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Abstract—A power buffer is a power electronics converter with
a large capacitor that shields a weak DC grid from abrupt load
changes. Distributed control solutions have been shown to be
superior to the decentralized ones, however, the effects of the
communication network topology on the control performance of
these buffers have not yet been studied. This paper offers a data-
driven optimal solution to reduce the interactions between dif-
ferent control loops of power buffers while minimizing a closed-
loop performance function. Reinforcement learning methods deal
with the optimal control of nonlinear systems, and a Tabu
Search method addresses the resulting combinatorial problem.
The proposed solutions are validated for a DC microgrid in a
controller/hardware-in-the-loop environment.

Index Terms—DC microgrid, Nonlinear optimal control, Power
buffer, Reinforcement learning, Sparsity promoting.

I. INTRODUCTION

C microgrids are shown to be more efficient and reliable
than their AC counterparts [1]. The DC distribution grid
is afflicted with low damping, lack of generational inertia, and
the presence of abrupt loads [2], [3]. A power buffer is an
electronics converter that uses the energy stored in a large
capacitor to cushion the effects of abrupt load transients [4]-
[7]. High-performance control of such buffers, that tunes their
stored energy and input impedance, is challenging.
Introducing a communication network among power buffers
allows a collective response to load changes [7]-[10]. Dis-
tributed solutions in [7], [9] are found with policy iteration
and linear distributed designs, respectively. A reinforcement
learning (RL) approach in [10] overcomes linear approxima-
tions. The communication topology in [7]-[10] is inspired by
physical vicinity. When the distribution grid is considered [7],
[9], [10], the underlying physical interconnection reflects the
fixed communication topology with no guarantees that these
structures (physical and communication) are optimal with
regard to control objectives. Given the limited energy avail-
able, co-optimization of control solutions and communication
topologies, considering the distribution grid, is important.
Sparsity-promoting algorithms guarantee stability and per-
formance without any a priori defined communication topol-
ogy, i.e., few but crucial communication links are found
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[11], [12]. Similar to AC systems [13], [14], power buffers
can benefit from reducing the interactions among feedback
loops, minimizing communication costs with a limited impact
on the closed-loop performance. Minimizing computational
costs is appealing for battery-constrained Internet-of-Things
devices [15]. Existing sparsity-promoting methods for micro-
grids mostly rely on linear approaches in AC systems. Based
on the linear formulation in [11], decentralized controllers for
AC networks with voltage-source converters are designed in
[16], while sparse and block-sparse wide-control architectures
for AC systems are designed in [13] and [17], respectively.
By extending [11] to discrete-time systems, the sparsity-
promoting controller in [18] regulates the active power flows
and frequency. In [14], decentralized and sparse wide-area
controllers are designed to damp inter-area oscillations in AC
systems using the convex relaxation of a linear H,, problem.
Constrained Linear Quadratic Regulator (LQR) formulation
finds an optimal controller for predefined communication
structures to damp inter-area oscillators in [19]. In [20], a
sparsity-promoting linear optimal controller is applied to an
AC power system with synchronous machines. However, such
formulations are not practical for nonlinear systems as in the
case of DC microgrids with power buffers.

This paper proposes a sparsity-promoting optimal design
for nonlinear systems based on off-policy RL techniques. In
general, nonlinear optimal control problems are solved using
the Hamilton-Jacobi-Bellman (HJB) equation or the Pontrya-
gin’s Minimum Principle (PMP) [21]. The PMP method is
easier to tackle and provides an open-loop controller with
only the necessary condition for optimality. The HJB equation
is generally intractable but provides a closed-loop control
policy with both necessary and sufficient optimality conditions
[22]. In this paper, the closed-loop optimal controller is
found by approximating the solution of the HJB equation
using a RL-based method, namely the Integral Reinforcement
Learning (IRL) approach with off-policy learning [23], [24].
In particular, Neural Networks (NNs) provide approximations
for the optimal control policy and value function [25]-[27].
The approximated solution of the HJB equation is learned
using only system collected data and without the need for the
exact knowledge of the system dynamics. Such approach is
commonly categorized as data-driven [28]-[30]. The same set
of collected data is repetitively used to find optimal controllers
for different communication topologies.

Stability of optimal designs with sparsity-promoting or
structural constraint is not guaranteed even for linear sys-
tems [13]. This work employs Domain-of-Attraction (DoA)
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Fig. 1. DC microgrid and its elements: (a) DC microgrid, (b) active load consisting of a power buffer and a final load, and (c) model of a DC source.

estimation methods [31]-[33] to check the stability of each
distributed controller. To deal with the resulting combinatorial
problem, a Tabu Search (TS) approach that avoids local
minima is used [34], [35]. The main contributions of this paper
are

o The first attempt to solve nonlinear sparsity-promoting
and structured optimal control problems using a data-
driven algorithm based on RL and TS methods is pre-
sented. It can handle arbitrary positive-definite utility
functions, not just simple linear quadratic functions.

