
Prepared for submission to JCAP

Hefty enhancement of cosmological
constraints from the DES Y1 data
using a Hybrid Effective Field
Theory approach to galaxy bias

Boryana Hadzhiyska,a,1 Carlos García-García,b David Alonso,b
Andrina Nicola,c Anže Slosard

aHarvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
bDepartment of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Ox-
ford OX1 3RH, United Kingdom
cDepartment of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ
08544, USA
dBrookhaven National Laboratory, Physics Department, Upton, NY 11973, USA

E-mail: boryana.hadzhiyska@cfa.harvard.edu

Abstract. We present a re-analysis of cosmic shear and galaxy clustering from first-year
Dark Energy Survey data (DES Y1), making use of a Hybrid Effective Field Theory (HEFT)
approach to model the galaxy-matter relation on weakly non-linear scales, initially proposed
in [1]. This allows us to explore the enhancement in cosmological constraining power enabled
by extending the galaxy clustering scale range typically used in projected large-scale structure
analyses. Our analysis is based on a recomputed harmonic-space data vector and covariance
matrix, carefully accounting for all sources of mode-coupling, non-Gaussianity and shot noise,
which allows us to provide robust goodness-of-fit measures. We use the AbacusSummit suite
of simulations to build an emulator for the HEFT model predictions. We find that this model
can explain the galaxy clustering and shear data up to wavenumbers kmax ∼ 0.6 Mpc−1. We
constrain (S8,Ωm) = (0.786±0.020, 0.273+0.030

−0.036) at the fiducial kmax ∼ 0.3 Mpc−1, improving
to (S8,Ωm) = (0.786+0.015

−0.018, 0.266+0.024
−0.027) at kmax ∼ 0.5 Mpc−1. This represents a ∼ 10% and

∼ 35% improvement on the constraints derived respectively on both parameters using a linear
bias relation on a reduced scale range (kmax . 0.15 Mpc−1), in spite of the 15 additional
parameters involved in the HEFT model. We investigate whether HEFT can be used to
constrain the Hubble parameter and find H0 = 70.7+3.0

−3.5 km s−1 Mpc−1. Our constraints are
investigative and subject to certain caveats discussed in the text.
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1 Introduction

We are entering the prime time era of photometric cosmological surveys. A number of these
surveys have reported results over the past few years, including the Dark Energy Survey
(DES)1 [2], the Hyper Suprime-Cam survey (HSC)2 [3] and the Kilo-Degree Survey (KiDS)3

[4], and several experiments are currently in construction, most notably the Rubin Observa-
tory Legacy Survey of Space and Time (LSST)4, Euclid5 and the Roman Telescope6.

The analysis of photometric survey data is challenging, both in terms of avoiding biases
in cosmological parameters from observational systematics, as well as in terms of theoretical
modeling of the expected signal. In order to mitigate modeling uncertainties, the analysis
of the DES Year 1 galaxy clustering data, alone [5] or in combination with cosmic shear
[2], was limited to large scales, where a linear bias relation could be safely used. In this
model, it is assumed that the contrast in the number densities of galaxies is proportional to
that of the dark matter. While deceptively simple, this model can be shown to be exact in
the limit of infinitely large scales under rather general assumptions, as long as the galaxy
formation process is local on some finite scale. It is therefore sufficient on large enough scales,
but requires that the information on the best measured intermediate and small scales be

1https://www.darkenergysurvey.org.
2https://hsc.mtk.nao.ac.jp/ssp.
3http://kids.strw.leidenuniv.nl.
4https://www.lsst.org.
5https://www.euclid-ec.org.
6https://roman.gsfc.nasa.gov.
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discarded. The purpose of this paper is to investigate the implications of a re-analysis of the
DES Y1 data by employing a more sophisticated bias model.

There are two main difficulties in modeling data on smaller scales. On one hand, the
dark matter clustering becomes non-linear, and on the other hand, the manner in which
galaxies trace the underlying dark matter fluctuations (which are assumed to be the dynam-
ically dominant component) is also non-linear. The dark matter clustering can be modelled
through high-accuracy dark matter N -body simulations; this modeling would be exact if it
were not for the hydrodynamical effects of baryons, which are luckily confined to scales k & 1
hMpc−1, and whose residual effects on large scales can be emulated with numerous approx-
imate schemes [6–10]. The tracing of dark matter by galaxies, however, is a more difficult
problem. It is hopeless to model the richness of galaxy formation physics completely ab-initio
in cosmologically relevant volumes, and even the most precise small-scale hydro simulations
need to model subgrid physics phenomenologically [11]. Nevertheless, there are numerous
phenomenological models, which can be surprisingly successful at explaining galaxy cluster-
ing to deeply non-linear scales. Many of these models mostly rely on the notion of halo
occupation distribution (HOD) [12, 13], namely the idea that galaxies occupy dark matter
halos with statistics that mostly depend on halo mass. The issue is that, while these are
very successful in explaining the observed clustering at 10-percent level, it is hard to set up
models that are precise at the percent level without at least some a-posteriori tuning of the
model to fit the data. The basic difficulty lies in the fact that these models are under little
theoretical control, and are instead based on heuristic models of halo occupation, rather than
fundamental principles. Thus there are no strict rules on when to turn left and when to step
forward in this dance.

On the other end of the spectrum of modeling approaches lie purely analytical models
that start with a linear-biasing scheme and use perturbative expansion to model both the
non-linear dark matter structure growth and the galaxy tracing, integrating any residual
small-scale effects into renormalization of the large-scale quantities. This is known as the
effective theory of large-scale structure (see e.g. [14, 15]). While this approach is exact and
under full theoretical control, it has the downside that it leads to only a modest gain in the
smallest scales that one can still model.

In this paper we employ a method first proposed in [1] that combines the accuracy of
N -body simulations with the theoretical robustness of analytical bias expansions. In this
approach N -body simulations provide accurate information about statistics of dark matter
clustering that are required to calculate the galaxy clustering for an analytical bias model
in Lagrangian space. In particular, the N -body simulations are used to calculate 15 “basis”
power spectra which multiply the bias coefficients when modeling the galaxy signal. The
beauty of this approach is that it maintains the near-exactness of N -body simulations for
dark matter clustering with the theoretical control of an analytical bias expansion. We refer
to this model as the Hybrid EFT (HEFT) model.

The HEFT method is most naturally expressed in Fourier space, because any analytic
Taylor expansion will break down on sufficiently small Fourier scales. Therefore, on the data
side, the main difference with the DES Y1 analysis is that we perform a power spectrum
rather than a correlation function analysis. We re-measure the auto- and cross-power spectra
and covariance matrix, but otherwise leave the DES analysis largely unchanged, we use the
same input catalogs, tomographic bins, and systematic models.

This paper is structured as follows. In Section 2 we discuss how we measure auto-
and cross-power spectra of the DES Y1 data, including estimation of the covariance matrix.
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This section relies heavily on our previous works using galaxy and shear data from HSC and
DES [16, 17]. In Section 3 we discuss the theoretical underpinning of the HEFT model, and
method used to build an emulator of the HEFT basis power spectra from the AbacusSummit
simulations. We then proceed to analyze the DES Y1 data using the HEFT model in Section 4,
where we also spend some time addressing variations of the parameter inference to investigate
the sensitivity to various analysis choices. We conclude in Section 5 with a recap of our main
results and list of potential caveats.

2 Data and power spectrum measurement

2.1 Data

We make use of the Dark Energy Survey’s first-year (Y1) public data release [18]. In particu-
lar, we use the publicly available key Y1KP catalogs7, used to derive cosmological constraints
from the joint analysis of galaxy clustering and cosmic shear data (the so-called “3× 2-point”
analysis), presented in [2] (DY1 hereon). The resulting clustering and shear samples cover an
area of ∼ 1320 deg2.

