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Abstract

Background

With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the

predicted shortages in supply for the near future, it is necessary to allocate vaccines in a

manner that minimizes severe outcomes, particularly deaths. To date, vaccination strate-

gies in the United States have focused on individual characteristics such as age and occu-

pation. Here, we assess the utility of population-level health and socioeconomic indicators

as additional criteria for geographical allocation of vaccines.

Methods and findings

County-level estimates of 14 indicators associated with COVID-19 mortality were extracted

from public data sources. Effect estimates of the individual indicators were calculated with

univariate models. Presence of spatial autocorrelation was established using Moran’s I sta-

tistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorre-

lation in response and predictors were used to assess (i) the proportion of variance in

county-level COVID-19 mortality that can explained by identified health/socioeconomic indi-

cators (R2); and (ii) effect estimates of each predictor.

Adjusting for case rates, the selected indicators individually explain 24%–29% of the vari-

ability in mortality. Prevalence of chronic kidney disease and proportion of population resid-

ing in nursing homes have the highest R2. Mortality is estimated to increase by 43 per

thousand residents (95% CI: 37–49; p < 0.001) with a 1% increase in the prevalence of

chronic kidney disease and by 39 deaths per thousand (95% CI: 34–44; p < 0.001) with 1%

increase in population living in nursing homes. SAR models using multiple health/socioeco-

nomic indicators explain 43% of the variability in COVID-19 mortality in US counties, adjust-

ing for case rates. R2 was found to be not sensitive to the choice of SAR model form. Study

limitations include the use of mortality rates that are not age standardized, a spatial adja-

cency matrix that does not capture human flows among counties, and insufficient account-

ing for interaction among predictors.
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Conclusions

Significant spatial autocorrelation exists in COVID-19 mortality in the US, and population

health/socioeconomic indicators account for a considerable variability in county-level mor-

tality. In the context of vaccine rollout in the US and globally, national and subnational esti-

mates of burden of disease could inform optimal geographical allocation of vaccines.

Author summary

Why was this study done?

• We are interested in evaluating strategies for optimal geographical allocation of Corona-

virus Disease 2019 (COVID-19) vaccines.

• We hypothesized that health and socioeconomic indicators of a location can be used to

model differential risk of COVID-19 mortality, and, hence, inform vaccine prioritiza-

tion strategies.

What did the researchers do and find?

• Using spatial simultaneous autoregressive (SAR) models and small-area prevalence esti-

mates for US counties, we found that 43% of the variability in COVID-19 mortality can

be explained by the considered health and socioeconomic indicators.

• The prevalence of chronic kidney disease and the proportion of population resident in

nursing homes were found to have the largest individual effect estimates.

• Strong spatial autocorrelation in COVID-19 mortality and considerable collinearity in

COVID-19–associated health conditions were also detected.

What do these findings mean?

• Our findings reiterate that differential risks of severe outcomes from COVID-19

across populations are dependent on the structures and contexts in which outbreaks

occur.

• National and subnational socioeconomic indicators and burden of disease estimates can

potentially be leveraged to allocate vaccines optimally and reduce severe outcomes from

COVID-19.

Introduction

By the end of 2020, the Coronavirus Disease 2019 (COVID-19) pandemic has resulted in 81.5

million documented cases and 1.8 million deaths globally [1]. The US has contributed nearly a
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quarter of these cases and has lost 1 in every 1,000 residents to COVID-19 [2]. The outbreak

has affected all states in the US but with considerable differences in the trajectory and severity

of individual outbreaks. Besides this inter- and intrastate geographical variability, the likeli-

hood of adverse outcomes among those infected is reported to be associated with individual’s

age, gender, race/ethnicity, and underlying health conditions [3–6]. An estimated 22% of the

global population and 28% of the US have 1 or more of the underlying conditions that pose

increased risk of severe outcomes from COVID-19 [7].