« These controllers are employed in DC microgrids, with a
limited impact when comparing incrementally-sparse and
fully-connected communication topologies. This impact
is shown to increase if existing techniques used for AC
systems, e.g., [13], are applied.

o In contrast to [7], [9], [10], this paper considers the
underling physical interconnection structure dictated by
the distribution grid. The communication topology is
considered as a free parameter subject to optimization,
where the number of active communication links and a
closed-loop cost function are simultaneously minimized.

« Sparsity-promoting and communication topology-related
analytics for power buffers are provided. The reciprocal
assistance among power buffers is shown to increase with
a less sparse communication structure.

The rest of this paper is organized as follows. The dis-
tribution grid and power buffers are detailed in Section
IT. Section III provides the proposed data-driven sparsity-
promoting algorithm. Numerical and Controller/Hardware-in-
the-Loop (CHIL) studies are conducted for a DC microgrid in
Section IV. Conclusion is given in Section V.

II. NONLINEAR MODEL OF A DC MICROGRID

Distribution lines, active loads, and DC sources constitute
the DC microgrid, as depicted in Fig. 1(a). r; ; denotes the
resistance between buses ¢ and j. A power buffer connected
with a final load, i.e., a point-of-load converter (POLC) and
a resistive load (Fig. 1(b)), constitutes an active load [9]. A
resistor, ry;, in series with a voltage source, vy; (Fig. 1(c)),
model a DC source. Let the number of active loads and sources
be N and M, respectively, and the set of active loads be £ =
{M +1,...,M + N}. For the i*" active load, r;, v;, e;, and

p; are the input impedance, input voltage, stored energy, and
power supplied to the final load, respectively. Thus,

2
6= _p, ielL. (1)
The stored energy is approximated [10] as
1
e = gcu;, ie L. (2)

C is the buffer’s capacitance, and wvp; is its output voltage.
State-space model of each active load becomes [10]

_ Ci(PMt1seesTiye T N)? _ 2e; 1

ci iel. (3)
Ty = Ug,
Ci(TAi+1y -y Tiy -y T+ N ) Telates the active load’s input volt-
age, v;, and input impedances of all buffers. u; € R denotes
the control input tuning the buffer’s input impedance, ;.
R; is the buffer’s output resistance that relates to the load
resistance, Ry,. Once a set of desired output resistances, R,
is given, corresponding steady-state energy, input resistance,
and control input are e}, r¥, and u} = 0, respectively. r
is found by solving (3) at the steady state. Let’s consider a
second-order approximation of (3), for each i € £, around an

equilibrium point, i.e.,

M+N
PPN o B (0 <1 ) PR - (R
S orj; T J2 20r2 1y J2
j=M+1 ik J -
2
T CrFY
icig = Uq,

4)

r=ravs1raan]’s @i, = e, —ef, and z;, = r; —r¥.

Note that both (3) and (4) are nonlinear systems. As shown
in [7] and [9], first-order linearization around the half-load
loading scenario provides a satisfactory performance. Better
performances are obtained with nonlinear switching control
policies based on target load scenarios [10]. The second-order
approximation in (4) provides a good trade-off between those
two approaches, as will be shown in Section IV C.

Each active load in (4) can be generally expressed as
ie L. (5)

xz; € R™ is the state vector of active load ¢. While general
expressions for n; and g;(x) are used, for each i € L it

& = fi(z) + gi(z)ui,
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results that n; = 2, z; = [z;, ®;,]7, and g;(z) = [0 1]T.
The overall system’s state is = [x],;, ...,x}/[tN]T e RY,
where N = M+ ;. Each function f;(z) : RY — R™ is
locally Lipschitz with f;(0) = 0. The interconnection of the
N subsystems in (5) gives the overall microgrid dynamics,

&= f(z)+ g(z)u. (6)
f@) = [fun@)7, o fuen(@)T]" € RN, g(a) =
diag(grr+1(2), -, guen(@) € RY*N and w =
[urrs1, - unron] € RY. Let’s assume (6) partially unknown,

i.e., f(x) is unknown and g(z) is known.

The goal is to minimize, at the same time, the number of
the communication links (sparsity-promoting objective) and a
closed-loop performance index (optimal control objective). To
define the overall objective function, the first step is to solve
the optimal control problem, whose cost function is

J(z,u) = J U(z,u)dt, @)
0

where U (z,u) is the utility function defined as

U(x,u) = Q(x) + Y, pilw)us. ®)
i€l

Q(z) is a positive definite function weighting the convergence
dynamics. While any nonlinear function can be employed,
usually Q(x) provides a weighted sum of both single states
and states products, as in Section IV. Higher weighting terms
imply faster converge rates for corresponding states. p;(x),
i € L, are positive definite functions weighting the control
effort of each power buffer during transients. Similar to Q(x),
while general nonlinear expressions of states and inputs can be
employed, scalar weights are used as p;(x). Nonlinear expres-
sions arise when other specifications are included in the utility
function, e.g., losses in distribution lines. The optimal sparsity-
promoting objective function and an algorithmic procedure
that optimizes it are provided in the next Section.