As a galaxy clustering sample we use the redMaGiC catalog described in [5]. The
redMaGiC algorithm selects luminous red galaxies in a way that minimizes photometric
redshift uncertainties, producing samples with small redshift distribution tails, well-suited for
cosmological galaxy clustering studies. We divide the sample into the same 5 redshift bins
used in DY1, and use the same galaxy weights to correct for sky systematics. In the analysis
of these data, we make use of the fiducial redshift distributions published with the Y1 dataset,
as well as the same model to marginalize over photo-z uncertainties in them (see Section 4.1).
Further details can be found in [5].

The DES Y1 analysis was carried out using two different shape-measurement algorithms:
Metacalibration [19, 20] and IM3SHAPE [21]. We restrict the current analysis to the
Metacalibration sample, applying the same cuts used in [21], including its division into
four tomographic reshift bins (see also [17]). We use the redshift distributions provided with
the Y1 release for these bins, details for which can be found in [22]. Details regarding the
calibration of galaxy ellipticities, including mean subtraction and the inclusion of selection
effects in the Metacalibration response tensor, can be found in [17], and follow the same
prescriptions used by DY1.

Fig. 1 shows one of the angular window functions and redshift distributions of the DES
Y1 samples used here.

2.2 Power spectra and covariances

Starting from the official Y1 catalogs described in the previous section, we compute a set
of angular auto- and cross-power spectra between the clustering and shear samples. Thus,
although our analysis is based on the same samples as DY1, we construct an independent
data vector, instead of using the summary statistics (real-space angular correlation functions).
We do this in order to take advantage of recent improvements in the algorithms used for the
estimation of angular power spectra of LSS data and their covariance [17, 23, 24], which allow
us to produce robust goodness-of-fit tests, vital for this analysis (see Section 4.2). The use
of angular power spectra also allows us to impose simple scale cuts that are more directly
connected with a comoving Fourier scale kmax. Finally, our analysis can also validate the

7https://des.ncsa.illinois.edu/releases/y1a1/key-catalogs
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Figure 1: Top: one of the angular window functions for the DES Y1 data analysed here.
Bottom: normalized redshift distribution of the galaxy clustering (redMaGiC) and cosmic
shear (Metacalibration) samples.

results found by the DES Y1 analisis in real space with an independent harmonic-space
pipeline (see also [25]).

Power spectra were calculated using a pseudo-C` approach [26] as implemented in Na-
Master. The details of the pseudo-C` algorithm are described in detail in [23], and we
provide only a succinct summary here. Pseudo-C` estimators are a fast implementation of
the optimal quadratic estimator [27]. The algorithm is based on assuming a diagonal map-level
covariance matrix, such that inverse-variance weighting is equivalent to a simple multiplica-
tion of the sky map by a “weights map” or “mask” w(n̂). Calculating the power spectrum of
two weighted maps is then reduced to averaging the product of their spherical harmonic coef-
ficients over the multipole order m, and the time-consuming mode-coupling matrix M``′ can
be computed analytically using fast algorithms to calculate Wigner 3-j symbols. The method
works for fields of arbitrary spin, including the galaxy overdensity (spin-0) and cosmic shear
(spin-2). We compute all auto- and cross-correlations between the 5 redMaGiC and 4
Metacalibration redshift bins. Note that, as done in DY1, we discard cross-correlations
between different galaxy clustering bins in the likelihood analysis, given their sensitivity to
photometric redshift systematics. All maps were generated using HEALPix8 [28] with resolu-
tion parameter Nside = 4096, corresponding to pixels of size δθpix ∼ 1′. This is small enough
that, as described in [17], all pixelization effects can be ignored on the scales used in this

8http://healpix.sourceforge.net.
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analysis (see Section 4.1).
The galaxy overdensity maps are estimated using the same method described in [16].

The overdensity δp at pixel p is computed as δp = Np/(wp N̄)− 1, where Np is the weighted
number of objects in the pixel, N̄ is the mean weighted number of objects per pixel, and wp
is the unmasked fractional area of pixel p. The mean is computed as N̄ =

∑
pNp/

∑
pwp.

The fractional area map wp, which we also use as the weights map for the galaxy overdensity
in the pseudo-C` estimator, is provided in the Y1 data release. The overdensity is set to zero
in all fully masked pixels. Furthermore, to avoid noise in strongly masked pixels, we set the
weights map to zero for pixels where wp < 0.5. Finally, the galaxy noise power spectrum is
estimated as described and validated in [16], with an extra correction factor [29] to account
for effect of galaxy weights. This is then subtracted from all auto-correlations.

The auto- and cross-correlations involving shear maps only were computed using the
procedure described in [17]. The weights map associated with a shear redshift bin is sim-
ply proportional to the sum of shape-measurement weights of all galaxies in the pixel, and
the associated shear map is the weighted mean calibrated ellipticity in each pixel. The
resulting shear power spectra were presented and validated in [17]. The clustering-shear
cross-correlations were simply estimated as the pseudo-C` between the corresponding galaxy
overdensity and shear maps. As a sanity check, we verify that all cross-correlation involving
shear B-modes are compatible with zero by examining the probability-to-exceed (PTE) of
their χ2 with respect to the null hypothesis.

All power spectra were calculated for a set of `-bins (bandpowers) covering the range
` ∈ [0, 12288). We use a linear spacing with ∆` = 30 up to ` = 240, and a logarithmic spacing
thereafter with ∆ log10 ` = 0.055. Even after correcting for the effects of survey geometry
by inverting the binned mode-coupling matrix, residual mode-coupling remains as a result of
binning. We account for this exactly by convolving the theory prediction with the bandpower
window functions as described in [23].

The covariance matrix of these measured power spectra is computed using analytical
methods. As discussed in [30, 31], the main contributions to the covariance of power spectra
of large-scale structure tracers can be written as:

Cov``′ = CovG
``′ + CovcNG

``′ + CovSSC
``′ , (2.1)

where CovG
``′ is the “Gaussian” covariance matrix, associated with the fields’ disconnected

trispectrum, and CovcNG
``′ and CovSSC

``′ are non-Gaussian terms, sourced by the non-linear
evolution of the matter overdensities under gravity.

CovG
``′ dominates the error budget, and therefore must be carefully calculated, accounting

for the effects of survey geometry in the form of mode-coupling. To do so, we follow the
approximate methods of [17, 24, 32]. The exact calculation of the covariance matrix scales as
O(`6max), and is therefore unfeasible for the range of scales used in this work. The calculation
can be reduced to O(`3max) under the approximation of a narrow mode-coupling kernel and
a sufficiently flat underlying power spectrum. While this is a good approximation for galaxy
clustering, the large inhomogeneity of the weak lensing mask (effectively proportional to
the galaxy density) breaks these assumptions and can lead to O(1) errors in the cosmic
shear covariance. To remedy this, we make use of the improved narrow-kernel approximation
presented in [17], which is able to accurately recover the true power spectrum uncertainties up
to a few percent on the scales used here, including the different noise and signal contributions.

We estimate the SSC and cNG contributions to the total covariance, following the halo
model based approach of Ref. [33], as was done in Refs. [16, 17, 34]. For a more detailed
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description, we refer the reader to these works and the references therein. As the total
covariance matrix given in Eq. 2.1 is dominated by the Gaussian part, we model finite sky
effects for the non-Gaussian corrections using the approximations given in Ref. [33] and do
not fully account for mode-coupling as we do for the Gaussian part. Note that, within the
range of scales used here, the effect of the non-Gaussian terms on the χ2 is smaller than 2%,
and therefore this should be a good approximation as long as survey geometry effects are
accurately accounted for in the Gaussian part.

