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Abstract 

Autonomous vehicles are expected to change our lives with significant 
applications like on-demand, shared autonomous taxi operations. 
Considering that most vehicles in a fleet are parked and hence idle 
resources when they are not used, shared on-demand services can 
utilize them much more efficiently. While ride hailing of autonomous 
vehicles is still very costly due to the initial investment, a shared 
autonomous vehicle fleet can lower its long-term cost such that it 
becomes economically feasible. This requires the Shared Autonomous 
Vehicles (SAV) in the fleet to be in operation as much as possible. 
Motivated by these applications, this paper presents a simulation 
environment to model and simulate shared autonomous vehicles in a 
geo-fenced urban setting. To simulate the aforementioned 
applications, a simulation environment that has a realistic rendering of 
the chosen real-world environment with realistic traffic generated 
around the SAVs is developed first using a geo-fenced area centered 
at the city of Marysville in Ohio as an example. This paper, then, 
presents an algorithm to optimally utilize multiple autonomous 
vehicles for shared rides based on modeling of pickup locations 
corresponding to affordable housing at the periphery of the geo-fenced 
area connected to destination locations corresponding to jobs and other 
locations of opportunity. The presented work showcases SAV 
operation as a solution to the spatial mismatch between affordable 
housing and job locations in a realistic simulation environment in an 
urban setting. 

Introduction 

Automated driving algorithms and their robust controls [1] and the 
associated possibility of improving fuel/energy economy [2] are the 
natural results of decades of research and development starting with 
active safety systems and Advanced Driving Assistance Systems 
(ADAS) [3], [4], [5], [6], [7]. These developments have made 
autonomous taxis and shuttles a feasible possibility. Current taxi 
systems have adapted to models that allow for optimization of 
passenger cost and comfort. With the introduction of autonomous taxis 
and/or shuttles, a new opportunity to further optimize this structure 
presents itself. Particularly, vehicles will no longer be tied to human 
driver restrictions. Vehicles will be able to run for longer periods of 
time. In fact, projection studies indicate that with the introduction of 
Autonomous Vehicles, there will be a reduction on the number of 
privately owned vehicles along with an increase in the number of 
vehicles on the road at any moment [8]. With these new opportunities, 
we can plan to improve road safety, optimize the land needed for 
transport, mitigate manpower constraint for bus services and enhance 
mobility for underserved communities including the elderly and 

disabled [9]. In this paper, our focus is to optimize the necessary 
resources for transport by providing a simulation environment that 
allows us to understand the different ways that can be used to 
maximize the number of shared miles and provide lower-resource 
communities an affordable mobility choice for access to locations of 
opportunity. 

The current literature has established that utilizing Autonomous 
Vehicles (AV) as the main transport service cannot be supported in 
general by balancing costs for passengers and AV owners alone. These 
studies utilize known routing algorithms such as Dijkstra’s shortest 
path algorithm [10] to complete their tasks or impose restrictions on 
the paths of the AVs [11]. Further, the current consensus among 
experts is that with the current approach to AVs, these systems do not 
make economic sense and even in comparison to systems with higher 
economic operation costs, current AV based mobility solutions only 
slightly improve travel time savings [11]. Thus, we are in need of a 
flexible simulation system that will allow us to change the back-end of 
the simulation process such that we can try different  dispatching and 
routing algorithms to improve the efficiency of these systems to make 
them feasible to operate.  

This paper is divided into two main sections. The first introduces our 
simulation environment and the second discusses a case scenario. The 
discussion on our simulation environment begins with the software 
chosen to create such simulation environment as well as the workflow 
between each of the necessary components. Then, we discuss the 
mechanics behind simulating SAVs and the parameters chosen for 
such task. We, then, present a simple model for SAV management and 
deployment as well as discuss some improvements over the current 
SAV deployment approaches. Finally, we conclude with the overall 
process to generate road networks for SAV deployment. 

