Optimal k-Deletion Correcting Codes

Jin Sima and Jehoshua Bruck
Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, CA, USA

Abstract—Levenshtein introduced the problem of constructing
k-deletion correcting codes in 1966, proved that the optimal
redundancy of those codes is O(klog N), and proposed an
optimal redundancy single-deletion correcting code (using the so-
called VT construction). However, the problem of constructing
optimal redundancy k-deletion correcting codes remained open.
Our key contribution is a solution to this longstanding open
problem. We present a k-deletion correcting code that has
redundancy 8k log n+o(log n) and encoding/decoding algorithms
of complexity O(n***1) for constant k.

I. INTRODUCTION

A set of binary vectors of length N is a k-deletion code
(denoted by () iff any two vectors in C do not share a
subsequence of length N — k. The problem of constructing
a k-deletion code was introduced by Levenshtein [1]. He
proved that the optimal redundancy (defined as N — log|C|)
is O(klog N). Specifically, it is in the range klog N +
o(log N) to 2klog N+o(log N). In addition, he proposed the
following optimal construction (the well-known Varshamov-
Tenengolts (VT) code [2]):

N
{(Cl,...,CN)IZiCiZOInOd(N-i-l)}, (1)

=1

that is capable of correcting a single deletion with redun-
dancy not more than log(N + 1) [1]. The encoding/decoding
complexity of VT codes is linear in IN. Generalizing the
VT construction to correct more than a single deletion was
elusive for more than 50 years. In particular, the past ap-
proaches [3] [4], [5] result in asymptotic code rates that are
bounded away from 1.

A recent breakthrough paper [6] proposed a k-deletion
code construction with O(k?logklog N) redundancy
and O(Nlog* N)' encoding/decoding complexity.
For the case k& = 2 deletions, the redundancy was
improved in [7], [8]. Specifically, the code in [8] has
redundancy of T7log N and linear encoding/decoding
complexity. The work in [9] considered correction with high
probability and proposed a k-deletion code construction
with redundancy (k + 1)(2k + 1)log N + o(logN)
and decoding complexity O(N**1/log"™' N). This
randomized coding setting was improved in [10], where
redundancy O(klog(n/k)) and complexity poly(n,k)
is achieved. However, finding a deterministic k-deletion

The work was supported in part by NSF grants CCF-1816965 and CCF-
1717884 .

I'The notion Oy, denotes parameterized complexity, i.e., O (N log* N) =
f(k)O(N log* N) for some function f.

code construction that achieves the order
redundancy O(klog N) remained elusive.

Our key contribution is a solution to this longstand-
ing open problem: We present a code construction that
achieves O(klog N) redundancy and O(NZ*+1) encoding/
decoding computational complexity (note that the complexity
is polynomial in N). The following theorem summarizes our
main result. We note that throughout this paper, the optimality
of a code is redundancy-wise rather than cardinality-wise. The
problem of finding optimal cardinality &k deletion code appears
highly nontrivial even for k = 1.

optimal

Theorem 1. For any integer n >k and N = n + 8klogn +
o(logn), there exists an encoding function £ : {0,1}" —
{0,1}N, computed in O(n?**1) time, and a decoding func-
tion D : {0,1}NV=F — {0,1}", computed in O(n**+1) time,
such that for any ¢ € {0,1}" and subsequence d € {0,1}V—F
of £(c), we have that D(d) = c.

Recently, an independent work [11] proposed a k dele-
tion code with O(klogn) redundancy and better complex-
ity of poly(n, k). Compare to the constant 8klogn in our
paper, the constant in [11] is not explicitly given and is at
least 200k log n. Moreover, the approaches in [11] and this
paper are different.

Next we identify and describe our key ideas. The key
building blocks in our code construction are: (i) generalizing
the VT construction to k deletions by considering constrained
sequences, (ii) separating the encoded vector to blocks and
using concatenated codes and (iii) a novel strategy to separate
the vector to blocks by a single pattern.