3 Modeling the signal

3.1 Projected statistics

We will extract constraints on cosmological parameters from the two-point statistics of two
fields projected on the celestial sphere: the galaxy overdensity δαg (n̂) and the weak lens-
ing shear γα(n̂) for galaxies in redshift bin α. These are related to the three-dimensional
fluctuations in the galaxy number density ∆g(x) and the matter density ∆m(x) via [35, 36]

δαg (n̂) =

∫ χH

0
dχ qαg (χ) ∆g(χ(z)n̂, z), γα(n̂) =

∫ χH

0
dχ qαγ (χ)

[
−χ−2ðð∇−2∆m(χn̂, z)

]
,

qαg (χ) ≡ H(z)

c
pα(z), qαγ (χ) ≡ 3

2
H2

0 Ωm
χ

a(χ)

∫ ∞
z(χ)

dz′pα(z′)
χ(z′)− χ
χ(z′)

, (3.1)

where c is the speed of light, n̂ is the sky direction, χ is the comoving radial distance at redshift
z, χH is the distance to the horizon, H(z) is the Hubble expansion rate, H0 ≡ H(z = 0), Ωm

is the matter density parameter today, pα(z) is the redshift distribution in bin α, and ð is
the spin-raising differential operator, acting on a spin-s quantity as:

ð sf(θ, ϕ) = −(sin θ)s
(
∂

∂θ
+

i

sin θ

∂

∂ϕ

)
(sin θ)−s sf (3.2)

and turning it into a spin-(s+ 1) quantity.
The power spectrum between quantities X and Y (δg or γ) in bins α and β respectively,

C
(X,α)(Y,β)
` is the covariance of the spherical harmonic coefficients of both fields, and can be

related to the power spectrum of the three-dimensional quantities associated with X and Y
(∆g or ∆M ) PXY (k, z) via:

C
(X,α),(Y,β)
` =

∫
dχ

χ2
qαX(χ) qβY (χ)PXY

(
k =

`+ 1/2

χ
, z(χ)

)
. (3.3)

Equation 3.3 uses Limber’s approximation [37, 38], valid for the wide radial kernels
considered here. In order to account for the difference between angular and three-dimensional
derivatives in Eq. 3.1 (i.e. χ2ð2∇−2 6≡ 1), the lensing kernel must be multiplied by an `-
dependent prefactor

G` ≡
√

(`+ 2)!

(`− 2)!

1

(`+ 1/2)2
, (3.4)

which becomes irrelevant (sub-percent) for ` > 11 [39].
Thus, given a set of cosmological parameters, and the redshift distributions of all bins

considered, all that remains to specify is the 3-dimensional power spectra between ∆m and ∆g.
For the matter power spectrum Pmm(k, z), we use the non-linear prediction from HALOFIT
[40, 41], as was done in DY1. We describe the model used to describe the galaxy-matter
connection in the next section.
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3.2 Hybrid EFT model for galaxy clustering

We follow a perturbative effective field theory (EFT) approach to galaxy biasing in Lagrangian
space, coupled with the non-linear dynamical evolution of N -body simulations as prescribed
in [1]. We describe the logic behind this Hybrid EFT method here, and refer readers to
[1, 15, 42] for a detailed description of galaxy bias.

The complex physical processes that govern the formation and evolution of galaxies
necessarily imply a complex relationship between their distribution and that of the matter
inhomogeneities they trace. In general, this relation should be non-linear, non-local and,
without exact knowledge of the small-scale physics, stochastic. Non-local and stochastic
effects are sourced by the dependence of the galaxy abundance at a given point in space
on the small-scale physical processes in a region around it, and therefore should become
negligible on scales larger than the size of this region (e.g. the Lagrangian radius of a typical
dark matter halo).

On scales where galaxy formation can be modelled as a local process, it is then possible
to invoke the equivalence principle, in terms of which the leading gravitational effects are
associated with the Hessian of the gravitational potential ∂i∂jΦ. This can be split into its
scalar trace, proportional to the matter overdensity δ, and the traceless tidal tensor sij ≡
(∂i∂j∇−2 − 1/3)δ. On these scales, we can therefore describe the number overdensity of
galaxies found at redshift z in the Lagrangian initial conditions as a general functional of the
local δ and sij . Expanding this functional up to second order:

1 + ∆g,L = 1 + b1δL + b2(δ2
L − 〈δ2

L〉) + bs(s
2
L − 〈s2

L〉) + b∇∇2δL, (3.5)

where we have only kept scalar combinations of sij , s2 ≡ sijs
ij , and we have included a

leading-order non-local contribution ∝ ∇2δL. The subscript L is a reminder that all quantities
are evaluated at the initial Lagrangian coordinates q. One can then evolve ∆g,L to its observed
redshift by advecting the Lagrangian ∆g to the final Eulerian coordinates:

1 + ∆g(x) =

∫
d3q [1 + ∆g,L(q)] δD(x− q−Ψ(q)), (3.6)

where Ψ is the Lagrangian displacement vector.
This calculation can be done using Lagrangian perturbation theory (e.g. [43]) or, as

proposed in [1], solving the full non-linear evolution in an N -body simulation. Substituting
Eq. 3.5 into 3.6, the final galaxy overdensity is a linear combination of the individual operators
in Eq. 3.5 (δL, δ2

L, s
2
L and ∇2δL) advected to the Eulerian positions. These fields can be

calculated in the simulation by weighting each matter particle in a given snapshot by the value
of the corresponding operator in the initial conditions at the original Lagrangian coordinates.
The cross-power spectrum between the galaxy and matter overdensities, as well as the galaxy-
galaxy power spectrum are then given by:

Pgm(k) =
∑
α∈O

bαP1α(k), Pgg(k) =
∑
α∈O

∑
β∈O

bαbβPαβ(k) (3.7)

where O ≡ {1, δL, δ2
L, s

2
L,∇2δL} is the full set of second-order operators in Eq. 3.5, Pαβ(k)

is the power spectrum of the advected fields α and β, and bα are the corresponding bias
coefficients. In this formalism P11(k) is the non-linear matter power spectrum, and its corre-
sponding bias parameter (called b0 here) is b0 = 1. Our bias model then reduces to computing
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Sim. name Ωbh
2 Ωch

2 ns σ8

c000 0.02237 0.1200 0.9649 0.811355

c100/c101 0.02282/0.02193 – – –

c102/c103 – 0.1240/0.1161 – –

c104/c105 – – 0.9749/0.9549 –

c112/c113 – – – 0.8276/0.7954

Table 1: Simulations from the AbacusSummit suite used to generate the power spectrum
templates used in this analysis.

a set of 15 different power spectrum templates Pαβ(k) for the five different operators. We
construct these from the AbacusSummit suite of simulations, described in the next section.

We note that while formally Lagrangian and Eulerian models are both valid and com-
plete descriptions, their predictions do not match at any given order. Therefore, even the
simplest linear analysis will give different results in Eulerian and Lagrangian spaces for a
finite maximum wavenumber kmax.

Finally, it is also common to include an additive stochastic term ε in the bias expansion
(Eq. 3.6), to account for the impact of small-scale density fluctuations on galaxy formation.
In the simplest case, this effect can be modelled by treating galaxies as a Poisson sampling
of an underlying smooth galaxy density field, in which case the contribution to the galaxy
auto-correlation is Pεε = 1/n̄g, where n̄g is the comoving number density of galaxies. In our
analysis, we will also consider the effect of departures from this pure shot-noise contribution,
of the form Pεε = Aε/n̄g, with Aε 6= 1 (see Section 4.1 and Section 4.3).

3.3 Abacus simulations

To build a model for the different power spectrum templates Pαβ(k) in Eq. 3.7 we use the
AbacusSummit suite of N -body simulations [44–46].