The second part of the paper presents a closer look into incorporating 
the simulation environment into a real-life example. For this, the city 
of Marysville, Ohio is chosen. We first discuss the general trends in 
the city and the modeling of such. Then, we provide the empirical 
model of traffic creation and trip distribution. We then conclude with 
some remarks. 

Modeling Shared Autonomous Vehicles 

Software  

Simulation of ride hailed Shared Autonomous Vehicles is not a 
standard feature of common software. Thus, the following study 
requires software development outside the scope of regular simulation 
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software. We develop a framework in which we define our own. The 
microscopic traffic simulation software PTV Vissim is used to conduct 
the main network simulation along with developed add-on modules to 
create the necessary behavior simulated. Vissim provides options to 
control the behavior of the simulation by using the Python COM 
interface.  

Workflow 

 

Figure 1. Data Flow between different simulation components. 

The workflow of the created simulation environment shown in Figure 
1 takes advantage of the COM interface that PTV Vissim provides. 
There are two kinds of extensions on the Vissim Runtime, one which 
manages the SAVs and one which manages the traffic flow. There are 
two ways in which to implement these extensions. One is implemented 
as an event-based script and the other is implemented as a complete 
external script. The event-based scripts are faster but provide less 
flexibility while the external scripts provide great simulation flexibility 
at the cost of reduced simulation speed. 

The overall SAV Manager is an external library extension written in 
Python. The extension is written using Object Oriented Programming 
which compounds with the external scripting to reduce the cost of 
simulation speed. The details of the overseeing algorithm will be 
discussed in the next section. On the other hand, the traffic flow is 
controlled by an external script which dictates the behavior of traffic 
depending on the time of the day.  

Simulating SAVs 

SAVs are modeled as an extension of Autonomous Vehicles. We base 
the parametrization of the SAVs on the CoEXist project [13]. The 
CoEXist project aimed to simulate different levels of autonomous 
vehicles in a microscopic traffic simulation environment. The 
parametrized levels of autonomy differ from the standard SAE 
guidelines and are broken down into the categories of Basic, 
Intermediate and Advanced. Each of these categories is parametrized 
by driving logics. The developed driving logics for this purpose were 
named rail safe, cautious, normal, and all-knowing. While these logics 
are modeled by altering default Wiedemann 99 parameters, authors 
also model how different levels of AVs handle lane changing, car 
following, and gap acceptance at intersections. 

In this paper, we model SAVs as overseen by an agent which assigns 
and controls destinations while the driving behavior is modeled with a 
Wiedemann 99 driver model fine-tuned to replicate the “intermediate” 
AV model. The parameters for the AV driver are listed in Tables 1 and 

2 and obtained from the CoEXist project [13]. The standard simulation 
workflow of this process is outlined in Figure 2. 

 

Table 1. Driving behavior assignment for intermediate level AVs. 

 

Table 2. Wiedemann ‘99 parameters necessary for intermediate level AVs. 

 

Figure 2. SAV simulation logic: An extension from AV parameters. 

By modifying the shown parameters in Table 2, different autonomy 
levels of AVs are simulated in the presented work. The higher-level 
sharing task of the selected AVs is managed by the developed SAV 
Management module. The general logic for SAV behavior is the 
following: A set number of SAVs are spawned at the beginning of the 
simulation. The SAVs obtain an incoming request from a selected trip 
generation model. The SAV Manager application is the overseeing 
entity on handling these requests. Once an incoming SAV request is 
communicated, the SAV chooses an appropriate taxi to complete this 
request. More details on the selection process are highlighted under the 
next section. The SAV is also given a selected route to follow as 
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assigned by the routing module of the simulation. Then, the SAV 
follows this path as an AV. 

Optimizing multiple AVs 

Maximizing the number of miles shared per passenger lies in the 
overarching SAV manager. We take advantage of the behavior of the 
SAV as it idles, waiting for a request. We showcase the differences in 
an SAV which idles per single trip versus an SAV that concentrates on 
minimizing the number of miles traveled while still completing its 
necessary tasks.  

