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Abstract

Autonomous vehicles are expected to change our lives with significant
applications like on-demand, shared autonomous taxi operations.
Considering that most vehicles in a fleet are parked and hence idle
resources when they are not used, shared on-demand services can
utilize them much more efficiently. While ride hailing of autonomous
vehicles is still very costly due to the initial investment, a shared
autonomous vehicle fleet can lower its long-term cost such that it
becomes economically feasible. This requires the Shared Autonomous
Vehicles (SAV) in the fleet to be in operation as much as possible.
Motivated by these applications, this paper presents a simulation
environment to model and simulate shared autonomous vehicles in a
geo-fenced urban setting. To simulate the aforementioned
applications, a simulation environment that has a realistic rendering of
the chosen real-world environment with realistic traffic generated
around the SAVs is developed first using a geo-fenced area centered
at the city of Marysville in Ohio as an example. This paper, then,
presents an algorithm to optimally utilize multiple autonomous
vehicles for shared rides based on modeling of pickup locations
corresponding to affordable housing at the periphery of the geo-fenced
area connected to destination locations corresponding to jobs and other
locations of opportunity. The presented work showcases SAV
operation as a solution to the spatial mismatch between affordable
housing and job locations in a realistic simulation environment in an
urban setting.

Introduction

Automated driving algorithms and their robust controls [1] and the
associated possibility of improving fuel/energy economy [2] are the
natural results of decades of research and development starting with
active safety systems and Advanced Driving Assistance Systems
(ADAS) [3], [4], [5], [6], [7]. These developments have made
autonomous taxis and shuttles a feasible possibility. Current taxi
systems have adapted to models that allow for optimization of
passenger cost and comfort. With the introduction of autonomous taxis
and/or shuttles, a new opportunity to further optimize this structure
presents itself. Particularly, vehicles will no longer be tied to human
driver restrictions. Vehicles will be able to run for longer periods of
time. In fact, projection studies indicate that with the introduction of
Autonomous Vehicles, there will be a reduction on the number of
privately owned vehicles along with an increase in the number of
vehicles on the road at any moment [8]. With these new opportunities,
we can plan to improve road safety, optimize the land needed for
transport, mitigate manpower constraint for bus services and enhance
mobility for underserved communities including the elderly and
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disabled [9]. In this paper, our focus is to optimize the necessary
resources for transport by providing a simulation environment that
allows us to understand the different ways that can be used to
maximize the number of shared miles and provide lower-resource
communities an affordable mobility choice for access to locations of
opportunity.

The current literature has established that utilizing Autonomous
Vehicles (AV) as the main transport service cannot be supported in
general by balancing costs for passengers and AV owners alone. These
studies utilize known routing algorithms such as Dijkstra’s shortest
path algorithm [10] to complete their tasks or impose restrictions on
the paths of the AVs [11]. Further, the current consensus among
experts is that with the current approach to AVs, these systems do not
make economic sense and even in comparison to systems with higher
economic operation costs, current AV based mobility solutions only
slightly improve travel time savings [11]. Thus, we are in need of a
flexible simulation system that will allow us to change the back-end of
the simulation process such that we can try different dispatching and
routing algorithms to improve the efficiency of these systems to make
them feasible to operate.

This paper is divided into two main sections. The first introduces our
simulation environment and the second discusses a case scenario. The
discussion on our simulation environment begins with the software
chosen to create such simulation environment as well as the workflow
between each of the necessary components. Then, we discuss the
mechanics behind simulating SAVs and the parameters chosen for
such task. We, then, present a simple model for SAV management and
deployment as well as discuss some improvements over the current
SAV deployment approaches. Finally, we conclude with the overall
process to generate road networks for SAV deployment.

The second part of the paper presents a closer look into incorporating
the simulation environment into a real-life example. For this, the city
of Marysville, Ohio is chosen. We first discuss the general trends in
the city and the modeling of such. Then, we provide the empirical
model of traffic creation and trip distribution. We then conclude with
some remarks.

Modeling Shared Autonomous Vehicles

Software

Simulation of ride hailed Shared Autonomous Vehicles is not a
standard feature of common software. Thus, the following study
requires software development outside the scope of regular simulation



software. We develop a framework in which we define our own. The
microscopic traffic simulation software PTV Vissim is used to conduct
the main network simulation along with developed add-on modules to
create the necessary behavior simulated. Vissim provides options to
control the behavior of the simulation by using the Python COM
interface.

Workflow

User Interface SAV Manager

Vissim
Runtime

Figure 1. Data Flow between different simulation components.

