
Prepared for submission to JCAP

Cosmic shear power spectra in
practice

Andrina Nicola,a,1 Carlos García-García,b,c,d David Alonso,d Jo
Dunkley,a,e Pedro G. Ferreira,d Anže Slosar,f David N. Spergela,g

aDepartment of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ
08544, USA
bInstituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, c/. Ser-
rano 123, E-28006, Madrid, Spain
cInstitut de Ciències del Cosmos (UB-IEEC), c/. Martí i Franqués 1, E-08028, Barcelona,
Spain
dDepartment of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Ox-
ford OX1 3RH, United Kingdom
eDepartment of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544, USA
fBrookhaven National Laboratory, Physics Department, Upton, NY 11973, USA
gCenter for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York,
NY 10010, USA

E-mail: anicola@astro.princeton.edu

Abstract. Cosmic shear is one of the most powerful probes of Dark Energy, targeted by
several current and future galaxy surveys. Lensing shear, however, is only sampled at the
positions of galaxies with measured shapes in the catalog, making its associated sky window
function one of the most complicated amongst all projected cosmological probes of inhomo-
geneities, as well as giving rise to inhomogeneous noise. Partly for this reason, cosmic shear
analyses have been mostly carried out in real-space, making use of correlation functions, as
opposed to Fourier-space power spectra. Since the use of power spectra can yield comple-
mentary information and has numerical advantages over real-space pipelines, it is important
to develop a complete formalism describing the standard unbiased power spectrum estima-
tors as well as their associated uncertainties. Building on previous work, this paper contains
a study of the main complications associated with estimating and interpreting shear power
spectra, and presents fast and accurate methods to estimate two key quantities needed for
their practical usage: the noise bias and the Gaussian covariance matrix, fully accounting
for survey geometry, with some of these results also applicable to other cosmological probes.
We demonstrate the performance of these methods by applying them to the latest public
data releases of the Hyper Suprime-Cam and the Dark Energy Survey collaborations, quan-
tifying the presence of systematics in our measurements and the validity of the covariance
matrix estimate. We make the resulting power spectra, covariance matrices, null tests and
all associated data necessary for a full cosmological analysis publicly available.
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1 Introduction

Since its first detection two decades ago [1–4], cosmic shear has become a powerful cosmo-
logical probe of the late-time Universe, uniquely sensitive to its Dark Matter content and the
properties of Dark Energy [5, 6]. It therefore lies at the core of several current and future
surveys, including the Dark Energy Survey (DES)1, the Hyper Suprime-Cam survey (HSC)2

and the Kilo-Degree Survey (KiDS)3, as well as the Rubin Observatory Legacy Survey of
Space and Time (LSST)4, Euclid5 and the Roman Telescope6.

1https://www.darkenergysurvey.org.
2https://hsc.mtk.nao.ac.jp/ssp.
3http://kids.strw.leidenuniv.nl.
4https://www.lsst.org.
5https://www.euclid-ec.org.
6https://roman.gsfc.nasa.gov.
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Cosmic shear measurements are obtained from the shapes of individual galaxies and the
shear field can therefore only be reconstructed at discrete galaxy positions, making its asso-
ciated angular masks some of the most complicated amongst those of projected cosmological
observables. This is in addition to the usual complexity of large-scale structure masks due to
the presence of stars and other small-scale contaminants. So far, cosmic shear has therefore
mostly been analyzed in real-space as opposed to Fourier-space (see e.g. Refs. [7, 8], while
Ref. [9] used power spectra). However, Fourier-space analyses offer complementary informa-
tion and cross-checks as well as several advantages, such as simpler covariance matrices, and
the possibility to apply simple, interpretable scale cuts. Therefore, methodologies to perform
direct Fourier-space analyses for cosmic shear have been studied in the literature [10, 11]. In
addition, several indirect cosmic shear power spectrum estimation methods [12, 13] or closer
cousins such as COSEBIs [14] have been proposed. Common to these methods is that power
spectra are derived by Fourier transforming real-space correlation functions, thus avoiding
the challenges pertaining to direct approaches.

Given the fast growth of available imaging data in current and future experiments, and
the presence of statistical tensions between the parameter constraints from some of these
datasets and those from Cosmic Microwave Background (CMB) experiments [9, 15–17], it is
vital to have a tight control over the level of accuracy of the estimators used to calculate the
different ingredients of the likelihood. For instance, the weak lensing community have iden-
tified the accuracy of the covariance matrix [18–20], including the effects of survey geometry
on the shape noise contributions [21], and the choice of angular scales at which to evaluate
the theoretical predictions for binned correlation functions [21, 22], as details that can have a
significant effect on the final parameter constraints. As we will discuss here, these problems
can be addressed accurately and analytically through the use of power spectra. This is in
addition to the larger problems of photometric redshift uncertainties [16, 23–25], modeling
the effects of baryons on the matter power spectrum [26–29], or the impact of intrinsic galaxy
alignments [30–33], which we do not address here.

In this work, we build on Refs. [10, 11] and present methodologies for efficient and ac-
curate cosmic shear analyses in Fourier-space, especially focusing on two challenges faced by
these methods: the estimation of the noise power spectrum, or noise bias due to intrinsic
galaxy shape noise and the estimation of the Gaussian contribution to the power spectrum
covariance. We present analytic expressions for both the shape noise contribution to cosmic
shear auto-power spectra and the Gaussian covariance matrix, which fully account for the
effects of complex survey geometries. These expressions avoid the need for potentially ex-
pensive simulation-based estimation of these quantities. In addition, even though the cosmic
shear covariance receives additional contributions from super-sample variance (e.g. [34]) and
the non-Gaussian connected trispectrum (e.g. [35]), cosmic shear errors have been found to
be dominated by the Gaussian covariance [36], making its accurate estimation an important
part of any weak lensing analysis.

We validate the derived expressions by applying them to the latest public data releases
of two current cosmic shear surveys, HSC Data Release 1 [37] and DES Year 1 [38, 39]. We
perform a rigorous suite of systematics tests and compare our results to those obtained by the
respective collaborations [7, 9]. Furthermore, we make all the products needed to use these
data for cosmological analyses publicly available at https://github.com/xC-ell/ShearCl.

This paper is organized as follows. In Section 2, we briefly review pseudo-C` power spec-
trum estimation and derive analytic expressions for both noise bias and Gaussian covariance
matrices within this framework. In Section 3, we present the data sets used in this work and
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Symbol Curved sky Flat sky (continuum → discretized)
l (`,m) (lx, ly)∑

l

∆l2
∞∑
`=0

∑̀
m=−`

∫
dl2

2π
→
∑
l

2π

LxLy

∆x(l, l′) δK``′δ
K
mm′ 2π δD(l− l′)→ δKlxl′xδ

K
lyl′y

LxLy
(2π)2

2π

x θ̂ ≡ (θ, ϕ) (x, y)∑
x

∆x2
∫ φ

0
dφ

∫ 1

−1
d(cos θ)

∫
dx2

2π
→
∑
x

LxLy
2πNxNy

∆k(x,y) δD(cos θ − cos θ′)δD(ϕ− ϕ′) 2π δD(x− y)→ δKxx′δ
K
yy′
NxNy

LxLy
2π

V 1 (2π)−1

Table 1: Lookup table describing the generalized notation introduced in Ref. [40] for quan-
tities defined on the sphere (second column) and on the flat 2D plane (third column). For
the flat-sky case, we also provide expressions for a discretized, finite 2D plane with periodic
boundary conditions. In this case, the map has dimensions (Lx, Ly) subdivided into (Nx, Ny)
equi-spaced pixels in (x, y). δD and δK denote the Dirac and Kronecker delta functions,
respectively.

the validation of our results using these data is presented in Section 4. We conclude in Section
5. Appendix A discusses the effective pixel window function in cosmic shear datasets, and
Appendix B contains further details on the null tests performed.

2 Pseudo-C`s for cosmic shear

This section summarizes the mathematical framework behind pseudo-C` estimators. In par-
ticular, we will focus on the problems of estimating the noise bias and disconnected covariance
matrix in the presence of a complex mask, describing general methods to calculate both ac-
curately. We will first briefly describe cosmic shear and its measurement in order to give
a specific example for the generation of the fields considered in this work. The subsequent
sections, describing power spectrum estimation, employ a generic notation applicable to the
analysis of any projected field.

2.1 Cosmic shear

The lensing shear γ ≡ (γ1, γ2) is a spin-2 field that is, at linear order, proportional to the
traceless components (the ellipticity e ≡ (e1, e2)) of the projected inertia tensor of an origi-
nally circular source [41]. Cosmic shear can be thus estimated from the measured ellipticities
of galaxy images, but the presence of a finite point spread function and noise in the im-
ages conspire to complicate its unbiased measurement. Modern shear estimation methods
can generally be subdivided into three classes: point estimators (e.g. [42]), the Metacali-
bration/Metadetect shear estimation method [43, 44] and the Bayesian Fourier domain
(BFD) approach [45]. All of these methods apply different corrections for the measurement
biases arising in cosmic shear. We refer the reader to the respective papers and Sections 3.1
and 3.2 for more details.

– 3 –



In the simplest model, the measured shear of a single galaxy can be decomposed into
the actual shear, a contribution from measurement noise and the intrinsic ellipticity of the
galaxy. Intrinsic galaxy ellipticities dominate the observed shears and single object shear
measurements are therefore noise-dominated. Moreover, intrinsic ellipticities are correlated
between neighboring galaxies or with the large-scale tidal fields, leading to correlations not
caused by lensing, usually called “intrinsic alignments”. For the purposes of this discussion,
we will absorb all correlated components into the signal γ and assume uncorrelated noise.
With this subdivision, the intrinsic alignment signal must be modeled as part of the theory
prediction for cosmic shear. Finally we note that measured shears are prone to leakages due to
the point spread function ellipticity and its associated errors. These sources of contamination
must be either kept at a negligible level, or modeled and marginalized out.

