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Abstract

The interest in channel models in which the data is sent as an unordered set of binary strings has increased lately, due to
emerging applications in DNA storage, among others. In this paper we analyze the minimal redundancy of binary codes for this
channel under substitution errors, and provide several constructions, some of which are shown to be asymptotically optimal up
to constants. The surprising result in this paper is that while the information vector is sliced into a set of unordered strings, the
amount of redundant bits that are required to correct errors is order-wise equivalent to the amount required in the classical error
correcting paradigm.

I. INTRODUCTION

Data storage in synthetic DNA molecules suggests unprecedented advances in density and durability. The interest in DNA

storage has increased dramatically in recent years, following a few successful prototype implementations [2], [7], [4], [16].

However, due to biochemical restrictions in synthesis (i.e., writing) and sequencing (i.e., reading), the underlying channel

model of DNA storage systems is fundamentally different from its digital-media counterpart.

Typically, the data in a DNA storage system is stored as a pool of short strings that are dissolved inside a solution, and

consequently, these strings are obtained at the decoder in an unordered fashion. Furthermore, current technology does not

allow the decoder to count the exact number of appearances of each string in the solution, but merely to estimate relative

concentrations. These restrictions have re-ignited the interest in coding over sets, a model that also finds applications in

transmission over asynchronous networks (see Section III).

In this model, the data to be stored is encoded as a set of M strings of length L over a certain alphabet, for some

integers M and L such that M < 2L; typical values for M and L are currently within the order of magnitude of 107 and 102,

respectively [16]. Each individual strings is subject to various types of errors, such as deletions (i.e., omissions of symbols,

which result in a shorter string), insertions (which result in a longer string), and substitutions (i.e., replacements of one symbol

by another). In the context of DNA storage, after encoding the data as a set of strings over a four-symbol alphabet, the

corresponding DNA molecules are synthesized and dissolved inside a solution. Then, a chemical process called Polymerase

Chain Reaction (PCR) is applied, which drastically amplifies the number of copies of each string. In the reading process,

strings whose length is either shorter or longer than L are discarded, and the remaining ones are clustered according to their

respective edit-distance1. Then, a majority vote is held within each cluster in order to come up with the most likely origin of

the reads in that cluster, and all majority winners are included in the output set of the decoding algorithm (Figure 1).

One of the caveats of this approach is that errors in synthesis might cause the PCR process to amplify a string that was

written erroneously, and hence the decoder might include this erroneous string in the output set. In this context, deletions and

insertions are easier to handle since they result in a string of length different from2 L. Substitution errors, however, are more

challenging to combat, and are discussed next.

A substitution error that occurs prior to amplification by PCR can induce either one of two possible error patterns. In one,

the newly created string already exists in the set of strings, and hence, the decoder will output a set of M − 1 strings. In the

other, which is undetectable by counting the size of the output set, the substitution generates a string which is not equal to

any other string in the set. In this case the output set has the same size as the error free one. These error patterns, which are

referred to simply as substitutions, are the main focus of this paper.

Following a formal definition of the channel model in Section II, previous work is discussed in Section III. Upper and lower

bounds on the amount of redundant bits that are required to combat substitutions are given in Section IV. In Section V we

provide a construction of a code that can correct a single substitution. This construction is shown to be optimal up to some

constant, which is later improved in Appendix C. In Section VI the construction for a single substitution is generalized to

multiple substitutions, and is shown to be order-wise optimal whenever the number of substitutions is a constant. To further

improve the redundancy, we present a sketch of another code construction in Section VII. The code is capable of correcting

with optimal redundancy up to a constant. Finally, open problems for future research are discussed in Section VIII.

Remark 1. The channel which is discussed in this paper can essentially be seen as taking a string of a certain length N as

input. Then, during transmission, the string is sliced into substrings of equal length, and each substring is subject to substitution

errors in the usual sense. Moreover, the order between the slices is lost during transmission, and they arrive as an unordered

set.

1The edit distance between two strings is the minimum number of deletions, insertions, and substitutions that turn one to another.
2As long as the number of insertions is not equal to the number of deletions, an event that occurs in negligible probability.

http://arxiv.org/abs/1809.02716v2
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DATA

⇓ (encoding)

{xi}Mi=1 ∈
({0,1}L

M

)

(synthesis)⇒ (PCR)⇒

(sequencing)
(clustering)⇒

(majority)⇒

Fig. 1. An illustration of a typical operation of a DNA storage system. The data at hand is encoded to a set of M binary strings of length L each. These strings
are then synthesized, possibly with errors, into DNA sequences, that are placed in a solution and amplified by a PCR process. Then, the DNA sequences are
read, clustered by similarity, and the output set is decided by a majority vote. In the illustrated example, one string is synthesized in error, which causes the
output set to be in error. If the erroneous string happens to be equal to another existing string, the output set is of size M − 1, and otherwise, it is of size M .

It follows from the sphere-packing bound [18, Sec. 4.2] that without the slicing operation, one must introduce at least K log(N)
redundant bits at the encoder in order to combat K substitutions. The surprising result of this paper, is that the slicing operation

does not incur a substantial increase in the amount of redundant bits that are required to correct these K substitutions. In the

case of a single substitution, our codes attain an amount of redundancy that is asymptotically equivalent to the ordinary (i.e.,

unsliced) channel, whereas for a larger number of substitutions we come close to that, but prove that a comparable amount

of redundancy is achievable.

II. PRELIMINARIES

To discuss the problem in its most general form, we restrict our attention to binary strings. For integers M and L such

that3 M ≤ 2L we denote by
({0,1}L

M

)

the family of all subsets of size M of {0, 1}L, and by
({0,1}L

≤M

)

the family of subsets

of size at most M of {0, 1}L. In our channel model, a word is an element W ∈
({0,1}L

M

)

, and a code C ⊆
({0,1}L

M

)

is a set

of words (for clarity, we refer to words in a given code as codewords). To prevent ambiguity with classical coding theoretic

terms, the elements in a word W = {x1, . . . ,xM} are referred to as strings. We emphasize that the indexing in W is merely

a notational convenience, e.g., by the lexicographic order of the strings, and this information is not available at the decoder.

For K ≤ ML, a K-substitution error (K-substitution, in short), is an operation that changes the values of at most K

different positions in a word. Notice that the result of a K-substitution is not necessarily an element of
({0,1}L

M

)

, and might

be an element of
({0,1}L

T

)

for some M −K ≤ T ≤ M . This gives rise to the following definition.

Definition 1. For a word W ∈
({0,1}L

M

)

, a ball BK(W ) ⊆
⋃M

j=M−K

({0,1}L

j

)

centered at W is the collection of all subsets

of {0, 1}L that can be obtained by a K-substitution in W .

Example 1. For M = 2, L = 3, K = 1, and W = {001, 011}, we have that

BK(W ) = {{001, 011}, {101, 011}, {011}, {000, 011}, {001, 111}, {001}, {001, 010}}.

In this paper, we discuss bounds and constructions of codes in
({0,1}L

M

)

that can correct K substitutions (K-substitution

codes, for short), for various values of K . The size of a code, which is denoted by |C|, is the number of codewords (that is,

sets) in it. The redundancy of the code, a quantity that measures the amount of redundant information that is to be added to

the data to guarantee successful decoding, is defined as r(C) , log
(

2L

M

)

− log(|C|), where the logarithms are in base 2.

3We occasionally also assume that M ≤ 2cL for some 0 < c < 1. This is in accordance with typical values of M and L in contemporary DNA storage
prototypes (see Section I).
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A code C is used in our channel as follows. First, the data to be stored (or transmitted) is mapped by a bijective encoding

function to a codeword C ∈ C. This codeword passes through a channel that might introduce up to K substitutions, and as

a result a word W ∈ BK(C) is obtained at the decoder. In turn, the decoder applies some decoding function to extract the

original data. The code C is called a K-substitution code if the decoding process always recovers the original data successfully.

Having settled the channel model, we are now in a position to formally state our contribution.

Theorem 1. (Main) For any integers M , L, and K such that M ≤ 2L/(4K+2), there exists an explicit code construction with

redundancy O(K2 log(ML)) (Section VI). For K = 1, the redundancy of this construction is at most six times larger than the

optimal one (Section V). Furthermore, an improved construction for K = 1 achieves redundancy which is at most three times

the optimal one (Appendix C).

In addition, we sketch an additional construction which achieves optimal redundancy for small (but non-constant) values

of K . The full proof will appear in future versions of this paper.

Theorem 2. For integers M , L, and K that satisfy L′ + 4KL′ + 2K log(4KL′) ≤ L, where L′ = 3 logM + 4K2 + 1, there

exists an explicit code construction with redundancy 2K logML+(12K+2) logM+O(K3)+O(K log logML) (Section VII).

The redundancy is at most 14 times the optimal one.

A few auxiliary notions are used throughout the paper, and are introduced herein. For two strings s, t ∈ {0, 1}L, the Hamming

distance dH(s, t) is the number of entries in which they differ. To prevent confusion with common terms, a subset of {0, 1}L
is called a vector-code, and the set BH

D (s) of all strings within Hamming distance D or less of a given string s is called the

Hamming ball of radius D centered at s. A linear vector code is called an [n, k]q code if the strings in it form a subspace of

dimension k in F
n
q , where Fq is the finite field with q elements.

Several well-known vector-codes are used in the sequel, such as Reed-Solomon codes or Hamming codes. For an integer t,
the Hamming code is an [2t−1, 2t−t−1]2 code (i.e., there are t redundant bits in every codeword), and its minimum Hamming

distance is 3. Reed-Solomon (RS) codes over Fq exist for every length n and dimension k, as long as q ≥ n− 1 [18, Sec. 5],

and require n−k redundant symbols in Fq. Whenever q is a power of two, RS codes can be made binary by representing each

element of Fq as a binary string of length log2(q). In the sequel we use this form of RS code, which requires log(n)(n− k)
redundant bits.