The workflow of the created simulation environment shown in Figure
1 takes advantage of the COM interface that PTV Vissim provides.
There are two kinds of extensions on the Vissim Runtime, one which
manages the SAVs and one which manages the traffic flow. There are
two ways in which to implement these extensions. One is implemented
as an event-based script and the other is implemented as a complete
external script. The event-based scripts are faster but provide less
flexibility while the external scripts provide great simulation flexibility
at the cost of reduced simulation speed.

The overall SAV Manager is an external library extension written in
Python. The extension is written using Object Oriented Programming
which compounds with the external scripting to reduce the cost of
simulation speed. The details of the overseeing algorithm will be
discussed in the next section. On the other hand, the traffic flow is
controlled by an external script which dictates the behavior of traffic
depending on the time of the day.

Simulating SAV's

SAVs are modeled as an extension of Autonomous Vehicles. We base
the parametrization of the SAVs on the CoEXist project [13]. The
CoEXist project aimed to simulate different levels of autonomous
vehicles in a microscopic traffic simulation environment. The
parametrized levels of autonomy differ from the standard SAE
guidelines and are broken down into the categories of Basic,
Intermediate and Advanced. Each of these categories is parametrized
by driving logics. The developed driving logics for this purpose were
named rail safe, cautious, normal, and all-knowing. While these logics
are modeled by altering default Wiedemann 99 parameters, authors
also model how different levels of AVs handle lane changing, car
following, and gap acceptance at intersections.

In this paper, we model SAVs as overseen by an agent which assigns
and controls destinations while the driving behavior is modeled with a
Wiedemann 99 driver model fine-tuned to replicate the “intermediate”
AV model. The parameters for the AV driver are listed in Tables 1 and
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2 and obtained from the CoEXist project [13]. The standard simulation
workflow of this process is outlined in Figure 2.

Road Type Intermediate

Motorway Normal
Arterial Cautious
Urban Street Cautious
Shared Space Manual

Table 1. Driving behavior assignment for intermediate level AVs.

Wiedemann 99 Parameter Cautious Normal
CCO — Standstill distance (m) 1.5 1.5
CC1 — Spacing time (s) 1.5 0.9
CC2 - Following variation (m) 0 0
CC3 —Threshold for entering -10 -8
“following” (s)

CC4 — Negative “following” -0.1 -0.1
threshold (m/s)

CC5 - Positive “following” 0.1 0.1
threshold (m/s)

CC6 — Speed dependency of 0 0
oscillation (10~* rad/s)

CC7 - Oscillation 0.1 0.1
acceleration(m/s?)

CC8 — Standstill acceleration 3 35
(m/s?)

CC9 — Accelerationat 80 km/h 1.2 1.2
(m/s?)

Table 2. Wiedemann ‘99 parameters necessary for intermediate level AVs.
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Figure 2. SAV simulation logic: An extension from AV parameters.

By modifying the shown parameters in Table 2, different autonomy
levels of AVs are simulated in the presented work. The higher-level
sharing task of the selected AVs is managed by the developed SAV
Management module. The general logic for SAV behavior is the
following: A set number of SAVs are spawned at the beginning of the
simulation. The SAVs obtain an incoming request from a selected trip
generation model. The SAV Manager application is the overseeing
entity on handling these requests. Once an incoming SAV request is
communicated, the SAV chooses an appropriate taxi to complete this
request. More details on the selection process are highlighted under the
next section. The SAV is also given a selected route to follow as



assigned by the routing module of the simulation. Then, the SAV
follows this path as an AV.

Optimizing multiple AVs

Maximizing the number of miles shared per passenger lies in the
overarching SAV manager. We take advantage of the behavior of the
SAV as it idles, waiting for a request. We showcase the differences in
an SAV which idles per single trip versus an SAV that concentrates on
minimizing the number of miles traveled while still completing its
necessary tasks.

SAV
Management

Traffic

Simulation

* Surrounding
traffic

* SAV

Environment component

SAV Traffic
Simulation

Demand Routing

Current Python Library
Figure 3. Different module components behind the modeling of SAVs.

First, we explain the design of the add-on Python extension. The
Python extension is composed of three classes as shown in Figure 3.
As the simulation runs, the shuttles are updated with each time step
through the event-based triggered script. The relevant objects are
updated and passed to the SAV Manager. The relevant information is
delegated through the COM interface which is then delegated to the
corresponding classes. The main classes of the simulated SAV
Manager consist of the SAV management, the routing manager and the
demand simulation manager.

