d;)} 52, in each

VII. CODES WITH ORDER-WISE OPTIMAL REDUNDANCY

In this section we briefly describe how to construct K -substitution correcting codes whose redundancy is order-wise optimal,
in a sense that will be clear shortly. The code construction applies whenever K is at most O(min{L/3 L/log M}).

Theorem 7. For integers M, L, and K, let L' = 3logM +4K? + 1. If L' + 4K L' + 2K log(4K L") < L, then there exists
an explicit K -substitution code with redundancy 2K log ML + (12K + 2)log M + O(K?3) + O(K loglog M L)

As in Section V and Section VI, we use the information bits themselves for the purpose of indexing. Specifically, we encode
information in the first L’ bits (;1,%;2,...,2; 1) in each sequence x; and then sort the sequences {x;}, according to
the lexicographic order m of (;1,%i2,..., 1), such that (Tr().1,Zr(i) 2> Ta(i),L') < (Tr(j),15Ta(g).2) - > Tu(j),L")
for i < j. Then, we protect the sequences {x;}*, in the same manner as if they are ordered, i.e., by concatenating them and
applying a Reed-Solomon encoder.

An issue that must be addressed is how to protect the ordering 7 from being affected by substitution errors. This is done
in two steps: (1) Using additional redundancy to protect the ordering sequence set {(x; 1, i z2,...,Z; L/)}%l; and (2) Con-
structing { (i 1,%i2, ..., %i 1)}, such that the Hamming distance between any two distinct sequences (x; 1, %; 2, - ., Ti 1)
and (xj1,j2,...,2;5 /) is at least 2K + 1. In this way, the bits (x; 1,2, 2,...,2; /) in sequence x; can be recovered from
their erroneous version (z; 1, ¥} o, . .., 1,), which is within Hamming distance K from (zi1,%;2,...,%; /). The details of
the encoding and decoding are as follows.

For an integer n, let 1,, be the vector of n ones. Let S be the ensemble of all codes of length L', cardinality M, and
minimum Hamming distance at least 2K + 1, which contain 1, that is,

0,1}
S {{al, ..,ap)E ({ ’]\/[} )’al =1 and dy(a;,a;) > 2K + 1 for every distinct 7, j € [M]} .

Now we show that

R — (-1

(M —1)!
where Q = Y25 (') is the size of a Hamming ball of radius 2K centered at a vector in {0,1}~". For

Sr ={(a1,...,an) a1 =1y and dy(a;,a;) > 2K + 1 for distinct ¢, j € [M]},

it is shown that | S| > HiAiQ[QL/ —(i—1)Q]. The idea is to let a; = 1. and then select ag, . . ., aps sequentially while keeping
the mutual Hamming distance among a, .. ., a; at least 2K +1 fori € {2,..., M }. Notice that for any sequence a € {0, 1}¥,
there are at most () sequences that are within Hamming distance 2K of a. Hence, given a; = 11/,...,a;-1, ¢ € {2,..., M}
such that the mutual Hamming distance among aj,...,a;_1 is at least 2K + 1, there are at least oL _ 1@ choices of a; €
{0,1}F, i € {2,..., M} such that the Hamming distance between a; and each one of aj,...,a;_1 is at least 2K + 1.
These choices of a; € {0,1}% keep the mutual Hamming distance among ai, ..., a; at least 2K + 1. Therefore, it follows

that |Sp| > H?iQ(QL/ — (i — 1)Q). Since there are (M — 1)! tuples in Sy that correspond to the same set {1/, a9,...,ap}
in S, we have that equation (15) holds.

HZ\/I 1(2L —ZQ)

According to (15), there exists an injective mapping Fs : [{ (M i)

]} - ({O’IEL) that maps an integer i €
2 N
{1, (%]
force. We note that there is a greedy algorithm implementing the mapping F's and the corresponding inverse mapping F'g !
in Poly(M, L, k) time. We defer this algorithm and the corresponding analysis to a future version of this paper. For S € S,

define the characteristic vector 1(S) € {0, 1}2L, of S by

} to a code S € S. The mapping Fy is invertible and can be computed in O(2M L,) time using brute

1(S); =

1 if the binary presentation of i is in S
0 else .