III. PROPOSED OPTIMAL SPARSITY-PROMOTING
ALGORITHM FOR NONLINEAR SYSTEMS

First, a RL method approximates the structured optimal
control of nonlinear systems, i.e., a set of optimal controllers
for a fixed communication topology. In Section III B, the sta-
bility of structured nonlinear policies is evaluated using DoA
estimation methods. This estimation is used in the objective
function of the sparsity-promoting problem in Section IV C.
Finally, TS handles the resulting combinatorial problem.

A. Off-policy Integral Reinforcement Learning

The optimal feedback, that minimizes (7) and drives (6) to
zero [25], is

u*(x) = —0.5R, " (z)gT () VV* (), 9

where R,(z) = diag(pym+1(2), ..., ppmen(2)). VF(2) =
min, J(x,u) is the optimal value function found by solving
the following HIB equation

min H(z,u*,V*) =0, (10)

http://dx.doi.org/10.1109/TEC.2020.3043709

where H is the optimal control problem’s Hamiltonian,
H(z,u,V) 2 Uz, u) + VV* (2)(f(2) + g(z)u). (D)

Note that V*(z() provides the optimal cost when z(0) = .

Algorithm 1 can solve the generally analytically-intractable
HJB equation. Step 2a of Algorithm 1 is still a challenging
task. An IRL policy iteration algorithm, featuring off-policy
learning, is used [36]. For any asymptotically-stable control
policy u(9), and for any bounded noise injected for learning
and exploration purposes, e, (t) : R — R, one has

&= f(2) + g(2) (W (2) + en(t)) =
= f(@) + g(@) (™ (2) + u® (),

where u®)" = (0 — (F) 4 en. The derivative w.r.t the time

(12)
Vk =0,

of V(*)(z), along the state trajectory of (12), is
VO (@) = Uz, u®) =2 uf D pi(ayu’. (13)
€L
The value function, V(*), and the policies, u( +1) , are approx-

imated using linear-in- parameters (LIP) approximators [37],

Z o

=w®'T(2), (14)

A(k+1) (15)

Z G(k)fl (x7) )TE(LL‘),
where ~;(z), with [ = 1,...,Ny, and &(xlg), with [ =
1,..., Ny, are set of smooth linearly-independent functions
returning zero at the origin, with Ny and Ny as integers. The
I*" basis function &(xf) depends on a subset of the overall
system state, e.g., if &(x f) = §l(asM+1,xM+2,xM+4) then
a:— = {xM+1,xM+2,xM+4} For each §l(xl) € Z(x), the set
N = {jlz; € xl} is defined. The basis functions set Z(x) is
the same for each buffer. w*) € RVv and ng) eRM je L,
are constant weights to be determined. Integrating (13) over

any time interval, and replacing V(%) and u(kﬂ) with their
approximations, leads to
)T tn+1
WO [D(@(tn1)) = T((tn))] = — Q(z)
tn
AT (tp41)eERNV —
Ql(tn+1)ER
k-t ([ k-1
R ([ s ar) o
el tn
n+1
250 [ S + e (16
el N tn
U, (tni1)eRNU
wr ([ (k1)
+230; f E(x)pi(x)ZT(2)dt ) 0" + ey, .
el

(I)i (tn+1 )ERNU Ny

To minimize the communication links, a sparse control law
that keeps the system stable and minimizes (7) needs to be
found. Let’s define a binary decision matrix, Ay € RNXN
such that (Ag);; = 1 if subsystem j is allowed to send its
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Algorithm 1 Policy Iteration Algorithm

Algorithm 2 Off-Policy IRL Algorithm for an Arbitrary A,

1. Initialization: Set £ = 0, and u(o)(x) as the initial stable
controller for the overall system.

2. Iteration: Repeat until convergence
a. Policy Evaluation: Find V*) (), with V(¥)(0) = 0,
from H(z,u® VF) =0,
b. Policy Improvement: Update u(**1) () using (9) and
V) ().

own state to subsystem ¢, otherwise, (A4);; = 0. Given a fixed
Ay, the matrix P;(Ag) € RNv*Nu | for each i € £, is defined
as

P,(Ag) = diag (17)

[T (Aa)is

jeNt

[T (Aa)i;

je€Nx,

Therefore, for (Aq);; = 0, the I*" diagonal element of P;(A,)
is zero if the [*" approximating function & (xf) depends on x;.
Given an arbitrary A4, Algorithm 2 makes use of the same data
collected for the fully-connected communication topology to
find, if there exist, approximated optimal control policies in
line with the communication topology defined by A,. An off-
policy learning is implemented since the iterative stage starts
after collecting the learning data.

The main advantages introduced by using the IRL approach
can be summarized as follows. An approximated optimal
feedback controller, that does not require the explicit solution
of the HIB equation, is obtained. Using collected system data,
the full knowledge of the system dynamics is not required.
Finally, the same collected data can be repeatedly used to
find the approximated optimal control policies for different
communication topologies, hence significantly reducing the
computational requirements.