AbacusSummit was designed to meet the cosmological simulation requirements of the
Dark Energy Spectroscopic Instrument (DESI) survey and run on the Summit supercomputer
at the Oak Ridge Leadership Computing Facility. The simulations are run with the highly
accurate Abacus cosmological N -body simulation code [47], optimized for GPU architectures
and large-volume, moderately clustered simulations. The Abacus code is extremely fast,
performing 70 million particle updates per second on each of the Summit nodes, and also
extremely accurate, with typical force accuracy below 10−5. The output halo catalogs and
particle subsamples (A and B, amounting to 10% of the total particle population) are organized
into 12 primary redshift snapshots (z = 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.1, 1.4, 1.7, 2.0, 2.5, and
3.0). The data products have been designed with the aim of supporting mock catalogs to be
constructed using halo occupation distributions, as well as efficient access to measurements
of the density fields. In this work, we use the 7 redshift snapshots at z ≤ 1.1, z = 0.1, 0.2,
0.3, 0.4, 0.5, 0.8, 1.1, covering the redshift range of the DES Y1 clustering sample, and the
particle subsample A, which contains 3% of the total particle content.

The AbacusSummit suite contains simulations for various cosmologies. Here, we em-
ploy the fiducial simulation AbacusSummit_base_c000_ph000 at base resolution (69123 dark
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matter particles in a box of length 2000 Mpc/h), and some of the “linear derivatives” sim-
ulations at the same resolution. These are used to account for the parameter dependence
of the power spectrum templates as described below. The simulations used are listed in
Table 1. The parameters that define the fiducial cosmology are the baryon energy density
(Ωbh

2 = 0.02237), the cold dark matter energy density (Ωch
2 = 0.1200), the primordial tilt

(ns = 0.9649), the amplitude of matter fluctuations (σ8 = 0.811355), and the distance to last
scatter (100θ∗ = 1.041533). The “linear derivative” simulations vary each of these in turn, as
indicated by the columns in the table.

For each simulation and redshift bin we produce 15 power spectrum templates, corre-
sponding to the auto- and cross-correlation between the 5 operators of the Lagrangian bias
expansion (Eq. 3.6) following the method outlined in [1]:

1. We use the initial conditions to calculate 4 fields: δL, δ2
L, s

2
L and ∇2δL. These fields are

computed on a cubic grid of size 23043. Following [1, 48] we do not apply any smoothing
and so our results must depend weakly on cell size.

2. At each snapshot, we evolve the initial condition fields to the corresponding redshift as-
suming a linear growth factor. Then, for each of the 5 bias operators (1, δL, δ2

L, s
2
L, ∇2δL),

we compute their advected version by assigning each dark matter particle a weight given
by the value of the corresponding operator at the particle’s position in the initial con-
ditions.

3. Finally, we compute and store the auto- and cross-power spectra between all advected
fields.

The power spectrum templates thus calculated are noisy on large scales due to cosmic
variance. To avoid this, we combine the simulated power spectra with theoretical predictions
from Lagrangian perturbation theory (LPT) using the velocileptors code [43, 49] on large
scales. We use the following combination of both predictions to enforce a smooth transition
between them at k ∼ kpivot:

Pαβ(k) = (1− w(k))P sim
αβ (k) + w(k)PLPT

αβ (k), (3.8)

where P sim
αβ and PLPT

αβ are the predictions from AbacusSummit and LPT respectively, and
weighting function

w(k) ≡ 1

2

[
1− tanh

(
k − kpivot

∆kw

)]
, (3.9)

which ensures smooth interpolation between the two limits. We use ∆kw = 0.01hMpc−1,
but manually fine-tune values of kpivot for the different operator combinations, based on their
large-scale behavior:

k0,s
pivot = k1,s

pivot = k∇,spivot = 0.2hMpc−1, k2,s
pivot = ks,spivot = 0.03hMpc−1, (3.10)

k2,∇
pivot = 0.3hMpc−1, k1,∇

pivot = 0.07hMpc−1, kother
pivot = 0.09hMpc−1. (3.11)

The power spectrum templates thus produced for the fiducial c000 simulation at z = 0.5
are shown in Fig. 2, which also illustrates the procedure outlined above. The code used to
generate these templates is available at https://github.com/boryanah/hybrid_eft_nbody.

In order to account for the dependence of the power spectrum templates on cosmological
parameters, we use a linear Taylor expansion around the fiducial AbacusSummit cosmology
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Figure 2: Power spectrum templates at z = 0.5 for the fiducial AbacusSummit simula-
tion (c000). The dotted lines correspond to the 1-loop LPT power spectra computed using
velocileptors [49], while the dashed lines are derived from AbacusSummit. In solid lines,
we show the combined power spectra, obtained by smoothly interpolating between both. As
expected, the 1-loop LPT theory lacks small-scale power compared with the N -body result.
We note that 1-loop LPT makes no prediction for the templates involving cross-correlations
with the ∇2δL field, for which we assume PX∇(k) ≈ k2PXδ on large scales and the numerical
values on small scales. We model the P∇∇(k) as approximately constant on large scales.

(first row of Table 1). We first compute an estimate of the derivative of the power spectrum
templates with respect to the four cosmological parameters (Ωbh

2,Ωch
2, σ8, ns) via numerical

differentiation of the templates found for the fiducial c000 simulation and the linear derivative
simulations. I.e. for a given parameter θ:

∂θPαβ(k) =
Pαβ(k; θF + δθ)− Pαβ(k; θF − δθ)

2δθ
, (3.12)

where Pαβ(k; θF +δθ) are the templates calculated in the two linear-derivative simulations for
which this parameter is varied (by an amount δθ), and θF is the value of the parameter in the
fiducial AbacusSummit cosmology. The power spectrum template at a set of cosmological
parameters ~θ is then given by:

Pαβ(k; ~θ) = Pαβ(k; ~θ∗) + (~θ − ~θ∗) · ∇θPαβ(k), (3.13)

where ~θ∗ is the fiducial AbacusSummit cosmology.
Note that the initial conditions of all simulations we use are produced for the same phase

(ph000). Thus, when taking finite differences, we eliminate some of the cosmic variance noise.
We verified the validity of the linear Taylor expansion by comparing the prediction from Eq.
3.13 with power spectrum templates calculated directly from the extended grid of “linear
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derivative” AbacusSummit simulations at redshifts 0.5 ≤ z ≤ 1.1 (labelled c117-120, c119,
c120). The prediction is found to be accurate at the ∼ 1% level on all scales of interest k ≤ 1
hMpc−1.

For parameter values sufficiently far away from the fiducial AbacusSummit cosmology,
we expect the linear Taylor expansion to break down. Thus, in order to recover some of the
true parameter dependence, we combine AbacusSummit predictions for the ratio between
Pαβ(k) and the matter power spectrum Pmm(k) ≡ P11(k), with the HALOFIT prediction for
the latter as follows:

Pαβ(k; ~θ) =
P HF
mm(k; ~θ)

P AB
11 (k; ~θ)

P AB
αβ(k; ~θ), (3.14)

where P HF and P AB are the HALOFIT and AbacusSummit predictions respectively. By taking
the ratio of the AbacusSummit predictions we thus mitigate the impact of residual noise on
the templates, and some of the error made in assuming a linear dependence on cosmological
parameters around the AbacusSummit fiducial model. In particular, this approach recovers
the HALOFIT matter power spectrum exactly.