Early studies on clinical characteristics of severe outcomes from COVID-19 were reported

from China [5,8], after the first large outbreak in Wuhan, and concurring estimates were sub-

sequently published from the United Kingdom, France, US, and elsewhere [3,4,9–12]. Guan

and colleagues [8] reported that among 1,100 of the earliest laboratory confirmed cases of

COVID-19 in China, the presence of comorbidities such as diabetes, hypertension, and

chronic obstructive pulmonary disease (COPD) were more prevalent in those with severe out-

comes (admission to ICU, requiring mechanical ventilation, or death), along with a slightly

elevated risk among men and by now well-established risk with increasing age. Using a larger

data sample of 45,000 cases, Deng and colleagues [5] reported that mortality was associated

(relative risk (RR) or hazard ratio (HR)) with cardiovascular disease (RR = 6.75, 95% CI = 5.40

to 8.43), hypertension (HR = 4.48, 95% CI = 3.69 to 5.45), diabetes (RR = 4.43, 95% CI = 3.49

to 5.61), and respiratory disease (RR = 3.43, 95% CI = 2.42 to 4.87, p< 0.001). In Italy, Grass-

elli and colleagues [13] reported associations with COPD (HR = 1.68; 95% CI = 1.28 to 2.19),

hypercholesterolemia (HR = 1.25; 95% CI = 1.02 to 1.52), and diabetes (HR = 1.18; 95%

CI = 1.01 to 1.39). Relatedly, Palmieri and colleagues reported differences in prevalence of

comorbidities between younger (<65 years) and older (65+ years) deceased [14] as well as

between the first 2 waves (March to May and June to August of 2020) of the pandemic in Italy

[15].

A later, more extensive study [9] from the UK linking 17 million cases to 11,000 deaths also

found association between COVID-19 deaths and kidney disease (HR = 2.5, 95% CI = 2.3 to

2.7), diabetes (HR = 1.95, 95% CI = 1.8 to 2.1), extreme obesity (HR = 1.9, 95% CI = 1.7 to 2.1),

and several other comorbidities. From a pooled analysis of 75 studies from multiple countries,

Popkin and colleagues [11] summarized that individuals with obesity are at increased risk of

death (odds ratio [OR] = 1.48; 95% CI = 1.22 to 1.80), hospitalization (OR = 2.13; 95%

CI = 1.74 to 2.60), and ICU admission (OR = 1.74; 95% CI = 1.46 to 2.08). Based on these find-

ings and the known prevalence of comorbidities that existed in the population before the

emergence of the pandemic, the populations at risk of severe COVID-19 outcomes at county

level in the US [16] and in several countries have been estimated [7]. Other studies have exam-

ined the associations of socioeconomic characteristics including poverty, income, and race/

ethnicity [17–19].

Over the past year, public health attempts to reduce transmission largely centered on non-

pharmaceutical interventions such as social distancing, face coverings, and hand hygiene. In

the US, these interventions have had limited success, and part of this failure stems from their

dependence on collective compliance. The recent availability of high-efficacy vaccines gives

individuals an additional tool to protect themselves (vaccine supply permitting), and, impor-

tantly, does not require cooperation from collective public.

The availability of vaccines also implies an opportunity to refocus our efforts from reducing

infections to reducing severe outcomes by prioritizing vaccination for those at a higher risk of

severe outcomes. To date, such strategies have been largely guided by individual characteristics

such as age and occupation. We hypothesize that population-level characteristics can also

guide the optimal allocation and distribution of vaccines geographically. This points to a
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potential 2-layered approach of first identifying high-risk communities within which high-risk

individuals can be prioritized.

Here, we assess the feasibility of the first part of such an approach and evaluate the extent to

which the geographical variability of mortality in US can be explained by population character-

istics that predate the epidemic. Our outcome of interest is COVID-19–associated mortality

rates at county resolutions, which we attempt to model as a function of population health and

socioeconomic indicators. An initial set of indicators associated with COVID-19 mortality as

reported in peer-reviewed studies, and data sources for estimates of these indicators were iden-

tified. A smaller subset of the variables were selected based on the correlation between the vari-

ables and their independent effects on the response.

Conventional regression models assume that observations are independent of one another,

which in the case of spatial data translates to assuming observations in nearby locations are no

more closely related than those farther away. Given the transmission dynamics of COVID-19,

counties nearby are likely to be have similar case and death rates, and spatial dependence

rather than spatial independence is a more appropriate assumption. This spatial dependence

also extends to health and socioeconomic indicators and potentially latent and unobservable

characteristics that effect mortality.