To compute power spectra, the catalogs obtained from galaxy surveys must be pixelized
onto a finite grid, assigning each pixel the weighted average of the ellipticities of all galaxies
falling into it:

γ̂(xp) =

∑
i∈p vi ei∑
i∈p vi

, (2.1)

where γi denotes the shear of the i-th galaxy, vi7 is its shear measurement weight and sums
are over all galaxies falling into pixel p. Analogously, we can compute the per-pixel noise
variance map from the galaxy ellipticities as

σ2γ,p =

∑
i∈p v

2
i σ

2
e,i(∑

i∈p vi

)2 , σ2e,i ≡
1

2
(e21,i + e22,i). (2.2)

We note that this expression is equivalent to the noise variance that would result from aver-
aging over a large suite of random catalogs in which the original ellipticities of all sources are
rotated by independent random angles. Ellipticities rotated by an angle α, eαk , are related
to the un-rotated ones via a double-angle phase: eα1 + ieα2 = exp(i2α) (e1 + ie2). The shear
variance over many such rotations can be calculated by averaging (eα1 )2 or (eα2 )2 over α with
a flat distribution in the interval [0, 2π), yielding Var(eαk ) = (e21 + e22)/2, as in Eq. 2.2. Using
this expression in all equations below is therefore equivalent to estimating the corresponding
quantities (noise bias, covariance matrices) by computing power spectra from a large num-
ber of randomly rotated catalogs, as done in e.g. Refs. [9, 46]. As these random rotations
destroy any existing correlation between galaxy ellipticities, their use will not capture any
source of correlated noise. Generating random catalogs, their corresponding shear maps and
their power spectra are computationally expensive operations for large datasets. Therefore,
the methods presented in this work significantly simplify the estimation of power spectra and
their covariance matrices while simultaneously improving the accuracy of those estimates by
eliminating the stochastic noise associated with a finite number of random realizations.

In addition to the signal and noise maps discussed above, we also need their associated
sky masks or weight maps in order to compute power spectra. The inverse variance weight
map for shear observations for a general set of weights vi and shear estimate variances σe,i is

wIV(xp) =

(∑
i∈p vi

)2∑
i∈p v

2
i σ

2
e,i

. (2.3)

7Shape weights are usually labelled w, but we use v here to avoid confusing it with the weight map w(xp),
introduced in the subsequent sections.
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In the case of inverse variance weighting, which amounts to setting vi = σ−2e,i , Eq. 2.3 reduces
to8

wSW(xp) =
∑
i∈p

vi. (2.4)

Eq. 2.1 implies that shears can only be estimated in pixels in which galaxies have been
detected, thus giving rise to complex sky masks. In addition, the noise in pixelized cosmic
shear maps depends on the number of galaxies falling into each pixel and is therefore inho-
mogeneous, as can be seen from Eq. 2.2. This is immediately more complicated than the
case of e.g. galaxy clustering, where the noise is homogeneous for a uniform survey (up to
depth variations). These reasons, as well as challenges arising from the spin-2 nature of the
involved fields, render the measurement of power spectra for cosmic shear more involved than
for other probes.

Finally, the use of pixelized datasets requires accounting for the effects of the finite pixel
size. Assuming that the value contained in each pixel is a homogeneous average of a given
field, this is commonly accounted for by deconvolving the pixel window function in Fourier
space (see e.g. [10]), alongside any other sources of smoothing (e.g. instrumental beams).
If instead the pixels contain the values of the field sampled at a given point (e.g. the pixel
centre), no smoothing needs to be accounted for. Since, again, the cosmic shear signal is only
sampled at discrete source positions, finite-pixel effects cannot be modeled exactly, since they
depend on the number density and distribution of those sources, as well as pixel size. For low
number densities (∼ 1 source per pixel on average), the situation is closer to the sampling
case, while for high densities (∼ 10 sources per pixel), pixelization is more akin to averaging.
This is discussed in more detail in Appendix A. The general advice, nevertheless, is to use a
pixel size θpix that is smaller than the smallest scale used in the analysis (i.e. `max � π/θpix),
and to test that the results are insensitive to the choice of pixel resolution, as is done in this
work.

2.2 Preliminaries

To derive results that are simultaneously applicable in curved skies and within the flat-sky
approximation, we will use the abstract notation introduced in Ref. [40] and summarized in
Tab. 1. Further details about this formalism can be found in Refs. [40, 47].

The data considered here will be in the form of a pixelized 2D map of a Gaussian,
statistically-isotropic, stochastic field a(x) with 1 or 2 components per pixel (for spin-0 and
spin-2 quantities, respectively). Its generalized Fourier coefficients are given by

ak =
∑
x

∆x2 E†k(x)a(x), (2.5)

where the operator
∑

x ∆x2 denotes an integral or sum over all values of the coordinates x,
and E†k(x) are a complete set of orthogonal functions given in terms of spin-weighted spherical
harmonics or 2D plane waves as described in Ref. [47]. The orthogonality and completeness

8This is an optimal weighting when σe,i contains all sources of variance of shear around its mean value in
the pixel, including that coming from intrinsic shear fluctuations on small scales. In practice these are always
subdominant to the measurement error.
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relations are: ∑
x

∆x2 E†k(x)El(x) = 1∆x(k, l), (2.6)∑
k

∆k2 Ek(x)E†k(y) = 1∆k(x,y), (2.7)

where ∆x and ∆k are generalized delta functions in Fourier and real space respectively and
1 denotes the identity matrix in the spin matrix basis. The statistics of these Gaussian fields
are determined by their covariance, defined in terms of the power spectrum Cabk as

〈akb†l 〉 ≡ Cab` V ∆x(k, l), (2.8)

where V is a volume factor.
All maps will be composed of signal (s) and noise (n), so that a(x) = sa(x) + na(x),

where the superscript a is added to specify that we refer to the signal and noise of the field
a. Using a discrete notation, where xp is the position of the sky pixel with index p, we
will assume that the noise is uncorrelated between pixels, but not necessarily homogeneous.
Therefore we have

〈na(xp)nb†(xp′)〉 = (σap)21δabδpp′ , (2.9)

where we have further assumed that the noise components of different maps are uncorrelated.
If this noise is uncorrelated on arbitrarily small scales, the noise variance should scale inversely
with the pixel area Ωpix (i.e. (σap)2 ∝ Ω−1pix).

2.3 Pseudo-C`
In the presence of inhomogeneous noise, the data must be optimally weighted in order to
minimize the variance of the estimated power spectrum. Optimal quadratic estimators use
a well-educated guess of the data’s covariance matrix and multiply the data by this inverse
covariance (e.g. [48, 49]). While several methods have been proposed to speed up this calcu-
lation (e.g. Refs. [50–53]), this remains a computationally challenging task for high-resolution
data. Pseudo-C` estimators circumvent this problem by assuming a diagonal covariance, in
which case inverse-variance weighting is a simple product of maps, where the weighted or
"observed" map is [54]:

ã(xp) = wa(xp)a(xp) = wa(xp) [sa(xp) + na(xp)] . (2.10)

If the map is noise-dominated, and assuming uncorrelated noise as described above, the
optimal weight map wa(x) (also commonly called the “mask”) is simply

wa(xp) =
Na

(σap)2
, (2.11)

where Na is an arbitrary constant that could be chosen to e.g. make wa unitless9.
Given a choice of weight wa, the Fourier coefficients of ã are

ãl =
∑
k

(∆k)2Mlk(wa)sak +
∑
p

(∆x)2wa(xp)E
†
l (xp)n

a(xp). (2.12)

9For signal-dominated maps, a more appropriate weighting scheme would be found by adding the signal
and noise variances in quadrature. The optimality of the pseudo-C` estimator in this case, however, would
depend on the steepness of the signal power spectrum [55].
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The quantities Mlk(w) are the coupling coefficients, given by

Mlk(w) ≡
∑
p

(∆x)2w(xp)E
†
l (xp)Ek(xp), (2.13)

and we have left the noise part expressed in real space, where its covariance is simplest.
The diagonal of the coupling coefficients Mlk satisfies:

Mll(w) = 1
A

2π
〈w〉pix, in flat sky, (2.14)∑`

m=−`Mll(w)

2`+ 1
= 1〈w〉pix, in curved sky, (2.15)

where 〈·〉pix denotes averaging the quantity inside brackets over all pixels, and A is the patch
area.

Since signal and noise are uncorrelated, the covariance of two observed fields ãl and b̃l

is:

〈ãlb̃†l′〉 =V
∑
k

(∆k)2Mlk(wa)Cabk M†l′k(wb) + δab(∆x)2Mll′((σ
awa)2). (2.16)

Given this result, the pseudo-C` estimator proceeds in two steps:

1. We first group different l modes into bins (typically bands of similar ` or annuli of
flat-sky Fourier modes spanning a range of radii). The resulting binned pseudo-C`’s are
called bandpowers and are given by:

C̃abq =
∑
l∈q

Bl
q ãlb̃

†
l , (2.17)

where the index q denotes a given bandpower and its weights are normalized such that∑
l∈q B

l
q = (V∆x(0))−1.

Using Eq. 2.16, the ensemble average of the binned pseudo-spectrum is related to the
true underlying power spectrum through a linear operation:〈

C̃abq

〉
=
∑
l∈q

Bl
qV
∑
k

(∆k)2Mlk(wa)Cabk M†lk(wb) + δabÑq, (2.18)

where Ñq collects the second term in Eq. 2.16 and will be discussed in the next section.