Finally, our encoding algorithms make use of combinatorial numbering maps [10], that are functions that map a number

to an element in some structured set. Specifically, Fcom : {1, . . . ,
(

N
M

)

} → {S : S ⊂ {1, . . . , N}, |S| = M} maps a number

to a set of distinct elements, and Fperm : {1, . . . , N !} → SN maps a number to a permutation in the symmetric group SN .

The function Fcom can be computed using a greedy algorithm with complexity O(MN logN), and the function Fperm

can be computed in a straightforward manner with complexity O(N logN). Using Fcom and Fperm together, we define a

map F : {1, . . . ,
(

N
M

)

M !} → {S : S ⊂ {1, . . . , N}, |S| = M} × SM that maps a number into an unordered set of size M
together with a permutation. Generally, we denote scalars by lower-case letters x, y, . . ., vectors by bold symbols x,y, . . .,
integers by capital letters K,L, . . ., and [K] , {1, 2, . . . ,K}.

III. PREVIOUS WORK

The idea of manipulating atomic particles for engineering applications dates back to the 1950’s, with R. Feynman’s famous

citation “there’s plenty of room at the bottom” [5]. The specific idea of manipulating DNA molecules for data storage as been

circulating the scientific community for a few decades, and yet it was not until 2012-2013 where two prototypes have been

implemented [2], [7]. These prototypes have ignited the imagination of practitioners and theoreticians alike, and many works

followed suit with various implementations and channel models [1], [6], [8], [9], [17], [21].

By and large, all practical implementations to this day follows the aforementioned channel model, in which multiple short

strings are stored inside a solution. Normally, deletions and insertions are also taken into account, but substitutions were found

to be the most common form of errors [16, Fig. 3.b], and strings that were subject to insertions and deletions are scarcer, and

can be easily discarded.

The channel model in this work has been studied by several authors in the past. The work of [8] addressed this channel

model under the restriction that individual strings are read in an error free manner, and some strings might get lost as a result

of random sampling of the DNA pool. In their techniques, the strings in a codeword are appended with an indexing prefix, a

solution which already incurs Θ(M logM) redundant bits, or log(e)M − o(1) redundancy [14, Remark 1], and will be shown

to be strictly sub-optimal in our case.

The recent work of [14] addressed this model under substitutions, deletions, and insertions. When discussing substitutions

only, [14] suggested a code construction for K = 1 with 2L + 1 bits of redundancy. Furthermore, by using a reduction to

constant Hamming weight vector-codes, it is shown that there exists a code that can correct e errors in each one of the M
sequences with redundancy Me log(L+ 1).

The work of [11] addressed a similar model, where multisets are received at the decoder, rather than sets. In addition, errors

in the stored strings are not seen in a fine-grained manner. That is, any set of errors in an individual string is counted as a single
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error, regardless of how many substitutions, insertions, or deletions it contains. As a result, the specific structure of {0, 1}L is

immaterial, and the problem reduces to decoding histograms over an alphabet of a certain size.

The specialized reader might suggest the use of fountain codes, such as the LT [15] codes or Raptor [19] codes. However,

we stress that these solutions rely on randomness at much higher redundancy rates, whereas this work aims for a deterministic

and rigorous solution at redundancy which is close to optimal.

Finally, we also mention the permutation channel [12], [13], [20], which is similar to our setting, and yet it is farther away

in spirit than the aforementioned works. In that channel, a vector over a certain alphabet is transmitted, and its symbols are

received at the decoder under a certain permutation. If no restriction is applied over the possible permutations, than this channel

reduces to multiset decoding, as in [11]. This channel is applicable in networks in which different packets are routed along

different paths of varying lengths, and are obtained in an unordered and possibly erroneous form at the decoder. Yet, this line

of works is less relevant to ours, and to DNA storage in general, since the specific error pattern in each “symbol” (which

corresponds to a string in {0, 1}L in our case) is not addressed, and perfect knowledge of the number of appearances of each

“symbol” is assumed.

IV. BOUNDS

In this section we use sphere packing arguments in order to establish an existence result of codes with low redundancy, and

a lower bound on the redundancy of any K-substitution code. The latter bound demonstrates the asymptotic optimality of the

construction in Section V for K = 1, up to constants, and near-optimality of the code in Section VII. Our techniques rely on

upper and lower bounds on the size of the ball BK (Definition 1), which are given below. However, since our measure for

distance is not a metric, extra care is needed when applying sphere-packing arguments. We begin with the existential upper

bound in Subsection IV-A, continue to provide a lower bound for K = 1 in Subsection IV-B, and extend this bound to larger

values of K in Subsection IV-C.

A. Existential upper bound

In this subsection, let K , M , and L be positive integers such that K ≤ ML and M ≤ 2L. The subsequent series of lemmas

will eventually lead to the following upper bound.

Theorem 3. There exists a K-substitution code C ⊆
({0,1}L

M

)

such that r(C) ≤ 2K log(ML) + 3.

We begin with a simple upper bound on the size of the ball BK .

Lemma 1. For every word W = {xi}Mi=1 ∈
({0,1}L

M

)

and every positive integer K ≤ ML, we have that |BK(W )| ≤
∑K

ℓ=0

(

ML
ℓ

)

.

Proof. Every word in BK(W ) is obtained by flipping the bits in xi that are indexed by some Ji ⊆ [L], for every i ∈ [M ],
where

∑M
i=1 |Ji| ≤ K . Clearly, there are at most

∑K
ℓ=0

(

ML
ℓ

)

ways to choose the index sets {Ji}Mi=1.

For W ∈
({0,1}L

≤M

)

let RK(W ) be the set of all words U ∈
({0,1}L

M

)

such that W ∈ BK(U). That is, for a channel output W ,

the set RK(W ) contains all potential codewords U whose transmission through the channel can result in W , given that at

most K substitutions occur. Further, for W ∈
({0,1}L

M

)

define the confusable set of W as DK(W ) , ∪W ′∈BK(W )RK(W ′).
It is readily seen that the words in the confusable set DK(W ) of a word W cannot reside in the same K-substitution code

as W , and therefore we have the following lemma.

Lemma 2. For every K , M , and L such that K ≤ ML and M ≤ 2L there exists a K-substitution code C such that

|C| ≥
⌊

(

2L

M

)

D

⌋

, where

D , max
W∈({0,1}

L

M )
|DK(W )|.

Proof. Initialize a list P =
({0,1}L

M

)

, and repeat the following process.

1) Choose W ∈ P .

2) Remove DK(W ) from P .

Clearly, the resulting code C is of the aforementioned size. It remains to show that C corrects K substitutions, i.e., that BK(C)∩
BK(C′) = ∅ for every distinct C,C′ ∈ C.

Assume for contradiction that there exist distinct C,C′ ∈ C and V ∈
({0,1}L

≤M

)

such that V ∈ BK(C) ∩ BK(C′), and w.l.o.g

assume that C was chosen earlier than C′ in the above process. Since V ∈ BK(C), it follows that RK(V ) ⊆ DK(C). In

addition, since V ∈ BK(C′), it follows that C′ ∈ RK(V ). Therefore, a contradiction is obtained, since C′ is in DK(C), that

was removed from the list P when C was chosen.
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Lemma 3. For an nonnegative integer T ≤ K and W ∈
({0,1}L

M−T

)

we have that |RK(W )| ≤ 2(2ML)K .

Proof. Denote W = {y1, . . . ,yM−T } and let U ∈ RK(W ). Notice that by the definition of RK(W ), there exists a K-

substitution operation which turns U to W . Therefore, every yi in W is a result of a certain nonnegative number of substitutions

in one or more strings in U . Hence, we denote by z11, . . . , z
1
i1 the strings in U that resulted in y1 after the K-substitution

operation, we denote by z21, . . . , z
2
i2 the strings which resulted in y2, and so on, up to zM−T

1 , . . . , zM−T
iM−T

, which resulted

in yM−T . Therefore, since U = ∪M−T
j=1 {zj1, . . . , zjij}, it follows that there exists a set L ⊆ [M ]× [L], of size at most K , such

that




































z11
...

z1i1
z21
...

zM−T−1
iM−T−1

zM−T
1

...

zM−T
iM−T





































=



































y1

...

y1

y2

...

yM−T−1

yM−T

...

yM−T



































(L)

, (1)

where (·)(L) is a matrix operator, which corresponds to flipping the bits that are indexed by L in the matrix on which it

operates. In what follows, we bound the number of ways to choose L, which will consequently provide a bound on |RK(W )|.
First, define P = {p : ip > 1}, and denote P , |P|. Therefore, since

∑M−T
j=1 ij = M , it follows that

∑

p∈P
ip =

M−T
∑

j=1

ij −
∑

j /∈P
ij = M − (M − T − P ) = T + P. (2)

Second, notice that for every p ∈ P , the set {zp1, . . . , zpip} contains ip different strings. Hence, since after the K-substitution

operation they are all equal to yp, it follows that at least ip − 1 of them must undergo at least one substitution. Clearly, there

are
(

ip
ip−1

)

= ip different ways to choose who will these ip − 1 strings be, and additional Lip−1 different ways to determine

the locations of the substitutions, and therefore ip · Lip−1 ways to choose these ip − 1 substitutions.

Third, notice that

K −
∑

p∈P
(ip − 1) = K −

∑

p∈P
ip + P

(2)
= K − T, (3)

and hence, there are at most K−T remaining positions to be chosen to L, after choosing the ip− 1 positions for every p ∈ P
as described above.

Now, let I be the set of all tuples i1, . . . , iM−T of positive integers that sum to M (whose size is
(

M−1
M−T−1

)

by the famous

stars and bars theorem). Let N : I → N be a function which maps (i1, . . . , iM−T ) ∈ I to the number of different U ∈ RK(W )
for which there exist L ⊆ [M ]× [L] of size at most K such that (1) is satisfied. Since this quantity is at most the number of

ways to choose a suitable L, the above arguments demonstrate that

N(i1, . . . , iM−T ) ≤
(

ML

K − T

)

∏

p∈P
ipL

ip−1.

