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Abstract—Spatially-coupled (SC) codes, known for their thresh-
old saturation phenomenon and low-latency windowed decoding
algorithms, are ideal for streaming applications and data storage
systems. SC codes are constructed by partitioning an underlying
block code, followed by rearranging and concatenating the parti-
tioned components in a “convolutional” manner. The number of
partitioned components determines the ‘“memory” of SC codes.
While adopting higher memories results in improved SC code
performance, obtaining optimal SC codes with high memory is
known to be hard. In this paper, we investigate the relation
between the performance of SC codes and the density distribution
of partitioning matrices. We propose a probabilistic framework
that obtains (locally) optimal density distributions via gradient
descent. Starting from random partitioning matrices abiding by
the obtained distribution, we perform low complexity optimization
algorithms over the cycle properties to construct high memory,
high performance quasi-cyclic SC codes. Simulation results show
that codes obtained through our proposed method notably out-
perform state-of-the-art SC codes with the same constraint length
and codes with uniform partitioning.

I. INTRODUCTION

Spatially-coupled (SC) codes, also known as low-density
parity-check (LDPC) codes with convolutional structures, are
an ideal choice for streaming applications and storage devices
thanks to their threshold saturation phenomenon [1]-[5] and
amenability to low-latency windowed decoding [6]. SC codes
are constructed by partitioning the parity-check matrix of an
underlying block code, followed by rearranging the component
matrices in a “convolutional” manner. In particular, component
matrices are concatenated into a “replica”, and then multiple
replicas are placed together, resulting in a “coupled” code. The
number of component matrices minus one is referred to as the
“memory” of the SC codes [7]-[10].

It is known that the performance of an SC code improves
as its memory increases. This is a byproduct of improved
node expansion and additional degrees of freedom that can be
utilized to decrease the number of small cycles and detrimental
objects [8], [9], [11], [12]. In this work and many others
[8], [9], [13], [14], optimality is with respect to the number
of small cycles in the graph of the SC code. Although the
optimization problem of designing SC codes with memory less
than 4 has been efficiently solved [8], [9], there remains a
vacuum in efficient algorithms that construct good enough SC
codes with high memories. Esfahanizadeh et al. [8] proposed
a combinatorial framework to develop optimal quasi-cyclic
(QC) SC codes, comprising so-called optimal-overlap (OO) to
search for the optimal partitioning matrices, and circulant power
optimization (CPO) to optimize the lifting parameters, which
was extended by Hareedy et al. [9]. However, this method is
hard to execute in practice for high memory codes due to the
increasing computational complexity. Algorithmic methods that

search for good SC codes with high memories are derived in
[13]-[15]. However, high memory codes designed by purely
algorithmic methods are unable to offer strict guarantees on
performance superiority; several of these codes can even be
beat by optimally designed QC-SC codes with lower memories
under the same constraint length [14]. Therefore, a method that
theoretically identifies an avenue to a near-optimal construction
of SC codes with high memories is of significant interest.

In a way similar to random coding in spirit, our objective is
to obtain some near-optimal solutions starting from a random
partitioning matrix, where the density distribution of component
matrices (i.e., edge distribution) is analogous to the degree
distribution in random coding. While discrete optimization
methods [8], [9] have been shown to suffer from exponential
growths in complexity, fueled by the increase in degrees of
freedom, we adopt a more efficient, probabilistic framework
that searches for the optimal edge distribution via gradient
descent, referred to as gradient-descent distributor (GRADE),
followed by an algorithmic optimizer (AO) that obtains a
locally optimal partition near a random partition with edge
distribution obtained from GRADE. The current goal is still to
minimize the number of small cycles, which reduces undesir-
able dependencies, and thus improves the code performance.
The impact of this probabilistic method extends beyond its
performance gains and low complexity. Particularly in the
error floor region, a more advanced set of detrimental objects
(absorbing sets [11]) governs the LDPC code performance. Our
probabilistic method also has high potential to be extended to
handle detrimental objects specified by the channel.