2. The correlation between different elements of the pseudo-spectrum induced by the mode-
coupling coefficients is largely reversed by multiplying C̃abq by the inverse of the so-called
binned “mode-coupling matrix” M, which is related to the mode-coupling coefficients
Mlk and the explicit expression can be found in Eq. (14) in Ref. [47]. With this, the
final pseudo-C` estimator is given by

vec
(
Ĉabq

)
=
∑
q′

(
M−1

)
qq′

vec
(
C̃abq′ − δabÑq′

)
. (2.19)

Here the vec() operator transforms an N×N matrix into an N2 vector by concatenating
all its rows and hat denotes the final uncoupled estimator of the power spectrum.

The main numerical advantage of pseudo-C` estimators is the fact that Mqq′ can be
computed analytically, making use of methods scaling as `3max [54].
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This procedure is fully analytic, allowing us to account for the effects of mode coupling and
binning on the theory prediction exactly. The binned theory prediction Cabq is given by the
unbinned power spectrum Cab` convolved with the so-called bandpower window function Fq`.
In the case of spin-0 fields defined on a curved sky, this is given by [47]:

Cabq =
∑
`

Fabq` Cab` , Fabq` ≡
∑
q′

(
M−1

)
qq′

∑
`′∈q′

(2`+ 1) Ξ`′`(w
a, wb), (2.20)

where we have defined the coupling coefficients

Ξ``′(w
a, wb) =

∑`
m=−`

∑`′

m′=−`′ Mll′(w
a)M∗ll′(w

b)

(2`+ 1)(2`′ + 1)
. (2.21)

For spin-2 fields, the bandpower window functions additionally involve mixing of E and
B-modes and the specific expressions for the binned theory power spectra can be found in
Ref. [47]. There is therefore no ambiguity in the procedure to calculate a binned theory power
spectrum: the theory prediction evaluated at all integer multipoles needs to be convolved with
the linear kernel Fabq` in Eq. 2.20. In real-space analyses, the equivalent procedure involves
integrating the correlation function over bins of angular separation weighted by the number
of weighted pairs of sources at different angles. This operation can be prohibitively expensive,
but may be circumvented by evaluating the correlation function at judiciously chosen scales
[21, 56].

2.4 Noise bias

The second term in Eq. 2.16 is the so-called noise bias, which must be subtracted from
auto-correlations in Eq. 2.19 in order to obtain an un-biased estimate of the signal power
spectrum. Using the property of the mode-coupling coefficients in Eq. 2.14, the contribution
to the binned pseudo-spectrum is white (i.e. scale-independent) and given by:

Ñq =

〈∑
l∈q

Bl
q|ñl|2

〉
= 1Ωpix

〈
w2 σ2

〉
pix
, (2.22)

where Ωpix is the pixel area in steradians, which we assume to be constant across the map.
Note that this result is valid in both curved and flat skies. The contribution to the mode-
decoupled bandpowers is then computed by inverting the binned mode-coupling matrix:

N̂q =
∑
q′

(
M−1

)
qq′

Ñq′ . (2.23)

These expressions show that under the assumptions made in this work, any scale dependence
in the final mode-decoupled noise bias is purely induced by the mode-coupling matrix.

For the specific case of shear, the noise bias to the pseudo-spectrum (Eq. 2.22) is given
by:

ÑSW
` = 1Ωpix

〈∑
i∈p

v2i σ
2
e,i

〉
pix

, ÑIV
` = 1Ωpix

〈(∑
i∈p vi

)2∑
i∈p v

2
i σ

2
e,i

〉
pix

, (2.24)

for sum of weights (SW) or inverse variance (IV) masks, respectively.
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2.5 Covariances

Accurately calculating the covariance of the estimated power spectra is crucial in order to use
them to extract reliable cosmological parameter constraints. Due to the non-linear nature of
gravitational collapse, the initially Gaussian density fluctuations become non-Gaussian over
time. While the distribution of the pseudo-C` estimator on sufficiently small scales is still well
described as a multivariate Gaussian [57, 58] due to the central limit theorem, the covariance
of this distribution receives contributions from the connected (i.e. non-Gaussian) four-point
correlator of the density field. These additional contributions have been extensively studied
in the literature (e.g. [34, 35, 59, 60]), and can be broken down into two components: the so-
called super-sample covariance (SSC), caused by the non-linear coupling of modes larger than
the surveyed volume with small-scale fluctuations, and the standard non-Gaussian connected
trispectrum (cNG). Ref. [36] found that the disconnected or “Gaussian” part of the covariance
matrix (i.e. the covariance matrix calculated under the assumption that all fields involved are
Gaussianly distributed), constitutes the dominant source of uncertainty, and that the SSC
dominates over the cNG terms for cosmic shear on most scales.

Since the Gaussian covariance matrix dominates the final uncertainties, its accurate
analytical estimation will be the focus of our discussion in this section. The results presented
in Section 4.4 and the data products made publicly available will also include the SSC and
cNG contributions, estimated analytically following the approach of Ref. [61]10. Analytic
estimates of the covariance matrix are computationally less expensive than simulation-based
approaches and have recently been shown to yield consistent constraints, even in the case of
a full-shape galaxy power spectrum analysis [62].

2.5.1 Gaussian covariances

The main complication in estimating the disconnected covariance is accounting for the mode-
coupling effects induced by incomplete sky coverage. Survey geometry has been identified as
a key factor in obtaining accurate uncertainties for cosmic shear data [21] which, if incorrectly
modeled, can lead to wrong assessments of goodness-of-fit, parameter biases and varying levels
of tension between experiments.

The disconnected covariance of the pseudo-C` estimator was studied in detail in Ref. [40]
in the context of large-scale structure data, and similar approaches have been studied in
Refs. [63–66]. Here we briefly describe the main aspects of the formalism described in Ref. [40],
and extend it to account for the interplay between noise and signal, as well as the increased
level of mode-coupling caused by the cosmic shear mask. To simplify the discussion and
notation, we will describe the main aspects of Gaussian pseudo-C` covariances in the context
of spin-0 fields with a single component. The main results shown here are then directly
applicable to fields with arbitrary spins following the approximations described in Ref. [40].

The pseudo-C` estimator involves products of two fields, and its covariance is therefore
a linear combination of the four-point function of those fields. Under the assumption of
Gaussian statistics, we can use Wick’s theorem to express those four-point functions in terms
of products of two-point correlators. As shown in Ref. [63], estimating the covariance between
the power spectrum Ĉab` of fields a and b, and that of fields f and g, Ĉfg`′ , reduces to computing
terms of the form:

〈ãlg̃∗l′〉〈b̃∗l f̃l′〉+ (f ↔ g), (2.25)
10As the cosmic shear covariance is dominated by the Gaussian part, we model the effects of finite sky

coverage on the non-Gaussian corrections using the approximations given in Ref. [61] and do not fully account
for mode-coupling as we do for the Gaussian part.
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where the second term involves interchanging the roles of fields f and g.
Each of these terms involves a two-point correlator of the masked fields as in Eq. 2.16

at different Fourier modes l and l′. Computing those exactly for l 6= l′ is a slow O(`6max)
calculation, since the usual mathematical identities that simplify the calculation of the pseudo-
C` mode-coupling matrix cannot be applied. For that reason the so-called “narrow kernel
approximation” (NKA) has been advocated in Refs. [40, 63]. This approximation is based on
assuming that the coupling coefficients Mlk have a narrow peak around l = k, and that all
power spectra Cabk vary slowly within that region (and can therefore be taken out of the sum
over k modes). The standard NKA reads:

〈ãlb̃∗l′〉 =
∑
k

(∆k)2Mlk(wa)M∗l′k(wb)Cabk ' Cab(`,`′)
∑
k

(∆k)2Mlk(wa)M∗l′k(wb), (2.26)

where Cab(`,`′) = (Cab
` + Cab

`′ )/2. This is further simplified due to the following property of the
coupling coefficients: ∑

k

(∆k)2Mlk(wa)M∗l′k(wb) = Mll′(w
awb). (2.27)

Thus, in the NKA, Eq. 2.16 reads:

〈ãlb̃∗l′〉 =V Cab(`,`′)Mll′(w
awb) + δab(∆x)2Mll′((σ

awa)2). (2.28)

After averaging over annuli, the covariance between the pseudo-spectra becomes:

Cov(C̃ab` , C̃
fg
`′ ) =Cag(`,`′)C

bf
(`,`′)Ξ``′(w

awg, wbwf ) +

δag(∆x)2Cbf(`,`′)Ξ``′((w
aσa)2, wbwf ) +

δbf (∆x)2Cag(`,`′)Ξ``′(w
awg, (wbσb)2) +

δagδbf (∆x)4Ξ``′((w
aσa)2, (wbσb)2)

+ (f ↔ g), (2.29)

where we have used the coupling coefficients defined in Eq. 2.21. Note that the arguments
of the coupling coefficients Ξ`,`′ are products of masks and noise variance maps, instead of
individual maps as in Eq. 2.21.