In our previous work for 2-deletions codes [8], we general-
ized the VT construction. In particular, we proved that while
the higher order parity checks Y"1, i/¢; mod (n/ + 1), j =
0,1,...,t might not work in general, those parity checks work
in the two deletions case when the sequences are constrained
to have no adjacent 1’s. In this paper we generalize this idea,
specifically, the higher order parity checks work for k = ¢/2
deletions when the sequences we need to protect satisfy the
following constraint: The distance between any two adjacent
1’s is at least k.

The fact that we can correct k deletions using the gen-
eralization of the VT construction on constrained sequences,
enables a concatenated code construction, which separates
the sequence c into small blocks. Each block is protected
by an inner code, usually a k-deletion code. All the blocks
together are protected by an outer code, for example, a Reed-
Solomon code. Separating and identifying the boundaries be-
tween blocks is one of the main challenges in the concatenated
code construction. The work in [12], [13] resolved this issue

by inserting markers between blocks. In [6], an approach that
uses occurrences of short subsequences, called patterns, as
markers was proposed. The success of decoding in existing
approaches requires that the patterns can not be destroyed or
generated by k deletions / insertions.

Here, we improve the redundancy in [6] by using a single
pattern to separate the blocks and allowing it to be destroyed
or generated by deletions / insertions. The pattern, which we
call synchronization pattern, is a length 3k + [logk] + 4
sequence a = (ay, ..., A3p{[log k]+4) Satisfying

o A3k4+i = 1 for i € {O, ey |—10gk’-| +4}

o There does not exist a j € {1,...,3k — 1}, such that

aj+; =1 forie€{0,...,[logk] +4}.
Namely, a synchronization pattern is a sequence that ends
with [logk] 4+ 5 consecutive 1’s and no other 1 run with

length [logk| + 5 exists. For a sequence ¢ = (cy,...,¢p),
define a synchronization vector 1gy,.(c) € {0,1}" by
L, if (ci—3k41,Ci—3kt2,- -+ Citllog k]+4)

Loyne(c)i = is a synchronization pattern,

0, else.

Note that 15ypc(c); = 0 for ¢ € [1,3k — 1] and for i € [n —
[log k] — 3, n]. It can be seen from the definition that any two
consecutive 1 entries in 1,,,.(c) have distance at least 3k.
Now we are ready to describe our construction that is a
generalization of the VT code. Define the integer vectors

m® 2 (1¢1¢ 4+ 2¢ . .,Zﬂ)
j=1

for £ € {0,...,6k}, where the i-th entry of m¥) is the sum
of the ¢-th powers of the first ¢ entries. Given a sequence ¢ €
{0,1}™ we compute a (VT like) redundancy of dimension 6k+
1 as follows:

fle)y & c- m® mod 3knttl, 2)

for ¢ € {0,...,6k}. It will be shown that the vec-
tor f(Lsync(c)) helps recover the synchronization vec-
tor Leync(c) from k deletions in c.

The rest of the paper is organized as follows. Section II
provides an outline of our construction and some of the
basic lemmas. Section III presents our VT generalization for
recovering the synchronization vector. Section IV explains
how to correct k deletions based on the synchronization
vector, when the synchronization patterns appear frequently.
Section V describes an algorithm to transform a sequence into
one with dense synchronization patterns. Section VI presents
the encoding and decoding of the code. Section VII concludes
the paper.

II. OUTLINE AND PRELIMINARIES

In this section we give an overview of the ingredients
(Lemmas 1, 2, and 3) that constitute our code construction,
as well as existing results (Lemmas 4, 5) that are needed
in our proof. We first present a lemma showing how to
recover synchronization vector from k deletions. The result,

which will be proved in Section III, is crucial in our con-
catenated code construction. For a sequence ¢ € {0,1}",
define its deletion ball By (c) to be the collection of sequences
that share a length n — k subsequence with c. For a number
vector v = (vg, ..., ver) that satisfies 0 < vy < 3kn‘+1, let
6k (-1
M(v) = Z Vp H 3knit! 3)
=0 =0
be a one-to-one mapping that maps the vector v into a
number that ranges in [0, (3k)0FT1nGr+D0k+1) _ 1] where
the set [a,b] = {a,a+ 1,...,b}, called an interval, consists
of consecutive integers between a and b for a < b.