 

Figure 3. Different module components behind the modeling of SAVs. 

First, we explain the design of the add-on Python extension. The 
Python extension is composed of three classes as shown in Figure 3. 
As the simulation runs, the shuttles are updated with each time step 
through the event-based triggered script. The relevant objects are 
updated and passed to the SAV Manager. The relevant information is 
delegated through the COM interface which is then delegated to the 
corresponding classes. The main classes of the simulated SAV 
Manager consist of the SAV management, the routing manager and the 
demand simulation manager.  

The demand simulation manager handles the creation of trip requests 
and mitigates this information to the SAV manager. The SAV manager 
can deploy the necessary SAV according to an optimal choice. The 
SAV manager distinguishes between two ways of deploying the SAVs, 
idling vs. sharing behavior. When idling behavior is activated, the taxi 
prioritizes taking passengers to their destinations and returning to base 
before taking up a new request. On the other hand, when the sharing 
behavior is activated the SAV’s priority lies on completing trips. That 
is, as each trip is completed the SAVs are assigned trips using the 
pseudo distance between the SAV and the incoming trips. If there are 

no new incoming trip requests, the SAVs  are sent to the area with the 
last most generated trips. This logic is outlined in Figure 4. 

 

Figure 4. Decision making of the SAV Manager trip request assignment 
module. 

In order to explain our algorithm for deploying SAVs optimally we 
first establish how to represent the network. For this, we use the 
standard notation of directed graphs. We use this notion in order to 
establish the distances between stops and SAVs as number of nodes 
traversed. 

Definition 1. (Directed Graph) A directed graph 𝑮𝑮 is an ordered pair 
of vertices 𝑽𝑽 = {𝒗𝒗𝒊𝒊} and edges 𝑬𝑬 = {𝒆𝒆𝒋𝒋}.  

The graph is denoted by 𝑮𝑮 = (𝑽𝑽,𝑬𝑬). Note that each edge is simply a 
tuple of vertices  𝒆𝒆𝒋𝒋 = (𝒗𝒗𝒋𝒋𝟏𝟏 ,𝒗𝒗𝒋𝒋𝟐𝟐  ) that indicate a path from vertex 𝒗𝒗𝒋𝒋𝟏𝟏  
to vertex 𝒗𝒗𝒋𝒋𝟐𝟐 . In this way, we represent streets as edges and 
intersections as nodes. Further, each vertex is simply a tuple that 
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represents a point in 2D space, i.e. 𝒆𝒆𝒋𝒋 =  (𝒙𝒙,𝒚𝒚). The network is thus 
represented as a directed graph 𝑮𝑮. 

Next, we compute the location of a particular SAV on the network 
indexed by the SAV manager as SAV 𝒊𝒊. Denote the 𝒊𝒊th  SAV and its 
location on the 2D plane by 𝒔𝒔𝒊𝒊 = (𝒙𝒙,𝒚𝒚).   

Assume that 𝒔𝒔𝒊𝒊 is placed along edge 𝒆𝒆𝒋𝒋 then the distance between 𝒔𝒔𝒊𝒊 
and 𝒆𝒆𝒋𝒋 is defined as ��𝒔𝒔𝒊𝒊 − 𝒗𝒗𝒌𝒌𝟏𝟏��𝟐𝟐

 as shown in figure 5. 

 

Figure 5. Visual representation of the computation of the distance between an 
edge 𝒆𝒆𝒋𝒋 and an SAV 𝒔𝒔𝒊𝒊. 

The location of the SAV 𝒊𝒊 in the network graph representation 𝒍𝒍(𝒔𝒔𝒊𝒊), 
is defined as  

𝒍𝒍(𝒔𝒔𝒊𝒊) = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝒆𝒆𝒋𝒋 𝒅𝒅(𝒔𝒔𝒊𝒊, 𝒆𝒆𝒋𝒋)     (1) 

In short, the location is denoted by the closest edge to the shuttle. 
Similarly enumerate the SAV stops and define the location of an 
SAV stop 𝒔𝒔𝒍𝒍 as the closest edge to the stop as above.  