In this paper, we propose a probabilistic framework that effi-
ciently searches for near-optimal SC codes with high memories.
In Section II, we introduce preliminaries of SC codes and the
performance-related metrics. In Section III, we develop the
theoretical basis of GRADE, which derives a locally optimal
edge distribution from an arbitrarily provided initial distribution
and conditions. In Section IV, we introduce two examples of
GRADE-AO s that result in near-optimal SC codes: the so-called
gradient descent (GD) codes and topologically-coupled (TC)
codes. Our proposed framework is validated in Section V by
simulation results of four groups of codes, with the best code in
each obtained from GRADE-AO. Finally, we make concluding
remarks and introduce possible future work in Section VI.

II. PRELIMINARIES
In this section, we recall the typical construction of SC codes
with QC structure. Any QC code with a parity-check matrix
H is obtained by replacing each nonzero (zero) entry of some
binary matrix H? with a circulant (zero) matrix of size z, z € N.
The matrix H® and z are referred to as the protograph and
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Fig. 1. Cycles in the protograph (right panel) and their corresponding structures
in the partitioning matrices (left panel).

the circulant size of the code, respectively. In particular, the
protograph HE. of an SC code has a convolutional structure
composed of L replicas, as presented in Fig. 1. Each replica is
obtained by stacking the disjoint component matrices {HE}™ |
where m is the memory and IT = HE + HY + ... + H is the
protograph of the underlying block code.

In this paper, we constrain II to be an all-one matrix of size
v XK, v,k € N. An SC code is then uniquely represented by its
partitioning matrix P and lifting matrix L, where P and L are
all v x x matrices. The matrix P has (P); ; = a if (HY), ; = 1.
The matrix L is determined by replacing each circulant matrix
by its associated exponent. Here, this exponent represents the
power to which the matrix o defined by (o), ;41 = 1 is raised,
where (0); 41 = (0)2,1.

The performance of finite-length LDPC codes is strongly
affected by the number of detrimental objects that are subgraphs
with certain structures in the Tanner graphs of those codes.
Two major classes of detrimental objects are trapping sets and
absorbing sets. Since enumerating and minimizing the number
of detrimental objects is complicated, existing work typically
focuses on common substructures of these objects: the small
cycles [8], [9], [13]. A cycle-2g candidate in ch (II) is
a path of traversing a structure to generate cycles of length
2¢ after lifting (partitioning) [9]. In an SC code, each cycle
in the Tanner graph corresponds to a cycle candidate in the
protograph HE., and each cycle candidate in HE. corresponds
to a cycle candidate C' in the base matrix II. Lemma 1 specifies
a necessary and sufficient condition for a cycle candidate in II
to become a cycle candidate in the protograph and then a cycle
in the final Tanner graph.

Lemma 1. Let C be a cycle-2g candidate in the base matrix,
where g € N, g > 2. Denote C by (j1,11,j2,02,---,Jg,4g)s
where (ix, ji), (i, Jk+1), 1 <k < g, jg+1 = j1, are nodes of
C in II, P, and L. Then C' becomes a cycle candidate in the
protograph if and only if the following condition follows [13]:

ZZ=1 P(ik, ji) = Zizl P ik, jr+1)- (1)

This cycle candidate becomes a cycle in the Tanner graph if
and only if [16]:

Zizl L(ir, jr) = ZZZI L(ik, jr+1) )

As shown in Fig. 1, a cycle-6 candidate and a cycle-8
candidate in the partitioning matrix with assignments satisfying

mod z.

condition (1), and their corresponding cycle candidates in
the protograph are marked by red and blue, respectively. An
optimization of a QC-SC code is typically divided into two
major steps: optimizing P to minimize the number of cycle
candidates in the protograph, and optimizing L to further reduce
that number in the Tanner graph given the optimized P [8],
[9]. The latter goal has been achieved in [8] and [9], using an
algorithmic method called circulant power optimization (CPO),
while the former goal is yet to be achieved for large m. We
note that the step separation highlighted above notably reduces
the overall optimization complexity.