An important caveat must be noted. The linear derivative simulations available in the
AbacusSummit suite use a value of the Hubble parameter h determined by holding the
comoving angular diameter distance to the last-scattering surface, θ∗, constant, and equal
to the value inferred by Planck [50]. Effectively, this means that our parametrization of
the cosmological dependence of Pαβ is “missing” the Hubble parameter, which is assumed to
reproduce the position the peak position in the Planck CMB power spectrum. This is one
of the best and most robustly measured quantities in cosmology; however, it complicates the
direct comparison between our results and those of DY1. Although we find that our results
are not strongly sensitive to this (see Section 4), a robust implementation of this method
should allow for variation of all basic cosmological parameters.

As stated above, our ability to account for the dependendence of the power spectrum
templates on cosmological parameters accurately is limited by the range of cosmologies covered
by the AbacusSummit suite. Although combining the simulation data with HALOFIT should
allow us to capture some of the dependence beyond the linear Taylor expansion, the current
model could clearly be improved by building a more complete power spectrum emulator
covering a wider region of the cosmological parameter space. This has recently been done
in [51] and [52]. Nevertheless, as we show in Section 4 by switching off the cosmological
dependence of the power spectrum templates completely, our final constraints on (S8,Ωm)
are insensitive to the inaccuracy of the linear expansion for the data used here.

4 Results

In this section, we present the cosmological constraints extracted from the DES Y1 galaxy
clustering and cosmic shear data for different choices of bias parametrization and scale cuts.

4.1 Likelihood analysis

In order to derive constraints on cosmological and bias parameters we use a Gaussian likeli-
hood of the form:

log p(~θ|d) = −1

2
[d− t(~θ)]TC−1[d− t(~θ)] + log pp(~θ) +K (4.1)
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Figure 3: Contour plots showing the constraints on cosmological parameters using a linear
bias model, also adopted in the DES Y1 analysis, in gray and the hybrid model presented in
this work with kmax = 0.3 and 0.5 Mpc−1 in red and blue, respectively. In green, we also show
the parameter constraints obtained by the DES collaboration in their 3×2-point analysis [2].
We see that the hybrid approach is able to place tighter constraints on Ωm and S8, while ns
and Ωb remain largely unconstrained, in agreement with [2] (see Section 4.3 for a more detailed
discussion about ns). The DY1 linear bias constraints on Ωm and S8 are consistent with each
other and exhibit certain differences attributable to the following: our analysis is performed
in harmonic space; it uses a different cosmological parametrization, and additionally does not
vary massive neutrino energy density. For a more quantitative assessment, see Table 3.

where ~θ is the set of parameters to be constrained, d is a data vector of power spectra, C is
its covariance matrix, t(~θ) is the theory prediction, pp(~θ) is the prior distribution, and K is
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Parameter Prior Parameter Prior
Ωch

2 [0.08, 0.16] Aε N (1, 0.1)
Ωbh

2 [0.013, 0.031] AIA [-5, 5]
σ8 Free ηIA [-5, 5]
ns [0.87, 1.07] mi Table I in [2]

100θ∗ 1.041533 ∆zig Table I in [2]
bi0, b

i
1, b

i
2, b

i
s, b

i
∇ [-5, 5] ∆zis Table I in [2]

Table 2: Model parameters and priors. An index i denotes parameters with independent
copies in each galaxy clustering or shear redshift bin. The definition of the nuisance pa-
rameters (AIA, ηIA,mi,∆z

i
g,∆

i
s) can be found in DY1 [2]. Square brackets denote a flat

prior, whereas N denotes a Gaussian prior. In addition to Aε, the latter is adopted also for
mi,∆z

i
g,∆

i
s. The comoving angular distance to last scatter, θ∗, is held fixed in the fiducial

case and loosened in one of our tests (see Table 3).

a normalization constant. We sample this likelihood with a modified version of the MCMC
sampler MontePython9 [53], using the Core Cosmology Library [54] to calculate all angular
power spectra contributing to t(~θ).

In our fiducial case, d contains all galaxy auto-correlations, and all galaxy-shear and
shear-shear correlations. We impose the following scale cuts: in all cases, shear-shear power
spectra are used on scales ` < 2000, to avoid the impact of baryonic effects [3]. Galaxy-
galaxy and galaxy-shear correlations, on the other hand, are cut on ` < kmaxχ̄, where χ̄ is
the distance to the mean redshift of the corresponding galaxy clustering sample, and kmax is
a comoving cutoff scale. The fiducial value of kmax is 0.3 Mpc−1, but we will consider values
in the range [0.15, 0.6] Mpc−1.

Our model is described by a number of cosmological, bias and nuisance parameters. We
consider variations in five cosmological parameters: the cold dark matter and baryon densities
(Ωch

2,Ωbh
2), the primordial tilt ns, the amplitude of density fluctuations σ8, and the distance

to the surface of last scattering θ∗. In the fiducial case we fix the latter to the value used
in the AbacusSummit 100 θ∗ = 1.041533, but we also explore the impact of freeing this
parameter.

Our fiducial bias model is defined by the set of EFT bias parameters (b1, b2, bs, b∇). We
assign different bias parameters for the 5 different galaxy redshift bins, for a total of 20 free
parameters. In order to reproduce the linear bias model used in DY1, we also consider a
single free bias parameter b0 per redshift bin, while keeping all other bias parameter fixed
to zero (note that b0 = 1 in the HEFT model). When reproducing the DY1 analysis we
used a scale cut kmax = 0.15 Mpc−1, roughly corresponding to the inverse of the minimum
comoving separation used in DY1. As an extension to the 4-parameter HEFT model, we
also marginalized over a stochastic bias parameter with a flat power spectrum. We do so
by scaling the shot noise power spectrum with a free amplitude parameter Aε with a 10%
Gaussian prior centered on Aε = 1. The width of the prior was determined by comparing the
noise power spectrum estimated as described in Section 2.2 with the galaxy power spectrum
at the high-`, noise-dominated regime.

Apart from the bias and cosmological parameters, we also vary 15 nuisance parameters,
9https://github.com/boryanah/montepython_public
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describing other sources of systematic uncertainty in the DES Y1 data. These include shifts
in the mean of the redshift distribution in each tomographic bin, multiplicative shear bias
parameters, and a two-parameter intrinsic alignment model. The details are described in the
DY1 paper [2], and we use the same priors specified there. The full set of model parameters
and priors used are listed in Table 2.

4.2 Comparison between the linear and HEFT bias models

One of our main goals is comparing the final constraints achievable through a linear bias
model in a reduced range of scales (as done e.g. in DY1), with those found using the HEFT
model using data on smaller, mildly non-linear scales. For concreteness, the parameter space
in both cases is defined as follows:

• DY1: we vary a single linear bias parameter b0 in each galaxy clustering redshift bin.
We also vary four cosmological parameters (Ωch

2, Ωbh
2, ns, σ8), and 15 nuisance pa-

rameters, for a total of 24 free parameters.

• HEFT: we vary four bias parameters (b1, b2, bs, b∇) in each redshift bin, while keeping
b0 = 1, leading to a 39-dimensional parameter space when combined with the cosmo-
logical and nuisance parameters.

The linear bias model will be restricted to comoving scales kmax . 0.15 Mpc−1, while we
will present results for the HEFT case as a function of kmax. Note that, although we label it
“DY1”, the linear bias model is slightly different from that used by [2] since, while the Hubble
constant was a free parameter in their analysis, in the fiducial case we determine it by holding
θ∗ fixed.