Due to the usage of the NKA, Eq. 2.29 is approximate in the signal terms, but it is
exact in the noise terms. A similar result was presented in Ref. [66]. In addition, within
this approximation, the mode-coupling matrices used to estimate the pseudo-C` between two
fields with masks wa and wb are given by

M``′ = (2`′ + 1) Ξ``′(w
a, wb), (2.30)

i.e. the coupling coefficients Ξ``′ are equivalent (up to a factor of 2`′ + 1) to the usual
mode-coupling matrices, except they involve other types of maps. Thus, within the NKA,
estimating the Gaussian pseudo-C` covariance is roughly as fast as estimating the power
spectra themselves. In principle, however, it requires calculating four additional sets of mode-
coupling coefficients, which usually dominates the total computation time.
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2.5.2 Approximating the noise contribution

Although Eq. 2.29 is in principle no more complicated than the noiseless case, having to
calculate and store three extra mode-coupling matrices can be an unnecessary drag on com-
putational resources. It is therefore worth exploring whether an adequately chosen effective
“noise power spectrum” Ncov

` could be added to the signal C` in the first term of the equation
to replace the other three. To do so, let us again turn to Eq. 2.28. In the case l = l′, a = b,
after averaging over annuli, and using the property of the coupling coefficients (Eq. 2.14), we
obtain: 〈

|ãl|2
〉
|l| = 〈(w

a)2〉pix
[
Cab` + Ωpix

〈(waσa)2〉pix
〈(wa)2〉pix

]
, (2.31)

where 〈·〉|l| implies averaging over annuli. Thus, a natural approximation to the noise power
spectrum to be used for covariance calculation is:

Ncov
` = 1Ωpix

〈w2σ2〉pix
〈w2〉pix

= 1Ωpix
〈σ−2〉pix
〈σ−4〉pix

, (2.32)

where the second equality holds for inverse-variance weights (Eq. 2.11). Note that this
“covariance” noise spectrum is the same as the mode-coupled noise bias Ñq in Eq. 2.22,
corrected for the impact of mode coupling by a simple rescaling factor 1/〈w2〉pix.

In the case of shear, the approximate noise spectrum to be used for covariance estimation
(Eq. 2.32) is given by

Ncov,SW
` = 1Ωpix

〈∑
i∈p v

2
i σ

2
e,i

〉
pix〈(∑

i∈p vi

)2〉
pix

, (2.33)

Ncov,IV
` =

〈(∑
i∈p vi

)2∑
i∈p v

2
i σ

2
e,i

〉
pix

/〈 (∑
i∈p vi

)4
(∑

i∈p v
2
i σ

2
e,i

)2
〉

pix

, (2.34)

for sum of weights or inverse variance masks, respectively. This approximation will be tested
in Section 4.2.2.

2.5.3 Improving the NKA

The NKA is likely to break down for sufficiently complicated weight maps where the coupling
coefficients Mlk have support over a broad range of k around l. If the width of this range,
δk, is larger than the typical scale of variation of the power spectrum δkC` ∼ (d logC`/d`)

−1,
the power spectrum on the left hand side of Eq. 2.26 will be effectively smoothed over the
support of Mlk, which will cause it to differ significantly from the original C`. The NKA can
therefore be improved by replacing the symmetrized spectrum on the right hand side of Eq.
2.26 with its smoothed version. This can be done through the following approximation

∑
k

(∆k)2Ma
lkM

b∗
l′kC

ab
k '

〈∑
k(∆k)2Ma

lkM
b∗
lkC

ab
k

〉
|l|〈∑

k(∆k)2Ma
lkM

b∗
lk

〉
|l|

∣∣∣∣∣
(`,`′)

∑
k

(∆k)2Ma
lkM

b∗
l′k, (2.35)

where we have used the shorthand Ma
lk ≡Mlk(wa).
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A close inspection of the location of the l and l′ indices in Eq. 2.35 shows that the basis
of this approximation is to calculate the diagonal elements l = l′ exactly, and to approximate
the structure of the off-diagonal elements as a rescaling of the mode-coupling product in Eq.
2.27. The difference of this approach with respect to the standard NKA is that we have not
yet discarded the effect that mode coupling has on the C` (i.e. we haven’t taken the Ck out
of the sum in the numerator), but we have assumed that the relative correlations between
different l and l′ are well captured by the convolution of coupling coefficients.

Hence, this improvement over the original NKA results simply in substituting Cab` in
Eq. 2.29 by the mode-coupled pseudo-C`

Cab` ≡
〈∑

k(∆k)2Ma
lkM

b∗
lkC

ab
k

〉
|l|〈∑

k(∆k)2Ma
lkM

b∗
lk

〉
|l|

=
〈C̃ab` 〉
〈wawb〉pix

, (2.36)

where we have used the definition of the pseudo-spectrum (Eq. 2.17), together with the
properties of the mode-coupling matrices (Equations 2.14 and 2.27).

In analogy with the result found in the previous section for the noise contribution (Eq.
2.32), the signal power spectrum entering the covariance matrix is the mode-coupled sig-
nal power spectrum corrected for the effects of mode coupling by a simple rescaling factor
1/〈wawb〉pix. This simple rescaling explains why the 1/fsky type pseudo-C` estimators (see
e.g. Refs. [54, 67]) work: Although these estimators are biased in general, this bias is small in
the case of almost white power spectra or simple sky masks. Thus, in this limit, the improved
NKA presented here reduces to the original NKA.

3 Data

As a practical demonstration of the methods described in the previous section, we apply them
to the latest public data releases from the HSC and DES collaborations. We describe these
data here.

3.1 HSC DR1

The Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) is an ongoing, wide-field
imaging survey, which is currently in its last year of operation. The survey is expected to
cover approximately 1000 deg2 in the grizy broadband photometric bandpasses.

In this work, we use data from the first public data release of the HSC SSP (HSC DR1)11,
which cover an area of approximately 130 deg2 and consist of three different layers: Wide,
Deep and UltraDeep [37]. We use data from the Wide layer, which is subdivided into six
different fields and covers approximately 108 deg2 to a limiting magnitude of mlim,i ∼ 26.4
with median i-band seeing of around 0.6 arcsec.

We select galaxies suitable for cosmic shear measurement by applying the selection cuts
given in Ref. [68]. Photometric galaxy redshifts in HSC are estimated using six different
algorithms. Following Ref. [9], we use the photo-z estimate from Ephor_AB to further sub-
divide these data into four tomographic redshift bins with edges [0.3, 0.6, 0.9, 1.2, 1.5]. This

11https://hsc-release.mtk.nao.ac.jp/doc/.
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selection leaves us with 2,642,125, 2,588,321, 1,927,581 and 1,109,056 galaxies per redshift
bin, respectively.

The publicly available HSC galaxy shapes are measured from coadded i-band images
using the re-Gaussianization method presented in Ref. [69], and are corrected for PSF ef-
fects. The measured galaxy ellipticities ê must additionally be corrected for possible shape
measurement biases. For HSC, the calibrated galaxy ellipticities are given by [68]:

ei =
1

1 + m̄

(
êi
2R − ci

)
, (3.1)

where ci and m̄ are the so-called additive and multiplicative biases and R denotes the shear
responsivity, which quantifies the response of the measured ellipticity to an external shear
[42, 70]. In HSC, these shear measurement biases are estimated using image simulations [71].
Each galaxy in the weak lensing sample carries a weight, which is based on the inverse of the
sum of shear measurement and shape noise, and we use these weights to construct cosmic shear
maps. Following Ref. [68], we further employ these weights to estimate the shear responsivity
R and the weighted average of the multiplicative bias m̄ used for shear calibration in each
HSC field and tomographic redshift bin separately. The additive bias correction on the other
hand, is applied on a per-object level.

In order to measure photometric redshift distributions for each of the tomographic bins
considered in this analysis, we follow the method presented in Ref. [72], which is based on
the COSMOS 30-band catalog presented in Ref. [73].

3.2 DES Y1 data

The Dark Energy Survey (DES) is a completed imaging survey, covering 5000 deg2 in 5 filter
bands (g, r, i, z, Y ). The 10σ limiting magnitudes of the galaxy sample are g = 23.4, r = 23.2,
i = 22.5, z = 21.8 and Y = 20.1. In this work, we use publicly available data from the
DES Year 1 (Y1) data release, which covers 1786 deg2 after coaddition and before masking
[38, 39]12.

We follow Ref. [74] and use the so-called source galaxy sample for cosmic shear power
spectrum measurements. In DES Y1, galaxy shapes are determined using two different al-
gorithms: Metacalibration [43, 75] and IM3SHAPE [74]. Metacalibration [43, 75]
fits a 2D Gaussian model for each galaxy to the pixel data in the r, i and z exposures, con-
volved with the corresponding point-spread function (PSF). In order to calibrate the shear
estimator, this process is repeated with artificially sheared images in order to determine
the response of the estimator, and to calibrate shear-dependent selection effects (see e.g.
Refs. [7, 74–76]). IM3SHAPE [77], instead, maximizes the likelihood of a bulge-plus-disk
model for each galaxy’s r-band image. This estimator is biased and calibrated through image
simulations [74, 78]. In this work, we restrict our analysis to the Metacalibration cata-
log and only include galaxies with declination dec. < −35◦, as was done in Ref. [74]. We
further subdivide this sample into the same four tomographic bins used in Ref. [74], con-
taining 7,705,486, 7,851,711, 8,238,547, and 4,196,641 objects, in order of increasing mean
tomographic bin redshift. The resulting sample covers an area of ∼ 1320 deg2.

Each of these four tomographic redshift bins has an associated redshift distribution
ni(z). In DES Y1, galaxies are subdivided into redshift bins based on their photo-z posterior
as derived by the BPZ algorithm [79]. Further details on the construction and calibration

12The data are available at https://des.ncsa.illinois.edu/releases/y1a1.
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of these redshift distributions can be found in Ref. [80]. We note that the determination
of the redshift distributions in both the HSC and DES samples used in this work relies on
COSMOS [73]. This inevitably correlates the parameter constraints found by both datasets,
which makes the combination of their data non-trivial.