Notice that the Hamming weight of 1(S) is M for every S € S. Intuitively, we use the choice of a code S € S to store
information, and the lexicographic order of the strings in the chosen S to order the strings in our codewords, and the details
are as follows.



. M7 e —iQ)
Consider the data d € D to be encoded as a tuple d = (dy,dz), where dy € {1,..., [W]} and

d, € {0,1}]M(L—L/)—4KL'—2K(log(4KL’)]—2KﬂogML].

Given (dy,d3), the codeword {x;}}, is generated by the following procedure.

Encoding:
(1) Let Fs(d1) = {a1,...,ap} € S such that a; = 1,/ and the a;’s are sorted in a descending lexicographic order. Let
(aci,l, . ,.Z‘iJ/) =a,;, fori € [M]
(@) Let (z1,0/41,---,21,0/+4k1) = RSakx (L({a1,...,anm})) (see the paragraph before (13) for the definition of RSk (t))
and

(1,0 44K L 415 - -+ T1 L 44K L +2K [log(4K L)]) = RSk (RS2 (1({ay, ..., anm}))).
(3) Place the information bits of ds in bits
(zl,L’+4KL’+2K[log(4KL/ﬂ+17 e 7$1,L)7

(Trm,p41, - Tar,L—2KTlog ML]); and
(xi,L/H,...,xi,L) for ¢ € {2,...,M— 1}.

(4) Define
s = (Xl, ce s XM-1, ($M,17 -y TM,L—2Klog ML] ))
and let (2ar,1—2KTlog ML 415 - - - » TM,L) = RSK(S).

Upon receiving the erroneous version’ (x4, ...,x/,), the decoding procedure is as follows.

Decoding:

(1) Find the unique sequence x; such that (z; ,,..., @] ;,) has at least L' — K many l-entries. By the definition
of {(zi1,..-,7ir)}M,, we have that x; is an erroneous copy of x;. Then, use a Reed-Solomon decoder to decode
bits (xlyLurl, RN :L'LL/JF4KL/) from

/ /
(@i, Lr 415+ - 'y Vig, L/ +4K L'+2K [log (4K L") )-
NoFe that ($;07.L/.+1’ RREE zéo,L'+4KL'+2K(10g(4KL/)1) is an erroneous copy of (x1,1/41,...,%1,L/42K L/ +2K [log(2K L)] )
which by definition is a codeword in a Reed-Solomon code.

(2) Use a Reed-Solomon decoder and the Reed-Solomon redundancy (21,741, - - - , £1,1/+4k1’) to recover the vector 1({(z; 1,
ooy ) M) and then the set {(z;1,..., 2 1/)}M,. Since 1({(zi1,...,2i )} ;) is within Hamming distance 2K
from 1({ (27 ;, ... ,x;L,)}gl) the former can be recovered given its Reed-Solomon redundancy (1,141, - - ., 1,1/ +4KL’)-

(3) For each ¢ € [M], find the unique 7(i) € [M] such that dH((x;(i) 1,...,x;(i) ), (@i, ..., xip)) < K (note
that 7(ig) = 1), and conclude that x} is an erroneous copy of X ;).

(4) With the order 7w recovered, concatenate (x;,l(l), . ,x;,l(M ). We have that (x;,l(l), . ,x;,l(M)) is an erroneous
copy of (X1,...,Xar), which by definition is a codeword in a Reed-Solomon code. Therefore, (x1,...,X5s) can be
recovered from (x;,l(l), .. ,x;,l(M)).