The pseudo distance between SAV 𝒊𝒊 and SAV stop 𝒋𝒋 is defined as the 
minimum number of nodes through which a vehicle must pass to get 
from 𝒍𝒍(𝒔𝒔𝒊𝒊) to 𝒍𝒍(𝒔𝒔𝒋𝒋). To obtain an optimal choice of assignment, the 
SAV Manager assigns trips to the closest (in terms of pseudo distance) 
SAVs. 

Finally, the routing module provides information on how the SAVs 
should proceed to their next destination. 

Further, we are also concerned with maximizing the total number of 
shared miles. This can be done by making a distinction between shared 
and single-purpose rides and prioritizing shared rides. In single-
purpose rides, we allow passengers to request rides from a location to 
the next without expecting to stop along the way. This is typical taxi 
behavior and is non-optimal. The sharing behavior allows for SAVs to 
be assigned requests at the time of trip of a passenger, thus maximizing 
the number of miles shared. 

Building the Network 

The network is built with the help of OpenStreetMap (OSM). First, the 
network is exported as an osm file and is then converted into an anm 

file. Finally, this is transformed into a Vissim .inptx file. This process 
is illustrated in Figure 6. 

The inpx file serves as a blueprint for the relevant streets and 
intersections. In this case-study, we do not concern ourselves with 
traffic lights, leaving that to future work. Thus, we only further fine-
tune the network by repairing intersections and routing decisions. 
These are all done by hand and we concentrate on the major freeways 
and highways. These are determined by the traffic generation numbers 
as discussed later. 

 

Figure 7. Simulated Marysville Network. 

 

Sample Network 

Marysville 

The City of Marysville, Ohio whose road network is shown in Figure 
7 is chosen as a network model. Based on data from the US Census 
[14], the flow of traffic in the city is characterized by the movement of 
people shifting from the outskirts of the city towards the center for 
access to work or resources. To facilitate the simulation of the 
Marysville network, the city was first divided into its 13 different 
census block sections to characterize different features of the city as 
shown in Figure 8. 
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Figure 8. Marysville divided into 13 different areas as indicated in [14]. 

Traffic Generation 

The traffic generation of this network is acquired from empirical 
samples of data and extrapolated inferences from national averages. 
From the Ohio Department of Transportation (ODOT) website [16], 
we can find information regarding general average traffic counts per 
day as shown in Figure 9. 

 

Figure 9. Average influx of vehicles on major highways, freeways and roads 
[15]. 

The average daily traffic counts are extrapolated to simulate hourly 
traffic counts by following Ohio Urban trends given by the ODOT 
[16]. We take the main highways as main sources of traffic influx. The 
traffic volume per hour 𝑉𝑉ℎ at time ℎ becomes 

𝑉𝑉ℎ =  𝑇𝑇𝑣𝑣 ⋅ 𝑃𝑃ℎ  (2) 

where 𝑇𝑇𝑣𝑣 is the total average volume per day and 𝑃𝑃ℎ is the percentage 
traffic volume that takes place on average at time ℎ. We are, thus, able 
to generate hourly traffic for the network as shown in Figure 10. 