In the remainder of this paper, we focus on SC codes for
the additive white Gaussian noise (AWGN) channel, where the
most detrimental objects are the low weight absorbing sets
[8]. Consequently, a simplified optimization focuses on cycle
candidates of lengths 4, 6, and 8 [8], [9]. Existing literature
shows that the optimal P for an SC code with m < 2 typically
has a balanced (uniform) edge distribution among component
matrices [8]. However, in the remaining sections, we show that
the edge distribution for optimal SC codes with large m is
not uniform, and we propose the GRADE-AO framework that
explores a locally optimal solution.

III. A PROBABILISTIC OPTIMIZATION FRAMEWORK

In this section, we present a probabilistic framework that
searches for a locally optimal edge distribution for the parti-
tioning matrices of SC codes with given memories through the
gradient descent algorithm. The complete proofs are in [17].

Definition 1. Let v,k,m,m: € N and a = (ag,a1,...,am,),
where 0 = ag < a1 < -+ < G, = m. A (7,K) SC code with
memory m is said to have coupling pattern a if HY # 07",
for all i € {ag,ay,...,am,}, and HY = 07%%, otherwise. The
value my is called the pseudo-memory of the SC code.

A. Probabilistic Metric

In this subsection, we define metrics linking the edge dis-
tribution with the expected number of cycle candidates in the
protograph in Theorem 1 and Theorem 2. While Schmalen et
al. have shown in [18] that nonuniform coupling (nonuniform
edge distribution in our paper) yields an improved threshold,
our work differs in two areas: 1) Explicit optimal coupling
graphs were exhaustively searched and were restricted to small
memories in [18], whereas our method produces near-optimal
SC protographs for arbitrary memories. 2) Work [18] focused
on the asymptotic analysis for the threshold region, while our
framework is dedicated to the finite-length construction and has
additional demonstrable gains in the error floor region.

Definition 2. Let m, m; € N and a = (ag, a1, ..., Gy, ), where
0=ap <a < - < am, =m. Let p= (po,p1--,Pm,)
where 0 < p; <1, po+p1 + -+ pm, = 1: each p; specifies
the probability of a ‘1’ in II going to the component matrix
Hgi, thus p is referred to as edge distribution under random
partition later on. Then, the following f(X;a,p), which is
abbreviated to f(X) when the context is clear, is called the
coupling polynomial of an SC code with coupling pattern a,
associated with probability distribution p:

f(X;a,p) £ ) piX®.

0<i<my

3)
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Fig. 2. Structures and cycle candidates for cycle 8.

Theorem 1. Let [], denote the coefficient of X* of a polyno-
mial. Denote by Ps(a, p) the probability of a cycle-6 candidate
in the base matrix becoming a cycle-6 candidate in the pro-
tograph under random partitioning with edge distribution p.

Then,
Ps(a,p) = [[2(X) (X, (4)

Proof sketch. The constant term of f2(X)f3(X ') is the sum
of all Piy Piy Pis P PjaPjs such that ¢1 + 2 + i3 = Ji +Jj2 + Js,
i.e., the sum of the probabilities of all assignments on a cycle-6
candidate that satisfy the cycle condition (1) in Lemma 1. W

Example 1. Consider SC codes with full memories and uniform
partition, i.e., a = (0,1,...,m) and p = ﬁ1m+1. When
m =2, Ps(a,p) = 0.1934; when m =4, Fs(a,p) = 0.1121.

Example 2. First, consider SC codes with m = m; = 2, a; =
(0,1,2) and p1 = (2/5,1/5,2/5). According to Theorem 1,
Ps(a1,p1) = 0.1818. Second, consider SC codes with m =
my = 4. Let ap = (0,1,2,3,4) and p2 = (0.31,0.13,0.12,
0.13,0.31). According to Theorem 1, Ps(as,p2) = 0.0986.