The redundancy of the code is

L M-1/5L" —
r(C) =log (?\/[) — log[l_[i_(ljw(2 ol Q)]

<2Klog ML + (12K +2)log M 4+ O(K?®) + O(K loglog ML), (16)
which will be proved in Appendix E.

Remark 6. Note that the the proof of (15) indicates an algorithm for computing mapping Fs(i) with complexity exponential
in L' and M. A poly(M, L) complexity algorithm that computes Fs(i) will be given in future versions of this paper.

VIII. CONCLUSIONS AND FUTURE WORK

Motivated by novel applications in coding for DNA storage, this paper presented a channel model in which the data is sent
as a set of unordered strings, that are distorted by substitutions. Respective sphere packing arguments were applied in order to
establish an existence result of codes with low redundancy for this channel, and a corresponding lower bound on the redundancy
for K = 1 was given by using Fourier analysis. For K = 1, a code construction was given which asymptotically achieves the
lower bound. For larger values of K, a code construction whose redundancy is asymptotically K times the aforementioned
upper bound was given; closing this gap is an interesting open problem. Furthermore, it is intriguing to find a lower bound on
the redundancy for larger values of K as well.

9Since the sequences {x;}}, have distance at least 2K + 1 with each other, the sequences {x/}} are different.
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APPENDIX A
PROOF OF LEMMA 10

Proof. (of Lemma 10) Similarly to the proof of Lemma 9, we consider a matrix A € {0, 1}*L whose rows are the x;’s, in
any order. Let A; be the result of ordering the rows of A according to the lexicographic order of their (j —1)L/(2K + 1) +
1,...,jL/(2K + 1) — 1 bits for j € [2K + 1]. The matrices A for j € [2K + 1] can be defined analogously with {x; M,
instead of {x;}M,.

It is readily verified that there exist 2K + 1 permutation matrices P; such that A; = P;A (Here P; is the identity
matrix). Moreover, since K substitution spoils at most K parts, there exist at least j, € [2K + 1],I € [K + 1] such that
{aij, }M, = {ai;, }}L,, for I € [K +1], it follows that A = P;,(A+ R) for | € [K + 1], where R € {0, 1}**% is a matrix
of Hamming weight at most /; this clearly implies that A, = Aj, + P;, R for [ € [K +1]. Since s, results from vectorizing
some submatrix M; of A;,, and sgl results from vectorizing some submatrix M, of A;L. Moreover, the matrices M; and M/
are taken from their mother matrix by omitting the same rows and columns, and both vectorizing operations consider the
entries of M; and M] in the same order. In addition, the redundancies Eg (s;,) for [ € [K + 1] can be identified similarly,
and have at most K substitution with respect to the corresponding entries in the noiseless codeword. Therefore, it follows
from Ajl = Ajz + P1R that dH((Sz‘p ) EH(SjL))’ (sz ) EH(SjL))) < K.

O

APPENDIX B
PROOF OF REDUNDANCY BOUNDS

Proof of (a) in (12):
2M
2L/3 — 20
4
< 3log(1 + M)M +3log ML +3logM +6

7(C) < 3log(1 + )M 4+ 3log ML + 3log M + 6

4
= 121og((1 + M)M/“) +3log ML+ 3log M + 6
<12loge + 3log ML + 3log M + 6.



Proof of (b) in (14):

M—-1 M-1
= log H (2% —i) —log [ (/CKFD=1 —i)2KH _1og 2PKFDM 4 9K (2K + 1) log ML + 2K (2K + 1) log M
3 =0
I\/[ 1 L .
(2% — 1)
= log H 2L/(2K+1 gyt + 2K (2K +1)log ML + 2K (2K +1)log M
oL/(2K+1)
< (2K+ 1)M10gm + 2K(2K+ 1)10gML+ 2K(2K+ 1)10gM
oM

< (2K +1)log(1 + WM 42K (2K 4 1)log ML 4 2K (2K + 1) log M

2L/(2K+1) —9M
4
< (2K 4+ 1)log(1 + M)M +2K(2K 4+ 1)log ML+ 2K (2K + 1)log M

4
= (2K + 1) log((1 + M)M/‘*) +2K(2K 4 1)log ML + 2K (2K + 1)log M
< (2K +1)loge 4+ 2K (2K + 1) log ML + 2K (2K + 1) log M.