For Metacalibration, the calibrated ellipticities are given by

ei = êi/R̄, (3.2)

where the additive bias is zero by construction and the multiplicative bias is given by R̄ =
(R11 + R22)/2. The quantity R = Rγ + RS denotes the 2 × 2 response matrix. It accounts
for the shear response, Rγ , which measures the change in ellipticity under a shear γ and
the selection response, RS, originating from biases induced by applying selection criteria on
the sheared galaxy sample. The response matrix was found to be well approximated by a
diagonal with R11 ≈ R22. As the estimate of Rγ is noisy, this quantity is averaged over all
sources in each redshift bin before using it in Eq. 3.2. This is common practice in shear
power spectrum analyses [9, 46, 81], but differs from the approach used in real-space studies,
where the multiplicative correction is applied at the two-point function level. Alternatively,
in order to account for possible spatial variations in the shear response, one can compute local
averages of Rγ over sufficiently large patches [82]. Finally, we note that Ref. [7] observed a
significant mean ellipticity in the sample (ēi ∼ O(10−4)) of unclear origin. We follow Ref. [7]
and subtract these biases from all galaxies in each redshift bin.

4 Results

We now apply the methods described in Section 2 to the HSC and DES data described above.
First, we briefly describe the data analysis pipeline used to estimate the cosmic shear power
spectra from the public catalogs (Sec. 4.1). We then use simulations to validate our calculation
of the noise bias and covariance matrix (Sec. 4.2), before presenting the estimated power
spectra and their validation in Sec. 4.3. These power spectra are made publicly available, and
the released data is briefly described in Sec. 4.4.

4.1 Measurement pipeline

The first step in estimating shear power spectra is the generation of maps from the corrected
galaxy ellipticities (see Eq. 2.1), and their associated weights. In this work, we compute all
weight maps using the SW prescription given in Eq. 2.4.

For HSC, we generate separate shear maps for 5 DR1 fields, namely GAMA09H, GAMA15H,
WIDE12H, VVDS and XMM. Given the small area covered by each field, we use the flat-sky
approximation to take advantage of efficient fast Fourier transform (FFT) methods. As in
Ref. [72], we use a Plate Carrée projection to minimize the curved-sky distortions in the
azimuth direction. We use a square pixelization grid with a pixel size of 0.5 arcminutes.
The rectangular map covering each field has a buffer of 24 masked pixels along the edges to
minimize boundary effects in the FFTs.

In order to test for systematics, we complement the shear maps with two additional
maps: a map of the PSF ellipticity as a function of angular position and a map of the PSF
residuals. In HSC, 20% of the star sample is not used for PSF estimation but is set aside for
validation purposes. We use this reserved subsample to create maps of the PSF ellipticity and
PSF residuals. Specifically, we estimate PSF residuals as the difference between PSF model
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Figure 1: Maps of the galaxy ellipticity, lensing weights, PSF ellipticity and PSF ellipticity
residual for the HSC WIDE12H field, which covers approximately 10.5 deg2 on the sky. For
all maps, we show results for the lowest redshift bin and we only show the first ellipticity
component e1, where appropriate.
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Figure 2: Maps of the galaxy ellipticity, angular mask and PSF ellipticity for DES Y1 data
and the second redshift bin. For all ellipticity maps, we only show the first component e1.
For plotting purposes, the color bar limits are set to the 3σ values of the field distribution.

DES HSC
0 309 1098 3914 100 3000
30 351 1247 4444 200 3800
60 398 1416 5047 300 4600
90 452 1608 5731 400 6200
120 513 1826 6508 600 7800
150 582 2073 7390 800 9400
180 661 2354 8392 1000 12600
210 750 2673 9529 1400 15800
240 852 3035 10821 1800
272 967 3446 12288 2200

Table 2: Bandpower edges used for the DES (left) and HSC (right) power spectra. Note
that only the bandpowers with ` < 2Nside = 8,192 were used in the case of DES.
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and measured ellipticities for stars in the reserved sample. This approach follows Refs. [9, 68],
but we note that we use a star catalog different from the one used in Refs. [9, 68], as the latter
was found to be contaminated by galaxies (H. Miyatake, S. More, private communication).

For the DES data, we generate full sky maps using the HEALPix13 [83] pixelization with
resolution parameter Nside = 4096, which corresponds to a pixel size of ∼ 0.86 arcmin. The
shape measurement weights vi are by definition 1 for all sources in the Metacalibration
catalog, and thus the weight maps simply trace the number of sources per pixel. We addition-
ally generate maps of the PSF ellipticity to test for systematics in the shear power spectra,
following the methods outlined above with the exception of the ellipticity correction step in
Eq. 3.2.

Figures 1 and 2 show the shear maps, weights map and PSF ellipticity maps for both
HSC and DES, respectively. For DES, we show the maps for the second redshift bin, while
for HSC, we show the maps for the lowest redshift bin and the WIDE12H field. In addition, we
also show the map of PSF residuals for HSC.

From these maps, we estimate power spectra and their associated covariance matrices
using the publicly-available code NaMaster14 [47]. We use the flat- and curved-sky versions of
the code for the HSC and DES data, respectively, and compute all auto- and cross-correlations
between different pairs of maps, including different tomographic bins and E/B spin-2 compo-
nents. The power spectra are computed on a set of consecutive bandpowers with edges listed
in Tab. 2.17: the HSC bandpowers follow a piecewise-linear spacing as in Ref. [72], while the
DES bandpowers are linearly spaced up to ` = 240 and then follow a constant logarithmic
spacing. We use the weight map directly as the mask of each NaMaster field without any
additional apodization, and we do not perform E or B-mode purification. The shear power
spectrum is not steep enough to benefit from mask apodization and, given the patchiness of
the shear weights map, the loss of area incurred by any apodization has a strong detrimental
effect on power spectrum uncertainties. Furthermore, since in this case the most interesting
signal is the dominant E-mode, no benefit can be gained from E/B purification. For HSC,
we estimate these power spectra separately for each field and coadd the resulting power spec-
tra, weighted by the sum of the shear weights for each field, to obtain a single spectrum (cf.
Ref. [9]). In order to estimate the noise bias, we follow the analytical prescription given in
Sec. 2.1 and we subtract the obtained power spectra from each auto-correlation. We test the
stability of the computed power spectra with respect to choice of pixelization by repeating
our analysis for different pixel resolutions: for HSC, we increase the pixel size by a factor of
two, and for DES, we recompute all power spectra at resolutions of Nside = 512, 1024, 2048,
finding consistent results for the angular scales considered in this work in all cases. Finally, we
analytically estimate the covariance matrix following the method described in Sec. 2.5, fully
accounting for the different mode-coupling coefficients for the signal and noise contributions
as in Eq. 2.29. The signal power spectra used as input for the covariance calculation for HSC
and DES are computed for the cosmological parameters reported by the Planck collaboration
(Eq. 4.1).

4.2 Methods validation

Before presenting the cosmic shear power spectra measured from the HSC and DES datasets,
we validate the methods outlined in Sections 2.4 and 2.5 to analytically estimate the noise bias

13http://healpix.sourceforge.net.
14https://namaster.readthedocs.io/en/latest.
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and disconnected covariance matrices. Doing so for HSC and DES will allow us to validate
the expressions for both flat-sky and curved-sky.

4.2.1 Noise bias

We validate the analytic calculation of the noise bias described in Sec. 2.4 by generating
1000 random realizations of the shear maps for both the HSC and DES samples. For each
realization, we create a randomized map by rotating all galaxy ellipticities by a random
angle while keeping the galaxy positions fixed. This approach removes ellipticity correlations
induced by cosmic shear, while retaining noise fluctuations due to galaxy number density
anisotropy and shape noise. The mean of an ensemble of these maps is therefore expected
to give a reasonable estimate of the noise power spectrum. In Fig. 3, we compare the mean
noise obtained from these realizations to the analytical prediction given in Eq. 2.24 for both
HSC and DES for all four redshift bins used in the respective analyses. The upper panel of
this figure shows the ratio of the analytical noise bias to that estimated from the simulations
for the HSC WIDE12H field, which has the smallest sky coverage and is therefore expected to
be most affected by mode-coupling and masking uncertainties. The lower panel shows the
two estimates of the noise bias for the DES data. As can be seen, we find good agreement
between both estimates in both cases, with maximal differences of approximately 5% seen for
the largest multipoles. These deviations are due to statistical noise from the finite number of
random rotations, rather than inaccuracies in the analytic method, as Eq. 2.24 does not involve
any approximations. The expression given in Eq. 2.24 therefore provides a noise estimate at
significantly lower computational cost, avoiding the generation of potentially expensive noise
realizations15. As noted in Section 2.4, the scale dependence of the noise power spectrum
that can be observed in the lower panel is induced by the inverse mode-coupling matrix and
the fact that we are probing a finite range of multipoles `.

4.2.2 Covariance matrices

To validate the analytical covariance described in Sec. 2.5, we use a suite of 10,000 Gaussian
simulations16. Each realization is comprised of a signal and noise map. We compute the
noise map from the data, as described above, and add a Gaussian cosmic shear power spec-
trum realization, calculated with the Core Cosmology Library (CCL, [84]) for a fiducial set of
cosmological parameters, as reported by the Planck collaboration17:

(Ωm,Ωb, h, ns, σ8) = (0.3133, 0.0493, 0.6736, 0.9649, 0.8111), (4.1)

and we further assume vanishing nuisance parameters. In both cases, we additionally employ
the redshift distributions described in Section 3 to compute theoretical predictions. We then
estimate the covariance from the sample variance of these realizations and compare it to two
analytical estimates: first, the standard NKA approximation from Ref. [40] (Eq. 2.26), using
the unmodified signal power spectrum and the effective noise bias for covariances (Eq. 2.32).
Secondly, the improved NKA approximation (Eq. 2.35), fully accounting for the noise terms

15For reference, computing the spherical harmonic transform of a single spin-2 field with HEALPix resolution
parameter Nside = 4096 takes about 2 minutes on an Intel i7 quad-core laptop. Thus computing the noise
level from 1,000 random rotations takes about 33 hours on the same system for a single power spectrum,
compared with a simple map-averaging operation taking fractions of a second.