After we have derived the metric for cycle-6 candidates in the
protograph, we now turn to the case of cycle-8 candidates. As
shown in Fig. 2, cycle candidates in the base matrix that result
in cycle-8 candidates in the protograph can be categorized into 6
different structures, labeled 51, ..., Sg. Different cases are dif-
ferentiated by the number of rows and columns (without order)
the structures span in the partitioning matrix [9]. Specifically,
S1,...,5¢ denote the structures that span submatrices of size
2x2,2x30or3x2,3x3,2x4o0rdx2, 3x4dor4x3,
and 4 x 4, respectively. Any structure that belongs to Sz, Sy, S5
has multiple cycle-8 candidates, and these distinct candidates
are marked by blue in Fig. 2.

Lemma 2. Denote Psi(a,p), 1 < i < 6, as the average
probability of a cycle-8 candidate of structure S; in the base
matrix becoming a cycle-8 candidate in the protograph, under
random partition with edge distribution p. Then,

Pga(a,p) = [fA(X)fA(X7H],,

Pyo(a,p) = [f(X?)F(X2) (X)) A(X™ )}

Pys(a,p) = [f(X?) FA(X)fH(XN],, an

Ps.a(a,p) = Pys(a,p) = Pegs(a,p) = [f ( )FAXD], -

Theorem 2. Denote Ns(a, p) as the expectation of the number
of cycle-8 candidates in the protograph. Then,

Ns(a,p) =wy [f2(X)f2(XH],
+ws [f(X?)f(X7?) f?
+ w3 [f(X2 ?

where wy = ( 5
wy =6(3)(3) +6

We ignore the number of replicas a cycle candidate spans in
HE.. We take care of that number for Hgc at the CPO stage.

B. Gradient Descent Distributor

By contrasting Examples 1 with 2, it is clear that for a given
coupling pattern, an optimal edge distribution is not necessarily
reached by a uniform partition. In this subsection, we develop an
algorithm that obtains a locally optimal distribution by gradient
descent.

Lemma 3. Given m; € N and a = (ag,a1,...,0m,), a
necessary condition for Ps(a,p) to reach its minimum value
is that the following equation holds for some cy € R:

(X)X, = co, ¥i,0 < i < my (5)
Proof sketch. This can be proved by the KKT conditions of the
Lagrangian Lg(a, p) = Fs(a, p)+c(l—po—p1i——pm,). W

Lemma 4. Given v,k,m; € N and a = (ag,a1,...,am,), a
necessary condition for Ns(a,p) to reach its minimum value
is that the following equation holds for some cy € R:

[4£2(X) F(X)])a, + w2 [2/(X?) (X)X )],
+iy [4f( 2)f( ’Q)fz(X)f(X’l)Li
03 [PCOS )], s [2FX2FX) X,
HfXQF )XY,
+w 4[8 71)}%:00, Vi,0 <3 < my,

where o = v+ Kk — 4, wg = 2(y — 2)(k — 2), and Wy =
(=2 =3) + (k=25 =3+ (y =2k = 2)(y+ 5~
6) + 5(v = 2)(y = 3)(r — 2)(r — 3).

Based on Lemma 3 and Lemma 4, we adopt the gradient
descent algorithm to obtain a locally optimal edge distribution
for SC codes with coupling pattern a, starting from the uniform
distribution inside P as presented in Algorithm 1. Note that
conv(:) and inverse(-) refer to convolution and reverse of
vectors, respectively.

IV. CONSTRUCTION

In this section, we present two algorithmic optimization
methods based on GRADE to obtain locally optimal SC codes
with a fixed coupling pattern.