We will quantify the goodness of fit of a given bias model in terms of the probability-
to-exceed (PTE) of the model’s minimum χ2 value. The PTE depends on the total number
of degrees of freedom ν, which in turn depends on the number of free parameters in the
model. For a linear model with Nθ linearly independent free parameters with unconstrained
priors, ν would be simply Ndata − Nθ. In the presence of non-linear parameters and tight
priors, the definition of ν is less clear. Here we use an effective number of degrees of freedom
νeff determined as follows. We generate a synthetic data vector drawn from a multi-variate
Gaussian distribution with a mean given by the theoretical prediction for a set of fiducial
parameters θfid, and the power spectrum covariance described in Section 2.2. We then run
a χ2 minimizer varying the cosmological, bias and nuisance parameters, to find the best fit
parameters θbf , and compute the difference in χ2 between both sets of parameters ∆χ2 ≡
χ2(θfid) − χ2(θbf). νeff is then given by the median of ∆χ2 for several realizations of the
synthetic data vector. Through this method we find that νeff is well approximated by νeff '
Ndata − (Nb + 3), where Nb is the number of bias parameters in the model and Ndata is the
number of data points. Each bias parameter is effectively an independent parameter with a
broad flat prior affecting the model at the linear level, and thus should add +1 to the total
νeff . The contribution from all other parameters is effectively ∆νeff = 3, either due to their
tight priors (in the case of calibrated nuisance parameters), or their limited or correlated
impact on the predicted cosmic shear and galaxy clustering observables.

The main result of this analysis is shown in Fig. 3, which presents the constraints on the
four cosmological parameters Ωb, Ωc, S8 ≡ σ8(Ωm/0.3)1/2, and ns, for both bias models, with
the HEFT results shown for kmax = 0.3 Mpc−1(fiducial case) and kmax = 0.5 Mpc−1. In the
(Ωm, S8) projection, we observe a notable improvement in the constraints on Ωm. The 68%
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confidence interval shrinks from Ωm = 0.298+0.033
−0.045 in the linear bias case to Ωm = 0.273+0.030

−0.036

(15% improvement from DY1) and Ωm = 0.266+0.024
−0.027 (35% improvement from DY1) using

HEFT with kmax = 0.3 Mpc−1and 0.5 Mpc−1respectively. The improvement on S8 is less
striking (about 10%). The figure also shows that the scalar spectral index ns is pushed
significantly towards its lower prior bound. As we show in Section 4.3, this is most likely due
to the incorrect parameter dependence of the power spectrum templates used, although this
does not alter the results found for (Ωm, S8). These results are also summarized in Table 3,
together with the constraints founds for all other data and model configurations explored
here.

It is important to note that, although our results are based on an independent reanalysis
of the DY1 dataset in Fourier space, our constraints using a linear bias model are in excel-
lent agreement with those reported by DES [2]. The estimated power spectra and best-fit
predictions for the linear bias and HEFT model are shown in Fig. 4. Results are shown for
the galaxy auto-correlations (labelled gg here) and the cross-correlations with cosmic shear
(labelled gs). Overall the agreement on large scales is good. The HEFT bias model is able to
describe the data on small scales, while the linear model does not capture the small-scale clus-
tering. In the case of the gs we find specific cross-correlations that the model has difficulty
fitting, particularly in the lower-left part of the figure, corresponding to cross-correlations
where a significant fraction of the lens sample lies behind the source bin. This is likely due
to residual systematics in the characterization of the source and lens redshift distributions
that are not well captured by the nuisance parameters. Nevertheless, the overall goodness
of fit is acceptable, with PTEs above 4.5% (see Section 4.3). The upper panel of Fig. 4
shows, in gray, the shot-noise contribution to the clustering auto-correlations. As we go to
higher redshifts, the extended scale range used here lies partially within the noise-dominated
regime, limiting the amount of information that can be extracted from the small-scale regime.
The use of denser samples, at the cost of broader photomeric redshift uncertainties will likely
benefit photometric clustering analyses making use of mildly non-linear scales [55].

Fig. 5 shows the power spectrum residuals as a fraction of the 1σ uncertainties in the
same cases. The linear bias analysis assumes kmax = 0.15 Mpc−1, while the HEFT model
has kmax = 0.5 Mpc−1. In the majority of cases, the data lie within 1-2σ of the theory in
their respective scale ranges, with a small number of exceptions that do not spoil the overall
goodness of fit of the HEFT and linear bias models. Importantly, the linear DY1 model
shows a significant deviation from the gg data on small scales, which HEFT is able to capture
adequately.

We next explore our results as a function of the scale cut kmax. The recently developed
HEFT N -body emulators [48, 52] was found to fit the halo power spectrum to sub-percent
accuracy down to scales kmax ∼ 0.6 hMpc−1, drilling significantly deeper into the non-linear
regime, where various assembly bias effects, related to halo concentration, occupation, local
environment, and spin, are known to affect the clustering properties [56–59]. In particular,
the hybrid approach has been shown to be effective in describing the clustering of more
complex tracer populations (see Section 6.3 of [48]), whereas more traditional methods lead
to errors larger than 1% at k ≈ 0.2 Mpc−1. The improvement in final constraints due to the
additional information gained from these modes is offset by the extra freedom allowed by the
HEFT model, and eventually limited by the ability of the model to describe the clustering of
galaxies. Therefore it is interesting to explore the evolution of the parameter uncertainties
and goodness of fit with kmax.

In Fig. 6, we present the joint constraints on Ωm and S8 for the HEFT model with kmax
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Figure 4: Measured galaxy-galaxy (“gi-gj”, top panel) and galaxy-shear (“gi-sj”, bottom
panel) power spectra (blue). Here, i and j denote the different tomographic bins (see Fig. 1).
The solid black and dashed red lines show the theoretical predictions adopting the Hybrid EFT
(HEFT) and the DY1 linear bias models respectively. Although we show these predictions
up to scales corresponding to kmax = 0.5 Mpc−1, the red dotted vertical line shows the scale
cut kmax = 0.15 Mpc−1 used for the linear bias analysis. The gray dashed horizontal line
indicates the Poisson shot-noise of the autocorrelations.

in the range [0.3, 0.6] Mpc−1, compared with the constraints found with the linear bias model
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Figure 5: As in Fig. 4, we show the power spectrum residuals, for the galaxy-galaxy and
shear-shear power spectra normalized by their 68% uncertainties. In solid black and dashed
red, we show the residuals for the Hybrid EFT (HEFT) and the DY1 linear bias models
respectively. Both agree on large scales, but the linear model is not able to fit the clustering
data on scales smaller than the 0.15 Mpc−1 scale cut (marked by the vertical dotted red line).

up to kmax = 0.15 Mpc−1. As found before, the uncertainties, particularly on Ωm, shrink
steadily as kmax is increased. This improvement, however, seems to asymptote on scales
kmax = 0.6 Mpc−1, where we recover constraints essentially equivalent to the kmax = 0.5