Lemma 1. For integers n and k, there exists a func-
tion p {0,1} — [1,22klogntolos)] gych that

i M(F(Layne(€)) = M(f(Loyne(e))) mod p(c) for two
sequence ¢ € {0,1}" and ¢’ € By(c), then ¢ = c'.

With the knowledge of its synchronization vector 1sypn.(c),
we show in the next lemma how to recover the sequence c
with redundancy O(klogn), when the 0 runs in Ly,.(c) is
not long. We introduce a notion, called k dense, to characterize
the limited O run length property.

A sequence ¢ € {0,1}" is said to be k dense if the distance
between any two consecutive 1 entries in Lsync(c) is at most

L 2([log k] + 5)21°8 k148 1og n]
+ 8k + [log k] + 4)([logn] + 9 + [log k])

More precisely, the 0 runs in Lyn.(c) have length at most
L — 1. The following lemma will be proved in Section IV.

Lemma 2. For integers k and n > k, there exists a func-
tion Hashy : {0,1}" — {0,1}*klogntollogn) = guch that
every k dense sequence ¢ € {0,1}" can be recovered from
its length n — k subsequence d and Hashy/(c).

Lemma 1 and Lemma 2 show how to protect k dense
sequences. As the final building block, the following lemma
presents a mapping that transforms any sequence to a k dense
sequence. Its proof will be given in Section V. Based on
Lemmas 1, 2, and 3, our k deletion code is given in Section VI.

Lemma 3. For integers k and n > k, there exists a map
T : {0,1}" — {0,1}+2MoekI+10 sych that T(c) is a k
dense sequence for ¢ € {0,1}". Moreover, the sequence c
can be recovered from T(c).

Lemma 4 gives a k deletion correcting hash function that
is computable in Oy (poly(n)) time. It is a slight variation of
the result in [6]. Lemma 5 (See [14]) gives an upper bound
on the number of divisors of a positive integer n. It will be
used in proving Lemma 1.

Lemma 4. Let k be a fixed integer. For integers M

and n. There exists a hash function H {0,1}M —
{O7 1} [(M/[logn])](2kloglog "“’O(l))’ computable
in Op((M/logn)nlog®* n) time, such that any

sequence c € {0,1}M can be recovered from its length M —k
subsequence d and the hash H(c).

Lemma 5. For a positive integer n > 3, the number of divisors
of n is upper bounded by 25 n/(Inlnn)

III. PROTECTING THE SYNCHRONIZATION VECTORS

For a sequence ¢ € {0,1}", let g(c) be a dimension 6k + 1
vector with entries defined by

glc)r 2 c-m®,

for ¢ € {0,...,6k}. The proof of Lemma 1 is based on the
following two lemmas together with Lemma 5.

Lemma 6. For c,c’ € {0,1}", if ¢’ € By(c), then Lsyp.(c) €
Bk (Lsyne())-

Let R,,, be the set of length n sequences the 0 runs in which
have length at least m — 1, meaning that any two consecutive 1
entries in a sequence ¢ € R, have distance at least m.

Lemma 7. For c,c¢’ € Rsy, if ¢’ € Bsy(c), and g(c) = g(c’)

then ¢ = c'.

