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The COVID-19 pandemic disrupted health systems and economies throughout the
world during 2020 and was particularly devastating for the United States, which
experienced the highest numbers of reported cases and deaths during 2020' %, Many
of the epidemiological features responsible for observed rates of morbidity and

mortality have been reported*3; however, the overall burden and characteristics of
COVID-19 inthe United States have not been comprehensively quantified. Here we use
adata-driven model-inference approach to simulate the pandemic at county-scalein
the United States during 2020 and estimate critical, time-varying epidemiological
properties underpinning the dynamics of the virus. The pandemic in the United States
during 2020 was characterized by national ascertainment rates that increased from
11.3% (95% credible interval (CI): 8.3-15.9%) in March to 24.5% (18.6-32.3%) during
December. Population susceptibility at the end of the year was 69.0% (63.6-75.4%),
indicating that about one third of the US population had been infected. Community
infectious rates, the percentage of people harbouring a contagious infection,
increased above 0.8% (0.6-1.0%) before the end of the year, and were as high as
2.4%in some major metropolitan areas. By contrast, the infection fatality rate fell

t0 0.3% by year’s end.

During 2020, the United States documented more COVID-19 cases
and deaths than any other country in the world. The first US COVID-
19 case was identified in Washington state on 20 January 20202, Over
the course of the year, three pandemic waves took place: (1) a spring
outbreak in select, mostly urban areas following the introduction of
the virus to the United States; (2) a summer wave that predominantly
affected the southern half of the country; and (3) an autumn-winter
wave that remained pervasive until the spring of 2021. To understand
the transmission of the virus and better control its progression in
the future, it is vital that the epidemiological features that have sup-
ported these outbreaks are quantified and analysed inboth space and
time.

Here we use a county-resolved metapopulation model to simulate
the transmission of SARS-CoV-2 within and between the 3,142 coun-
ties of the United States. The model depicts both documented and
undocumented infections and is coupled with an iterative Bayesian
inference algorithm—the ensemble adjustment Kalman filter—which
assimilates observations of daily cases ineach county, as well as popula-
tionmovementbetween counties®™® (Supplementary Information). The
Bayesian inference supports afitting of the model to case observations
and estimation of unobserved state variables (for example, population
susceptibility within a county) and system parameters (for example,
theascertainmentrateineach county). Synthetic testsindicate that the
inference approach can recover key time-varying parameters across
adiversity of simulation scenarios (Extended Data Fig. 1). The model
fitting to observed case data captures the three waves of the outbreak
as manifest at national scales (Fig. 1a), as well as in major metropoli-
tan areas and at county scales (Extended Data Fig. 2). These inference

results are robust to parameter settings and model configurations
(Extended DataFigs. 3, 4, Supplementary Information).

To further validate the fitting, we compared model estimates of
cumulativeinfections to findings from US Centers for Disease Control
and Prevention (CDC) seroprevalence surveys conducted at site and
statelevels®. The seroprevalence data, which provide an out-of-sample
corroboration of the model fitting, were adjusted for the waning of
antibody levels following adaptive immune response™* (Extended Data
Fig. 5, Supplementary Information). Model estimates of cumulative
infected percentages are well aligned with adjusted seroprevalence
estimates from the CDC 10-site survey across sites and through time
(Pearson’sr=0.97, mean absolute error (MAE) =1.31%) (Fig.1b) and are
similarly wellmatched to adjusted estimates at the state level (Extended
DataFig. 6).In addition, the seroprevalence generated using the esti-
mated daily infections adjusted for seroreversion also matches the
observed seroprevalence, and the results are robust to assumed use
of alower-sensitivity seroassay (Extended Data Fig. 6).

A critical feature of SARS-CoV-2 is its ability to infect and transmit
largely fromindividuals who have not been diagnosed with the virus*.
The model structure and fitting enable estimation of the ascertain-
ment rate, the percentage of infections confirmed diagnostically, at
county scales. The national population-weighted ascertainment rate
averaged for all of 2020 was 21.8% (95% Cl: 15.9-30.3%), similar to an
estimate derived from surveys on healthcare-seeking behaviours®, This
national ascertainment rate increased from 11.3% (8.3-15.9%) during
March 2020 to 24.5% (18.6-32.3%) during December 2020 (Fig. 1c).
Theincrease through time is a likely by-product of increasing testing
capacity, arelaxation of initial restrictions on test usage, and increasing

'Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA. ®e-mail: sp3449@cumc.columbia.edu; jls106@cumc.columbia.edu