Then, we have

|RK(W )| ≤
∑

I
N(i1, . . . , iM−T ) ≤

∑

I

(

ML

K − T

)

∏

p∈P
ipL

ip−1

≤
∑

I
(ML)K−TL

∑
p(ip−1)

∏

p∈P
ip

(3)

≤
∑

I
(ML)K−TLT

∏

p∈P
ip. (4)
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Since the geometric mean of positive numbers is always less than the arithmetic one, we have
(

∏

p∈P ip

)1/P

≤ 1
P

∑

p∈P ip,

and hence,

(4) ≤
∑

I
(ML)K−TLT

(∑
p ip

P

)P (2)

≤
∑

I
(ML)K−TLT ((T + P )/P )P

≤
(

M − 1

M − T − 1

)

(ML)K−TLT ((T + P )/P )P ≤
(

M

T

)

(ML)K−TLT ((T + P )/P )P

≤ (ML)K−T (ML)T ((T + P )/P )P ≤ (ML)K((T + P )/P )P

(a)

≤ (ML)K2T ≤ (2ML)K , (5)

where (a) will be proved in Appendix D.

Proof. (of Theorem 3) It follows from Lemma 1, Lemma 3, and from the definition of D that

D ≤ max
W∈({0,1}

L

M )
|BK(W )| · max

W∈({0,1}
L

M )
|RK(W )| ≤

(

K
∑

ℓ=0

(

ML

ℓ

)

)

(2ML)K .

Therefore, the code C that is constructed in Lemma 2 satisfies

r(C) ≤ log

(

2L

M

)

− log |C| ≤ log

((

K
∑

ℓ=0

(

ML

ℓ

)

)

(2ML)K

)

= log

(

K
∑

ℓ=0

(

ML

ℓ

)

)

+K(log(ML) + 1)

≤ log

(

K

(

ML

K

))

+K(log(ML) + 1)

≤
(

log(K)− log(K!) + log(MLK)
)

+K(log(ML) + 1) ≤ 2K log(ML) + 2.

B. Lower bound for a single substitution code

Notice that the bound in Lemma 1 is tight, e.g., in cases where dH(xi,xj) ≥ 2K +1 for all distinct i, j ∈ [M ]. This might

occur only if M is less than the maximum size of a K-substitution correcting vector-code, i.e., when M ≤ 2L/(
∑K

i=0

(

L
i

)

) [18,

Sec. 4.2]. When the minimum Hamming distance between the strings in a codeword is not large enough, different substitution

errors might result in identical words, and the size of the ball is smaller than the given upper bound.

Example 2. For L = 4 and M = 2, consider the word W = {0110,0111}. By flipping either the two underlined symbols,

or the two bold symbols, the word W ′ = {0110, 1110} is obtained. Hence, different substitution operation might result in

identical words.

However, in some cases it is possible to bound the size of BK from below by using tools from Fourier analysis of Boolean

functions. In the following it is assumed that M ≤ 2(1−ǫ)L for some 0 < ǫ < 1, and that K = 1. A word W ∈
({0,1}L

M

)

corresponds to a Boolean function fW : {±1}L → {±1} as follows. For x ∈ {0, 1}L let x ∈ {±1}L be the vector which is

obtained from x be replacing every 0 by 1 and every 1 by −1. Then, we define fW (x) = −1 if x ∈ W , and 1 otherwise.

Considering the set {±1}L as the hypercube graph4, the boundary ∂fW of fW is the set of all edges {x1,x2} ∈
({±1}L

2

)

in

this graph such that fW (x1) 6= fW (x2).

Lemma 4. For every word W ∈
({0,1}L

M

)

we have that |B1(W )| ≥ |∂fW |.
Proof. Every edge e on the boundary of fW corresponds to a substitution operation that results in a word We ∈ B1(W ) ∩
({0,1}L

M

)

. To show that every edge on the boundary corresponds to a unique word in B1(W ), assume for contradiction that We =
We′ for two distinct edges e = {x1,x2} and e′ = {y1,y2}, where x1,y1 ∈ W and x2,y2 /∈ W . Since both We and We′

contain precisely one element which is not in W , and are missing one element which is in W , it follows that x1 = y1

and x2 = y2, a contradiction. Therefore, there exists an injective mapping between the boundary of fW and B1(W ), and the

claim follows.

Notice that the bound in Lemma 4 is tight, e.g., in cases where the minimum Hamming distance between the strings of W
is at least 2. This implies the tightness of the bound which is given below in these cases. Having established the connection

4The nodes of the hypercube graph of dimension L are identified by {±1}L, and every two nodes are connected if and only if the Hamming distance
between them is 1.
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between B1(W ) and the boundary of fW , the following Fourier analytic claim will aid in proving a lower bound. Let the total

influence of fW be I(fW ) ,
∑L

i=1 Prx(fW (x) 6= fW (x⊕i)), where x⊕i is obtained from x by changing the sign of the i-th
entry, and x is chosen uniformly at random.

Lemma 5. [3, Theorem 2.39] For every function f : {±1}L → R, we have that I(f) ≥ 2α log(1/α), where α = α(f) ,
min{Prx(f(x) = 1),Prx(f(x) = −1)}, and x ∈ {±1}L is chosen uniformly at random.

Lemma 6. For every word W ∈
({0,1}L

M

)

we have that |∂fW | ≥ ǫML.

Proof. Since M ≤ 2(1−ǫ)L and α = α(fW ) = min{(2L−M)/2L,M/2L}, it follows that α = M/2L whenever L > 1
ǫ , which

holds for every non-constant L. In addition, since Prx(fW (x) 6= fW (x⊕i)) equals the fraction of dimension i edges that lie

on the boundary of fW ([3, Fact 2.14]), Lemma 4 implies that

I(fW ) =
|∂fW |
2L−1

.

Therefore, since M ≤ 2(1−ǫ)L and from Lemma 5 we have that |∂fW | = 2L−1I(fW ) ≥ 2Lα log(1/α) = M log(2L/M) ≥
ǫML.

Corollary 1. For integers L and M and a constant 0 < ǫ < 1 such that M ≤ 2(1−ǫ)L, any 1-substitution code C ⊆
({0,1}L

M

)

satisfies that r(C) ≥ log(ML)−O(1).

Proof. According to Lemma 4 and Lemma 6, every codeword of every C excludes at least ǫML other words from belonging

to C. Hence, we have that |C| ≤
(

2L

M

)

/ǫML, and by the definition of redundancy, it follows that

r(C) = log

(

2L

M

)

− log(|C|) ≥ log(ǫML) = log(ML)−O(1).

C. Lower bound for more than one substitution

Similar techniques to the ones in Subsection IV-B can be used to obtain a lower bound for larger values of K . Specifically,

we have the following theorem.

Theorem 4. For integers L, M , K , and positive constants ǫ, c < 1 such that M ≤ 2(1−ǫ)L and K ≤ cǫ
√
M , a K-substitution

code C ⊆
({0,1}L

M

)

satisfies that r(C) ≥ K(log(ML)− 2 log(K))−O(1).

To prove this theorem, it is shown that certain special K-subsets of ∂fW correspond to words in BK(W ), and by bounding

the number of these special subsets from below, the lower bound is attained. A subset of K boundary edges is called special, if

it does not contain two edges that intersect on a node (i.e., a string) in W . Formally, a subset S ⊆ ∂fW is special if |S| = K ,

and for every {x1,y1}, {x2,y2} ∈ S with fW (x1) = fW (x2) = −1 and fW (y1) = fW (y2) = 1 we have that x1 6= x2. We

begin by showing how special sets are relevant to proving Theorem 4.

Lemma 7. For every word W ∈
({0,1}L

M

)

we have that |BK(W )| ≥ |{S⊆∂fW |S is special}|
KK .

Proof. It is shown that every special set corresponds to a word in BK(W ), and at most KK different special sets can

correspond to the same word (namely, there exists a mapping from the family of special sets to BK(W ), which is at most KK

to 1). Let S = {{xi,yi}}Ki=1 be special, where fW (xi) = −1 and fW (yi) = 1 for every i ∈ [K]. Let WS ∈
({0,1}L

≤M

)

be obtained from W by removing the xi’s and adding the yi’s, i.e., WS , (W \ {xi}Ki=1) ∪ {yi}Ti=1 for some T ≤ K;

notice that there are exactly K distinct xi’s but at most K distinct yi’s, since S is special, and therefore we assume w.l.o.g

that y1, . . . ,yT are the distinct yi’s. It is readily verified that WS ∈ BK(W ), since WS can be obtained from W by

performing K substitution operations in W , each of which corresponds to an edge in S. Moreover, every S corresponds to

a unique surjective function fS : [K] → [T ] such that fS(i) = j if there exists j ≤ T such that {xi,yj} ∈ S, and hence at

most KT ≤ KK different special sets S can correspond to the same word in BK(W ).

We now turn to prove a lower bound on the number of special sets.

Lemma 8. If there exists a positive constant c < 1 such that K ≤ c · ǫ
√
M , then there are at least (1 − c2)

(|∂fW |
K

)

special

sets S ⊆ ∂fW .

Proof. Clearly, the number of ways to choose a K-subset of ∂fW which is not special, i.e., contains K distinct edges of ∂fW
but at least two of those are adjacent to the same x ∈ W , is at most

M ·
(

L

2

)

·
(|∂fW |
K − 2

)

= M ·
(

L

2

)

· K(K − 1)

(|∂fW | −K + 2)(|∂fW | −K + 1)
·
(|∂fW |

K

)

.
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Observe that the multiplier of
(|∂fW |

K

)

in the above expression can be bounded as follows.