– 17 –



Model χ2/νeff S8 Ωm ns H0

DY1 470.9/467 0.778± 0.019 0.298+0.033
−0.045 0.956+0.042

−0.055 –

HEFT, fiducial 583.5/577 0.786± 0.020 0.273+0.030
−0.036 0.910+0.012

−0.038 –

HEFT, kmax = 0.4 650.0/632 0.781± 0.017 0.279+0.025
−0.032 0.913+0.013

−0.041 –

HEFT, kmax = 0.5 702.8/682 0.786+0.015
−0.018 0.266+0.024

−0.027 0.914+0.014
−0.040 –

HEFT, kmax = 0.6 733.2/717 0.790+0.016
−0.018 0.261+0.021

−0.032 0.914+0.017
−0.040 –

HEFT, kmax = 0.15 458.8/452 0.785± 0.020 0.294+0.037
−0.050 0.916+0.017

−0.042 –

HEFT, fixed Pij(k) 585.4/577 0.788± 0.021 0.265+0.023
−0.026 0.920+0.024

−0.039 –

HEFT, marg. stochastic 585.0/577 0.784± 0.019 0.279+0.028
−0.039 0.913+0.015

−0.039 –

HEFT, b1, b2, bs 584.4/582 0.782± 0.018 0.270+0.026
−0.034 0.925+0.021

−0.049 –

HEFT, b1, b2 589.2/587 0.775± 0.017 0.267+0.023
−0.033 0.945+0.034

−0.053 –

DY1, gg, gs 258.3/227 0.781± 0.042 0.279+0.031
−0.061 0.995+0.074

−0.026 –

HEFT, gg, gs 382.9/337 0.777+0.032
−0.038 0.299+0.038

−0.045 0.9132+0.0099
−0.043 –

DY1, H0 470.3/467 0.777± 0.019 0.299+0.036
−0.057 0.960+0.043

−0.061 68.6± 6.6

HEFT, H0, kmax = 0.5 703.6/682 0.785± 0.017 0.264+0.025
−0.032 0.913+0.015

−0.040 70.7+3.0
−3.5

Table 3: Constraints (68% confidence level) on the cosmological parameters S8, Ωm, and
ns for the different data and model configurations considered in this study. We also list the
best-fit χ2 values and effective degrees of freedom νeff for each case as a measure of goodness
of fit. The definition of νeff is discussed in the main text. Rows marked “DY1” use a linear bias
parametrization, while the others use the HEFT model. The main result is an improvement
of ∼ (35%, 10%) in the parameter uncertainties for (Ωm, S8) when using the HEFT model on
an extended range of scales. The quoted values of the scale cut kmax are in units of Mpc−1.

Mpc−1 case, in spite of adding 35 additional data points. These results are also summarized
in Fig. 7, which shows the marginalized constraints on cosmological and bias parameters
as a function of bias model and kmax. The constraints found for different models and scale
cuts are broadly consistent with each other. Other than Ωm and S8, all other parameters
do not benefit significantly from the extended scale range. The bias parameters, however,
particularly b2 and b∇, are significantly better constrained by the small-scale modes.

The bottom panel of Figure 7 shows the χ2 PTE for the different cases explored here.
Based on the results of [48] we do not expect the HEFT model to be valid far beyond kmax '
0.6 hMpc−1. Nevertheless, we find that the HEFT model is able to describe the data down to
the smallest scale explored, which expressed in the little-h units of [48] corresponds to a bone
shaking kmax ' 0.86 hMpc−1. Of course, this statement depends on the statistical power of
the data used, and will likely change with future more precise datasets.

4.3 Tests and validation

To validate the results presented in the previous section we have carried out a number of
additional tests, exploring the contents of the HEFT bias model, the parameter dependence
of the power spectrum templates used, and the impact of stochastic bias terms.
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Figure 6: Constraints on the matter fraction Ωm, and the amplitude of matter fluctuations,
parametrized by S8 ≡ σ8

√
Ωm/0.3. Results are shown using the linear bias model with

kmax = 0.15 Mpc−1(dark blue), and the HEFT model with kmax = 0.3, 0.4, 0.5, 0.6 Mpc−1,
(green, gray, red and blue respectively). As we go to higher kmax, the hybrid approach is able
to extract additional cosmological information, especially on Ωm.

4.3.1 The HEFT ingredients

The HEFTmodel adds 3 additional free parameters compared with the linear bias parametriza-
tion. However, some of these additional degrees of freedom may not be necessary to describe
the data on a given range of scales, and it is therefore interesting to explore the possibility
of simplifying the model by excluding some of these parameters. In particular, the tidal bias
and non-local bias terms (bs and b∇) describe the impact of the local tidal forces, and of
physical processes on scales smaller than the characteristic scale for galaxy formation (e.g.
the Lagrangian halo size), both of which are arguably subdominant to the impact of the local
environmental density [60, 61].

To explore this, we repeated our analysis removing b∇ alone and together with bs in
our fiducial case with kmax = 0.3 Mpc−1. The results from this exercise are summarized
in Table 3. The full-bias model does not provide any significant improvement in the fit
(∆χ2 = (0.9, 5.7) for 5 and 10 additional parameters respectively). Nevertheless, we find
compatible constraints in all cases, which reassures that the additional complexity of the full
HEFT model does not degrade the final cosmological constraints significantly. This is to be
expected, since non-local effects are likely subdominant these scales.
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Figure 7: 68% confidence level constraints on four cosmological parameters (Ωm, S8, ns,
Ωb) and four bias parameters (b1, b2, bs, b∇) for the median tomographic redshift bin of the
DES Y1 galaxy sources (see Fig. 1). The lowermost plot shows the best-fit χ2 PTEs for the
5 models considered: the linear bias model of the DY1 analysis [2] and the hybrid model
(HEFT) with kmax = 0.3, 0.4, 0.5, and 0.6 Mpc−1. Although the PTEs decrease, as we
go to higher kmax, they remain above 30% throughout. Overall the parameter constraints
get tighter, as we go from left to right, implying that the hybrid approach is able to place
stricter constraints on both the cosmological parameters (most noticeably Ωm) and the bias
parameters. Note that the Lagrangian bias parameters are set to zero in the DES Y1 linear
model.

4.3.2 The parameter dependence of HEFT templates

One of the caveats of the analysis carried out here is the simplified method used to characterize
the dependence of the HEFT power spectrum templates on cosmological parameters. As
described in Section 3.3, the ratios of the templates with respect to the matter power spectrum
are only allowed to vary linearly with respect to the cosmological parameters around the
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fiducial cosmology of the AbacusSummit suite.
To quantify the impact of this approximation we repeat our analysis for kmax = 0.3

Mpc−1 removing this linear parameter dependence altogether, and assuming constant power
spectrum template ratios. In this cruder approximation, all parameter dependence of the
power spectrum templates is captured by the matter power spectrum. The results, listed in
Table 3, show that the constraints on the primary large-scale structure parameters S8 and
Ωm are in good agreement with those found in the fiducial analysis, and that the parameter
dependence of the template ratios does not improve them significantly. The reduction in
uncertainties found before is therefore not artificially caused by incorrectly accounting for
this parameter dependence.

However, we find that the constraints on ns in both cases, although still compatible
at 1σ, show significantly different uncertainties. We believe this effect is indeed caused by
an inaccurate modeling of the ns dependence, where the linear approximation assumed here
breaks down more readily. To confirm that the improved uncertainties on ns are indeed
artificial, and not caused by the additional small-scale information enabled by the HEFT
model, we repeat our analysis in the reduced scale range k < 0.15 Mpc−1 used with the linear
bias model. The results of this test are also listed in Table 3, and show that, even in this
reduced range, we obtain tighter constraints on ns than those found with the simpler linear
bias model. This confirms that the dependence of the power spectrum template ratios on
ns is not correctly captured with our simplified setup. All future analyses using the HEFT
model should therefore rely on full emulators where this dependence is correctly captured.
We emphasize, however, that the constraints found in the (Ωm, S8) plane are unaffected by
this approximation, and indeed the HEFT results in the reduced scale range agree rather well
with those found for the linear bias model for these parameters.

Another aspect of the cosmological dependence not captured by our current implementa-
tion is the dependence on the local expansion rateH0. Since θ∗ is the same for all the Abacus-
Summit simulations used here, H0 was treated as a derived parameter, determined in terms of
the other cosmological parameters by fixing θ∗ to the AbacusSummit value. Although we do
not expect this to impact our results significantly, since the DY1 analysis was not able to con-
strain H0, we have repeated our analysis treating H0 as a free parameter. This was done for
the DY1 linear bias model with kmax = 0.15 Mpc−1, and for the HEFT model with kmax = 0.5
Mpc−1. Due to the limitation we just described, we are not able to account for this param-
eter dependence in the HEFT power spectrum ratios, and therefore the dependence is only
included in the HALOFIT matter power spectrum. The results, listed in Table 3, show that the
constraints on (Ωm, S8) are not affected by the additional parameter freedom. Interestingly,
we find that we are able to recover tighter constraints on H0 (σ(H0) ' 3.3 km s−1 Mpc−1)
than those found in the linear analysis (σ(H0) ' 6.6 km s−1 Mpc−1). Since the dependence
on H0 may be imperfectly captured by our implementation, we cannot make a claim regard-
ing this result. However, the possibility of constraining H0 from the joint analysis of galaxy
clustering and weak lensing on the smaller scales enabled by the HEFT bias model, should
be explored in the future.