338 | Nature | Vol 598 | 14 October 2021


https://doi.org/10.1038/s41586-021-03914-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-021-03914-4&domain=pdf
mailto:sp3449@cumc.columbia.edu
mailto:jls106@cumc.columbia.edu

a 304 b 354~ 1A
. g 1 4
. " New York , S 304 ©
5 257 i R < 3 1 Jul
peoN <]
% 2.0 ,r'/ E 25 &)—
g < ! a 1 Jun
© VRN 8
- SN
Z 1.5 oo ] 9
o Hy~ 5 1 May
] I} Kol
5 1.0 ! £
2 P ey A 3 1 Apr
=z /5 N, 4 = p
- . - . (0]
0.5 e \.\._—-/’//,/ \_\. ‘/,/ E
A S - 1 Mar
o I I I I I I I I I 0 5 1IO 1|5 2|0 2|5 3|0 3|5
3
®Q§ ?Q @,/5\ 5\) \5\) YQQ %@Q OC} éo 00
N N N NOONT N Adjusted seroprevalence (%)
c 401 301 251
30 207 él é I%I
g é 20 é é 15
e 10 _
:IE) 104 é Nat|onal 10 -% : New York % . . IChlca:go
= 30-
£ 201 $ 40
t
: b o
2 157 I%I I% 30 20+
10-
20 . —_—
Los Angeles Phoenix 10 Miami
Mar May Jul Sep Nov Mar May Jul Sep Nov Mar May Jul Sep Nov
Month Month Month

Fig.1|Model calibration and ascertainmentrate. a, Model fitting to daily
casenumbers (blue dots) in the United States and the New York metropolitan
area (inset). Solid and dashed lines show the median estimate and 95% Cls,
respectively.b, Comparisonbetweeninferred percentage cumulative
infections and seroprevalenceintenlocations adjusted for antibody waning.
Theinsetshowsresiduals ofinference (inferred percentage of infected
population minus adjusted seroprevalence). Centres and whiskers show
medians and 95% Cls, and colour indicates the sample collection datein each

recognition, concern and care-seeking among the public. We addi-
tionally focus on five metropolitan areas in the United States. Small
differences in the ascertainment rate manifest across these areas—in
particular, ascertainment rates for Phoenix and Miami were higher than
the national average for much of the year, whereas those for New York
City, Chicago and Los Angeles were consistently below the national
average.

At the national level, three pandemic waves were evident during
spring, summer and autumn-winter (Fig. 1a); however, the structure
differs among the five focus metropolitan areas, with New York and
Chicago experiencing strong spring and autumn-winter waves but
little activity during summer, Los Angeles and Phoenix undergoing
summer and autumn-winter waves, and Miami experiencing all three
waves (Extended Data Fig. 2). Los Angeles County, the largest county
inthe United States, with apopulation of more than 10 million people,
was particularly severely affected during autumn-winter. The differ-
encesinvirusactivity produced different cumulative infectionnumbers
through time (Fig. 2a). Population susceptibility at the end of the year
was 69.0% (63.6-75.4%) for the United States, and among the focal
metropolitan areas it ranged from 47.6% (37.2-54.8%) in Los Angeles
t0 73.2% (68.3-77.8%) in Phoenix. Although there is variability among
counties, a substantial portion of the US population (69.0%) had not
beeninfected by the end 0f2020; however, pockets of lower population
susceptibility, which are evident in the southwest and southeast on

location. Distributions are obtained from n =100 ensemble members. Details
ontheserological survey are provided in Supplementary Information.

c, Distributions of estimated ascertainmentratein the United States and five
metropolitan areas. The centre line shows the median, box bounds represent
25thand 75th percentiles, and whiskers show 2.5th and 97.5th percentiles.
Monthly posterior estimates are presented for March to December 2020.
Distributions are obtained from n =100 ensemble members.
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Fig.2|Estimates of population susceptibility. a, Estimated evolution of
susceptibility to COVID-19 in the United States and five metropolitan areas.
Solid lines show medianand the areabetween the dashed linesis the 95% CI.
b, ¢, Estimated susceptibility in 3,142 US counties on 1August (b) and 31
December (c) 2020. Colour shows median estimate.
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Fig.3|Estimated transmission and characteristics of COVID-19 in the
United States. a, Estimated monthly total infections (blue bars) and confirmed
cases (orange bars) in the United States and the New York metropolitan area
(inset). Distributions are obtained fromn =100 ensemble members. The blue
barsrepresent the medians and whiskers show 95% Cls. b, Daily confirmed

1August 2020 (Fig. 2b), expanded considerably by 31 December 2020
(Fig.2c).In particular, areas of the upper Midwest and Mississippi valley,
including the Dakotas, Minnesota, Wisconsinand lowa, are estimated
to have population susceptibility below 40% as of 31 December 2020.