M ·
(

L

2

)

· K(K − 1)

(|∂fW | −K + 2)(|∂fW | −K + 1)
≤ M ·

(

L

2

)

· K(K − 1)

(ǫML−K + 2)(ǫML−K + 1)

≤ M · L2 · K2

ǫ2M2L2
,

where the former inequality follows since |∂fW | ≥ ǫML by Lemma 6; the latter inequality follows since K ≤ cǫ
√
M implies

that ǫML−K + 2 ≥ ǫML−K + 1 ≥ 1√
2
· ǫML whenever c

√
2√

2−1
≤ L

√
M , which holds for every non-constant M and L.

Therefore, since

M · L2 · K2

ǫ2M2L2
=

K2

ǫ2M
≤ c2,

it follows that these are at least (1− c2) ·
(|∂fW |

K

)

special subsets in ∂fW .

Lemma 7 and Lemma 8 readily imply that |BK(W )| ≥ (1−c2)
KK

(

ǫML
K

)

for every W ∈
({0,1}L

M

)

, from which we can prove

Theorem 4.

Proof. (of Theorem 4) Clearly, no two K-balls around codewords in C can intersect, and therefore we must have |C| ≤
(

2L

M

)

/minW∈C |BK(W )|. Therefore,

r(C) = log

(

2L

M

)

− log |C| ≥ log

(

(1− c2)

KK

(

ǫML

K

))

= log

(

ǫML

K

)

−K log(K)−O(1)

≥ log

(

(ǫML−K + 1)
K

KK

)

−K log(K)−O(1)

≥ log







(

1√
2
ǫML

)K

KK






−K log(K)−O(1)

= K
(

log( ǫ√
2
) + log(ML))

)

− 2K log(K)−O(1)

≥ K log(ML)− 2K log(K)−O(K)

V. CODES FOR A SINGLE SUBSTITUTION

In this section we present a 1-substitution code construction that applies whenever M ≤ 2L/6, whose redundancy is

at most 3 logML + 3 logM + O(1). For simplicity of illustration, we restrict our attention to values of M and L such

that logML+ logM ≤ M . In the remaining values, a similar construction of comparable redundancy exists.

Theorem 5. For D = {1, . . . ,
(

2L/3−1

M

)
3
· (M !)2 · 23M−3 logML−3 logM−6}, there exist an encoding function E : D →

({0,1}L

M

)

whose image is a single substitution correcting code.

The idea behind Theorem 5 is to concatenate the strings in a codeword C = {xi}Mi=1 in a certain order, so that classic

1-substitution error correction techniques can be applied over the concatenated string. Since a substitution error may affect

any particular order of the xi’s, we consider the lexicographic orders of several different parts of the xi’s, instead of the

lexicographic order of the whole strings. Specifically, we partition the xi’s to three parts, and place distinct strings in each of

them. Since a substitution operation can scramble the order in at most one part, the correct order will be inferred by a majority

vote, so that classic substitution error correction can be applied.

Consider a message d ∈ D as a tuple d = (d1, . . . , d6), where d1 ∈ {1, . . . ,
(

2L/3−1

M

)

}, d3, d5 ∈ {1, . . . ,
(

2L/3−1

M

)

M !},

and d2, d4, d6 ∈ {1, . . . , 2M−logML−logM−2}. Apply the functions Fcom, Fperm, and F (see Section II) to obtain

Fcom(d1) = {a1, . . . , aM},
F (d3) = ({b1, . . . ,bM}, σ),
F (d5) = ({c1, . . . , cM}, π), (6)
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Fig. 2. This figure illustrates the three different M × L binary matrices which results from placing the strings {xi}Mi=1 on top of one another in various
orders. That is, every row in the above matrices equals to some xi. Notice that the strings z1, z2, and z3 constitute three M × 1 columns, that contain
the bits of (d2, EH(d2), EH(s1)), (d4, EH(d4), EH (s2)), and (d6, EH(d6), EH (s3)) respectively. For example, when sorting the xi’s according to
the ai’s (top figure), the bits of d2, EH (d2), and EH (s1) appear consecutively.

where ai,bi, ci ∈ {0, 1}L/3−1 for every i ∈ [M ], the permutations σ and π are in SM , and the indexing of {ai}Mi=1, {bi}Mi=1,

and {ci}Mi=1 is lexicographic. Further, let d2,d4, and d6 be the binary strings that correspond to d2, d4, and d6, respectively,

and let

s1 = (a1, . . . ,aM , bσ(1), . . . ,bσ(M), cπ(1), . . . ,cπ(M) ),

s2 = (aσ−1(1), . . . ,aσ−1(M),b1, . . . ,bM , cσ−1π(1), . . . ,cσ−1π(M)), and

s3 = (aπ−1(1), . . . ,aπ−1(M),bπ−1σ(1), . . . ,bπ−1σ(M),c1, . . . ,cM ). (7)

Without loss of generality5 assume that there exists an integer t for which |si| = (L − 3)M = 2t − t − 1 for all i ∈ [3].
Then, each si can be encoded by using a systematic [2t − 1, 2t− t− 1]2 Hamming code, by introducing t redundant bits. That

is, the encoding function is of the form si 7→ (si, EH(si)), where EH(si) are the t redundant bits, and t ≤ log(ML) + 1.

Similarly, we assume that there exists an integer h for which |di| = 2h − h − 1 for i ∈ {2, 4, 6}, and let EH(di) be the

corresponding h bits of redundancy, that result from encoding di by using a [2h − 1, 2h − h − 1] Hamming code. By the

properties of a Hamming code, and by the definition of h, we have that h ≤ log(M) + 1.

The data d ∈ D is mapped to a codeword C = {x1, . . . ,xM} as follows, and the reader is encouraged to refer to Figure 2

for clarifications. First, we place {ai}Mi=1, {bi}Mi=1, and {ci}Mi=1 in the different thirds of the xi’s, sorted by σ and π. That is,

5Every string can be padded with zeros to extend its length to 2t − t− 1 for some t. It is readily verified that this operation extends the string by at most
a factor of two, and by the properties of the Hamming code, this will increase the number of redundant bits by at most 1.
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denoting xi = (xi,1, . . . , xi,L), we define

(xi,1, . . . , xi,L/3−1) = ai,

(xi,L/3+1, . . . , xi,2L/3−1) = bσ(i), and

(xi,2L/3+1, . . . , xi,L−1) = cπ(i). (8)

The remaining bits {xi,L/3}Mi=1, {xi,2L/3}Mi=1, and {xi,L}Mi=1 are used to accommodate the information bits of d2,d4,d6, and

the redundancy bits {EH(si)}3i=1 and {EH(di)}i∈{2,4,6}, in the following manner.

xi,L/3 =











d2,i, if i ≤ M − logML− logM − 2

EH(d2)i−(M−logML−logM−2), if M − logML− logM − 1 ≤ i ≤ M − logML− 1

EH(s1)i−(M−logML−1), if M − logML ≤ i ≤ M ,

,

xi,2L/3 =











d4,i, if σ−1(i) ≤ M − logML− logM − 2

EH(d4)i−(M−logML−logM−2), if M − logML− logM − 1 ≤ σ−1(i) ≤ M − logML− 1

EH(s2)i−(M−logML−1), if M − logML ≤ σ−1(i) ≤ M ,

,

xi,L =











d6,i, if π−1(i) ≤ M − logML− logM − 2

EH(d6)i−(M−logML−logM−2), if M − logML− logM − 1 ≤ π−1(i) ≤ M − logML− 1

EH(s3)i−(M−logML−1), if M − logML ≤ π−1(i) ≤ M ,

. (9)

That is, if the strings {xi}Mi=1 are sorted according to the content of the bits (xi,1, . . . , xi,L/3−1) = ai, then the top

M − logML logM − 2 bits of the (L/3)’th column6 contain d2, the middle logM + 1 bits contain EH(d2), and the

bottom logML+ 1 bits contain EH(s1). Similarly, if the strings are sorted according to (xi,L/3+1, . . . , xi,2L/3−1) = bi, then

the top M − logML logM − 2 bits of the (2L/3)’th column contain d4, the middle logM + 1 bits contain EH(d4), and

the bottom logML + 1 bits contain EH(s2), and so on. This concludes the encoding function E of Theorem 5. It can be

readily verified that E is injective since different messages result in either different ({ai}Mi=1,{bi}Mi=1,{ci}Mi=1) or the same

({ai}Mi=1,{bi}Mi=1,{ci}Mi=1) with different (d2,d4,d6). In either case, the resulting codewords {xi}Mi=1 of the two messages

are different.

To verify that the image of E is a 1-substitution code, observe first that since {ai}Mi=1, {bi}Mi=1, and {ci}Mi=1 are sets, it

follows that any two strings in the same set are distinct. Hence, according to (8), it follows that dH(xi,xj) ≥ 3 for every

distinct i and j in [M ]. Therefore, no 1-substitution error can cause one xi to be equal to another, and consequently, the result

of a 1-substitution error is always in
({0,1}L

M

)

. In what follows a decoding algorithm is presented, whose input is a codeword

that was distorted by at most a single substitution, and its output is d.