 

Figure 10. The legend shows the traffic volume in major roads and highways in 
Marysville. Meanwhile the graph shows the traffic volume per hour of the day 

Trip Requests 

The next step in our simulation set-up is to model trip requests which 
will be a part of the backend process of the demand module in our SAV 
simulation. We do this empirically. In a 2012 study [17], a correlation 
between household family income and average number of daily trips 
was established. The general trend showed a positive correlation 
between the number of average trips and household income. The 
Marysville network areas were sampled for average household income 
using US Census Data [14]. Based on these assumptions we obtain a 
number 𝑇𝑇𝐼𝐼 for the number of trips per selected zone. Further, we must 
approximate the percentage of trips out of the total number of trips that 
would be done using an SAV. For this, in [8] we find an approximated 
distribution from a telesurvey which allows us to approximate the 
compositions of future trips per hour of the day 𝑃𝑃ℎ. The number of trip 
requests 𝑇𝑇𝑧𝑧,ℎ is then dependent on the Zone 𝑧𝑧 and hour of the day ℎ 
selected and given by   

𝑇𝑇𝑧𝑧,ℎ = 𝑇𝑇𝐼𝐼 ⋅ 𝑃𝑃ℎ (3) 

The general trend given by this model is showcased in Figure 11. 

 

Figure 11. Number of trip requests per hour of the day. 

Thus, we have the average number of trips per household per family 
income and the composition of trips. From this information, we may 
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infer total trip requests per hour per zone emanating from our 
previously chosen zones. The next step in our model is to assign trip 
request locations and bases. Parking spaces are placed in each zone and 
assigned a probability from a Uniform distribution in the [0,1] interval. 
This probability signifies the randomness within each of these zones. 
The parking lot area and SAV stops are designed to allow the flow of 
people from the permiter of Marysville to the center where the 
concentration of schools, shops and jobs lie as shown in Figure 12. 

 

Figure 12. SAV stop targets. 

We now have a full model of the Marysville network with traffic 
generation and SAV integration that is dynamic with the time of day. 

Simulation Results 

The SAVs were simulated inside the Marysville network and 
compared against a baseline Marysville network (without the addition 
of SAVs). The traffic distribution from afternoon peak hour was 
chosen as a comparison point and randomly initated traffic was set for 
verifying the simulation results by repeatedly running the simulation 
with different random seeds. Figure 13 shows the traffic volume 
distribution after the network populates and is run for an hour of 
simulated time. In this network, we see little movement from the 
outskirts of the network and most movement throughout the main 
highways and the interior of the network. On the other hand, the 
introduction of 10 SAVs shows more frequent movement from the 
perimeter of the Marysville area into the interior of Marysville. Yet, 
this movement also shows an increase in traffic jams throughout the 
network. This is due to placement of pick-up/drop off locations, 
indicating that such placement must be optimally chosen in order to 
avoid disturbances in traffic. This is the next chosen direction of this 
research; the developed tool introduced in this paper will be used to 
further optimize the placement of SAVs. 

  

Figure 13. Marysville Network traffic density without the introduction of 
SAVs. 

 

Figure 24. Marysville Network traffic density after the introduction of SAVs. 

 

 

Summary/Conclusions 

Marysville, Ohio is undergoing a transformation to provide individuals 
with access to more resources. Part of this transformation lies in 
enabling its residents to reach destinations to attend school, shop and 
obtain better jobs. Since there is no public transport in Marysville and 
since a large portion of the population fo not own or operate private 
vehicles, the logical solution is to use an SAV service. This makes 
Marysville a perfect candidate to showcase the effects of the 
introduction of SAVs in a traffic network with respect to network flow 
and movement of people. Thus, we have presented a way to simulate 
the introduction of said SAVs. Our approach starts with the theorical 
part of the simulation environment; coding in the necessary software 
to model behavior. Then, we use this in addition to different driving 
parametrizations to realize a realistic SAV behavior. The engine 
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behind trip requests and traffic modeling is empirically based and 
allows us to be flexible with the specifications behind these. Using 
data, we are able to model an SAV manager and optimize the 
dispatching of trips. Thus, we have created a realistic testbed for SAVs. 
In our future work, we seek to implement more features such as more 
sophisticated trip management and dynamic routing as well as to create 
a co-simulation environment with autonomous vehicle dynamics [18], 
[19], [20], [21]. We seek to use this simulation environment to aid the 
engineering of SAVs.  
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