The demand simulation manager handles the creation of trip requests
and mitigates this information to the SAV manager. The SAV manager
can deploy the necessary SAV according to an optimal choice. The
SAV manager distinguishes between two ways of deploying the SAVs,
idling vs. sharing behavior. When idling behavior is activated, the taxi
prioritizes taking passengers to their destinations and returning to base
before taking up a new request. On the other hand, when the sharing
behavior is activated the SAV’s priority lies on completing trips. That
is, as each trip is completed the SAVs are assigned trips using the
pseudo distance between the SAV and the incoming trips. If there are
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no new incoming trip requests, the SAVs are sent to the area with the
last most generated trips. This logic is outlined in Figure 4.

Generate Trip Requests

Is there a request
on queue waiting
to be assigned?

Yeé - *m

.

Compute pseudo
distance

Compute request
density in
i network areas

|
Assign task to l

closest taxi

Assign free taxis to
areas according to
densities
[Perimeter route]

Figure 4. Decision making of the SAV Manager trip request assignment
module.

In order to explain our algorithm for deploying SAVs optimally we
first establish how to represent the network. For this, we use the
standard notation of directed graphs. We use this notion in order to
establish the distances between stops and SAVs as number of nodes
traversed.

Definition 1. (Directed Graph) A directed graph G is an ordered pair
of vertices V = {v;} and edges E = {e;}.

The graph is denoted by G = (V, E). Note that each edge is simply a
tuple of vertices e; = (vj,, v}, ) that indicate a path from vertex v;,
to vertex v;,. In this way, we represent streets as edges and
intersections as nodes. Further, each vertex is simply a tuple that



represents a point in 2D space, i.e. €; = (x,¥). The network is thus
represented as a directed graph G.

Next, we compute the location of a particular SAV on the network
indexed by the SAV manager as SAV i. Denote the ith SAV and its
location on the 2D plane by s; = (x, y).

Assume that s; is placed along edge e; then the distance between s;

and e; is defined as |s- -V | as shown in figure 5.
J i 1l],

d(ss ¢))

- - — — — X

Figure 5. Visual representation of the computation of the distance between an
edge e; and an SAV s;.

The location of the SAV i in the network graph representation I(s;),
is defined as

I(sy) = argming, d(s; e;) (1)

In short, the location is denoted by the closest edge to the shuttle.
Similarly enumerate the SAV stops and define the location of an
SAV stop s; as the closest edge to the stop as above.

The pseudo distance between SAV i and SAV stop j is defined as the
minimum number of nodes through which a vehicle must pass to get
from I(s;) to I(s;). To obtain an optimal choice of assignment, the
SAV Manager assigns trips to the closest (in terms of pseudo distance)
SAVs.

Finally, the routing module provides information on how the SAVs
should proceed to their next destination.

Further, we are also concerned with maximizing the total number of
shared miles. This can be done by making a distinction between shared
and single-purpose rides and prioritizing shared rides. In single-
purpose rides, we allow passengers to request rides from a location to
the next without expecting to stop along the way. This is typical taxi
behavior and is non-optimal. The sharing behavior allows for SAVs to
be assigned requests at the time of trip of a passenger, thus maximizing
the number of miles shared.

Building the Network

The network is built with the help of OpenStreetMap (OSM). First, the
network is exported as an osm file and is then converted into an anm
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file. Finally, this is transformed into a Vissim .inptx file. This process
is illustrated in Figure 6.

OSM ANM INPX

The inpx file serves as a blueprint for the relevant streets and
intersections. In this case-study, we do not concern ourselves with
traffic lights, leaving that to future work. Thus, we only further fine-
tune the network by repairing intersections and routing decisions.
These are all done by hand and we concentrate on the major freeways
and highways. These are determined by the traffic generation numbers
as discussed later.

Figure 7. Simulated Marysville Network.

Sample Network
Marysville

The City of Marysville, Ohio whose road network is shown in Figure
7 is chosen as a network model. Based on data from the US Census
[14], the flow of traffic in the city is characterized by the movement of
people shifting from the outskirts of the city towards the center for
access to work or resources. To facilitate the simulation of the
Marysville network, the city was first divided into its 13 different
census block sections to characterize different features of the city as
shown in Figure 8.
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Figure 8. Marysville divided into 13 different areas as indicated in [14].
Traffic Generation

The traffic generation of this network is acquired from empirical
samples of data and extrapolated inferences from national averages.
From the Ohio Department of Transportation (ODOT) website [16],
we can find information regarding general average traffic counts per
day as shown in Figure 9.