APPENDIX C
IMPROVED CODES FOR A SINGLE SUBSTITUTION

We briefly present an improved construction of a single substitution code, which achives 2log ML + log2M + O(1)
redundancy.

Theorem 8. Let M and L be numbers that satisfy M < 2L/*. Then there exists a single substitution correcting code with
redundancy 2log ML + log 2M + O(1).

The construction is based on the single substitution code as shown in Section V. The difference is that instead of using
three parts and the majority rule, it suffices to use two parts (two halfs) and an extra bit to indicate which part has the correct
order. To compute this bit, let

M
%=
=1

be the bitwise XOR of all strings x; and e € {0,1}” be a vector of L/2 zeros followed by L/2 ones. We use the bit b, =
e-xg mod 2 to indicate in which part the substitution error occurs. If a substitution error happens at the first half (x}, ..., :ciL/ 2),

the bit b, does not change. Otherwise the bit b, is flipped. Moreover, as mentioned in Remark 3, we store the redundancy of all

the binary strings in a single part, instead of storing the redundancy separately for each binary string in each part. The data to en-
code is regarded as d = (d1, dz, d3, d4), where d; € {1,... (2L 2 1)} de € {1,. (QLZA)-M!}, ds € {1,...,2M-log ML=11
and dy € {1,...,2M-log ML—log2M =21 'That 5, d, represents a set of M strmgs of length L/2 — 1, do represents a set of M
strings of length L/2 — 1 and a permutation 7. Let d3 € {0,1}M-leeML=1 q, ¢ {0 1}M-loe ML—log2M =2 he the binary
strings corresponds to ds and d4 respectively.

We now address the problem of inserting the bit b, into the codeword. We consider the four bits ;, 1./2, i, 1./2, Tis, L
and x;, 1, where 41 and iy are the indices of the two largest strings among {al} 2, in lexicographic order, and 73 and 74 are
the indices of the two largest strings among {b;}*, in lexicographic order. Then, we compute b, and set

Ti L2 = TiyL/2 = Tig,L = Tiy L = De.

Note that after a single substitution, at most one of i1, 72, i3, and 74 will not be among the indices of the largest two strings
in their corresponding part. Hence, upon receiving a word C' = {x},...,x M} € B1(C) for some codeword C, we find the
two largest strings among {a;}2, and the two largest strings among {b }l 1> and use majority to determine the bit b.. The
rest of the encoding and decoding procedures are similar to the corresponding ones in Section V. We define s; and s3 to the
two possible concatenations of {a;}}, and {b;}},,

Sl:(a17 <. aM, bﬂ'(l)) abﬂ'(]\/f))
522(37‘-71(1), 7a7'r*1(1b[);b15 abM)

We compute their Hamming redundancies and place them in columns L/2 and L, alongside the strings ds,ds and their
Hamming redundancy Ey(ds,d4) in column L, similar to (9).

In order to decode, we compute the value of b, by a majority vote, which locates the substitution, and consequently, we
find 7 by ordering {x;}}, according to the error-free part. Knowing 7, we extract the d;’s and their redundancy E (ds,dy),
and complete the decoding procedure by applying a Hamming decoder. The resulting redundancy is 2log M L + log 2M + 3.



APPENDIX D
PROOF OF (a) IN EQ. (5)

Note that P < T, it suffices to show that the function g(P) £ ((T + P)/P)* = (1+T/P)" is increasing in P for P > 0.