Spatial simultaneous autoregressive (SAR) models offer a parsimonious way to augment

basic regression models with spatial dependence between locations [20] and are an extensively

studied family of analytical approaches with applications ranging from econometrics, environ-

mental studies, and health sciences [21–23]. In the current study, we first establish the presence

of spatial autocorrelation in the response and explanatory variables, thus motivating the need

for spatial models. We apply 3 forms of SAR models, show that they explain a greater propor-

tion of the variability in mortality than linear models, and report effect estimates from each.

Data and methods

County-level indicators of population’s health and social status were retrieved from public

sources including the US census and large population surveys. In cases where the survey data

are not available at county resolutions, data from prior studies on small-area estimates were

used. We tried to limit the number of source dependencies, and, when alternative estimates

were available from multiple sources, we preferred estimates from the US Centers for Disease

Control and Prevention (CDC). See Table 1 for a list of sources and descriptions for each vari-

able; Fig 1 presents summary statistics.

The New York Times

Counts for cumulative cases and deaths through December 31, 2020 were retrieved from The

New York Times public repository [24]. These data included both confirmed and probable

cases and deaths at the US county level and is based on Times’ monitoring and analyses of

news conferences, data releases, and communications with public officials. The determination

of cases and deaths as either confirmed or probable is made per definitions laid out in the posi-

tion statement of the Council of State and Territorial Epidemiologists [25]. But as the applica-

tion can vary across local agencies, here, we treat both confirmed and probable categories

identically and use total cases and deaths. Case and death rates as a proportion of residents are

based on county population estimates from the American Community Survey (ACS) 2014 to

2018 [26].

County-specific data for the 5 counties in New York City were retrieved from USAFACTS

[27] as the Times’ data source was found to combine counts for these 5 counties into a single

entity. Fig 2 shows maps of reported county case and death rates.
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Population Level Analysis and Community Estimates (PLACES)

From the PLACES study [29], a collaboration between the CDC and Robert Wood Johnson

Foundation, estimates for population-level health and behavioral indicators were retrieved.

These small-area estimates of population health outcomes across the US at county resolutions

were generated using data collected through the Behavioral Risk Factor Surveillance System

(BRFSS) [30], the US decennial 2010 census and the ACS, following a multilevel regression

and post-stratification approach [31,32].

Of the 27 indicators available in PLACES, we extracted 5 measures of population-level prev-

alence of health conditions that are reported to have individual level associations with

Table 1. Descriptions and sources for variables included in the study.

Variable Source Description; primary source

Deaths The New York Times [24],

USAFACTS[27]

Cumulative COVID-19 confirmed and probable deaths through

December 31, 2020; per thousand residents

Cases The New York Times,

USAFACTS

Cumulative COVID-19 confirmed and probable cases through

December 31, 2020; per 100,000 residents

Obesity PLACES [28] Proportion of residents 18+ years of age with calculated BMI �30

kg/m2, based on self-reported weight and height; BRFSS [29]

Diabetes PLACES Proportion of residents 18+ years of age who report being told by

a doctor/nurse/other health professional that they have type 1 or

type 2 diabetes; BRFSS

CKD PLACES Proportion of residents 18+ years of age who report being told by

a doctor/nurse/other health professional that they have kidney

disease; BRFSS

CHD PLACES Proportion of residents 18+ years of age who report being told by

a doctor/nurse/other health professional that they have angina or

coronary heart disease; BRFSS

COPD PLACES Proportion of residents 18+ years of age who report being told by

a doctor/nurse/other health professional that they have COPD,

emphysema, or chronic bronchitis; BRFSS

High cholesterol PLACES Proportion of residents 18+ years of age who report being told by

a doctor/nurse/other health professional that they have high

cholesterol; BRFSS

High blood

pressure

PLACES Proportion of residents 18+ years of age who report being told by

a doctor/nurse/other health professional that they have high

blood pressure; BRFSS

Uninsured PLACES Proportion of residents 18–64 years of age who report having no

health insurance coverage

Population

density

SVI [33] Number of residents per square mile; Census Cartographic

Boundary File—U.S. Tracts 2018 [40]