= gy
Wi, o7t
g?pl._ =

Figure 9. Average influx of vehicles on major highways, freeways and roads

[15].

The average daily traffic counts are extrapolated to simulate hourly
traffic counts by following Ohio Urban trends given by the ODOT
[16]. We take the main highways as main sources of traffic influx. The
traffic volume per hour V}, at time h becomes

V=T, Py 2
where T, is the total average volume per day and P}, is the percentage

traffic volume that takes place on average at time h. We are, thus, able
to generate hourly traffic for the network as shown in Figure 10.
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Figure 10. The legend shows the traffic volume in major roads and highways in
Marysville. Meanwhile the graph shows the traffic volume per hour of the day

Trip Requests

The next step in our simulation set-up is to model trip requests which
will be a part of the backend process of the demand module in our SAV
simulation. We do this empirically. In a 2012 study [17], a correlation
between household family income and average number of daily trips
was established. The general trend showed a positive correlation
between the number of average trips and household income. The
Marysville network areas were sampled for average household income
using US Census Data [14]. Based on these assumptions we obtain a
number T; for the number of trips per selected zone. Further, we must
approximate the percentage of trips out of the total number of trips that
would be done using an SAV. For this, in [8] we find an approximated
distribution from a telesurvey which allows us to approximate the
compositions of future trips per hour of the day P,,. The number of trip
requests T, p, is then dependent on the Zone z and hour of the day h
selected and given by

Ty =T Py 3)

The general trend given by this model is showcased in Figure 11.
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Figure 11. Number of trip requests per hour of the day.

Thus, we have the average number of trips per household per family
income and the composition of trips. From this information, we may



infer total trip requests per hour per zone emanating from our
previously chosen zones. The next step in our model is to assign trip
request locations and bases. Parking spaces are placed in each zone and
assigned a probability from a Uniform distribution in the [0,1] interval.
This probability signifies the randomness within each of these zones.
The parking lot area and SAV stops are designed to allow the flow of
people from the permiter of Marysville to the center where the
concentration of schools, shops and jobs lie as shown in Figure 12.

Figure 12. SAV stop targets.

We now have a full model of the Marysville network with traffic
generation and SAV integration that is dynamic with the time of day.

Simulation Results

The SAVs were simulated inside the Marysville network and
compared against a baseline Marysville network (without the addition
of SAVs). The traffic distribution from afternoon peak hour was
chosen as a comparison point and randomly initated traffic was set for
verifying the simulation results by repeatedly running the simulation
with different random seeds. Figure 13 shows the traffic volume
distribution after the network populates and is run for an hour of
simulated time. In this network, we see little movement from the
outskirts of the network and most movement throughout the main
highways and the interior of the network. On the other hand, the
introduction of 10 SAVs shows more frequent movement from the
perimeter of the Marysville area into the interior of Marysville. Yet,
this movement also shows an increase in traffic jams throughout the
network. This is due to placement of pick-up/drop off locations,
indicating that such placement must be optimally chosen in order to
avoid disturbances in traffic. This is the next chosen direction of this
research; the developed tool introduced in this paper will be used to
further optimize the placement of SAVs.
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Figure 13. Marysville Network traffic density without the introduction of
SAVs.
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Figure 24. Marysville Network traffic density after the introduction of SAVs.

Summary/Conclusions

Marysville, Ohio is undergoing a transformation to provide individuals
with access to more resources. Part of this transformation lies in
enabling its residents to reach destinations to attend school, shop and
obtain better jobs. Since there is no public transport in Marysville and
since a large portion of the population fo not own or operate private
vehicles, the logical solution is to use an SAV service. This makes
Marysville a perfect candidate to showcase the effects of the
introduction of SAVs in a traffic network with respect to network flow
and movement of people. Thus, we have presented a way to simulate
the introduction of said SAVs. Our approach starts with the theorical
part of the simulation environment; coding in the necessary software
to model behavior. Then, we use this in addition to different driving
parametrizations to realize a realistic SAV behavior. The engine



behind trip requests and traffic modeling is empirically based and
allows us to be flexible with the specifications behind these. Using
data, we are able to model an SAV manager and optimize the
dispatching of trips. Thus, we have created a realistic testbed for SAVs.
In our future work, we seek to implement more features such as more
sophisticated trip management and dynamic routing as well as to create
a co-simulation environment with autonomous vehicle dynamics [18],
[19], [20], [21]. We seek to use this simulation environment to aid the
engineering of SAVs.
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