Proof. We first compute the difference g(c); — g(c’),. Since
¢’ € Bsi(c), there exist two subsets & = {01,...,03,} C
{1,...,n} and &' = {07,...,0%,} C {1,...,n} such that
deleting bits with positions § and &’ respectively from c
and ¢’ result in the same length n — 3k subsequence. Further
define A = {i : ¢; = 1} andA’—{i:c = 1} to be the
positions of 1 entries in ¢ and ¢’ respectively. Let S = AN4J
and S = A N ([1,n]\d) be the sets of 1 entry positions
that are deleted and not deleted in c respectively. Similarly
let S = A’'Né’ and S5 = AN ([1,n]\d’). Let the elements
in §UJ’ be ordered by p; < pa < ... < pe. Denoting pg = 0
and pgr+1 = n, we have that

g(c)e —g(c')e = Z mge) _ Z mz(e)

icA ieA’
Pj+1
—Z Z (181 N [pj+1,n]] — i [Pj+1,7]|
Jj=0i=p;+1
+ |So N [i,n]| — | Sy N [i,n]|)i’. (4)

In the following we show (a): —1 < |SaN|i, n]|—[S4N[i, n]| <
1 for ¢ € [1,n]. and (b): For each interval (p;,p;+1], j =
0,...,6k, we have either |Sy N [i,n]| — S5 N [i,n]| < 0 for
all i € (pj,pj41] or |Se N[, n]| —|S5N[i,n]| >0 for all ¢ €
(pjs Pj+1].

Note that each i € Sy corresponds uniquely to an index i’ €
S% so that ¢; and ¢}, end in the same position after deleting
the bits with positions § and 8’ respectively from ¢ and ¢/,
ie,i—]6N[li—1]] =4 —1]6 N[l — 1]|. Hence |i' —
i| < 3k. Let a = mingeg, vefi,n) T and b = mingcgsy vefin) T
Then any element in So\{a} and S5\{b} is at least i + 3k. It
follows that every x € (S2\{a}) corresponds to some y € S5.
Similarly, every y € (S5\{b}) corresponds to some = € S.
Therefore, we have that —1 < [Sy N [i,n]| — [S5N[i,n]| <1
and (a) is proved.

We now prove (b) by contradiction. Supposed on the
contrary, there exist 41,72 € (p;,pj+1] such that i; < iy
and (|52 N[ix, n]| = |53 O[ir, n][)(|S2 N[i,]| = [S5 N iz, n]]).

N i, n]| =155 N
[i2,n]| = 1. This

By symmetry it can be assumed that |S;
[i1,n] = —1 and |S2 N [ig,n]| — |S5 N

implies that iy — |6 N [1,41 — 1]] > i3 — |6’ N [1,41 — 1]]
and 7o — ‘(S N [1,i2 — 1” < ip — ‘6’ n [1,@2 — 1] , Which
are equivalent to |6 N [1,41 — 1]] < [6 N [1,41 — 1]

and |6 N[1,i2 — 1]| > |6’ N [1,i2 — 1]| respectively. However,
since 71,72 € (pj,pj+1], we have that |6 N [1,4; — 1]| =
|6 N[1,42 —1]| and |6’ N[1,i1 — 1]| = |6’ N [1, 42 — 1]|, which
results in a contradiction. Hence (b) is proved. Denote
si 2|S1N [in]| = |57 [i,n]]
+ 182 N [, n]| = |85 N [4, 7]

From (a) and (b) it follows that for each inter-
val (pj,pj+1), J € {0,...,6k}, either s; > 0 for all i €
(pj pj4+1] or s; < 0 for all i € (pj,pj41). Let x =
(wg,...,wex) € {—1,1}5%+1 be a vector defined by

_17
€Ty =
L,

Then from Eq. (4) we have that

if s; < 0 for some j € (p;, pit1]
else. '

6k Pj+1
gle)e—g()e=Y_(> Isili*)x; (5)
Jj=0 i=p;+1

Let A be a 6k + 1 x 6k + 1 matrix with its entries defined
by Aej = 2, qlsilic™! for e, j € {1,...,6k +1}.