16In order to be able to generate this many simulations, the curved-sky test was run at a downgraded
resolution of Nside = 1024.

17See the fourth column in Tab. 2 in Ref. [85].
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Figure 3: Comparison of the analytic shape noise estimate using Eq. 2.24 with the noise
power spectrum obtained from 1000 randomized ellipticity maps for the HSC WIDE12H field
(top panel) and DES (bottom panel). Results are shown for the four different redshift bins
used in each experiment. For HSC, we show results for the ratio of the analytic and simulated
noise bias for both E and B-modes, while for DES we only show results for the E-mode noise
bias (the result for B-modes is equivalent).
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Figure 5: Comparison of the main and second diagonals of the covariance matrix estimated
from a suite of Gaussian simulations to both the original analytic estimate presented in
Eq. 2.26 and the improved estimate from Eq. 2.35 for the lowest redshift bin in DES.

as in Eq. 2.29. Note that we do not consider the case of the standard NKA using the mode-
decoupled noise bias instead of the effective noise bias, as we find that this performs poorly
in the cases considered in this work, overpredicting the uncertainties by a factor of O(1).

The results for the lowest redshift bin in HSC and DES are shown in Figures 4 and 5, re-
spectively. Fig. 5 shows the first and second diagonals of the EE, EB and BB covariances for
DES. The use of the improved NKA with the mode-coupled signal power spectrum improves
the agreement with the simulated covariance on large, signal-dominated scales. Nevertheless,
we find that the analytical uncertainties are always overestimated for the lowest bandpower
(in agreement with the results of Ref. [40]). As we show later (and in Ref. [40]), this has
a negligible impact on both goodness-of-fit tests and final parameter constraints. On small
scales, the use of the effective noise bias (Eq. 2.32) leads to a ∼ 10% over estimate of the
first diagonal and a severe under-estimation of the second diagonal. This ∼ 10% offset is
shown explicitly in Fig. 4, which presents the ratio of the first diagonals of the standard and
improved NKA estimators to those of the simulated covariance for the HSC WIDE12H field.
For HSC, we find results consistent with those for DES except that we do not see evidence for
error overestimation on large angular scales. For both datasets, we find the largest differences
between analytic and simulated covariance for the case of the EB power spectrum. This is
due to the specific form of the NKA for spin-2 fields, which neglects the spatial derivatives
of the weight map [40]. As shown below, the accuracy of the analytic Gaussian covariance
is nevertheless sufficient for the analysis presented in this work, even to derive accurate χ2-
values when using EB correlations as null tests. However, these conclusions might change
for surveys with larger angular sky coverage that aim to probe cosmic shear at the largest
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Figure 6: Distributions of χ2-values obtained using the simulated covariance and the stan-
dard and improved NKA (Equations 2.26 and 2.35 respectively) for the auto-correlation of
the lowest redshift bin in the HSC WIDE12H field (upper panel) and the DES Y1 data (lower
panel). Results are shown for the EE, EB and BB correlations in the left, middle and right
panels, respectively.

scales. As the inaccuracies shown in Figures 4 and 5 mainly affect the lowest multipoles, these
problems could potentially be overcome by using fast, low-resolution Gaussian simulations to
estimate covariances at large angular scales, while using analytic estimates in the small-scale
regime.

Although the practical effects of the quoted ∼ 10% mis-estimation of the power spectrum
uncertainties when using the effective noise bias may often be negligible, we recommend that
the different mode-coupling coefficients for signal and noise be taken into account in order
to obtain unbiased cosmic shear covariances, in particular when considering large angular
multipoles, if the computational resources are available.

We additionally perform a more quantitative comparison between the different co-
variance matrix approximations described in this work and compute the χ2 ≡ ∑

``′(C
i
` −

C̄`)Cov−1``′ (C
i
`′ − Ĉ`′) of each simulation (labeled by i) with respect to the mean power spec-

trum of all simulations using the different covariance matrix estimates (C̄`). The distributions
of the obtained χ2-values are shown in Fig. 6 for HSC and DES. In all cases, we find that
the simulated χ2-values follow a χ2 distribution, as expected. The distributions for the stan-
dard NKA estimator are generally offset by ∼ 10 − 15% from the simulations, especially in
the curved-sky DES case. The improved NKA estimator reduces this offset significantly to
. 4%. As expected, the performance in the case of the EB covariance is worse in both cases,
but sufficiently accurate to use EB correlations as a null test for systematics, as we show in
Section 4.3.

The results presented above involve simulations that contain both the cosmological shear
signal and shape noise. Since the noise contributions to the covariance matrix are calculated
exactly in Eq. 2.29, the inaccuracies of the standard and improved NKA are not readily evident
in this setup. To highlight these, we repeat our analysis for 1,000 signal-only simulations of the
HSC WIDE12H field. As can be seen from Fig. 7, we find that the standard NKA over-estimates
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Figure 7: Power spectrum uncertainties obtained from a set of 1000 noise-less Gaussian
simulations using the weights map corresponding to the HSC WIDE12H field (dark blue circles).
The rose and blue lines show the analytical prediction using the standard narrow-kernel
approximation (NKA) and the improved implementation presented in Eq. 2.35. Since the
simulations contain no shape noise, the covariance matrix receives only the first contribution
in Eq. 2.29, for which we use the improved NKA. Since all the noise terms in that equation
are computed exactly, this setup is meant to highlight the inaccuracies of the NKA. While
the standard NKA grossly overestimates the signal part of the covariance, the improved
implementation recovers the simulated power spectrum uncertainties up to ∼ 10% in the
range of scales used for cosmological analyses.

the signal contribution to the covariance by more than a factor of 2. The improved NKA on
the other hand recovers the power spectrum uncertainties obtained from the simulations to
within ∼ 10% in the range of scales used for cosmological analyses. This accuracy is further
improved when including the noise contributions.

These results show that the improved analytical NKA estimator presented in this work is
sufficiently accurate for current cosmological weak lensing analyses. Its potential inaccuracies,
as we will show in Section 4.3, are negligible for practical applications in parameter inference
and null tests. This might not be the case for upcoming Stage IV weak lensing surveys as
their statistical power requires knowledge of the covariance matrix to 1−4% in order to avoid
systematic errors in the likelihood. We defer an investigation of this issue to future work.

4.3 Null tests and validation

To validate the computed power spectra and covariance matrices, we perform a number of
null and validation tests, as outlined below.

Although a number of effects, such as intrinsic alignments or lensing magnification [86–
88], could give rise to B-modes in the shear power spectrum, their amplitude should be
subdominant, and negligible given the sensitivity of current imaging datasets. Therefore,
correlations involving shear B-modes have traditionally been used as a null test to identify
potential systematics in the data. We estimate the significance of each individual power
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HSC
z-bin E0 E1 E2 E3 B0 B1 B2 B3

B0
0.69 0.75 2.43 1.56 1.41 – – –
68.1% 62.5% 1.7% 14.1% 19.4% – – –

B1
2.96 0.78 1.15 1.00 1.04 0.60 – –
0.4% 60.3% 32.6% 42.6% 40.1% 75.5% – –

B2
1.63 0.83 1.23 0.69 0.92 1.73 0.36 –
12.2% 56.2% 28.3% 68.0% 49.1% 9.7% 92.5% –

B3
1.09 2.15 1.11 0.13 1.46 0.90 0.73 2.28
36.6% 3.5% 35.4% 99.6% 17.8% 50.6% 64.8% 2.5%

DES
z-bin E0 E1 E2 E3 B0 B1 B2 B3

B0
1.13 0.98 0.82 0.97 0.99 – – –
27.5% 51.8% 77.0% 51.7% 48.6% – – –

B1
1.80 0.90 1.05 1.03 0.95 0.94 – –
0.3% 64.0% 39.5% 41.3% 56.4% 58.1% – –

B2
1.12 0.57 0.68 1.20 0.97 0.57 1.04 –
29.3% 98.1% 92.8% 19.1% 52.6% 98.3% 40.4% –

B3
0.83 0.85 0.82 0.73 0.92 1.53 1.04 0.63
75.9% 72.8% 76.6% 88.7% 60.6% 2.2% 40.6% 95.7%

Table 3: χ2/d.o.f. and associated p-values for all B-mode null-tests for HSC (top) and DES
(bottom). Each row contains all non-repeated cross-correlations with a B-mode map for the
four redshift bins considered. In each cell, the upper and lower numbers correspond to the
reduced χ2 and p-value as a percentage, respectively. Three (two) of the null tests yield
p-values below 5% for HSC (DES), compatible with the look-elsewhere effect. In the case of
DES, only scales ` < 2Nside = 8,192 are included, while we restrict the multipole range to
300 ≤ ` ≤ 2000 for HSC.