Upon receiving a word C′ = {x′
1, . . . ,x

′
M} ∈ B1(C) for some codeword C (once again, the indexing of the elements of C′

is lexicographic), we define

âi = (x′
i,1, . . . , x

′
i,L/3−1)

b̂i = (x′
τ−1(i),L/3+1, . . . , x

′
τ−1(i),2L/3−1) (10)

ĉi = (x′
ρ−1(i),2L/3+1, . . . , x

′
ρ−1(i),L−1),

where τ is the permutation by which {x′
i}Mi=1 are sorted according to their L/3+1, . . . , 2L/3−1 entries, and ρ is the permutation

by which they are sorted according to their 2L/3+1, . . . , L−1 entries (we emphasize that τ and ρ are unrelated to the original π
and σ, and those will be decoded later). Further, when ordering {x′

i}Mi=1 by either the lexicographic ordering, by τ , or by ρ, we

obtain candidates for each one of d2, d4, d6, EH(d2), EH(d4), EH(d6), EH(s1), EH(s2), and EH(s3), that we similarly

denote with an additional apostrophe7. For example, if we order {x′
i}Mi=1 according to τ , then the bottom log(ML) + 1 bits

of the (2L/3)-th column are EH(s2)
′, the middle logM + 1 bits are EH(d4)

′, and the top M − logML − logM − 2 bits

are d′
4 (see Eq. (9)). Now, let

s′1 = (â1, . . . ,âM , b̂τ(1), . . . ,b̂τ(M), ĉρ(1), . . . ,ĉρ(M)),

s′2 = (âτ−1(1), . . . ,âτ−1(M),b̂1, . . . ,b̂M , ĉτ−1ρ(1), . . . ,ĉτ−1ρ(M)), and (11)

s′3 = (âρ−1(1), . . . ,âρ−1(M),b̂ρ−1τ(1), . . . ,b̂ρ−1τ(M),ĉ1, . . . ,ĉM ).

The following lemma shows that at least two of the above s′i are close in Hamming distance to their encoded counter-

part (si, EH(si)).

6Sorting the strings {xi}Mi=1 by any ordering method provides a matrix in a natural way, and can consider columns in this matrix.
7That is, each one of d′

2, d′
4, etc., is obtained from d2, d4, etc., by at most a single substitution.
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Lemma 9. There exist distinct integers k, ℓ ∈ [3] such that

dH((s′k, EH(sk)
′), (sk, EH(sk)) ≤ 1, and

dH((s′ℓ, EH(sℓ)
′), (sℓ, EH(sk))) ≤ 1.

Proof. If the substitution did not occur at either of index sets {1, . . . , L/3− 1}, {L/3+ 1, . . . , 2L/3− 1}, or {2L/3 + 1, . . . ,
L− 1} (which correspond to the values of the ai’s, bi’s, and ci’s, respectively), then the order among the ai’s, bi’s and ci’s

is maintained. That is, we have that

s′1 = (a1, . . . ,aM , bσ(1), . . . ,bσ(M), cπ(1), . . . ,cπ(M)),

s′2 = (aσ−1(1), . . . ,aσ−1(M),b1, . . . ,bM , cσ−1π(1), . . . ,cσ−1π(M)),

s′3 = (aπ−1(1), . . . ,aπ−1(M),bπ−1σ(1), . . . ,bπ−1σ(M),c1, . . . ,cM ),

and in this case, the claim is clear. It remains to show the other cases, and due to symmetry, assume without loss of generality

that the substitution occurred in one of the ai’s, i.e., in an entry which is indexed by an integer in {1, . . . , L/3− 1}.

Let A ∈ {0, 1}M×L be a matrix whose rows are the xi’s, in any order. Let Aleft be the result of ordering the rows of A
according to the lexicographic order of their 1, . . . , L/3 − 1 entries. Similarly, let Amid and Aright be the results of ordering

the rows of A by their L/3 + 1, . . . , 2L/3− 1 and 2L/3+ 1, . . . , L− 1 entries, respectively, and let A′
left, A

′
mid, and A′

right be

defined analogously with {x′
i}Mi=1 instead of {xi}Mi=1.

It is readily verified that there exist permutation matrices P1 and P2 such that Amid = P1Aleft and Aright = P2Aleft. Moreover,

since {bi}Mi=1 = {b̂i}Mi=1, and {ci}Mi=1 = {ĉi}Mi=1, it follows that A′
mid = P1(Aleft +R) and A′

right = P2(Aleft +R), where R ∈
{0, 1}M×L is a matrix of Hamming weight 1; this clearly implies that A′

mid = Amid + P1R and that A′
right = Aright + P2R.

Now, notice that s2 result from vectorizing some submatrix M2 of Amid, and s′2 result from vectorizing some submatrix M ′
2

of A′
mid. Moreover, the matrices M2 and M ′

2 are taken from their mother matrix by omitting the same rows and columns,

and both vectorizing operations consider the entries of M2 and M ′
2 in the same order. In addition, the redundancies EH(s2)

and EH(s3) can be identified similarly, and have at most a single substitution with respect to the corresponding entries in

the noiseless codeword. Therefore, it follows from A′
mid = Amid + P1R that dH(s′2, (s2, EH(s2))) ≤ 1. The claim for s3 is

similar.

By applying a Hamming decoder on either one of the si’s, the decoder obtains possible candidates for {ai}Mi=1, {bi}Mi=1, and

{ci}Mi=1, and by Lemma 9, it follows that these sets of candidates will coincide in at least two cases. Therefore, the decoder

can apply a majority vote of the candidates from the decoding of each s′i, and the winning values are {ai}Mi=1, {bi}Mi=1, and

{ci}Mi=1. Having these correct values, the decoder can sort {x′
i}Mi=1 according to their ai columns, and deduce the values of σ

and π by observing the resulting permutation in the bi and ci columns, with respect to their lexicographic ordering. This

concludes the decoding of the values d1, d3, and d5 of the data d.

We are left to extract d2, d4, and d6. To this end, observe that since the correct values of {ai}Mi=1, {bi}Mi=1, and {ci}Mi=1

are known at this point, the decoder can extract the true positions of d2,d4, and d6, as well as their respective redundancy

bits EH(d2), EH(d4), EH(d6). Hence, the decoding algorithm is complete by applying a Hamming decoder.

We now turn to compute the redundancy of the above code C. Note that there are two sources of redundancy—the Hamming

code redundancy, which is at most 3(logML + logM + 2) and the fact that the sets {ai}Mi=1, {bi}Mi=1, and {ci}Mi=1 contain

distinct strings. By a straightforward computation, for 4 ≤ M ≤ 2L/6 we have

r(C) = log

(

2L

M

)

− log

(

(

2L/3−1

M

)3

· (M !)2 · 23(M−logML−logM−2)

)

= log

M−1
∏

i=0

(2L − i)− log

M−1
∏

i=0

(2L/3−1 − i)3 − 3M + 3 logML+ 3 logM + 6

= log

M−1
∏

i=0

(2L − i)

(2L/3 − 2i)3
+ 3 logML+ 3 logM + 6

≤ 3M log
2L/3

2L/3 − 2M
+ 3 logML+ 3 log+6.

(a)

≤ 12 log e+ 3 logML+ 3 logM + 6 (12)

where inequality (a) is derived in Appendix B.

For the case when M < logML+ logM , we generate {ai}Mi=1, {bi}Mi=1, and {ci}Mi=1 with length L/3− ⌈ logML+logM
M ⌉.

As a result, we have ⌈ logML+logM
M ⌉ bits xi,j , i ∈ {1, . . . ,M}, j ∈ {L/3 − ⌈ logML+logM

M ⌉ + 1, . . . , L/3} ∪ {2L/3 −
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⌈ logML+logM
M ⌉ + 1, . . . , 2L/3} ∪ {L − ⌈ logML+logM

M ⌉ + 1, . . . , L} to accommodate the information bits d2,d4,d6 and the

redundancy bits {EH(si)}3i=1 and {EH(di)}i∈{2,4,6} in each part.

Remark 2. The above construction is valid whenever M ≤ 2L/3−1. However, asymptotically optimal amount of redundancy

is achieved for M ≤ 2L/6.

Remark 3. In this construction, the separate storage of the Hamming code redundancies EH(d2), EH(d4), and EH(d6) is

not necessary. Instead, storing EH(d2,d4,d6) is sufficient, since the true position of those can be inferred after {ai}Mi=1,

{bi}Mi=1, and {ci}Mi=1 were successfully decoded. This approach results in redundancy of 3 logML+ log 3M +O(1), and a

similar approach can be utilized in the next section as well.

VI. CODES FOR MULTIPLE SUBSTITUTIONS

In this section we extend the 1-substitution correcting code from Section V to multiple substitutions whenever the number

of substitutions K is at most L/4 logM − 1/2. In particular, we obtain the following result.

Theorem 6. For integers M,L, and K such that M ≤ 2
L

2(2K+1) there exists a K-substitution code with redundancy

2K(2K + 1) logML+ 2K(2K + 1) logM +O(K).

We restrict our attention to values of M,L, and K for which 2K logML+2K logM ≤ M . For the remaining values, i.e.,

when 2K logML+ 2K logM > M , a similar code can be constructed. The construction of a K-substitution correcting code

is similar in spirit to the single substitution case, except that we partition the strings to 2K +1 parts instead of 3. In addition,

we use a Reed-Solomon code in its binary representation (see Section II) to combat K-substitutions in the classic sense. The

motivation behind considering 2K + 1 parts is that K substitutions can affect at most K of them. As a result, at least K + 1
parts retain their original order; and that enables a classic RS decoding algorithm to succeed. In turn, the true values of the

parts are decided by a majority vote, which is applied over a set of 2K + 1 values, K + 1 of whom are guaranteed to be

correct.

For parameters M,L, and K as above, let

D = {1, . . . ,
(

2L/(2K+1)−1

M

)2K+1

· (M !)2K · 2(2K+1)(M−2KlogML−2K logM)}

be the information set. We split a message d ∈ D into d = (d1, . . . , d4K+2), where d1 ∈ {1, . . . ,
(

2L/(2K+1)−1

M

)

}, dj ∈
{1, . . . ,

(

2L/(2K+1)−1

M

)

M !} for j ∈ {2, . . . , 2K + 1}, and dj ∈ {1, . . . , 2(2K+1)(M−2K logML−2K logM)} for j ∈ {2K +
2, . . . , 4K + 2}. As in (6), we apply Fcom and F to obtain

Fcom(d1) = {a1,1, . . . , aM,1}, where ai,1 ∈ {0, 1}L/(2K+1)−1 for all i, and

F (dj) = ({a1,j , . . . , aM,j}, πj) for all j ∈ {2, . . . , 2K + 1}, where ai,j ∈ {0, 1}L/(2K+1)−1 and πj ∈ SM .