If g(c) = g(c’), we have the following linear equation
P Pek
1po+1 |s]i° Gp;iJrl |sii° Lo
Ax = : : 21 =0
L i sl 1 15l] 2o
(6)
We show that this is impossible unless A is a zero matrix.
Suppose on the contrary that A is nonzero, let j; < ... <

Jjo be the indices of all nonzero columns of A. Let B be a
submatrix of A obtained by choosing the first () rows and
columns with indices ji,...,Jjg. Then we have that

Bx'

Pj . Dj .
Zijzlpjl,l-&-l |5i‘10 Zi;C;jQ,I-H ‘5i|ZO Tj,

Il
Il
o

P ‘ Pig ‘)
Zi;lpjl,l—i-l |3i|ZQ Zz’g)m,lﬂ |3i‘ZQ Ziq

Denote the interval Z; = (pj;,_,,pj,]. By the multi-linearity
of the determinant and by the determinant formula of the
Vandermonde matrix,

o R
det(B) = Z H |slq‘
11€7y,...,iQ€LQ q=1 chg 18
Q
= > ksl T G =im)
€Ty, i€Lq =1 lsmi<mz<Q

is positive since ¢, > %my, for mg > m; and there exist
iy €T1,...,iq € Zg such that [s;, |, ..., |si,| > 0. Therefore,

the linear equation Bz’ = 0 does not have nonzero solutions,
contradicting to the fact that &' € {—1,1}%. Hence A is a
7ero matrix, meaning that

[S10[é]l = |81 N [i]| + [S2 N [i,n]| = 1550 [i,7]|
=lan(in]|—[A"N[i,n]] =0

fori € {1,...,n}. This implies A = A’ andthusc =c¢’. O

Let A = {i Loyne(c); = 1} and A’ = {i
Loyne(c)i = 1} From Lemma 6 we have that 1,,,.(c’) €
Bsi(Lsync(c)). Hence (Lsyne(€)is- -, Loyne(€)n) €
Bsi,(Lsync(€)is - - - Lsyne(€)n))- This implies that
[|AN[i,n]| — |A’ N [¢,n]|| < 3k. Therefore,

|9(Lsyne(c))e — g(ﬂsym(c/))d
=1 (Aanf,n]| - |A A [n)if] < 3ki < 3kn‘t.

(7

Hence if f(Lsync(c)) = f(Lsyne(c)) (see (2) for defini-
tion of f), we have that g(Lsync(c))r = g(Lsync(c’))e mod
3kn**1, which implies that g(1sync(c)) = g(Lsyne(c)))
according to E.q. (7). Since Lyync(c’) € Bsr(Lsync(c))
and Lgync(c), Loync(c’) € Rk, from Lemma 7 we have
that Lync(c) = Loyne(c’).

We are now ready to prove Lemma 1. Since
[(Lane(@) # f(Layne(e)) for ¢ € By(c)\[c}. we
have that [M(f(Lsync(c))) — M(f(Lsyne(c)))| # 0
(see (3) for definition of M) for ¢’ € By(c)\{c}.
According to Lemma 5, the number of divisors
of |M(f(Lsync(c))) — M (f(Lsync(c’)))| is upper bounded by
92[(3k+1)(6k+1) In n (6k+1) In k)] ln((3k+1)(6k+1) In n+(6k+1) In 3k)
= 2000gn) " Since |By(c)| < (k) 2k < 2n2k there are at
most 2n2k200087) numbers that divide | M (f(Lsyne(c))) —
M(f(Lsync(c’)))| for some ¢’ € By(c)\{c}. Therefore,
there exists a number p(c) € [l1,22klogntollogn)]
such that p(c) [|[M(f(Lsync(c'))) — M(f(Lsync(c)))|
for ¢/ € Byg(c)\{c}. Hence, if M(f(Lsync(c’))) =
M(f(Lsyne(c))) mod p(c) and ¢’ € Bg(c), we have
that M (f(Lsync(c’))) — M(f(Lsync(c))) = 0 mod p(c) and
thus ¢’ = c.