Income SVI Median per capita income (in US$100,000); ACS, 2014–2018 (5

years) [26]

Elderly SVI Proportion of residents 65+ years of age; ACS, 2014–2018 (5

years)

Group quarters—

nursing

US 2010 Census Proportion of residents living in nursing/skilled nursing facilities;

P042

Inequality CHR [36] Ratio of household income at 80th percentile with income at 20th

percentile; ACS, 2014–2018 (5-years)

Resident diversity CHR Proportion of non-white resident to white residents; ACS, 2014–

2018 (5 years)

BRFSS, Behavioral Risk Factor Surveillance System; CHD, chronic heart disease; CHR, County Health Rankings;

CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; COVID, Coronavirus Disease 2019;

PLACES: Population Level Analysis and Community Estimates; SVI: Social Vulnerability Index.

https://doi.org/10.1371/journal.pmed.1003693.t001
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Fig 1. Violin plots of distribution for each variable among counties in the US, along with median (interquartile

range) in blue and mean (standard deviation) in green.

https://doi.org/10.1371/journal.pmed.1003693.g001

Fig 2. COVID-19 cases (per 100,000 residents) and deaths (per 1,000 residents) in US counties through December

31, 2020. Maps generated with usmap R package [28]. COVID-19, Coronavirus Disease 2019.

https://doi.org/10.1371/journal.pmed.1003693.g002
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COVID-19 outcomes, namely obesity, diabetes, COPD, and chronic heart and kidney diseases.

In addition, 3 related health indicators, the prevalence of high blood pressure and high choles-

terol, and proportion of residents uninsured were also included.

Social Vulnerability Index

CDC’s Social Vulnerability Index (SVI) is a measure of a county’s relative vulnerability to haz-

ardous events [33,34] and is intended to help public officials and planners better prepare for

such events. Overall, county ranks are based on 15 socioeconomic indicators collected in the

ACS. Three of the factors in the SVI, namely county population density, median per capita

income, and proportion of the population that is older than 65 years of age, are hypothesized

to be associated with COVID-19 mortality [17,18,35,36]. As association between the other var-

iables in SVI and COVID-19 is uncertain, we limited inclusion to the raw estimates of these 3

variables and ignore the other variables in SVI and the overall index.

County Health Rankings

Two additional variables derived from the ACS 2014 to 2018 and available through the County

Health Rankings (CHR) [37] are hypothesized to be measures of socioeconomic disparities in

a county and included in this study: ratio of the 80th percentile income to 20th percentile as a

measure of income inequality, and the proportion of non-white to white residents as a measure

of racial diversity. We observed that estimates for these variables in a small percentage

(approximately 1.5%) of counties were missing and used the following 3-step process to

impute missing values: (a) the mean of neighboring (defined in later sections) counties that

have estimates; (b) if there are no neighbors with estimates, the median of all counties in the

state for which estimates are available; and (c) if estimates are missing for all counties in a

state, the median across all counties in the US for which estimates are available.

US 2010 Census

It has also been reported that COVID-19 clusters occur in facilities in which people live in

group quarters, where the increased vulnerability can result from either the living conditions

in such facilities (difficulty to social distance in correctional facilities or on college campuses,

for example) or the characteristics of the residents (elderly in nursing homes with underlying

health conditions)[38,39]. As mortality from COVID-19 is known to be less likely in younger

populations, we focused instead on elderly living in group quarters. An estimate of proportion

of the population living in nursing homes or facilities with skilled nursing in each county was

included in this analysis (Table 1).

As all data used here are routinely collected aggregate surveillance data, no ethics approval

was deemed necessary for this study. A prespecified analysis plan has not been filed; a

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist is

available as Supporting information (S1 STROBE Checklist).