A. Gradient Descent Codes

In this subsection, we consider SC codes with full memories,
ie., m=my and a = (0,1,...,m). In this case, our proposed
GRADE algorithm obtains a highly skewed edge distribution.
Starting from a random partitioning matrix P with the derived
distribution, one can perform a semi-greedy algorithm that
searches for the locally optimal partitioning matrix near the
initial P. Constraining the search space to contain P’s that have
distributions within small L; and L, distances from that of the
original P, and adopting the CPO next, significantly reduces the
computational complexity to find a strong high memory code.
This procedure is given in Algorithm 2.

We refer to codes obtained from Algorithm 2 as gradient
descent (GD) codes. By replacing the input distribution p
in Algorithm 2 with the uniform distribution, we obtain the
so-called uniform (UNF) codes. We show in Section V by
simulation that the distribution obtained by GRADE results
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Algorithm 1 Gradient Descent Distributor (GRADE)

Algorithm 2 GRADE-A Optimizer (AO)

Inputs and Parameters:

v, k, my, m, a: parameters of the SC code;

w: weight of each cycle-6 candidate;

€, o accuracy and step size of gradient descent;
Outputs and Intermediate Variables:

p: a locally optimal edge distribution over supp(a);

1: Wy < 22(y —2)(k — 2), obtain {w;}{_, in Lemma 4;

2: Uprev = 1; Veur = 1

3: g(—Omt+1, f,f(—Oerl, fg,fg 502m+1;

4: p +— mt1+1 Lo, 413 B

5: flag,...,am,] < p, £ < inverse(f);

6: £2[1,3,...,2m + ] « £, f5 « inverse(fy);

7. q1 ewlconv(f f.f,f £ f), qu « conv(f, f,f,f);

8: qs <—wgconv(f2,f2,f f, f' f) +chonv(f27f f.f,.f,f f)
+awsconv(f, £, f, £ f, f' f' £);

9: Uprev = Vcurs Veur = d1 [37’77,] +q2 [2m] +q3 [4m]

10: g1 < 6wyconv(f, f,f,f,f), gy « 4conv(f, f,f);

11: g3 e4w2(zonv(f2,f2,f f f)+2w300nv(fg, £ f,f,f f)
+dwgconv(fy, f, £, f, f ,f) + 8wyconv(f, f, f, f f',f’,f‘);

12: gy < 2wqconv(fy, . f, £, f) + wzconv(f, f, £, £, f,f);

13: g+ g1[2m+ }—i—gg[m—i—a]—i—gg [3m + ]
+84 [2m + 2a], g < g — mean(g);
14: if |Uprey — Veur| > € then p <— p — QH%H, goto step 5;

15: return p;

in constructions that are better than those adopting uniform
distribution and in existing literature.

B. Topologically-Coupled Codes

In this subsection, we explore SC codes with pseudo-memory
my such that m; < m and a # (0,1,...,m). The motivation
behind this task is to construct an SC code with memory m
with the same computational complexity needed to construct a
memory m; code, where m; < m. Given m; and m, we first
find the optimal a with length m; + 1 in a brute-force manner.
Taking m = 4 and m; = 2 as an example, the optimal coupling
pattern is reached by a = (0,1,4) and the corresponding
optimal distribution is almost uniform.

Given the optimal coupling pattern a, we then obtain an
optimal partitioning matrix by the OO method proposed in [8]
and [9]. We extend the OO method for memory mg SC codes
to any SC code with pseudo-memory m; = mg, which does
not increase the complexity of the approach. We refer to the
codes obtained from the extended OO method followed by the
CPO as topologically-coupled (TC) codes.