spectrum involving a shear B-mode field by computing its χ2 with respect to zero and its
associated p-value. For four tomographic bins there are a total of 26 such null tests, including
both BB and EB correlations. The resulting χ2 and p-values are listed in Tab. 3 for both
HSC and DES and the corresponding null spectra are shown in Appendix B. We find only 3
null tests in HSC and 2 in DES with p-values below 0.05. This is not unexpected given the
large number of null tests performed. To quantify the significance of these low p-values in
the context of the look-elsewhere effect, we perform a Kolmogorov-Smirnoff (KS) test of the
recovered χ2-values against a χ2 distribution with the number of degrees of freedom given
by the number of bandpowers in both datasets (7 for HSC, corresponding to bandpowers
with 300 ≤ ` ≤ 2,000, and 36 for DES with ` < 2Nside = 8,192). Both KS tests pass, with
p-values of 20% and 54% for HSC and DES, respectively. We verify that the small over-
estimation of the covariance matrix for the EB power spectra noted in Section 4.2.2 does
not affect these conclusions. To do so, we artificially inflate all χ2-values for the EB null
tests by 10% and recompute the associated p-values as well as the KS test, finding consistent
results. Finally, the reduced χ2 and associated p-value for a null data vector constructed
by stacking all individual BB and EB correlations is χ2/d.o.f. = 224.2/182 = 1.23 (p = 1.9%)
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z-bin EE EB BE BB

0 0.88 1.04 0.86 0.85
67.5% 41.0% 70.0% 72.6%

1 1.08 0.99 0.55 0.67
33.6% 48.1% 98.8% 93.8%

2 1.06 1.49 0.69 1.12
36.8% 2.96% 92.1% 28.4%

3 0.90 1.27 0.56 1.06
64.4% 13.0% 98.4% 37.9%

Table 4: χ2/d.o.f. and associated p-values for all possible cross-correlations between galaxy
and PSF ellipticities for DES Y1 and angular multipole range ` < 2Nside = 8,192.

and χ2/d.o.f. = 923.8/936 = 0.99 (p = 60.1%) for HSC and DES, respectively. Although the
p-value for the HSC data is relatively low, we note that it improves in the extended scale
range 300 ≤ ` ≤ 12, 000 to χ2/d.o.f. = 410.1/364 = 1.09 (p = 12.4%). Because of this, and
since the distribution of the individual χ2-values is consistent with expectations when using
the reduced set of multipoles, we attribute this to a statistical fluctuation. We therefore
conclude that there is no evidence for systematics in either dataset giving rise to B-modes
within the range of scales probed here, in agreement with previous studies by Ref. [9] for HSC
and Refs. [74, 89] for DES.

Both PSF deconvolution errors as well as PSF modeling errors can lead to biases in
inferred galaxy ellipticities. We thus perform an additional test for systematics in the DES
data by computing the cross-correlation between the cosmic shear maps and the PSF ellipticity
maps. For each redshift bin, we compute the four possible cross-correlations between the E
and B components of both maps, and calculate their χ2-values with respect to zero as well
as the associated p-values. To estimate the covariance of these cross-correlations, we use the
analytic approach described in Sec. 2.5. This requires an estimate of the auto- and cross-
correlations for all fields involved. For the PSF ellipticity auto-spectra we use an interpolated
version of the spectrum measured from the data, and set all cross-correlations with the cosmic
shear field to zero. The resulting χ2-values are given in Tab. 4, and the corresponding spectra
are shown in Appendix B. As before, the χ2-values found for these null spectra are reasonable
and pass a Kolmogorov-Smirnoff test against a χ2 distribution with p = 0.73.

In order to assess the impact of PSF systematics on the HSC cosmic shear signal mea-
sured in this work, we follow Ref. [9] and make the following Ansatz for the measured galaxy
shears

γ̂ = γ + αePSF + βePSF,res, (4.2)

i.e. we assume a linear leakage of PSF ellipticity ePSF and PSF residuals ePSF,res into the
measured galaxy shears γ̂. In this model, the observed cosmic shear power spectrum is given
by

C γ̂γ̂` = Cγγ` + α2CePSFePSF
` + 2αβC

ePSFePSF,res

` + β2C
ePSF,resePSF,res

` . (4.3)

We estimate the PSF leakage power spectra using the systematics maps described in Sec. 4.1.
Specifically, we compute the cross-correlations

C γ̂ePSF

` = αCePSFePSF
` + βC

ePSFePSF,res

` , (4.4)

C
γ̂ePSF,res

` = αC
ePSF,resePSF

` + βC
ePSF,resePSF,res

` , (4.5)

– 24 –



for all galaxies (i.e. we do not subdivide the sample into redshift bins) and estimate α, β
using a weighted least squares fit in the angular multipole range used in our analysis18.
We find α = 0.031 ± 0.029, β = −0.71 ± 1.10, where the uncertainties have been derived
from the least squares fit assuming errors on the power spectra given by the analytical fsky
approximation (see e.g. [90]). The resulting noise-removed PSF leakage power spectra are
shown in Fig. 16 alongside the non-tomographic cosmic shear power spectrum. As can be
seen, we find the PSF leakage to be subdominant compared to the non-tomographic cosmic
shear signal for the angular scales considered in this analysis. We therefore conclude that
the cosmic shear power spectra are not significantly affected by PSF systematics. However,
we note that these systematics might become more important for tomographic power spectra
and should therefore be marginalized over in a cosmological analysis, as was done in Ref. [9].
Alternatively, these types of systematics can also be addressed at the map level through
template deprojection [47].

Finally, we validate the E-mode shear power spectra and associated covariances obtained
in this work against earlier results by assessing their compatibility with cosmological predic-
tions derived by both collaborations. This comparison is contrary to the blinding process that
is now commonplace in standard weak lensing cosmological analyses. The data presented here,
however, have already been used by the HSC and DES collaborations to extract cosmological
constraints, and therefore this comparison should not invalidate the usefulness of these mea-
surements. Note that we do not make any attempt to derive cosmological constraints from
these data, a task that we leave for future work.

For HSC, we compute the χ2 and associated p-value of the E-mode power spectra with
300 ≤ ` ≤ 2000 with respect to the theoretical predictions derived using a cosmological model
compatible with the HSC results:

(Ωm,Ωb, h, ns, σ8) = (0.162, 0.0335, 0.81, 0.96, 1.056), (4.6)

fixing all nuisance parameters to zero.
For DES, we similarly compute theoretical predictions for a model compatible with DES

results:

(Ωm,Ωb, h, ns, σ8) = (0.26, 0.0479, 0.685, 0.973, 0.821), (4.7)

again setting all nuisance parameters to zero.19 For both HSC and DES, we then compute
the χ2 and associated p-value of the full EE data vector against the theoretical prediction,
including scales ` ≤ 2000 and using the full non-Gaussian covariance matrix. We note,
however, that in both cases we find the impact of the non-Gaussian contributions to the
covariance to have a negligible . 10% effect on the χ2-values.

18We note that the fit deteriorates significantly if we include bandpowers at angular multipoles smaller than
`min = 300. This suggests the presence of PSF leakage into the cosmic shear power spectra at these angular
scales and we therefore do not include bandpowers smaller than `min = 300 in our analysis. These findings
are consistent with Ref. [9].

19We note that the best-fit cosmological parameters found by the two collaborations appear significantly
different at face value. We attribute these differences to the fact that cosmic shear tightly constrains S8 :=
(Ωm/0.3)α, while being largely insensitive to the remaining standard cosmological parameters. Setting α =
0.45 and comparing the values obtained for S8 with both models, we find them to agree within the quoted
uncertainties. It will however be interesting to test the consistency between HSC and DES by performing a
joint analysis of the surveys, which we leave for future work.
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Figure 8: Angular E-mode power spectra for HSC. The solid lines show the theoretical
predictions derived from the fiducial model given in Eq. 4.6.

The resulting reduced χ2’s for both HSC and DES are

χ2
HSC/d.o.f. = 1.27, (d.o.f. = 70, p = 6.4%), (4.8)
χ2

DES/d.o.f. = 1.00, (d.o.f. = 250, p = 50.6%). (4.9)

The corresponding E-mode power spectra for HSC and DES are shown in Figures 8 and
9, alongside the theoretical predictions for the models discussed above. These results are
not affected by the over-estimation of the variance of the first bandpower in the curved-
sky calculation noted in Section 4.2.2. We verify this by artificially reducing the covariance
matrix element for the first bandpower of all auto- and cross-correlations by a factor of 2 and
recomputing the χ2, which changes only by ∼ 0.4%. This is in agreement with the results
shown in Ref. [40].

These results therefore show that the measured spectra are in reasonable agreement with
the standard cosmological model, and that their uncertainties are not significantly over- or
under-estimated.

4.4 Public release

Having validated the estimated power spectra, we make all measurements presented in this
work publicly available through a github repository20. The data are provided as FITS files

20https://github.com/xC-ell/ShearCl.

– 26 –

https://github.com/xC-ell/ShearCl


10−11

10−10

10−9

10−8

C
`

(E0,E0)

10−11

10−10

10−9

10−8

C
`

(E1,E0) (E1,E1)

10−11

10−10

10−9

10−8

C
`

(E2,E0) (E2,E1) (E2,E2)

101 102 103

`

10−11

10−10

10−9

10−8

C
`

(E3,E0)

101 102 103

`

(E3,E1)

101 102 103

`

(E3,E2)

101 102 103

`

(E3,E3)

Figure 9: Angular E-mode power spectra for DES Y1. The solid lines show the theoretical
predictions derived from the fiducial model given in Eq. 4.7. The shaded regions indicate
angular scales not used in our analysis.

[91], and contain all the cosmic shear auto- and cross-correlations (including all E/B combi-
nations), their associated bandpower window functions and covariance matrix, as well as the
redshift distributions of the HSC and DES tomographic bins. Therefore, the files contain all
the information necessary to carry out a full cosmological analysis of these data. The files were
generated using the SACC software package [92]21. SACC is designed to facilitate storage and
interpretation of large numbers of two-point correlations in both real and Fourier space, and
provides functions to easily select sections of the full data vector and the covariance matrix
in a consistent manner. Alongside the data, we further provide a set of jupyter notebooks
demonstrating the usage of SACC, as well as an example analysis pipeline for reproducing the
DES shear power spectra from the public catalogs.