Thestructure of the outbreakis evidentinbothincidence and preva-
lence estimates (Fig. 3, Extended Data Fig. 7). Incidence indicates the
daily number of newly infectious individuals—both confirmed cases
of COVID-19 and those whose infections remain undocumented. The
majority of infections each month are undocumented (Fig. 3a), as
indicated by the low ascertainment rates (Fig. 1c). For all of 2020, an
estimated 78.2% of infections in the United States were undocumented.
Estimates of daily prevalence provide a measure of the community
infectious rate (CIR), the fraction of the population currently harbour-
ing a contagious infection. The national SARS-CoV-2 CIR was 0.77%
(0.60-0.98%) on 31 December 2020, indicating that roughly 1in 130
people was contagious (asimilar percentage, 0.83% (0.52-1.26%), was
estimated to be latently infected—that is, infected but not yet conta-
gious) (Fig. 3b). Among the 5 focal metropolitan areas, the CIR var-
ied considerably: in mid-November, Chicago reached a CIR of 1.51%
(1.27-1.82%); whereas in Miami CIR increased to 1.25% (1.03-1.53%)
duringJuly. Los Angeles was even more burdened at the end of 2020,
with a CIR of 2.42% (2.05-2.86%) as of 31 December 2020 (Extended
DataFig.7).

The model fitting enables estimation of the case fatality rate (CFR)
andtheinfection fatality rate (IFR). Using public line-list datafrom the
CDC", we estimated the distribution of time lag from case confirma-
tionto death for each county and, using these estimates, deconvolved
observed deathstotheir dateof casereporting® (Extended DataFigs. 8,9,
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cases (blueline, 7-day moving average) and estimated prevalence of
contagiousinfections (red line, median; red dashed lines, 95% Cls) in the United
States. Inset, result for the New York metropolitan area. ¢, Estimated CFR
(bluelines) and IFR (red lines) in the United States and five metropolitan areas.
Solid and dashed lines show median estimate and 95% Cis, respectively.

Supplementary Information). CFR and IFR were then generated using
these deconvolved death data. Both rates were highest nationally at
the beginning of the spring wave: the CFR was 7.1% (4.8-9.8%) and the
IFR was 0.77% (0.51-1.25%) during April (Fig. 3c). The national cumu-
lative IFR up to 1June was 0.69% (0.47-1.04%), in line with previous
studies®” (Extended Data Fig. 2, Supplementary Information). Over
the course of the year, with earlier diagnosis and treatment, improved
patient care’®™® and—in the case of CFR—increased reporting of mild
infections, the CFR and IFR dropped t0 1.29% (0.98-1.68%) and 0.31%
(0.22-0.44%) by December 2020, respectively. Both rates varied by
location and over time; for instance, intermediate drops of CFR and
IFRbegan for Chicago, Phoenix and Miami during the summer wave, in
association with adecrease of the average age of hospitalized patients
(Extended Data Fig. 8). During the winter of 2020, the CFR and IFR in
most metropolitanareasincreased slightly, possibly driven by greater
hospitalization rates among older individuals (Extended Data Fig. 8)
and strained healthcare resources'. Overall, these findings delineate
the mortality risk associated with infection broadly. The national IFR
duringthelatter half of 2020 hovers around 0.30%, well above estimates
for both seasonal influenza® (<0.08%) and the 2009 influenza pan-
demic?(0.0076%).As COVID-19 deaths are likely to be under-reported,
our estimate of IFR could be biased low.

We further examined the change of the reproduction numberR,, in
response to changinglocal, reported COVID-19 case numbers in five US
regions (Northeast, Southeast, Midwest, Southwest and West) during
the spring, summer and autumn-winter (Supplementary Information).
Results indicate that communities with increasing cases showed greater
reductions of R, (Extended Data Fig.10). However, the rate of reduction



in R,decreased over successive waves. These findings are potentially
driven by a number of factors modulating the reproduction number,
including changing compliance with non-pharmaceutical interven-
tions? and seasonal modulation of virus transmissibility*. A more
thorough analysis of this preliminary finding is needed.