As usual, the sets {ai,j}Mi=1 are indexed lexicographically according to i, i.e., a1,j < . . . < aM,j for all j. Similar to (8), let

(xi,(j−1)L/(2K+1)+1, . . . , xi,jL/(2K+1)−1) = aπj(i),j , i ∈ [M ], j ∈ [2K + 1].

In addition, define the equivalents of (7) as

s1 = (a1,1, . . . ,aM,1, aπ2(1),2, . . . , aπ2(M),2, . . . , aπ2K+1(1),2K+1, . . . ,aπ2K+1(M),2K+1),

s2 = (aπ−1
2 (1),1, . . . ,aπ−1

2 (M),1, a1,2, . . . , aM,2, . . . , aπ−1
2 π2K+1(1),2K+1, . . . ,aπ−1

2 π2K+1(M),2K+1),

...

s2K+1 = (aπ−1
2K+1(1),1

, . . . ,aπ−1
2K+1(M),1, aπ−1

2K+1π2(1),2
, . . . , aπ−1

2K+1π2(M),2, . . . , a1,2K+1, . . . ,aM,2K+1).

Namely, for every i ∈ [2K + 1], the elements {ai,j}Mj=1 appear in si by their lexicographic order, and the remaining ones are

sorted accordingly.

To state the equivalent of (9), for a binary string t let RSK(t) be the redundancy bits that result from K-substitution

correcting RS encoding of t, in its binary representation8. In particular, we employ an RS code which corrects K substitutions,

and incurs 2K log(|t|) bits of redundancy. Then, the remaining bits {xi, L
2K+1

}Mi=1, {xi, 2L
2K+1

}Mi=1, . . . , {xi,L}Mi=1 are defined

8To avoid uninteresting technical details, it is assumed henceforth that RS encoding in its binary form is possible, i.e., that log(|t|) is an integer that

divides t; this can always be attained by padding with zeros. Furthermore, the existence of an RS code is guaranteed, since q = 2log(|t|) is larger than the
length of the code, which is |t|/ log(|t|).
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as follows. In this expression, notice that |si| = M(L− 2K − 1) for every i and |dj | ≤ M for every j. As a result, it follows

that |RSK(dj)| ≤ 2K logM for every j ∈ {2K + 2, . . . , 4K + 2}, and |RSK(si)| ≤ 2K logML for every i ∈ [2K + 1].

xi, jL
2K+1

=











dj+2K+1,i if π−1
j (i) ≤ M − 2K logM − 2K logML

RSK(dj+2K+1)i−M+2K logM+2K logML, if M − 2K logM − 2K logML+ 1 ≤ π−1
j (i) ≤ M − 2K logML

RSK(sj)i−M+2K logML, if M − 2K logML+ 1 ≤ π−1
j (i)

.

(13)

To verify that the above construction provides a K-substitution code, observe first that {ai,j}Mj=1 is a set of distinct integers

for all i ∈ [2K + 1], and hence dH(xi,xj) ≥ 2K + 1 for all distinct i and j in [M ]. Thus, a K-substitution error cannot turn

one xi into another, and the result is always in
({0,1}L

M

)

.

The decoding procedure also resembles the one in Section V. Upon receiving a word C′ = {x′
1, . . . ,x

′
M} ∈ BK(C) for

some codeword C, we define

âi,j = (x′
τ−1
j (i), (j−1)L

2K+1 +1
, . . . , x′

τ−1
j (i), jL

2K+1−1
, . . . , ), for j ∈ [2K + 1], and i ∈ [M ]

where τj is the permutation by which {x′
i}Mi=1 are sorted according to their

(j−1)L
2K+1 +1, . . . , jL

2K+1 −1 entries (τ1 is the identity

permutation, compare with (10)). In addition, sorting {x′
i}Mi=1 by either one of τj yields candidates for {RSK(si)}2K+1

i=1 , for

{dj}4K+2
j=2K+2, and for {RSK(dj)}4K+2

j=2K+2. The respective {s′i}2K+1
i=1 are defined as

s′1 = (â1,1, . . . ,âM,1, âτ2(1),2, . . . , âτ2(M),2, . . .

âτ2K+1(1),2K+1, . . . , âτ2K+1(M),2K+1),

s′2 = (âτ−1
2 (1),1, . . . ,âτ−1

2 (M),1, â1,2, . . . , âM,2, . . .

âτ−1
2 τ2K+1(1),2K+1, . . . , âτ−1

2 τ2K+1(M),2K+1),

...

s′2K+1 = (âτ−1
2K+1(1),1

, . . . ,âτ−1
2K+1(M),1, âτ−1

2K+1τ2(1),2
, . . . , âτ−1

2K+1τ2(M),2, . . .

â1,2K+1, . . . , âM,2K+1).

Lemma 10. There exist K + 1 distinct integers ℓ1, . . . , ℓK+1 such that dH((s′ℓj , RSK(sℓj )
′), (sℓj , RSK(sℓj ))) ≤ K for

every j ∈ [K + 1].

Proof. Analogous to the proof of Lemma 9. See Appendix A for additional details.

By applying an RS decoding algorithm on each of {s′i}2K+1
i=1 we obtain candidates for the true values of {ai,j}Mj=1 for

every i ∈ [2K+1]. According to Lemma 10, at least K+1 of these candidate coincide, and hence the true value of {ai,j}Mj=1

can be deduced by a majority vote. Once these true values are known, the decoder can sort {x′
i}Mi=1 by its a1,j entries (i.e.,

the entries indexed by 1, . . . , L
2K+1 − 1), and deduce the values of each πt, t ∈ {2, . . . , 2K + 1} according to the resulting

permutation of {at,ℓ}Mℓ=1 in comparison to their lexicographic one. Having all the permutations {πj}2K+1
j=2 , the decoder can

extract the true positions of {dj}4K+2
j=2K+2 and {RSK(dj)}4K+2

j=2K+2, and apply an RS decoder to correct any substitutions that

might have occurred.

Remark 4. Notice that the above RS code in its binary representation consists of binary substrings that represent elements in

a larger field. As a result, this code is capable of correcting any set of substitutions that are confined to at most K of these

substrings. Therefore, our code can correct more than K substitutions in many cases.

For 4 ≤ M ≤ 2L/2(2K+1), the total redundancy of the above construction C is given by

r(C) = log

(

2L

M

)

− log

(

2L/(2K+1)−1

M

)2K+1

M !2K2(2K+1)(M−2K logML−2K logM)

(b)

≤ (2K + 1) log e+ 2K(2K + 1) logML+ 2K(2K + 1) logM. (14)

where the proof of inequality (b) is given in Appendix B.

Remark 5. As mentioned in Remark 3, storing RSK(dj) separately in each part j ∈ {2K+2, . . . , 4K+2} is not necessary.

Instead, we store RSK(d2K+2, . . . ,d4K+2) in a single part j = 2K + 1, since the position of the binary strings dj for j ∈
{2K+2, . . . , 4K+2} and the redundancy RSK(d2K+2, . . . ,d4K+2) can be identified once {ai,j}i≤M,j≤2K+1 are determined.

The redundancy of the resulting code is 2K(2K + 1) logML+ 2K log(2K + 1)M .
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For the case when M < 2K logML + 2K logM , we generate sequences ai,j , i ∈ {1, . . . ,M}, j ∈ {1, . . . , 2K + 1}
with length L/(2K + 1)− ⌈ 2K logML+2K logM

M ⌉. Then, the length ⌈ 2K logML+2K logM
M ⌉ sequences xi,j , i ∈ {1, . . . ,M}, j ∈

∪2K+1
l=1 {(l − 1)L/(2K + 1) − ⌈ 2K logML+2K logM

M ⌉ + 1, . . . , lL/(2K + 1)} are used to accommodate the information bits

{dj}4K+2
j=2K+2 and the redundancy bits {RSK(si)}2K+1

i=1 and {RSK(dj)}4K+2
j=2K+2 in each part.

VII. CODES WITH ORDER-WISE OPTIMAL REDUNDANCY

In this section we briefly describe how to construct K-substitution correcting codes whose redundancy is order-wise optimal,

in a sense that will be clear shortly. The code construction applies whenever K is at most O(min{L1/3, L/ logM}).
Theorem 7. For integers M,L, and K , let L′ = 3 logM + 4K2 + 1. If L′ + 4KL′ + 2K log(4KL′) ≤ L, then there exists

an explicit K-substitution code with redundancy 2K logML+ (12K + 2) logM +O(K3) +O(K log logML)

As in Section V and Section VI, we use the information bits themselves for the purpose of indexing. Specifically, we encode

information in the first L′ bits (xi,1, xi,2, . . . , xi,L′) in each sequence xi and then sort the sequences {xi}Mi=1 according to

the lexicographic order π of (xi,1, xi,2, . . . , xi,L′), such that (xπ(i),1, xπ(i),2, . . . , xπ(i),L′) < (xπ(j),1, xπ(j),2, . . . , xπ(j),L′)
for i < j. Then, we protect the sequences {xi}Mi=1 in the same manner as if they are ordered, i.e., by concatenating them and

applying a Reed-Solomon encoder.

An issue that must be addressed is how to protect the ordering π from being affected by substitution errors. This is done

in two steps: (1) Using additional redundancy to protect the ordering sequence set {(xi,1, xi,2, . . . , xi,L′)}Mi=1; and (2) Con-

structing {(xi,1, xi,2, . . . , xi,L′)}Mi=1 such that the Hamming distance between any two distinct sequences (xi,1, xi,2, . . . , xi,L′)
and (xj,1, xj,2, . . . , xj,L′) is at least 2K +1. In this way, the bits (xi,1, xi,2, . . . , xi,L′) in sequence xi can be recovered from

their erroneous version (x′
i,1, x

′
i,2, . . . , x

′
i,L′), which is within Hamming distance K from (xi,1, xi,2, . . . , xi,L′). The details of

the encoding and decoding are as follows.