B. Domain-of-Attraction Estimation

The stability of the approximated optimal policies depends
on the given structure of A, as well as on a compact set
Q, < RY where the data collecting phase has been done. NNs
approximate nonlinear functions on compact sets, and not on
the entire R™V [36]. The stability is verified by quantifying the
DoA of the origin in the resulting closed-loop system, i.e.,

H = {zo e RV lim z(t, 20) = 0}. (18)
—0

Once approximated policies are obtained, the function

Va,(z) = @&} T'(x) is employed as a candidate Lyapunov

function, whose sub-level set is defined, for any [ € R, as

Ho(l) = {x e RN [Va, () <1} (19)

Given the difficulty in finding the DoA in a closed form, an
estimation is found using data-driven methods. Any sublevel
set provides an estimation if V4, (x) is positive definite and

Va, () is negative definite within the sub-level set [31]. The
goal is to find the largest set, H, (I*), representing the largest
estimate for the DoA. This paper adopts the memory-based
algorithm in [31] and modified in Algorithm 3.

Inputs: Initial weights W), 950), recorded data AT'(t,),
U, (tn), Pi(tn), Qr(t,), matrices P;(Ay), with ¢ € L and
n =1,..., Np; A stopping threshold §.
Outputs: Near-optimal cost function and policies w4, and
0, with i € L.

1. Initialization: Set k£ = 1;
[AFT(tl) AFT(tNL)]T €
BQ = — [Q[(tl) QI(tNL)]T € RNL.

2. Data Evaluation: Compute the following matrices

X, =2 (qf{(tl) - egk‘”Tcpg(tl)) Pi(Ag) ...
2 (W] (tn,) — 0V 0T (1)) Pi(A0)]

By = —[3, 00V @10 -
el

oy, )08 V).
€Ll

Evaluate Xr =
RNLxNv — and

3. Policy Improvement: Find w(*) and ng), 1 € L from the
following least square problem

T T T
[Xr X1 - Xnen] [w(k)T 05\21 95\21\/]
= BQ + Bs.

4. Off-policy Iteration: If ||w®) — w*=1|| > §, then set
k =k + 1 and repeat Step 2. Otherwise, stop and return
Da, =w®, 0;, =0, withie L.

The candidate Lyapunov function and its derivative are eval-
uated on randomly-selected data during the learning phase.

Let Trs = {tr,,i = 1,..,Ngs} be the set of
randomly-selected sampling times. The following sets of sam-
pled data are collected during the learning phase: S, =
{l‘(tRi),i = 1, ceey NRS}, Sda: = {j?(f,Ri),i = 1, ~-~7NR5}7
and Sye = {Sue(tr;);i = 1,...,Nps}, where s,c(tr,) =
(u® (z(tg,)) + en(tr,)). For each sampled state, z(tg, ), and
any weights set, wa,, 0; Ay the following holds

Vi, (2ltn,)) = W}, V(x(tr,) [f@c(takm
(20)

olatn) [0, O, | Slottn)]

where f(z(tg,)) = (tr,) — g(2(tr,))suc(tr, ) is the esti-
mated value of f(z(tg,)). Algorithm 3 requires the knowledge
of g(x) to compute (20) and f(z(tg, )). The number of failed
trials among the sampled data is Ng. Algorithm 3 updates the
upper and lower bounds of {*, i.e., dyy and d,, respectively. For
each sampled state, z(tg, ), the potential estimate for the DoA,
ie., Va,(z(tg,)), is stored in the memory Mg if stability
conditions are verified. Then, the current estimated DoA
increases or decreases its radius according to the conditions
in steps 7 and 9 [31], respectively.

Algorithm 3 returns the parameters dy,, 1y, g, and V.d;
provides a conservative estimation of the DoA, while 7y is the
ratio between d;, and the maximum evaluated cost function.
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Algorithm 3 DoA Estimation Algorithm modified from [31]

Algorithm 4 «(A,) Function

Inputs: Approximated optimal cost function and control poli-
cies, Va,(z) = oh, (@), i, (z) = éZ-TA =(z), i € L;
Sampled data Sy, Sz, and Sy, ; Function g(x).
Outputs: DoA estimation dy; Maximum/estimated ratio 7y
Failed ratio n; Average cost V.
1. Initialization: Set d;, = 0, dy = 0, Ng = 0, Mg = {0}.
2. for k=1,..., N, do )
3. Compute 7, = Va,(z(tg,)), and 73 = Va,(z(tg,)) as
in (20).
4. if 7, < 0 and 7, > O then
5. store Va, (z(tg,)) in Mpg; else Np = Np + 1
6. end if
7 if%k<0AandO<dL < 1, < dy then
. dp = Va,(a(tr,))
9. else if %k} 0 and 0 < 7, < dy then
0. dy = Va,(x(tr,))

11. if d, = dy then d;, = argmax{e € Mgle < dy}
12.  end if
13. end for

14. Compute V4, and V as the maximum and the average
value of Mg, respectively. -
15. return dy,, ny = dL/Vmax’ nr = NF/NRS7 and V.

It provides a measure of how small the resulting DoA is
compared to the state space spanned during the training phase;
E.g., if ny = 1, then the DoA is the whole training space.
np is the ratio between the failed and total trials. Finally,

the average cost, V, provides a performance measure of the
resulting controllers in terms of (7).