Optimal TC codes with pseudo-memory m; have strictly
fewer cycle candidates in their protographs than optimal SC
codes with full memory m = m;. Take m = 4 and m; = 2
as an example. Suppose the optimal SC code has the partition
IT = HY + HY + HY. Consider the TC code with partition
I = HY + HY + HY such that HY = HY. Then, any
cycle-6 candidate resulting from a cycle candidate in the base
matrix assigned with 0-1-0-1-2-0, 1-2-1-2-2-0, or 0-1-2-1-z-
xz, x € {0,1,2}, in P no longer has a counterpart in the
TC code, since by replacing 2’s with 4’s, assignments 0-1-0-
1-4-0, 1-4-1-4-4-0, and 0-1-4-1-z-z, = € {0,1,4}, no longer
satisfy the cycle condition in Lemma 1. Moreover, there exists

Inputs and Parameters:
v, k, m: parameters of an SC code with full memory;
p: edge distribution obtained from Algorithm 1;
dy, do: parameters indicating the size of the searching
space;
Outputs and Intermediate Variables:
P: a locally optimal partitioning matrix;
1: Obtain the lists Lg(i,7), Ls(4,7) of cycle-6 candidates and
cycle-8 candidates in the base matrix that contain node (i,
h1<i<~,1<j<k;
: Obtain u = arg minyenm+1 ||x||, =y ||
: for i € {0,1,...,m} do

‘ Place u[i + 1] ’s into P randomly;

=—x — p|2;

d«+ Om+1;
for i € {1,2,...,v}, 7€ {1,2,...,
noptimal < False;
Ng < Iﬂ@(l,_j)l, ng < ‘ﬁg(l,j)l, n < wng + ns;
for ve {0,1,...,2—1} do
d=d dv+1]+dv+1]+1,p+ P@,j);
if ||d’||; < d; and ||d'||o < d2 then
P(i,j) < v
te < |£6(Z,j)‘, tg |£8(Z,])‘, t < witg +tg;
if ¢ < n then
‘ noptimal < True, n < t, d + d’;
else P(i,j) < p;

k} do

.“??S’h‘.q\&{‘ﬂ?w'\’

N
wnm AW = O

_ =
B

. if noptimal then goto step 6;

—_

8: return P;

a bijection between the remaining candidates in the SC code
and all candidates in the TC code through the replacement of
2’s with 4’s. Therefore, TC codes are better (have less cycles)
than SC codes with the same circulant size. In Section V, we
present simulation results of such codes and show that they
can also outperform SC codes with the same constraint length
(larger circulant size).

V. SIMULATION RESULTS

In this section, we obtain the frame error rate (FER) curves of
four groups of SC codes designed by the GRADE-AO methods
presented in Section IV. We show that codes constructed by
the GRADE-AO methods offer significant performance gains
compared with codes with uniform edge distributions and codes
constructed through purely algorithmic methods.

Out of these three plots, the left and center ones compare GD
codes with UNF codes designed as in Section IV-A. The right
plot compares a TC code designed as in Section IV-B with
optimal SC codes constructed through the OO-CPO method
proposed in [8]. The GD/UNF codes have parameters (v,
m,z, L) = (3,7,5,13,100), (3,17,9,7,100), and (4,29, 19,
29, 20), respectively. The TC code has parameters (v, k, my,
z,L) = (4,17,2,17,50) with coupling pattern a = (0,1,4).
For a fair comparison, we have selected two SC codes: one
with a similar constraint length (m + 1)z and the other with an
identical circulant power z. To ensure that the SC codes and the
TC code have close rates and codelengths, the two SC codes
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(a) GD/UNF codes with v = 3.

(b) (4,29)-GD/UNF codes.

(c) (4,17)-TC/SC codes.

Fig. 3. Simulation results of codes constructed using the methods presented in Section IV.