IV. HASH FOR k dense SEQUENCES

In this section, we present a hash function for correcting k
deletions in a k dense sequence c, based on the knowledge of
the synchronization vector 1gyy.(c).

Let the positions of the 1 entries in 1,,.(c) be ordered

by t1 < t2 < < ty, where J = Y7 Lyyne(c);.
Furthermore, let tp = 0 and t;.7 = n + 1 Split ¢ into
blocks ag,...,ay, where

a; = (Ctj+1,Ctj+2, e 7Ctj+1—1)~

Let the hash function Hashy : be given by
Hashy(c) = RSa,((H(ag), ..., H(ay))),

where RSs,(c) is the redundancy of a systematic
Reed-Solomon code that corrects 2k substitution errors.

The sequence (H(ag),...,H(ay)) is a sequence of
symbols H(a;) (see Lemma 4), each having alphabet
size 2[(F/Mogn])](2kloglogn+O(1)) The length of Hashy(c)
is max{4klogn,4k[(L/[logn])](2kloglogn + O(1))} =
4klogn + o(logn). We now present the following procedure
that recovers c¢ from its length n — k subsequence d and the
hash function Hashy(c), given Lsync(c).

1) Step 1: Find the synchronization vector Lgyn.(d) €
{0,1}"% of d. Find the locations of 1 entries
in 14ync(c) and order them by ¢4 < ... < ty.Letty =0
and tj41 =n+1

2) Step 2: Let 1,y,c.(d)o = Leync(d)ny1 = 1. For
each j € [0, J], if there exist two numbers i; € [t; —
k,t;] and ij 1 € [tj41—Fk, tj 1] such that T,ypc(d);, =
]lsync(d)ij =1, set a; = (dij+1; dij+27 ey dijJrl,l).
Else set a); = 0.

3) Step 3: Apply the Reed-Solomon decoder to

decode (H(ay),...,H(a;), Hashi(c)) and to
recover H(a;) for j € [0, J].
Step 4: Let b; = (ds, 41, . .,
using b; and H(a;).
To prove the correctness of the decoding, we first show that a;
can be recovered from b; and H(a;). This can be done
by noticing that (d¢, 1,...,ds,,,—r—1) is a length |a;[— &
subsequence of a;, where |a;| is the length of a;. Furthermore,
it can be proved that there exist at most 2k indices j, such
that a; # a;. Thus the Reed-Solomon code works.

4 di; ., —k—1), Tecover a; by

V. TRANSFORMATION TO k dense SEQUENCES

In this section we present an algorithm to compute T'(c),
which transforms any sequence ¢ € {0,1}" into a k dense
sequence. Let 1% and 0Y denote consecutive 1’s and con-
secutive y 0’s respectively. It can be shown that any sequence c
satisfying the following is a k dense sequence.

Property 1: There is no ¢ € |[l,n] that satis-
fies (Cj,Cj+1, ey cj+f10gk]+4) 7& 1[logk]+5 for] € [272 +
L1 — [log k] — 5], where Ly £ ([log k] + 5)2M°8*143[log n].

property 2: Any interval [¢,i + Lo — 1] C [1,n] of
length Ly £ (3k + [logk] + 4)([logn] + 9 + [logk])
contains a sub-interval [j,57 + 3k + [logk] + 3], such
that (Cm, Cm+1; -+ Cm+[log H+4) #+ 1/Mogk1+5 for m [],]+
3k —1].

Next we show how to transform a sequence into one that
satisfies Properties 1 and 2. The following two lemmas will
be used, where Lemma 8 presents a function that outputs a
sequence satisfying Property 1.

Lemma 8. For integers k and n > k, there exists
a map Ty {0,1}* — {0, 1} *Moek145 computable
in O(n%klognlogk) time, such that Ti(c) satisfies Prop-
erty 1. The sequence c can be recovered from Tj(c).