The United States experienced the highest numbers of confirmed
COVID-19 cases and deaths in the world during 2020". Our findings
provide quantification of the time-evolving epidemiological char-
acteristics associated with successive pandemic waves in the United
States, as well as conditions at the end of the year and prospects for
2021. Critically, despite more than 19.6 million reported cases by the
end of2020, an estimated 69% of the population remained susceptible
to viral infection. Several factors will considerably alter population
susceptibility in the coming months. First, ongoing transmission will
infect naive hosts and continue to deplete the susceptible pool. Sec-
ond, as more vaccine is distributed and administered, more individu-
als will be protected against symptomatic infection and the IFR will
decrease. Finally, our model does not represent reinfection, either
throughwaning immunity orimmune escape; however, reinfection has
been documented**, evidence of waning antibody levels exists?*?,
and new variants of concern have emerged®?® and will probably con-
tinue to do so. All these processes will affect population susceptibility
over time and help to determine when society enters a post-pandemic
phase, the pattern of endemicity the virus ultimately assumes and its
long-term public health burden®.
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maries, source data, extended data, supplementary information,
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The human mobility and COVID-19 surveillance data that support the
findings of this study are available at GitHub (https://github.com/
SenPei-CU/COVID_US_2020). The county-level COVID-19 surveillance
data for the United States are available at Johns Hopkins University
coronavirus resource center (https://github.com/CSSEGISandData/
COVID-19/tree/master/csse_covid 19 _data/csse_covid 19 _time_series).
County-to-county commuting data were downloaded from the US
Census Bureau (https://www.census.gov/data/tables/2015/demo/
metro-micro/commuting-flows-2015.html). Human mobility data in
2020 were provided by SafeGraph (https://safegraph.com/), which
aggregates anonymized location datafrom numerous applications to
provideinsights about physical places, via the SafeGraph Community.
To enhance privacy, SafeGraph excludes census block group informa-
tionif fewer than five devices visited an establishmentin amonth from
agivencensusblock group. We aggregated the mobility datato county
level to estimate change of inter-county mobility in 2020. Aggregated
and derived dataare allowed to be shared publicly by SafeGraph. Sero-
prevalence data were published by the CDC (https://www.cdc.gov/
coronavirus/2019-ncov/cases-updates/commercial-lab-surveys.html).

Theline-list datasets are available at the CDC website (https://data.cdc.
gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/
vbim-akqfand https://data.cdc.gov/Case-Surveillance/COVID-19-Case-
Surveillance-Public-Use-Data-with-Ge/n8mc-b4w4). Source data are
provided with this paper.

Code availability

Custom code supporting this study is available at GitHub (https://
github.com/SenPei-CU/COVID_US_2020).
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Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis We implemented the EAKF algorithm in MATLAB R2021a. Data analysis was performed using MATLAB R2021a. The custom codes are publicly
posted at GitHub: https://github.com/SenPei-CU/COVID_US_2020.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The human mobility and COVID-19 surveillance data that support the findings of this study are available at GitHub (https://github.com/SenPei-CU/COVID_US_2020).
The county-level COVID-19 surveillance data in the US are available at Johns Hopkins University coronavirus resource center (https://github.com/CSSEGISandData/
COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series). County-to-county commuting data were downloaded from the US Census Bureau (https://
www.census.gov/data/tables/2015/demo/metro-micro/commuting-flows-2015.html). Human mobility data in 2020 were provided by SafeGraph (https://
safegraph.com/), a data company that aggregates anonymized location data from numerous applications in order to provide insights about physical places, via the
Placekey Community (https://placekey.io/). To enhance privacy, SafeGraph excludes census block group information if fewer than five devices visited an
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establishment in a month from a given census block group. We aggregated the mobility data to county level to estimate change of inter-county mobility in 2020.
Aggregated and derived data are allowed to be shared publicly by SafeGraph. Seroprevalence data were published by the US CDC (https://www.cdc.gov/
coronavirus/2019-ncov/cases-updates/commercial-lab-surveys.html). The line-list datasets are available at the US CDC website (https://data.cdc.gov/Case-
Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akgf and https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data-with-
Ge/n8mc-b4w4).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We did not collect data from samples. In the EAKF algorithm, we used n=100 ensemble members to represent the distributions of model
states, parameters, and inference outcomes.

Data exclusions  No data were excluded.

Replication This is a modeling study without experiments. We repeated the inference multiple times and the inference results are reproducible and
robust.

Randomization  Thisis a modeling study without experiments. Randomization is not relevant.

Blinding This is a modeling study without experiments. Blinding is not relevant.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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