TABLE 1
STATISTICS OF THE NUMBER OF CYCLES
(v, ) Code Cycles-6 | Cycles-8
GD 0 0
(3,7) UNE 0 6292
GD 0 397880
(3,17) UNF 0 559902
Battaglioni et al. [13] 0 451337
GD 0 528,090
(4,29) UNF 0 1,087,268
TC 15,436 -
(4,17) | SC (matched constraint length) 19,180 -
SC (matched circulant size) 74,579 -

have parameters (v, %, m,z,L) = (4,17,2,28,30) and (4, 17,
2,17,50), respectively. The partitioning and the lifting matrices
of these codes are specified in [17]. The statistics regarding
the number of cycles of each code are presented in Table I.
The decoder adopts a finite-precision fast Fourier transform
based sum-product algorithm and performs a maximum of 50
iterations: it stops if a codeword is reached sooner.

Fig. 3(a) shows FER curves of our GD/UNF comparisons
with (v,x) = (3,7) and (3,17). When v = 3, cycles-6 are
easily removed by the CPO. Therefore, we perform joint opti-
mization on the number of cycle-6 and cycle-8 candidates by
assigning different weights to cycle candidates in Algorithm 2.
We observe a performance gain for the GD code with respect
to the UNF code in both the waterfall region and the error
floor region. Moreover, the number of cycles-8 in the (3,17)
GD code is reduced by 29% and 12% compared with the UNF
code and the code constructed by Battaglioni et al. in [13],
respectively. In addition, the (3,17) GD code has no weight-6
absorbing sets (ASs) and 133 weight-7 ASs, whereas the UNF
code has 6 weight-6 ASs and 361 weight-7 ASs. As for the
(3,7) codes, all cycles-6 and cycles-8 are removed. Thus, the
gain of the GD code compared with the UNF code exceeds the
gain observed in the (3,17) codes.

Fig. 3(b) shows FER curves of the GD/UNF comparison with
(v,k) = (4,29). Cycles-6 in the GD code and the UNF code
are both removed, and the number of cycles-8 in the GD code
demonstrates a 51.4% reduction from the count observed in the
UNF code. It is worth mentioning that both codes have no ASs
of weights up to 8, which is reflected in their FER curves via the
sharp waterfall regions and the non-existing error floor regions.
The FER of the GD/UNF codes decreases with a rate exceeding
12 orders of magnitude per 0.5 dB. Moreover, the GD code has

a significant gain of about 0.25 dB over the UNF code. These
results substantiate the significant potential of the GRADE-AO
method in constructing SC codes with superior performance
for storage devices, with further applications including wireless
communication systems and quantum communication systems.

Fig. 3(c) shows the FER curves of the TC/SC codes with
(v,k) = (4,17). The number of cycles-6 in the (4,17) TC
code demonstrates a 79% and a 20% reduction from the counts
observed in the SC codes with a matched constraint length
and a matched circulant size, respectively. Moreover, the TC
code has no weight-6 nor weight-8 ASs. It is shown that the
TC code outperforms the optimal SC code with a matched
constraint length, and that the gain is of greater magnitude when
compared with the SC code of identical circulant size. Note
that although TC codes have higher memories and thus larger
constraint lengths than SC codes of matched circulant sizes,
they possess the same number of nonzero component matrices,
and thus the same degrees of freedom in construction. This fact
makes TC codes even more promising if we can devise for them
windowed decoding algorithms with window sizes comparable
to the corresponding SC codes of matched circulant sizes.

VI. CONCLUSION

Discrete optimization of the constructions of spatially-
coupled (SC) codes with high memories is known to be com-
putationally expensive. Algorithmic optimization is efficient,
but can hardly guarantee the performance because of the lack
of theoretical guidance. In this paper, we proposed a so-
called GRADE-AO method, a probabilistic framework that effi-
ciently searches for locally optimal QC-SC codes with arbitrary
memories. We obtain a locally optimal edge distribution that
minimizes the expected number of cycle candidates by gradient
descent. Starting from a random partitioning matrix with the
derived edge distribution, we use algorithmic optimization to
find a locally optimal partitioning matrix near it. Simulation
results show that our proposed constructions have a significant
performance gain over state-of-the-art codes. Future work in-
cludes extending the framework on cycle optimization into a
one that focuses on detrimental objects.
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