4.3.3 Stochasticity

As described in Section 3.2, we expect the galaxy overdensity to receive a stochastic contri-
bution sourced by the small-scale physics governing galaxy formation and evolution. This
contribution should dominate the galaxy power spectrum on small scales and, as shown in
Fig. 1, dominates the deterministic signal on angular scales ` & 1000. By inspecting the mea-
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sured power spectra on these scales, we find that the stochastic contribution is well described
by a Poisson-like process, with CSN

` = 1/n̄Ω after accounting for the effects of inhomogeneous
sky coverage, where n̄Ω is the number of galaxies per steradian. Nevertheless, to allow for
possible residual stochastic contributions, we repeat our analysis allowing for an additional
free amplitude parameter Aε per redshift bin multiplying this shot-noise contribution, and
marginalize over it with a conservative 10% Gaussian prior centered on Aε = 1. Since Aε is a
linear parameter, this marginalization is done analytically by simply modifying the covariance
matrix as:

Cov``′ −→ Cov``′ + σ2
AC

SN
` CSN

`′ , (4.2)

where σA = 0.1.
The result of this test, listed in Table 3, shows that the effect of residual stochastic

contributions is negligible, both in the best-fit parameters and their uncertainty.

4.3.4 Excluding shear

The three main components of the data vector used here are the galaxy-galaxy, galaxy-shear,
and shear-shear correlations (gg, gs and ss respectively). Of these, ss is not sensitive to any
modeling improvement brought about by the use of the HEFT model. In order to better
isolate the parameter constraint enhancement, and the goodness of fit associated with the
HEFT model, we repeated our analysis excluding the ss component from the data. This was
done both for the DY1 linear bias model with k < 0.15 Mpc−1, and for the HEFT model
with kmax = 0.3 Mpc−1. The results are shown in Table 3.

When excluding the shear-shear data, the uncertainty on S8 grows by ∼ 60% for both
bias models, while the constraints on Ωm grow by about ∼ 20%. This shows that the inclusion
of galaxy clustering information plays a vital role in constraining Ωm [2]. The relative im-
provement in constraints associated with the HEFT model is similar in both cases. Excluding
the effects of intrinsic alignments, cosmic shear is an unbiased tracer of the matter fluctu-
ations. Thus, in spite of its significantly lower signal-to-noise ratio compared with galaxy
clustering, the shear power spectrum is able to obtain comparatively tighter constraints.

It is worth noting that the goodness of fit of the gg-gs sector is notably lower for both
bias models than that of the full data vector, with a minimum PTE of 4.5%. Although the
statistical significance is not high, this may be a sign of unmodelled systematics in the data.
A visual inspection of the data suggests that it is impossible for the model to fit some of the
galaxy-shear power spectra corresponding to lens samples partially behind the sources (e.g.
“g2-s0” or “g3-s0” in Fig. 1). This is a feature of both the linear and HEFT models, and could
be ascribed to an imperfect model of the source or lens redshift distributions.

5 Discussion & Conclusions

This paper presents the first application of the Hybrid EFT (HEFT) bias model of [1] to
observational data. In particular, we re-analyzed the combination of lensing shear and pro-
jected galaxy clustering from the DES Y1 data release. This methods holds promise to be the
method of choice for next generation surveys, since it efficiently combines the reach of N -body
simulations deep into the non-linear regime with the analytical exactness and theoretical con-
trol of bias expansions. We note that photometric surveys are especially well suited for the
first application of this method, since we do not require a precise model for redshift-space
distortions.

– 22 –



We calibrated our HEFT basis power spectra from the AbacusSummit N -body simula-
tions, smoothly interpolating into large-scale analytical solutions and using a linear expansion
around the fiducial model to account for the cosmology dependence. In this preliminary work
we have focused on the goodness-of-fit as basic quantity by which to choose whether a model
produces a reliable fit.

Our results can be summarized as follows:

• HEFT models offer a good fit to the data. Nominally, the χ2 is good all the way to
kmax = 0.6 Mpc−1

• HEFT models offer a stable fit to the data. While the uncertainties decrease, the inferred
values of all parameters remain consistent as we push to higher kmax;

• Given the enormous increase in signal-to-noise, as we increase the kmax, the improvement
on the cosmological parameters of interest is rather modest. The standard interpretation
is that all the new information is going mostly into determining the bias parameters
rather than the cosmology. In some sense this method offers “graceful transition to
ignorance”, where the information in the 2-point function is being exhausted and the
results do not depend strongly on the choice of scale cut. This observation also implies
that a 3-point function over the same scales could break further degeneracies and bring
concrete improvements in our determination of cosmological parameters.

• While the constraint on S8 improves modestly (about ∼ 10%) for kmax = 0.5 Mpc−1, we
do notice a significant improvement in the uncertainty on Ωm, which shrinks by about
35% to Ωm = 0.266+0.024

−0.027. This implies that HEFT starts to break the degeneracy in
the less constraining direction of the “weak-lensing banana” contour on the σ8 − Ωm-
plane. Interestingly, our results are ∼ 2σ away from the central value found by Planck,
Ωm = 0.315± 0.007 [50].

• In our fits, we have left Ωb, ns and H0 (with fixed angular diameter distance to the last
scattering) as free parameters. While it is not expected that the combination of cosmic
shear and galaxy clustering at the level of two-point functions can measure these with
significant precision, it is nevertheless re-assuring that the parameters were bound by
the data, rather than the prior and that Planck-determined values lie well withing the
posteriors spanned by them.

• While analyzing the data, we noticed that the χ2 values for the gg and gs power spectra
are somewhat high. However, the statistical significance is small when accounting for
the effective number of fitted degrees of freedom.

We reiterate that the work presented here is fundamentally exploratory in nature and
our constraints should not be taken to be as robust as those supported by extensive testing
on realistic mock datasets. There are numerous steps where our method can be improved.

Most importantly, the exact kmax limits should be obtained based on mock galaxy cata-
logs populated with realistic distribution of galaxies, rather than relying solely on the good-
ness of fit. Ideally, such mock catalogs should be based on an independent suite of N -body
simulations spanning plausible cosmologies and recipes for populating halos with galaxies.
Methodologically, the way templates are created leaves several open questions in terms of
how basis spectra are generated and interpolated. At the moment we have chosen the pivot
points for interpolation between analytic and N -body solutions essentially “by hand”. Basis
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spectra involving δ2
L and ∇δL are noisy and may show a weak dependence on the smoothing

scale (not used in this paper). The sample variance in the basis spectra is poorly understood.
As we were building our prediction scheme, independent emulators were developed by [48] and
[52]. Repeating our analysis by replacing our simple linear parametrization (see Eq. 3.13 with
such an emulator would be a very interesting cross-check that would quantify the systematic
errors in our theory model. We leave this, and the other caveats listed in this paragraph,
for future work. As the power of the HEFT approach becomes apparent, we expect that the
coming years will bring about more sophisticated methods to measure and interpolate the
relevant quantities from N -body simulations.

Despite these caveats, HEFT worked on DES Y1 data “out of the box”, producing a
good and stable fit without any tweaking. Our results confirm the robustness of DES Y1
data and demonstrate the promise of the upcoming generation of photometric galaxy surveys
when analyzed with state-of-the-art theory prediction tools.
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