Methods overview

We first built linear univariate models for each predictor with county-level COVID-19 mortality

as outcome, adjusting for county case rates. These models inform both the individual effects

and the proportion of variance in mortality explained by each of these predictors. We followed

this with a linear multivariate model, again adjusting for case rates. In both univariate and mul-

tivariate models, observational independence is inappropriate because of spatial autocorrelation
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in both the response and predictors. We verify this by standard tests on the residual of the mul-

tivariate model. We finally build spatial SAR models and report effect estimates.

Spatial weight matrix and spatial autocorrelation

As introduced in an earlier section, a key assumption in standard ordinary least square (OLS)

regression models is the independence of observations that does not hold because COVID-19

cases and deaths in a county are related to cases and deaths in other counties (spatial depen-

dence) and often counties adjacent to it (spatial autocorrelation). Models that do not account

for spatial dependence and autocorrelation are shown to have inflated type I errors [23,40].

To establish adjacency of counties in the US, we define a simple spatial n x n matrix, W,

using shape files that list county boundaries as an ordered set of geocoded reference points

[41]. County adjacency is defined by queen congruity (at least 1 shared boundary point), and

the spatial weight matrix is row standardized, i.e., for each county i, the weight of link to

county j, wij, is the inverse of the number of neighbors of i, if j is adjacent to i, and 0 otherwise;

∑jwij = 1. A county is assumed to not be a neighbor of itself, i.e., wij = 0 when i = j.
Moran’s I [42,43], a commonly used measure of global spatial autocorrelation, is calculated

as follows:

I ¼
n �
Pn

i¼1

Pn
j¼1

wijðxi � �xÞðxj � �xÞ

ð
P

i

P
jwijÞð

Pn
i¼1

ðxi � �xÞ
2
Þ

;

where n is the number of counties, xi is the variable of interest for county i, �x is the mean across

all counties, and wij is as defined by the spatial weight matrix, W. Here, as W is row standard-

ized, ∑i∑jwij = n and the above equation can be simplified. The significance of the statistic was

tested under the randomization assumption, i.e., xi are draws from a random distribution and

there is no spatial association. A related measure to identify specific regions within the study

region that exhibit spatial autocorrelation, the Local Moran’s I, was also estimated. Fig 3 shows

Moran’s I and counties with significant [44] Local Moran’s I for each predictor and outcome.

Fig 3. Local Moran’s I statistic for spatial autocorrelation for all measures and outcome. Only counties where the

statistic is significant (p< 0.05) are shown. Significance is tested under Pr[I–E(I)/Var(I)] as given by Anselin [44].

Global Moran’s I statistic is denoted by the label in each subpanel and found to be statistically significant for all

variables. Maps generated with usmap R package [28].

https://doi.org/10.1371/journal.pmed.1003693.g003
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We were also interested in determining whether spatial autocorrelation, if present, resided

in the response or in the residual, as this also informs the choice of the spatial model. To iden-

tify this, we used robust Lagrange Multiplier (LM) tests that can detect possible autocorrelated

residuals in the presence of an omitted lagged response and vice versa [45,46]. The statistics

reported here are from implementations of these tests in the spdep [43,47] R [48] library.

Variable pruning

As the variables selected for inclusion are related, we calculated Spearman correlation between

pairs of variables (Fig 4) and found some of the variables to be very highly correlated. Hence, it

would not be appropriate to include these pairs together in models. We used the results of the

univariate analysis to aid variable selection by only retaining those variables that have a corre-

lation of less than 0.75 with variables of a higher R2. This led to the elimination of 5 variables—

prevalence indicators for diabetes, heart disease, high blood pressure (all highly collinear with

kidney disease), high cholesterol (collinear with COPD), and median per capita income. The

linear multivariate model and the spatial models were built using this smaller set of predictors

(n = 9).

Spatial simultaneous autoregressive models

The general form of an autoregressive model in spatial statistics is given by [20,23,49]:

y ¼ Xbþ ρWy þ lWu þ ε;

where y is a n x 1 vector of the response variable, X is a n x k matrix of k predictors for n coun-

ties, W is the n x n spatial weight matrix, ρ is the SAR lag coefficient and λ the spatial error
coefficient, and β, u the coefficient and error vectors, respectively. When λ = 0, the autoregres-

sive process is assumed to occur in the response only (captured by ρW) and the model is

referred to as a spatial lag model. When ρ = 0, the autoregressive process is assumed to occur

only in the errors (captured by λW), and the model referred to as spatial error model. Model

implementations are per spatialreg [47,49,50] library in R.