C. Sparsity Promoting and Tabu Search

The sparsity-promoting problem can now be defined as

minfilmize Bl|Ac 0 Ag||% + a(Ag) (21)
d
where A, € RV*N (A,);; > 0 is the cost of the communica-
tion link between buffers ¢ and j, o denotes the Hadamard
product, || - || is the Frobenius norm, (3 is a weighting
factor, and «(Ay) is defined in Algorithm 4. Due to possible
numerical errors in (20), the DoA obtained by Algorithm
3 may be still valid if np is below a given threshold, dp,
which is a design parameter. If nr > Jp or Algorithm 2 does
not converge, the control policy is considered unstable, with
the penalty set to co. Otherwise, a(A44) provides a penalty
term proportional to the average performance, V, and to
the reduction of the DoA regarding its maximum span, i.e.,
a(Ag) = V/ny. Thus, the compromise between the resulting
averaged performances and the number of active communica-
tion links is minimized. Note that «(Ag) is computed for every
Ay using the data collected for the fully-connected structure.
The TS algorithm reported in Algorithm 5 solves the
combinatorial optimization problem in (21). TS uses a flexible
search history to avoid local minimum entrapment [34], [35].
The main features of TS are the moves and the tabu list. Each
move m in the moves set, M, generates a new solution when
applied to the current one. Herein, swap, reversion, and

Inputs: Matrix Ag; Threshold parameter dp.
Outputs: Cost a(Ay).

1. Off-Policy IRL Convergence Check: Run Algorithm 2
and, if converges, obtain approximated optimal weights
and go to Step 2; Otherwise, return a(Ay) = o0.

2. DoA Estimation: Run Algorithm 3 and obtain ng,ny,
and V parameters. If np < dp, go to Step 3; Otherwise,
return a(A4y) = 0.

3. Cost Evaluation: Return a(A4,4) = V/ny.

Algorithm 5 Tabu Search Algorithm
Inputs: Initial solution Sy; Tabu length T7,; Set of moves M.
Outputs: Best solution S}.

1. Initialization: For every move m € M, initialize the
corresponding tabu counter, T(m), to zero; Set the initial
best solution S; = Sp; Set the best candidate solution
Sp =S.

2. Best candidate solution evaluation:

a. for each m e M do

b. if Tc(m) = 0 then

c. Apply move m to Sp and obtain solution Sg

d. if SBm, is better than Sp then Set Sg ,, = Sp
and set the best move, mpg, to m.

e. end if

f. end for

3. Best solution evaluation:
if Sp is better than S}, then update S% = Sp.

4. Tabu list update: Add mp to the tabu list by setting
Tc(mp) = Ty. For each m € M, m # mp, decrease
Te(m) by 1 if greater than 0.

5. Stopping criterion: Go to Step 2 until the maximum
number of iteration is reached.

insertion moves are implemented. In summary, the best so-
lution is initialized with a fully-connected feedback. Each
TS iteration seeks the best non-tabu move that improves the
current best solution. Then, the best move is inserted in the
tabu list whose length provides the number of TS iterations
in which the move is forbidden, allowing better exploration
and escaping the local minimum. Finally, the relationships
between the algorithmic components of the proposed approach
are graphically represented in Fig. 2.

IV. CASE STUDIES
A. DC Microgrid Setup

Verification studies are conducted on the 48V DC microgrid
depicted in Fig. 1(a), where M = 5 and N = 6, with vy; =
50V and 7, = 0.1€). Line resistances are 7g19 = 0.2€2,

T13,6 = T6,14 = T19,3 = T2021 = 0.3§), r121 = T118 =
ris2 = rrar = 0.4Q, 1199 = Tia9 = r1007 = 0.7,
Ti1,12 = Ti4,15 = T20,4 = T15,16 = T16,7 = T17,5 = 0.5,
T1213 = 7818 = T920 = Ti621 = T21,0 = 0.69, and
r13,, = 0.9€). Each active load uses a boost converter as

a power buffer, with C' = 4.4mF, and a buck converter
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Fig. 2. Information flow between algorithmic components in the proposed
sparsity-promoting approach.

as a POLC, with an LC filter placed in between them.
Communication network and control schemes are emulated
on a dSpace MicroLabBox system, the physical microgrid is
emulated on a Typhoon HIL604 hardware. The two platforms
physically separate the control loops from the real microgrid,
as it happens in real-world implementations. The CHIL setup
allows a realistic evaluation of the proposed approach, provid-
ing a better fidelity if compared with computer simulations
[38]. In fact, simulation-only experiments do not consider
a real-time implementation, which is an important aspect
when testing distributed controllers [39]. Communication and
controller sampling times are 1ms and 0.1ms, respectively.

The control objectives are two fold: 1) Regulate the output
voltage of each buffer in the steady state at v, = 100V,
with a corresponding e} = 22.J; 2) Vary the input impedance,
r;, according to the sparse distributed policy. Both objec-
tives are addressed using the fast voltage tracker of each
boost converter. The resulting scheme is shown in Fig. 3.
The " active load receives the states {z;};en,, Where N;
denotes the set of other buffers that communicate with the
buffer ¢, ie., N; = {j|(Aq)i;; = 1}. Note that in Fig. 3,
x = {x; U {z;}en,}. The near-optimal control policy u; is
applied to (3) whose integral provides ¢; and 7;.