For an integer n, let 1n be the vector of n ones. Let S be the ensemble of all codes of length L′, cardinality M , and

minimum Hamming distance at least 2K + 1, which contain 1L′ , that is,

S ,

{

{a1, . . . , aM} ∈
({0, 1}L′

M

)

∣

∣

∣
a1 = 1L′ and dH(ai, aj) ≥ 2K + 1 for every distinct i, j ∈ [M ]

}

.

Now we show that

|S| ≥
∏M

i=2[2
L′ − (i − 1)Q]

(M − 1)!
, (15)

where Q =
∑2K

i=0

(

L′

i

)

is the size of a Hamming ball of radius 2K centered at a vector in {0, 1}L′

. For

ST = {(a1, . . . , aM ) : a1 = 1L′ and dH(ai, aj) ≥ 2K + 1 for distinct i, j ∈ [M ]} ,

it is shown that |ST | ≥
∏M

i=2[2
L′−(i−1)Q]. The idea is to let a1 = 1L′ and then select a2, . . . , aM sequentially while keeping

the mutual Hamming distance among a1, . . . , ai at least 2K+1 for i ∈ {2, . . . ,M}. Notice that for any sequence a ∈ {0, 1}L′

,

there are at most Q sequences that are within Hamming distance 2K of a. Hence, given a1 = 1L′ , . . . , ai−1, i ∈ {2, . . . ,M}
such that the mutual Hamming distance among a1, . . . , ai−1 is at least 2K + 1, there are at least 2L

′ − iQ choices of ai ∈
{0, 1}L′

, i ∈ {2, . . . ,M} such that the Hamming distance between ai and each one of a1, . . . , ai−1 is at least 2K + 1.

These choices of ai ∈ {0, 1}L′

keep the mutual Hamming distance among a1, . . . , ai at least 2K + 1. Therefore, it follows

that |ST | ≥
∏M

i=2(2
L′ − (i− 1)Q). Since there are (M − 1)! tuples in ST that correspond to the same set {1L′ , a2, . . . , aM}

in S, we have that equation (15) holds.

According to (15), there exists an injective mapping FS :

[

⌈
∏M−1

i=1 (2L
′−iQ)

(M−1)! ⌉
]

→
({0,1}L′

M

)

that maps an integer i ∈

{1, . . . , ⌈
∏M−1

i=1 (2L
′−iN)

(M−1)! ⌉} to a code S ∈ S. The mapping FS is invertible and can be computed in O(2ML′

) time using brute

force. We note that there is a greedy algorithm implementing the mapping FS and the corresponding inverse mapping F−1
S

in Poly(M,L, k) time. We defer this algorithm and the corresponding analysis to a future version of this paper. For S ∈ S,

define the characteristic vector 1(S) ∈ {0, 1}2L
′

of S by

1(S)i =

{

1 if the binary presentation of i is in S

0 else
.

Notice that the Hamming weight of 1(S) is M for every S ∈ S. Intuitively, we use the choice of a code S ∈ S to store

information, and the lexicographic order of the strings in the chosen S to order the strings in our codewords, and the details

are as follows.
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Consider the data d ∈ D to be encoded as a tuple d = (d1,d2), where d1 ∈ {1, . . . , ⌈
∏M−1

i=1 (2L
′−iQ)

(M−1)! ⌉} and

d2 ∈ {0, 1}M(L−L′)−4KL′−2K⌈log(4KL′)⌉−2K⌈logML⌉.

Given (d1,d2), the codeword {xi}Mi=1 is generated by the following procedure.

Encoding:

(1) Let FS(d1) = {a1, . . . , aM} ∈ S such that a1 = 1L′ and the ai’s are sorted in a descending lexicographic order. Let

(xi,1, . . . , xi,L′) = ai, for i ∈ [M ].
(2) Let (x1,L′+1, . . . , x1,L′+4KL′) = RS2K(1({a1, . . . , aM})) (see the paragraph before (13) for the definition of RSK(t))

and

(x1,L′+4KL′+1, . . . , x1,L′+4KL′+2K⌈log(4KL′)⌉) = RSK(RS2K(1({a1, . . . , aM}))).
(3) Place the information bits of d2 in bits

(x1,L′+4KL′+2K⌈log(4KL′)⌉+1, . . . , x1,L),

(xM,L′+1, . . . , xM,L−2K⌈logML⌉); and

(xi,L′+1, . . . , xi,L) for i ∈ {2, . . . ,M − 1}.
(4) Define

s = (x1, . . . ,xM−1, (xM,1, . . . , xM,L−2K⌈logML⌉))

and let (xM,L−2K⌈logML⌉+1, . . . , xM,L) = RSK(s).

Upon receiving the erroneous version9 (x′
1, . . . ,x

′
M ), the decoding procedure is as follows.

Decoding:

(1) Find the unique sequence x′
i0

such that (x′
i0,1

, . . . , x′
i0,L′) has at least L′ − K many 1-entries. By the definition

of {(xi,1, . . . , xi,L′)}Mi=1, we have that x′
i0

is an erroneous copy of x1. Then, use a Reed-Solomon decoder to decode

bits (x1,L′+1, . . . , x1,L′+4KL′) from

(x′
i0,L′+1, . . . , x

′
i0,L′+4KL′+2K⌈log(4KL′)⌉).

Note that (x′
i0,L′+1, . . . , x

′
i0,L′+4KL′+2K⌈log(4KL′)⌉) is an erroneous copy of (x1,L′+1, . . . , x1,L′+2KL′+2K⌈log(2KL′)⌉),

which by definition is a codeword in a Reed-Solomon code.

(2) Use a Reed-Solomon decoder and the Reed-Solomon redundancy (x1,L′+1, . . . , x1,L′+4KL′) to recover the vector 1({(xi,1,
. . . , xi,L′)}Mi=1) and then the set {(xi,1, . . . , xi,L′)}Mi=1. Since 1({(xi,1, . . . , xi,L′)}Mi=1) is within Hamming distance 2K
from 1({(x′

i,1, . . . , x
′
i,L′)}Mi=1), the former can be recovered given its Reed-Solomon redundancy (x1,L′+1, . . . , x1,L′+4KL′).

(3) For each i ∈ [M ], find the unique π(i) ∈ [M ] such that dH((x′
π(i),1, . . . , x

′
π(i),L′), (xi,1, . . . , xi,L′)) ≤ K (note

that π(i0) = 1), and conclude that x′
i is an erroneous copy of xπ(i).

(4) With the order π recovered, concatenate (x′
π−1(1), . . . ,x

′
π−1(M)). We have that (x′

π−1(1), . . . ,x
′
π−1(M)) is an erroneous

copy of (x1, . . . ,xM ), which by definition is a codeword in a Reed-Solomon code. Therefore, (x1, . . . ,xM ) can be

recovered from (x′
π−1(1), . . . ,x

′
π−1(M)).

The redundancy of the code is

r(C) = log

(

2L

M

)

− log⌈
∏M−1

i=1 (2L
′ − iQ)

(M − 1)!
⌉

≤2K logML+ (12K + 2) logM +O(K3) +O(K log logML), (16)

which will be proved in Appendix E.

Remark 6. Note that the the proof of (15) indicates an algorithm for computing mapping FS(i) with complexity exponential

in L′ and M . A poly(M,L) complexity algorithm that computes FS(i) will be given in future versions of this paper.

VIII. CONCLUSIONS AND FUTURE WORK

Motivated by novel applications in coding for DNA storage, this paper presented a channel model in which the data is sent

as a set of unordered strings, that are distorted by substitutions. Respective sphere packing arguments were applied in order to

establish an existence result of codes with low redundancy for this channel, and a corresponding lower bound on the redundancy

for K = 1 was given by using Fourier analysis. For K = 1, a code construction was given which asymptotically achieves the

lower bound. For larger values of K , a code construction whose redundancy is asymptotically K times the aforementioned

upper bound was given; closing this gap is an interesting open problem. Furthermore, it is intriguing to find a lower bound on

the redundancy for larger values of K as well.

9Since the sequences {xi}
M

i=1 have distance at least 2K + 1 with each other, the sequences {x′
i
}M
i=1 are different.
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APPENDIX A

PROOF OF LEMMA 10

Proof. (of Lemma 10) Similarly to the proof of Lemma 9, we consider a matrix A ∈ {0, 1}M×L whose rows are the xi’s, in

any order. Let Aj be the result of ordering the rows of A according to the lexicographic order of their (j − 1)L/(2K + 1) +
1, . . . , jL/(2K + 1)− 1 bits for j ∈ [2K + 1]. The matrices A′

j for j ∈ [2K + 1] can be defined analogously with {x′
i}Mi=1

instead of {xi}Mi=1.

It is readily verified that there exist 2K + 1 permutation matrices Pj such that Aj = PjA (Here P1 is the identity

matrix). Moreover, since K substitution spoils at most K parts, there exist at least jl ∈ [2K + 1], l ∈ [K + 1] such that

{ai,jl}Mi=1 = { ˆai,jl}Mi=1, for l ∈ [K + 1], it follows that A′
jl
= Pjl(A+R) for l ∈ [K + 1], where R ∈ {0, 1}M×L is a matrix

of Hamming weight at most K; this clearly implies that A′
jl
= Ajl +PjlR for l ∈ [K +1]. Since sjl results from vectorizing

some submatrix Ml of Ajl , and s′jl results from vectorizing some submatrix M ′
l of A′

jl
. Moreover, the matrices Ml and M ′

l

are taken from their mother matrix by omitting the same rows and columns, and both vectorizing operations consider the

entries of Ml and M ′
l in the same order. In addition, the redundancies EH(sjl) for l ∈ [K + 1] can be identified similarly,

and have at most K substitution with respect to the corresponding entries in the noiseless codeword. Therefore, it follows

from Ajl = Ajl + P1R that dH((s′jl , , EH(sjl)), (sjl , EH(sjl))) ≤ K .