Fig 4. Pairwise surface plots (below diagonal), Spearman correlation (above diagonal), and density (diagonal) of

outcome and measures used in the study. � indicates level of statistical significance of the correlation: p< 0.001 (���);

0.001� p< 0.01 (��); 0.01� p< 0.05 (�).

https://doi.org/10.1371/journal.pmed.1003693.g004
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Results

Results from the univariate analysis indicate that the selected variables individually explain

24% to 29% of the variability in mortality, adjusting for case rates. Mortality is estimated to

increase by 43 per thousand residents (95% CI: 37 to 49; p< 0.001) for every 1% increase in

prevalence of chronic kidney disease and by 10.4 (95% CI: 8 to 13; p< 0.001) for chronic heart

disease, 7.4 (95% CI: 6 to 8; p< 0.001) for diabetes, 4.4 (95% CI: 3 to 5.8; p< 0.001) for

COPD, 3.7 (95% CI: 2.6 to 5.8; p< 0.001) for high cholesterol, 2.8 (95% CI: 2.2 to 3.3;

p< 0.001) for high blood pressure, and 2.6 (95% CI: 2 to 3.2; p< 0.001) for obesity prevalence,

respectively (Fig 5). These health indicators also explain 28%, 25.5%, 27.5%, 24.6%, 24.6%,

25.9%, and 25.3% of the variability, respectively.

Among socioeconomic indicators, the largest association was seen with the nursing home

variable (adjusted R2: 29%) with an estimated increase of 39 deaths per thousand (95% CI: 34

to 44; p< 0.001) for every 1% increase in percent living in nursing homes. Mortality rates are

estimated to increase by 2.8 (95% CI: 2.3 to 3.4; p< 0.001) and 2.4 (95% CI: 2 to 2.9;

p< 0.001) for each 1% increase in percentage of the population who are elderly (65+ years)

and uninsured 18 to 64 year olds, respectively. In contrast, mortality rate is estimated to

decrease by 1.5 (95% CI: 1.05 to 1.87; p< 0.001) for every thousand dollar increase in per cap-

ita income. On average, the R2 estimates for socioeconomic indicators are lower than for

health indicators.

Following variable pruning to correct for collinearity, the multivariate model explained

38% of the variability in mortality with a few changes in effect estimates. Obesity’s association

is not statistically significant in the presence of kidney disease, and COPD’s association is

counterintuitively negative (Table 2).

Moran’s I test for spatial autocorrelation in residuals of the above model was found to be

statistically significant (18.4, p< 0.001). Both robust LM tests were found to be significant

indicating possible autocorrelation in both the error (28.7, p< 0.001) and response (33.5,

Fig 5. Estimates (95% CI) of health and socioeconomic indicators in a linear univariate model with death rate as

outcome and adjusting for COVID-19 case rates. Labels indicate adjusted R2. Inset magnifies select variables of

smaller estimates. COVID, Coronavirus Disease 2019.

https://doi.org/10.1371/journal.pmed.1003693.g005
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p< 0.001). Hence, 3 model forms, the general SAR model, spatial lag, and spatial error models,

were attempted.

The proportion of variability explained by the SAR models is about 14% higher than the lin-

ear model (Fig 6). The spatial error model had an Nagelkerke R2 [51] of 43.5% with an esti-

mated autocorrelation error coefficient (λ) of 0.418 (95% CI: 0.37 to 0.46; p< 0.001). The

spatial lag model and the general model were observed to have an R2 nearly identical to that of

the error model. The autocorrelation coefficient in response (ρ) was found to be 0.347 (95%

CI: 0.31 to 0.39; p< 0.001) for the spatial model, but when both coefficients were estimated

simultaneously in a general model, the lag coefficient was found to be not significant: λ = 0.336

(95% CI: 0.244 to 0.429; p< 0.001); ρ = 0.083 (95% CI: −0.007 to 0.174; p = 0.07).