A control policy designed around the half-load operating
condition is used and validated for other operating points,
as done in [7] and [9]. The resulting feedback controller
requires the knowledge of local states, x;, and x;,, which
represent the deviations with respect to the target operating
point. The target stored energy is fixed at e, thus, the local
state x;, is easily obtained as z;, = &; — e}. Instead, to
obtain x;,, the unknown value of 7}, that depends on the
overall operating point, is required. In [7] a low-frequency
filter extrapolates the quiescent part of the input resistance, i.e.,
r¥ to determines the corresponding actual deviation. However,
this filter could introduce delays, distortions, and compu-
tational demand. Alternatively, in this paper, the following
approximation is adopted
_ CRM?
Tiy T — =

x )
2 e

(22)

where v; is the measured input voltage and e; represents
the energy profile to be tracked by the power buffer. The
knowledge of the target load, R}, is needed in (22). Assuming
an ideal buck onverter, R} is easily related to the desired
load Ry, as Rf = (v /v¥)?Rpr,, where v¥ is the fixed
output voltage of the buck converter. The comparison between
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Fig. 4. Comparison of actual states and approximated ones using (22)

the actual and approximated states x;, in Fig. 4 shows the
effectiveness of (22). The depicted scenario uses the local
feedback policy u; = 2x;,, ¢ = 6, ..., 11, and varies the final
resistive loads of buffers 6 and 10 from 202 to 102 in ¢ = 0.5s
and from 1012 to 162 in ¢ = 2s, respectively.

Finally, by translating €; into the reference of the voltage
tracker, using (2), the two control objectives mentioned above
are attained. The voltage tracker of each boost converter imple-
ments a Proportional-Integral (PI) regulator with proportional
and integral gains set to 1.2 and 3.7, respectively, followed up
with a hysteresis-band controller (band set to 0.2). The buck
converter’s output voltage is set at 48V with a PI controller,
with proportional and integral gains set to 0.09 and 1.08,
respectively.

B. Optimizing the Communication Topology

Algorithm 5 solves problem (21) for different values of S.
Starting from a fully-connected controller, the TS procedure
modifies the current communication topology by applying a
set of moves and defining the solutions to visit. For each
visited solution, characterized by a specific communication
topology, the off-policy IRL procedure in Algorithm 2 finds
the corresponding optimal controller. A set of learning data,
ie., ATU(tn), Ui(tn), ®i(tn), Qr(tn), with ¢ € L and
n = 1,..., Ny, is previously collected and used in every
run of Algorithm 2. Such data collecting phase is conducted
in the Simulink environment on the interconnection of the
N subsystems (4) with half-loads values, i.e. R;" = 5092,
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1 = 6,...,11. Second-order polynomial terms in the 12 states
are considered as approximating functions in I'(z), while
E(x) = x. The learning time intervals are Nz, = 5000 of 0.01s
length. The initial controller is ugo) = 2z, 1 = 6,...,11, the
stopping threshold is 6 = 10~%, and filtered white noises are
used as exploration signals.

The stability and performance, i.e., the average value func-
tion, of each visited solution are evaluated using Algorithm 3
(see Fig. 2). In particular, each visited solution could be: 1)
Unstable if Algorithm 2 does not converge or if the ratio of
the failed stability checks, 7, is higher than the § threshold,
herein set to 0.01; 2) Stable with a DOA smaller than the
training space, i.e., ny < 1; 3) Stable on the full training
space, i.e., ny = 1. The DoA is estimated using Nrs = 6000
randomly-sampled data during the learning stage. Finally, the
utility function is defined with p;(x) = 2, i = 6,...,11, and
Q(z) = 2TQux, where

Qe Q2 Qs Qs Q2 Q4
Q2 Qu Q2 Q3 Qs Q2
Qs Q2 Qi Qi Q2 Qs
Qs Q3 Q1 Qu Qi Q2
Q2 Qs Q2 Qi Qq Qo
Qs Q2 Qs Q2 Q2 Qq

Qq = diag(30,15) and Q) = diag(—k,0). All entries of
matrix A, are 1. The decision variables are the extra-diagonal
elements of Ay, i.e., non-symmetric communication links are
allowed while self-loops are present. Each trial of Algorithm 5
uses a tabu length of 15 and a maximum number of iterations
of 100.

The average-value function, i.e., V in Algorithm 4, and the
resulting cardinality, | A4, of the optimal solutions obtained by
eight different trials of Algorithm 5 for increasing values of
the weight 5 in (21), are reported in Fig. 5. Greater values
of [ promote sparsity with a decreasing number of active
communication links. For 8 = 0.01, a fully-connected pattern
is obtained, i.e., |A4| = 36. For 8 = 4, only local controllers
are obtained, i.e., |A4| = 6. As expected, increasing sparsity
leads to a lower performance evaluated within the randomly-
sampled data during the learning phase.