Lemma 9. For an integer k, let ¢ € {0,1}3F+108 k144 pe g ge-
quence such that ¢; = ci+1 = ... = Ciy[logk]+4 = 1 for some
i € [1,3k]. There exists a mapping Ty : {0, 1}3k+Tlogkl+4
{0, 1}3k+108 k143 computable in O(k*logk) time, such
that Ty(c) contains no [logk] + 5 consecutive 1 bits. In
addition, the sequence ¢ can be recovered from Ts(c).

We are now ready to give the encoding and decoding
procedure for computing 7'(c). The encoding procedure for
computing 7T'(c) is as follows

1) Initialization: Let T'(c) = T} (c). Append 1°8k1+5 o
the end of the sequence T'(c). Let n’ = n+ [logk] + 5
and 7 = 1. Go to Step 1.

2) Step 1: If ¢ < n' — [logk] — 5 and for
every j € [i,i + Lo — 3k — Jlogk] — 4],
there exists m € [j,j + 3k — 1] such
that (o, Cnt1s - -+ Cnplog k] +4) = 1MegkI+5,
Split (¢;, Cig1y .-+, Citn,—1) into ([logn]+9+ [logk])
blocks bi,bo, ..., b“og n]4+9+ [log k] of length
3k + DO,g]ﬂ + 4. Delete (bg, o 7b[log n]+8+[log k:])
from T(c) and append (0,7%(bz),T%(bs),...,
Ty (bflog n]+8+[log k])’ i+3k+ [log k] +4,1 [log k] +5a O)
to the end of T'(c). Let n’ = n'— Ly+6k+2[logk|+8
and ¢ = 1. Repeat. Else go to Step 2.

3) Step 2: If : < n/,leti =14+ 1 and go to Step 1. Else
output T'(c).

The length of T'(c) remains to be n + 2[log k] + 10.

Finally, we show that T'(c) is decodable, with the following
decoding procedure that recovers ¢ from 7'(c).

1) Inmitialization: Let ¢ = T'(c) and go to Step 1.

2) Step 1: If ¢, 2M10g k1+10 = 0, let ¢ be the decimal rep-
resentation Of (CpyTlog k]4+5—Tlogns - - +» Cnt[log k]+4)-
Break (Cpyaflog k1419 Lo+6ks - - - » Cnt [log k] +4— [logn]
into (Ly — 6k — 2[logk] — 8)/(3k + [logk] +
4) blocks bi,..., bELg—ﬁk—Q[log k1—8)/(3k+[log k]+4)
of length 3k + [logk] + 3. Compute b; =
T, '(b;) for j € [1,(Ly — 6k — 2[logk] —
8)/(3k + [logk] + 4)], where 75 '(b}) is ob-
tained by applying 7% decoder (Lemma 9) on b;-.
Delete (Cpy2[log k]+11—Lo+6ks - - - » Cnt2[log k]+10) from
c and insert by, ..., b1, 6k—2log k] —8)/(3k+[log k] +4)
at location ¢ of c. Repeat. Else output c.

VI. ENCODING

In this section we present the encoding function £ and prove
Theorem 1. The function £ is given by

&(c) = (T(c), R'(c),R"(c)),
where

R'(c) =(M(f (Lsync(T(c)))) mod p(T(c)),p(T(c)),
Hash(T(c))), and
R"(c) =Repr1(H(R'(c))).

Here M is the function defined in Eq. (3)
and Repy+1(H(R/(c))) is the k + 1-fold repetition of
the bits in H(R’'(c)). It can be seen that the codeword £(c)
has length N = n + 8klogn + o(logn). Thus the redundancy
is 8k logn + o(logn).It can then be shown that
(a). The redundancy R’(c) can be recovered from k
deletions with the help of R"(c).
(b). The sequence c can be recovered from k deletions
with the help of R’'(c).