Fig 6 demonstrates that the effect estimates of SAR models are generally smaller than the

linear model, i.e., accounting for spatial autocorrelation reduces the magnitude of associations.

Table 2. Results of multivariate analysis with linear model, adjusting for case rate.

Estimate 95% CI p
(Intercept) −2.007 (−2.27, −1.74) <0.001

Cases 1.26E-4 (1.16E-4, 1.36E-4) <0.001

Obesity −0.654 (−1.43, 0.13) 0.101

COPD −4.681 (−6.64, −2.72) <0.001

CKD 53.48 (41.11, 65.84) <0.001

Nursing home residents 41.66 (36.27, 47.08) <0.001

Uninsured 1.479 (0.92, 2.03) <0.001

Elderly 2.449 (1.87, 3.03) <0.001

Inequality 0.046 (0.005, 0.087) 0.029

Population density 3.4E-5 (1.9E-5, 4.8E-5) <0.001

Residential diversity 0.557 (0.36, 0.75) <0.001

Adjusted R2 = 0.3812; F-statistic = 194 (p-value: < 0.001).

CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease.

https://doi.org/10.1371/journal.pmed.1003693.t002

Fig 6. Variables estimates with linear and 3 spatial regression models. p-values indicated when p> 0.05. adj.rsq:

adjusted R2; lambda and rho denote the spatial error and spatial lag coefficients, respectively.

https://doi.org/10.1371/journal.pmed.1003693.g006
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Focusing on the spatial lag model, the most strongly associated health and socioeconomic indi-

cators are the prevalence of chronic kidney disease (49; 95% CI: 37 to 61; p< 0.001) and pro-

portion of nursing home residents (38; 95% CI: 33 to 43; p< 0.001), respectively, consistent

with the univariate analysis. The negative association of COPD seen in the univariate model is

also observed with the spatial models. On the other hand, inequality and obesity had signifi-

cant association in the univariate model, but, after accounting for spatial autocorrelation and

in the presence of other indicators, their association tends to be no longer significant

(p> 0.05).

The Global Moran’s test on the residuals of all 3 models found no significant spatial auto-

correlation (p> 0.05). Fig 7 shows the spatial lag model’s fit and residuals. To test for sensitiv-

ity of models’ R2 to the variable pruning method, we additionally subset variables using

alternative spearman correlation thresholds of 0.5, 0.65, and 0.85 and built linear and spatial

models with each. Fig 8 shows that R2 was not sensitive to the value of threshold, and the spa-

tial models have a consistently higher R2 than the linear model.

Discussion

We have built models to estimate COVID-19 mortality rates for given case rates and popula-

tion health and socioeconomic characteristics. Our results indicate that, together, these indica-

tors can explain 43% of the variability in US county mortality rates, when spatial

autocorrelation is accounted for. We found that among health indicators considered, the prev-

alence of chronic kidney disease, and among socioeconomic indicators, the proportion living

in nursing homes have the largest associations with mortality.

The choice and timeliness of control strategies in response to an outbreak do affect its prog-

ress and caseload. Our findings here show that differential risks of severe outcomes from

COVID-19 across populations can be in part estimated from the structures and contexts in

which the outbreak occurs, for example, a population’s quality of health, its access to health-

care, and the disparities therein. With the availability of vaccines, these population-level indi-

cators can serve as criteria for prioritizing geographical allocation of vaccines.

These findings may also be relevant to low- and middle-income countries (LMICs). It has

been reported that almost all of the Pfizer-BioNTech and Moderna vaccine doses to be manu-

factured through the end of 2021 have been purchased and are reserved for distribution in the

US, Canada, UK, and the European Union [52,53]. Of the 42 countries that have rolled out

vaccines by early January 2021, only 6 are middle-income countries, and none are low-income

countries [54]. The COVAX initiative with participation from governments of several LMIC

countries, WHO, and partner nongovernmental organizations aims to achieve equitable and

affordable access to vaccines globally through a common vaccine purchase and allocation

framework [55]. When allocation decisions need to span multiple countries, national and sub-

national socioeconomic indicators and burden of disease estimates can potentially be lever-

aged to reduce overall risk of severe outcomes from COVID-19 as our findings demonstrate.