Figure 6 elaborates the results for § = 0.5 and § = 2.
Figures 6(a), 6(b), and 6(c) show the visited solutions during
the optimization procedure. Figure 6(a) presents the visited
unstable solutions. The objective function has an infinite value
for both 3 = 0.5 and 8 = 2 despite the gap depicted
for presentation purposes only. Figure 6(b) shows the visited
stable solutions with 7y, < 1, which implies higher values

Qu (23)
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Fig. 6. Results of the optimization stage: (a) visited unstable solutions for
B = 0.5 and B = 2, (b) visited stable solutions with ny, < 1 for 8 = 0.5
and B = 2, (c) visited and optimal solutions with ny = 1 for 8 = 0.5
and B = 2, (d) best solution for each tabu-search iteration, and (e) optimal
communication topologies when 5 = 0.5 (left) and 8 = 2 (right).

of the objective function, especially when the corresponding
DOA is significantly smaller than the training space. The
optimal and visited solutions when 7y = 1 are depicted in
Fig. 6(c). Due to its greater value, 5 = 2 has higher values
of both optimal and visited solutions compared with those of
B = 0.5 in Fig. 6(c). In both cases, proper operation of TS is
exhibited through intensified, i.e., more dense, searches around
optima. Figure 6(d) shows the trend of best solutions during
TS iterations. For § = 0.5 and # = 2, the optimum is reached
in 38 and 34 iterations, respectively. Finally, Fig. 6(e) shows
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Fig. 7. CHIL validation when 8 = 0.5: (a) output voltage of power buffer,
(b) output voltage at terminal load resistances, (c) output power of power
buffers, and (d) energy-impedance trajectories.

the optimal communication topologies. Cardinalities of |Ag]
for 5 =0.5 and § = 2 are 20 and 10, respectively.

C. Controller/Hardware-in-the-Loop Studies

CHIL studies for two optimal control policies, with 5 = 0.5
and 8 = 2, are reported in Fig. 7 and Fig. 8, respectively. Final
load resistances are Ry, = 240, Ry, = 180, R, = 351,
Rr, = 7Q, Rr,, = 99, and R,, = 28(). As seen in Fig.
7(c) and Fig. 8(c), both scenarios consider the step change in
load at ¢ = 1s when load 6 doubles its power demand, i.e.,
Rr, = 12Q, at t = 5s when load 7 halves its power demand,
ie, Rr, = 361, at t = 9s when load 8 doubles its power
demand, i.e., Ry, = 17.5(2, at t = 12s when load 10 halves
its power demand, i.e., Rr,, = 18(2, and at ¢ = 155 when
load 11 doubles its power demand, i.e., Rr,, = 14Q.

Different communication topologies, as in Fig. 6(e), imply
different control behaviors during transients, as highlighted in
Fig. 7(a) and Fig. 8(a). The buffer voltages, vy;, ¢ = 6, ..., 11,
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reflect changes in the stored energy according to the distributed
control policies actuated by the scheme in Fig. 3. During the
first load change, the topology obtained with 5 = 0.5 allows
power buffers 9 and 10 to change their stored energies and
actively assist load 6. With a more sparse communication
topology, i.e., 5 = 2, the power buffer 6 is assisted only by the
power buffer 11. This results in the increased usage for buffer
6 if compared with the previous topology, see Fig. 7(a) and
Fig. 8(a) during the first transient. Similar considerations are
made for the second load change, where assistance is provided
for the case of 8 = 2 where buffer 10 assists buffer 7. For
[ = 0.5, buffer 7 does not communicate its states, with no
changes in other buffer energies. For 8 = 0.5, power buffers
6, 10, and 9, reduce the energy usage of buffer 8 during the
third transient, when compared with the case of 5 = 2, where
buffer 8 is assisted only by buffer 10. Better performances
are obtained with 8 = 0.5 during the fourth and fifth load
changes. Figures 7(b) and 8(b) show how the load voltages
do not substantially change during the transients due to the
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buffering capabilities of the power buffers.

Energy-impedance trajectories are reported in Fig. 7(d) and
Fig. 8(d), for two topologies, respectively. Trajectories during
the first, second, third, fourth, and fifth load changes are
depicted in blue, orange, red, green, and light blue, respec-
tively. Input impedances and stored energies are modified to
provide assistance according to the optimized communication
topology. For instance, power buffer 9 reacts to changes in
buffers 6, 8, 10, and 11, for 8 = 0.5. For 8 = 2, where only a
local controller is active, the stored energy remains constant at
its rated value. Less sparse topologies imply more assistance
in terms of faster transient responses with lower energy usage.
Note that utility functions, i.e., Q(x) and p;(z), can enhance
the performances of specified buffers, e.g., by increasing the
corresponding diagonal weighting terms in (23).