Let Ny and N» be the length of R'(c) and R"(c) repec-
tively. To decode c from a d, it suffices to note that (1). The
sequence (dy, ..., dpt2M10g k]+10—k) is @ length n+2[log k] +
10 — k subsequence T'(c) € {0,1}2Mos*1+10 (2) The

sequence (dn+2 [log k14115 dn+2[log k]+1O+N1—k) 1S
a length N; — k subsequence of R/(c). (3). The

sequence (dn+2[1og K]+114+Nys - -+ dn+2[1og k:]+1o+N1+Nrk)
is a length Ny — k subsequence of R'(c). Since R”(c) is
a k + 1-fold repetition of H(R'(c)), it can be recovered from
its length Ny — k subsequence.

The encoding complexity of £(c) is O(n?**1) for us-
ing brute force to find p(7T'(c)). The decoding complexity
is O(n**1) for using brute force to recover 1gy,.(7(c))
from M (f(Loyne(T(c)))) mod p(T(c)) and p(T(c)).

VII. CONCLUSION AND FUTURE WORK

We construct a k-deletion correcting code with optimal
order redundancy. Interesting open problems include finding
complexity O(N?M)) encoding/decoding algorithms for our
proposed code, as well as constructing a systematic k-deletion
code with optimal redundancy.

REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet physics doklady, vol. 10, no. 8, pp. 707-710,
1966.

[2] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” Autom. Remote Control, vol. 26, no. 2, pp. 286-290,
1965.

[3] A. S. Helberg and H. C. Ferreira, “On multiple insertion/deletion cor-
recting codes,” IEEE Trans. on Inf. Th., vol. 48, no. 1, pp. 305-308,
2002.

[4] K. A. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira, and W. A. Clarke,
“On Helberg’s generalization of the Levenshtein code for multiple dele-
tion/insertion error correction,” IEEE Trans. on Inf. Th., vol. 58, no. 3,
pp. 1804-1808, 2012.

[5] FE Paluncic, K. A. Abdel-Ghaffar, H. C. Ferreira, and W. A. Clarke,
“A multiple insertion/deletion correcting code for run-length limited
sequences,” IEEE Trans. on Inf. Th., vol. 58, no. 3, pp. 1809-1824, 2012.

[6] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1884-1892, 2016

[7] R. Gabrys and F. Sala, “Codes correcting two deletions.” IEEE Int. Symp.
on Inform. Theory., Vail, USA, pp. 426-430, 2018.

[8] J. Sima, N. Raviv, and J. Bruck, “Two Deletion Correcting Codes from
Indicator Vectors,” IEEE Int. Symp. on Inform. Theory., Vail, USA,
pp. 421425, 2018.

[9] S. K. Hanna and S. El Rouayheb, “Guess & check codes for deletions,
insertions, and synchronization,” IEEE Trans. on Inf. Th., vol. 65, no. 1,
pp. 3-15, 2019.

[10] B. Haeupler, “Optimal document exchange and new codes for small
number of insertions and deletions.” arXiv:1804.03604 [cs.DS], 2018.

[11] K. Cheng, Z. Jin, X. Li and K. Wu, “Deterministic document exchange
protocols, and almost optimal binary codes for edit errors,” IEEE 59th An-
nual Symposium on Foundations of Computer Science (FOCS), pp. 200—
211, 2018.

[12] L. J. Schulman and D. Zuckerman, “Asymptotically good codes cor-
recting insertions, deletions, and transpositions,” IEEE Trans. on Inf. Th.,
vol. 45, no. 7, pp. 2552-2557, 1999.

[13] V. Guruswami and C. Wang, “Deletion codes in the high-noise and high-
rate regimes,” IEEE Trans. on Inf. Th., vol. 63, no. 4, pp. 1961-1970,
2017.

[14] J. L. Nicolas, “On highly composite numbers,” Ramanujan revisited,
Proceedings of the centenary conference, University of Illinois at Urbana-
Champaign, pp. 215-244, 1987.