This study has a few limitations. Case and death counts were retrieved a week after the end

of the study period. Given the lags in data reporting, particularly with deaths, events occurring

at the end of the study period may not have been recorded, and the rates used are underesti-

mates. Similarly, the outcomes may not yet be known for cases recorded near the end of the

study period. Additionally, the case and mortality rates used in this study are crude rates that

do not account for differences in age distribution among county populations. County rates

standardized to US national age distribution would be more appropriate, but as age-stratified

case and deaths counts at county scales are not publicly available, age standardization has not

been possible. However, a supplementary analysis (S1 Text and Figs A–D in S1 Text) using
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Fig 7. Observed death rate (as in Fig 2), model fit, and residual of the spatial lag model. Maps generated with

usmap R package [28].

https://doi.org/10.1371/journal.pmed.1003693.g007

PLOS MEDICINE Investigating associations between COVID-19 mortality and population level indicators: A modeling study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003693 July 13, 2021 13 / 17

https://doi.org/10.1371/journal.pmed.1003693.g007
https://doi.org/10.1371/journal.pmed.1003693


age-specific rates at the state level as proxy for county rates indicate that the results presented

here may be robust except for the 2 indicators directly related to age (proportion of popula-

tions in nursing home and proportion 65+ years of age).

Second, the adjacency based spatial weight matrix that was used in this study does not suffi-

ciently capture the spread of COVID-19. Cases that occur in a county are not only correlated

with those in counties geographically adjacent to it, but also with counties with which it has

strong population mixing; for example, counties with metropolitan centers into which com-

muters travel from the suburbs or counties with major airports. Spatial weight matrices that

capture mobility patterns may be more appropriate and lead to better spatial models. Similarly,

methods that can explicitly account for spatial autocorrelation in predictors remain to be

explored.

Finally, the model structure presented may not be parsimonious in the number of predic-

tors. Although we dropped a third of the predictors initially considered (to correct observed

collinearity), model forms with a smaller subset of independent variables may yield near iden-

tical R2 and need to be explored. This is also belied by the lack of significance of some of the

predictors included in the spatial models. One approach could start with a minimal set of pre-

dictors and incrementally add predictors, while evaluating goodness of the resulting model in

each iteration and terminating when the improvement is below a threshold. Similarly, the vari-

able pruning discussed above is ad hoc; the variables included in the model may be inter-

changeable with those discarded with only marginal change in model performance.

Exploration of interaction between indicators and inclusion of significant interactions in the

SAR models could be a potential extension to the analysis presented.

Supporting information

S1 STROBE Checklist. Checklist for STROBE guidelines for observational studies.

STROBE, Strengthening the Reporting of Observational Studies in Epidemiology.

(DOC)

S1 Text. Supplementary analysis to check for changes in model effect estimates with

approximate age-standardized mortality rates. Fig A: Distribution of crude COVID-19

mortality rates (deaths per thousand residents) for each of 8 age groups in US states. Each data

point indicates a US state, and the bounded region indicates the distribution. Note that the y-

axis is on log10 scale. Fig B: Scatter plot of crude (y-axis) and age-standardized (x-axis)

Fig 8. Sensitivity of adjusted R2 to Spearman correlation threshold used in variable pruning.
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mortality rates in US states. A state below the diagonal (black dashed line) indicates that the

mortality rate increases when standardized. Fig C: Effect estimates (95% CI) with a linear uni-

variate linear model using crude mortality rate (red) and age-stratified mortality rate (in

green) as response variables. Labels indicate adjusted R2. Inset magnifies select variables of

smaller estimates. All estimates are significant (p< 0.05). The slight difference between the

effect estimates with crude rates here and Fig 5 of the main text is due to the use of different

data sources (The New York Times in the main text and NCHS provisional counts here). Fig

D: Variables estimates of spatial lag models built using crude (orange) and age-standardized

(brown) rates as the response variable. p-values indicated when p> 0.05. adj.rsq: adjusted R2;

rho: spatial lag coefficients. COVID, Coronavirus Disease 2019.
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