For each of the two datasets, we provide two separate files, labeled signal_covG and
noise_covNG. The signal_covG files contain the measured power spectra, their asso-
ciated Gaussian covariance, bandpower window functions and redshift distributions. The
noise_covNG files contain the estimated noise bias as a data vector and the non-Gaussian
contributions to the covariance matrix. The data are stored in the same order in both files so
combining them is straightforward. The non-Gaussian contributions to the covariance were
calculated using a halo-model approach as described in Ref. [61], following the implementation

21https://github.com/LSSTDESC/sacc.
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in Ref. [93], and are provided for convenience.

5 Conclusions

Cosmic shear is one of the most promising tools to constrain the growth of structure and
the properties of the late-time accelerated expansion of the Universe. The now standard to-
mographic analysis of cosmic shear datasets involves the estimation of two-point correlators
of galaxy ellipticities in different redshift bins, their forward modeling from theoretical pre-
dictions, and constraining the free parameters of the model through a multivariate Gaussian
likelihood. Beyond the larger problem of modeling the different systematic uncertainties as-
sociated with cosmic shear data (intrinsic alignments, baryonic effects, photometric redshift
uncertainties), a careful numerical calculation of all the ingredients of this recipe (unbiased
two-point estimators, accurately binned theory predictions, and covariance matrix) is neces-
sary in order to obtain reliable parameter constraints. In this work, we have described in
detail how to do so through the use of Fourier-space angular power spectra.

Fourier-space pipelines offer several advantages over the more traditional real-space anal-
yses, such as robust scale cuts, the avoidance of Hankel transforms, and simpler covariance
matrices. However, the calculation of cosmic shear power spectra involves its own challenges:
cosmic shear stands out from other projected cosmological probes by the complexity of its
sky window function. Since the lensing shear field is only measured through galaxy elliptic-
ities at the respective galaxy positions, the window function is highly inhomogeneous, and
essentially given by a sum of Dirac delta functions at those locations. This causes a higher
level of statistical coupling between different Fourier modes than is the case in other cos-
mological observables, which means that some of the aspects of power spectrum estimation
must be rigorously handled. In this work, we have focused on two problems: the estimation
of the noise power spectrum, or noise bias, which must be subtracted from all shear auto-
correlations, and the estimation of the Gaussian covariance matrix, accounting accurately for
all mode-coupling effects. We have shown that both of these quantities can be computed
accurately using fast analytical methods that avoid the use of expensive random realizations
(e.g. randomly rotated ellipticities, or Gaussian simulations). The main results from this part
of the paper are:

• A fast and exact analytical estimate of the noise bias in cosmic shear data that fully
accounts for the inherent inhomogeneity of the noise properties of these datasets. This
is summarized by Equations 2.22 and 2.24. Although this method cannot account for
any source of correlated shape noise, neither can the use of randomly rotated catalogs,
or the usual avoidance of the zero-lag correlation in real-space analyses. The impact of
correlated noise must be either forward-modeled or estimated via other means for both
types of analyses.

• Accurate methods to compute the Gaussian covariance matrix. We have shown that
the estimate of the signal part of the covariance through the so-called Narrow Kernel
Approximation can be improved upon significantly by the use of the mode-coupled signal
power spectrum in lieu of the true underlying spectrum. This was discussed in Sec. 2.5.3.
Furthermore, we have provided two estimates of the noise contributions to the total
covariance. First, Eq. 2.29 allows for an exact calculation of the noise contribution,
which involves the computation of four additional sets of mode-coupling coefficients,
involving products of noise variance maps and sky window functions. Secondly, we
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have shown that the contribution of these additional terms can be accounted for with a
reasonable ∼ 10% accuracy by adding an effective noise power spectrum to the signal
power spectrum in the signal-only contribution, given by Equations 2.32, 2.33 and 2.34.

We have then applied these methods to the public data releases from HSC DR1 and DES
Y1, which present practical examples of this methodology applied to current data on flat and
curved sky, respectively. We have shown that we are able to recover shear power spectra that
pass a rigorous set of null tests. In both cases, we observe no evidence of B-modes, a common
smoking gun for systematic effects, and we determine that any contamination to the power
spectra from PSF uncertainties is negligible within the range of scales used here. We find that
the distribution of probabilities for all null tests performed is consistent with the expected
χ2 distribution. Furthermore, we find the cosmic shear power spectra obtained in this work
to be in good agreement with theoretical predictions derived for the cosmological parameters
found by both collaborations. These results indicate that the estimated covariance matrix is
not significantly under- or over-estimated. We make these data, together with all additional
information (non-Gaussian covariances, redshift distributions, bandpower window functions)
needed to conduct a full cosmological analysis, publicly available under https://github.
com/xC-ell/ShearCl. The data are provided in a flexible format especially designed for the
storage and interpretation of cosmological two-point function data. The repository also hosts
a full analysis pipeline that implements the methods described here on the DES data.

A number of caveats found in our analysis must be noted. Most notably, the improved
NKA used here overestimates the covariance on the first bandpower for the curved-sky cal-
culation. We have found this to have a negligible effect on the data analyzed here, given the
small amount of information contained in the lowest multipoles. Fortunately, if an accurate
estimate of the large-scale uncertainties is needed, it can be achieved cheaply through the use
of low-resolution Gaussian simulations. The approximations involved in the NKA also lead
to inaccuracies in the estimates of the EB power spectrum uncertainties, which do not affect
the EE and BB errors. These inaccuracies are small, however, and should not preclude the
detection of significant systematics in the data. While we find the inaccuracies related to
the NKA to be subdominant for current weak lensing data, this might cease to be true for
future Stage IV surveys. We defer an investigation of these issues to future work. Finally,
care should be taken when using the smallest scales in the estimated power spectra, as both
the power spectra and their uncertainties can suffer from edge effects and numerical errors
in the Fourier/spherical harmonic transforms. These effects are well isolated, however, and
can simply be avoided by discarding the last bandpower in flat-sky analyses, or all multipoles
with ` > 2Nside if using HEALPix.

Our results show that, in spite of the complications inherent to cosmic shear, the Fourier-
space analysis of these data is robust, feasible and practical for both current and future
datasets.
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A Pixelization effects

As discussed in Sec. 2.1, the fact that the cosmic shear signal is only sampled at the discrete
positions of detected sources complicates the process of correcting for the effects of a finite
pixel size. To illustrate this, consider the limit where each pixel contains a large (> 100)
number of sources with measured shapes homogeneously distributed within the pixel. In this
case, the value of γ measured in each pixel corresponds to the average of the shear field within
the pixel area, and therefore one must correct for the associated smoothing. In the opposite
limit, in which all pixels contain either 0 or 1 sources, the shear value contained in each
non-empty pixel corresponds to the value of the shear field sampled (as opposed to averaged)
at the source positions, and no smoothing operation has taken place. Finite pixel effects
therefore depend on the number density of the sample and the choice of pixel resolution.

We can demonstrate this qualitatively through the following analysis. We start by
generating a Gaussian realization of the shear field for the second DES redshift bin at a
HEALPix resolution Nside,hi. We then sample the values of this field at the positions of a
number of randomly distributed points. These are then transformed into a shear map at a
lower resolution Nside,lo < Nside,hi, and its power spectrum is computed using the methods
described in Sec. 2. We repeat this for a total of 1000 realizations and then estimate an
effective pixel window function F pix

` as

F pix
` =

√
C̄`

Cth
`

, (A.1)

where C̄` is the measured E-mode power spectrum averaged over all simulations, and Cth
` is

the input power spectrum. We repeat this for different numbers of randomly distributed points
to study the dependence of the effective window function on the source number density. In
order to limit computation time, we perform this analysis for Nside,hi = 256 and Nside,lo = 64.
The results are shown in the left panel of Fig. 10. As can be seen, we find that, in the
small-density limit, the pixel window is close to 1 in the range of multipoles explored. For
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Figure 10: Left panel: effective pixel window function as a function of the average number
of shear sources per pixel N̄g. Right panel: difference between the shear power spectrum
computed with our fiducial pixel size and using pixels twice as large, shown as a fraction
of their 1σ statistical uncertainties. Results are shown for the cross-correlation between the
third and fourth redshift bins, which features the smallest error bars. The impact of the
choice of pixelization is negligible within the range of scales used here.

high number densities on the other hand, it approaches the theoretical pixel window function
(shown as dashed black line), which corresponds to the case of exact averaging. We repeat
this analysis for random points clustered assuming a linear bias model, finding no significant
difference in the results.

As stressed in Sec. 2.1, the recommended procedure is to use a pixel scale that is much
smaller than the smallest scale used in the analysis, so these effects can be disregarded, and
to verify that the measured power spectra are insensitive to the choice of pixel resolution,
as we do in this work. The right panel of Fig. 10 shows the difference between the shear
power spectra computed with the DES and HSC datasets using our fiducial pixelization and
doubling the pixel size as a fraction of the statistical uncertainties. Within the range of scales
relevant for cosmological analyses (` ≤ 2000), the effects of pixelization are negligible.

B Null spectra

The BB power spectra of the cosmic shear field for the HSC and DES datasets are shown
in Figures 11 and 12 respectively. The corresponding EB spectra are shown in Figures 13
and 14. The cross-spectra between the cosmic shear field and the PSF ellipticity maps for
each tomographic bin are shown in Fig. 15 for DES. For HSC, we show the comparison of the
predicted PSF leakage power spectra to the non-tomographic cosmic shear signal in Fig. 16.
The quantitative description of these null tests is provided in Sec. 4.3.
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