We now show that the derivative dg(P)/0P = (1+T/P)Y(In(1+T/P)—T/(T + P)) is greater than 0 for P > 0. It is left
to show that

In(1+7T/P) > T/(T + P) (17)
Let v =T/(T + P), then Eq. (17) is equivalent to
1/(1—v)>e€ (18)
for some 0 < v < 1. The inequality (18) holds since 1/(1 —v) =1+ ;2 viand e’ =14 > 77 v/il for 0 <v < 1.

APPENDIX E
PROOF OF EQ. (16)

r(C) =log (QL) — 1og(HiAifl(2Ll - ZQ)}

M (M —1)!
— [M(L—L')— 4K L' — 2K log(AKL')] — 2K [log M L]]
2LIW 2L' - M M-1
slog T —log ((Mf?;!

—[M(L—L") —4KL — 2K (log(4K L") + 1) — 2K (log M L + 1)]
=ML —log(2" — MQ)M~! + 4K L' + 2K log(4KL')

+2KlogML+ 4K —log M

2L/(M—1)

@2F —MQ)M-!

+2KlogML+ 4K —log M

M—1)M M -
:ﬁ 1 ﬁ) W@ L'+ 4K L + 2K log(4K L)

+2KlogML+ 4K —log M

=log + L' +4KL' +2Klog(4KL')

og(1+

(a)
<loge+ L' +4KL +2Klog(4KL')+2Klog ML + 1+ 4K — log M
=2Klog ML + (12K + 2)log M + O(K?) + O(K loglog M L)

where (a) follows from the following inequality
MQ(S log M + 4K? + 1)21{ < 23logM+4K2+1, (19)

which is proved as follows.
Rewrite Eq. (19) as

(3log M + 4K?2 + 1)K < glos M+4K 41 (20)
Define functions g(y, K) = In(3y 4+ 4K2 + 1)2X and h(y, K) = In2¢+45°+1_ Then we have that
Oh(y, K) /0y — dg(y, K)/0y =In2 — 6 K/(3y + 4K? 4 1),
which is positive for y > 1 and K > 2. Therefore, for £ > 2 and y > 1, we have that
Wy, K) = g(y, K) > h(1,K) — g(1, K).
Furthermore,

Oh(1,K) /0K — 0g(1, K)/OK =(81n2)K — 2In(4K? +4) — 16 K?/(4K?* + 4)
>(8In2)K —2In(5K?) — 4
=4(K —-1-InK)+ (8In2—-4)K —2In5

(a)
>(8In2—-4)K —2In5,



where (a) follows since K = "X > 1+1In K. Since (81In2—4)K —21In’5 is positive for K > 3, we have that h(1, K)/0K >
9g(1, K) /0K for K > 3. It then follows that h(1, K) — g(1, K) > min{h(1,2) — g(1,2), h(1,3) — g(1,3)} > 0 for K > 2.
Hence h(y, K) > g(y, K) for y > 1 and K > 2, which implies that Eq. (20) holds when M > 2 and K > 2.
Next we show that Eq. (20) holds when M =1 or K = 1. When M = 1, we have that log M = 0 and that
Oh(0,K)/0K — 0g(0,K)/0K =(8In2)K — 2In(4K?* + 1) — 16K?/(4K* + 1)
>(8In2)K —2In(5K?) — 4
—4(K —1—InK)+ (8In2 —4)K —2In5
>(8In2 — 4)K — 2In5,
which is positive when K > 3. Therefore, we have that h(0, K') —¢(0, K') > min{h(0,1) — ¢(0, 1), h(0,2) — ¢(0,2), h(0,3) —
g(0,3)} > 0. Hence Eq.(20) holds when M = 1.
When K =1 we have that

210gM+4K2+1 :32(1 + +Zlog’b M/Z')
i=1
>32(1 + log M + log® M/2)
>(3log M +5)?
=(3log M + 4K? 4 1)K,

Hence, Eq. (20) and Eq. (19) holds. We now finish the proof of Eq. (16).
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