The effectiveness of the proposed method is demonstrated
through a comparison with two other approaches. The first
comparison is made with the linear sparsity-promoting al-
gorithm in [11] and used in [13] and [17] for AC micro-
grid applications. This algorithm is applied to the first-order
linearization of (3). The algorithm is tuned such that the
resulting optimal topology has the same number of active
links as the one obtained by the proposed method. The second
comparison is made with an optimal LQR obtained on the
first-order linearization of (3) and truncated such that the
communication topology coincides with that of the proposed
approach. Comparisons are made for the scenario in Fig. 7
and Fig. 8, and for various /3 parameters, i.e., 5 = 0.5, 5 = 1,
B = 2, and 8 = 4 (fully-decentralized controller). While the
computational requirements of the proposed method are higher
when compared with [11], the proposed approach could handle
nonlinear systems. In both cases, the optimization procedure
is conducted offline. Since the basis function set =(z) = =
provides a linear feedback controller, the implementation of
the proposed real-time controller requires the same computa-
tional resources as other controllers obtained via [11] and the
truncated LQR.

Figure 9 compares the buffer voltages obtained with the
proposed approach (continuous line), [11] (dotted line), and
truncated LQR (dashed line), when 8 = 0.5 (Fig. 9(a)), 8 =1
(Fig. 9(b)), 5 = 2 (Fig. 9(c)), and 8 = 4 (Fig. 9(d)). Note that
the communication topology obtained with [11] differs from
the one obtained by the proposed approach. Thus, when com-
paring the same load changes, the set of assistive power buffers
is different. Compared with both the truncated LQR approach
and [11], the proposed method provides faster recovering times
for each buffer subject to the load change, i.e., the time needed
to restore its initial energy level corresponding to vp; = 100V,
with a lower maximum energy utilized. The proposed ap-
proach shows higher energy drawn from the assisting buffers,
to help with the faster restoration of the buffer subject to the
load change, e.g., during the first load change in Fig. 9(a),
during the last load change in Fig. 9(b), and during the third
load change in Fig. 9(c), see corresponding zoomed parts. The
proposed method always shows better performance compared
with the truncated LQR method. On the other hand, due
to different optimized communication topologies, [11] could
sometimes show better behaviors, e.g., the second load change
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in Fig. 9(a), and the third load change in Fig. 9(b), where
the corresponding optimized topologies obtained with the
proposed method do not provide assistance for buffers 7 and
8, respectively. However, the proposed approach shows better
overall performances on the majority of the loading events,
with a smaller overall utility function, as shown next. It also
provides better responses with fully decentralized controllers,
as in Fig. 9(d).

Finally, Table I compares the proposed method against the
two other approaches in terms of the resulting utility functions.
The base value used to evaluate the percentage variation in
the fifth column is the one obtained by applying the fully-
connected optimal controller with 5 = 0.01. As shown in Fig.
5, greater 3 implies more sparsity with higher performance
values. The proposed approach finds a better compromise be-
tween the resulting performance and the number of active com-
munication links, i.e., by comparing topologies for 5 = 0.5
and 8 = 2, some communication links are activated, and other
deactivated, to minimize the impact on the performance index.
The proposed method outperforms other approaches, even with
more sparse communication topologies (e.g., compare row 6
with rows 4 and 5 in Table I).

TABLE I
CLOSED-LOOP PERFORMANCE COMPARISON BETWEEN PROPOSED
APPROACH, [11], AND TRUNCATED LQR

B8 |Ag|  Utility  Variation %
Proposed 0.01 36 7702.6 0
LQR 36 7910.3 1.4
Proposed 0.5 18 7883.5 2.3
[11] 18 8150.8 5.8
Truncated LQR 18 8187.4 6.3
Proposed 1 16 7964.7 34
[11] 16 8158.8 59
Truncated LQR 16 8128.8 5.5
Proposed 2 10 8096.5 5.1
[11] 10 8194.8 6.4
Truncated LQR 10 8227.5 6.8
Proposed 4 6 8137.6 5.7
[11] 6 8193.3 6.4
Truncated LQR 6 8292.5 7.7

V. CONCLUSION

Existing distributed solutions for power buffers in DC
microgrids do not consider the effects of the communication
network topologies on the controller performance. A second-
order approximated model of a DC microgrid considering the
physical interconnection among power buffers is developed.
Sparsity-promoting optimal control of general interconnected
nonlinear systems, including power buffers, are investigated.
RL and TS methods find the best compromise between the
minimization of a defined closed-loop performance index
and the number of activated communication links. TS seeks
the best solution by applying some moves on the decision
variables matrix, i.e., the communication topology. Controller
performance and stability, corresponding to this topology, are
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Fig. 9. Comparison of the buffer voltages using the proposed approach, [11], and the truncated LQR: (a) 8 = 0.5, (b) 8 =1, (c) 8 =2, and (d) 8 = 4.

evaluated using an off-policy learning algorithm and a DoA
estimation algorithm. While appearing intuitive, showing
that less sparse communication topologies provide better
performances is not trivial for nonlinear systems such as DC
microgrids. Through CHIL studies, performance improvement
following the use of a less sparse communication topology
is reflected in a better mutual assistance among the buffers,
i.e., faster transient responses with less stored energy utilized.
Quantitative comparisons show that the proposed approach
outperforms existing methods.
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