APPENDIX B

PROOF OF REDUNDANCY BOUNDS

Proof of (a) in (12):

r(C) ≤ 3 log(1 +
2M

2L/3 − 2M
)M + 3 logML+ 3 logM + 6

≤ 3 log(1 +
4

M
)M + 3 logML+ 3 logM + 6

= 12 log((1 +
4

M
)M/4) + 3 logML+ 3 logM + 6

≤ 12 log e + 3 logML+ 3 logM + 6.
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Proof of (b) in (14):

r(C) = log

M−1
∏

i=0

(2L − i)− log

M−1
∏

i=0

(2L/(2K+1)−1 − i)2K+1 − log 2(2K+1)M + 2K(2K + 1) logML+ 2K(2K + 1) logM

= log

M−1
∏

i=0

(2L − i)

(2L/(2K+1) − 2i)2K+1
+ 2K(2K + 1) logML+ 2K(2K + 1) logM

≤ (2K + 1)M log
2L/(2K+1)

2L/(2K+1) − 2M
+ 2K(2K + 1) logML+ 2K(2K + 1) logM

≤ (2K + 1) log(1 +
2M

2L/(2K+1) − 2M
)M + 2K(2K + 1) logML+ 2K(2K + 1) logM

≤ (2K + 1) log(1 +
4

M
)M + 2K(2K + 1) logML+ 2K(2K + 1) logM

= (2K + 1) log((1 +
4

M
)M/4) + 2K(2K + 1) logML+ 2K(2K + 1) logM

≤ (2K + 1) log e+ 2K(2K + 1) logML+ 2K(2K + 1) logM.

APPENDIX C

IMPROVED CODES FOR A SINGLE SUBSTITUTION

We briefly present an improved construction of a single substitution code, which achives 2 logML + log 2M + O(1)
redundancy.

Theorem 8. Let M and L be numbers that satisfy M ≤ 2L/4. Then there exists a single substitution correcting code with

redundancy 2 logML+ log 2M +O(1).

The construction is based on the single substitution code as shown in Section V. The difference is that instead of using

three parts and the majority rule, it suffices to use two parts (two halfs) and an extra bit to indicate which part has the correct

order. To compute this bit, let

x⊕ =

M
⊕

i=1

xi

be the bitwise XOR of all strings xi and e ∈ {0, 1}L be a vector of L/2 zeros followed by L/2 ones. We use the bit be =

e·x⊕ mod 2 to indicate in which part the substitution error occurs. If a substitution error happens at the first half (x1
i , . . . , x

L/2
i ),

the bit be does not change. Otherwise the bit be is flipped. Moreover, as mentioned in Remark 3, we store the redundancy of all

the binary strings in a single part, instead of storing the redundancy separately for each binary string in each part. The data to en-

code is regarded as d = (d1, d2, d3, d4), where d1 ∈ {1, . . . ,
(

2L/2−1

M

)

}, d2 ∈ {1, . . . ,
(

2L/2−1

M

)

·M !}, d3 ∈ {1, . . . , 2M−logML−1}
and d4 ∈ {1, . . . , 2M−logML−log 2M−2}. That is, d1 represents a set of M strings of length L/2− 1, d2 represents a set of M
strings of length L/2 − 1 and a permutation π. Let d3 ∈ {0, 1}M−logML−1,d4 ∈ {0, 1}M−logML−log 2M−2 be the binary

strings corresponds to d3 and d4 respectively.

We now address the problem of inserting the bit be into the codeword. We consider the four bits xi1,L/2, xi2,L/2, xi3,L,

and xi4,L, where i1 and i2 are the indices of the two largest strings among {ai}Mi=1 in lexicographic order, and i3 and i4 are

the indices of the two largest strings among {bi}Mi=1 in lexicographic order. Then, we compute be and set

xi1,L/2 = xi2,L/2 = xi3,L = xi4,L = be.

Note that after a single substitution, at most one of i1, i2, i3, and i4 will not be among the indices of the largest two strings

in their corresponding part. Hence, upon receiving a word C′ = {x′
1, . . . ,x

′
M} ∈ B1(C) for some codeword C, we find the

two largest strings among {ai}Mi=1 and the two largest strings among {bi}Mi=1, and use majority to determine the bit be. The

rest of the encoding and decoding procedures are similar to the corresponding ones in Section V. We define s1 and s2 to the

two possible concatenations of {ai}Mi=1 and {bi}Mi=1,

s1 = (a1, . . . ,aM , bπ(1), . . . ,bπ(M))

s2 = (aπ−1(1), . . . ,aπ−1(M),b1, . . . ,bM ).

We compute their Hamming redundancies and place them in columns L/2 and L, alongside the strings d3, d4 and their

Hamming redundancy EH(d3,d4) in column L, similar to (9).

In order to decode, we compute the value of be by a majority vote, which locates the substitution, and consequently, we

find π by ordering {x′
i}Mi=1 according to the error-free part. Knowing π, we extract the di’s and their redundancy EH(d3,d4),

and complete the decoding procedure by applying a Hamming decoder. The resulting redundancy is 2 logML+ log 2M + 3.
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APPENDIX D

PROOF OF (a) IN EQ. (5)

Note that P ≤ T , it suffices to show that the function g(P ) , ((T +P )/P )P = (1+ T/P )P is increasing in P for P > 0.

We now show that the derivative ∂g(P )/∂P = (1+ T/P )P (ln(1 +T/P )−T/(T +P )) is greater than 0 for P > 0. It is left

to show that

ln(1 + T/P ) > T/(T + P ) (17)

Let v = T/(T + P ), then Eq. (17) is equivalent to

1/(1− v) > ev (18)

for some 0 < v < 1. The inequality (18) holds since 1/(1− v) = 1 +
∑∞

i=1 v
i and ev = 1 +

∑∞
i=1 v

i/i! for 0 < v < 1.

APPENDIX E

PROOF OF EQ. (16)

r(C) = log

(

2L

M

)

− log⌈
∏M−1

i=1 (2L
′ − iQ)

(M − 1)!
⌉

− [M(L− L′)− 4KL′ − 2K⌈log(4KL′)⌉ − 2K⌈logML⌉]

≤ log
2LM

M !
− log

(2L
′ −MQ)M−1

(M − 1)!

− [M(L− L′)− 4KL′ − 2K(log(4KL′) + 1)− 2K(logML+ 1)]

=ML′ − log(2L
′ −MQ)M−1 + 4KL′ + 2K log(4KL′)

+ 2K logML+ 4K − logM

= log
2L

′(M−1)

(2L′ −MQ)M−1
+ L′ + 4KL′ + 2K log(4KL′)

+ 2K logML+ 4K − logM

=
(M − 1)MQ

2L′ −MQ
log(1 +

MQ

2L′ −MQ
)

2L
′
−MQ

MQ + L′ + 4KL′ + 2K log(4KL′)

+ 2K logML+ 4K − logM

(a)

≤ log e+ L′ + 4KL′ + 2K log(4KL′) + 2K logML+ 1 + 4K − logM

=2K logML+ (12K + 2) logM +O(K3) +O(K log logML)

where (a) follows from the following inequality

M2(3 logM + 4K2 + 1)2K ≤ 23 logM+4K2+1, (19)

which is proved as follows.

Rewrite Eq. (19) as

(3 logM + 4K2 + 1)2K ≤ 2logM+4K2+1. (20)

Define functions g(y,K) = ln(3y + 4K2 + 1)2K and h(y,K) = ln 2y+4K2+1. Then we have that

∂h(y,K)/∂y − ∂g(y,K)/∂y = ln 2− 6K/(3y + 4K2 + 1),

which is positive for y ≥ 1 and K ≥ 2. Therefore, for k ≥ 2 and y ≥ 1, we have that

h(y,K)− g(y,K) ≥ h(1,K)− g(1,K).

Furthermore,

∂h(1,K)/∂K − ∂g(1,K)/∂K =(8 ln 2)K − 2 ln(4K2 + 4)− 16K2/(4K2 + 4)

>(8 ln 2)K − 2 ln(5K2)− 4

=4(K − 1− lnK) + (8 ln 2− 4)K − 2 ln 5

(a)

≥ (8 ln 2− 4)K − 2 ln 5,
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where (a) follows since K = elnK ≥ 1+lnK . Since (8 ln 2−4)K−2 ln 5 is positive for K ≥ 3, we have that h(1,K)/∂K >
∂g(1,K)/∂K for K ≥ 3. It then follows that h(1,K)− g(1,K) ≥ min{h(1, 2)− g(1, 2), h(1, 3)− g(1, 3)} > 0 for K ≥ 2.

Hence h(y,K) > g(y,K) for y ≥ 1 and K ≥ 2, which implies that Eq. (20) holds when M ≥ 2 and K ≥ 2.

Next we show that Eq. (20) holds when M = 1 or K = 1. When M = 1, we have that logM = 0 and that

∂h(0,K)/∂K − ∂g(0,K)/∂K =(8 ln 2)K − 2 ln(4K2 + 1)− 16K2/(4K2 + 1)

>(8 ln 2)K − 2 ln(5K2)− 4

=4(K − 1− lnK) + (8 ln 2− 4)K − 2 ln 5

≥(8 ln 2− 4)K − 2 ln 5,

which is positive when K ≥ 3. Therefore, we have that h(0,K)−g(0,K) ≥ min{h(0, 1)−g(0, 1), h(0, 2)−g(0, 2), h(0, 3)−
g(0, 3)} > 0. Hence Eq.(20) holds when M = 1.

When K = 1 we have that

2logM+4K2+1 =32(1 + +
∞
∑

i=1

logiM/i!)

≥32(1 + logM + log2 M/2)

≥(3 logM + 5)2

=(3 logM + 4K2 + 1)2K .

Hence, Eq. (20) and Eq. (19) holds. We now finish the proof of Eq. (16).
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