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Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydro-
dynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208
(2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating
bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech.
47, 269–292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is
“path memory” [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech.
675, 433–463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting
on the droplet depends explicitly on its past. The second is the resonance condition between droplet
and wave that ensures a highly structured monochromatic pilot wave field that imposes an effec-
tive potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is
chaos, which in several systems is characterized by unpredictable switching between unstable peri-
odic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics,
a field that attempts to answer the following simple but provocative question: Might deterministic
chaotic pilot-wave dynamics underlie quantum statistics? Published by AIP Publishing. https://doi.
org/10.1063/1.5055383

I. INTRODUCTION

In 2005, Yves Couder discovered that a millimetric
droplet may walk on the surface of a vibrating fluid bath
through a resonant interaction with its own wave field.1,4

This hydrodynamic pilot wave system has since generated
considerable activity in the physics and applied mathemat-
ics communities2,5 and drawn the attention of philosophers
of science.6 Not only is it a rich new dynamical system,
but it extends the range of classical systems to include
several features once thought to be exclusive to the micro-
scopic, quantum realm. It is, moreover, strongly reminis-
cent of the double-solution pilot-wave theory proposed by
Louis de Broglie,7,8 according to which quantum particles
have an associated vibration or internal clock responsible
for wave generation and move in resonance with the result-
ing guiding or “pilot” wave. Studies of pilot-wave hydrody-
namics seek to assess the potential and limitations of this
walking droplet or “walker” system as a quantum analog,
while exploring its connections with extant realist mod-
els of quantum dynamics,2,5 including de Broglie’s double-
solution theory,7,8 Bohmian mechanics,9,10 and stochastic
electrodynamics.11

Pilot-wave hydrodynamics is an example of hereditary
mechanics,12,13 a class of dynamical systems in which ini-
tial conditions (even if known precisely) are insufficient to
specify the system evolution; one must also have knowledge

a)Electronic mail: bush@math.mit.edu

of the system’s past.75 In the walker system, this non-
Markovian feature arises by virtue of the system’s “path
memory”:3 the wave force acting on the drop depends explic-
itly on the droplet’s past trajectory, along the entirety of
which the bouncing droplet generates waves. As the vibrating
bath approaches its Faraday threshold (the critical vibrational
acceleration above which waves form even in the absence of
the droplet), the droplet’s wave field becomes more persis-
tent, so the system memory increases. When coupled with the
resonance between droplet and bath that results in a highly
structured, monochromatic wave field, the path memory may
lead to the emergence of stable quantized states. Further
increasing the memory may result in the emergence of chaos
characterized by unpredictable switching between unstable
periodic states and ultimately the emergence of multimodal,
quantum-like statistics.

With the walking droplet system, a number of hydro-
dynamic quantum analogs (HQA) have been discovered in
the laboratory and investigated both experimentally and the-
oretically. Examples include tunneling across barriers14–16

and refraction from single and double slits.17–19 A num-
ber of static and dynamic bound states of multiple droplets
have been discovered, including crystal lattices,20 orbiting
pairs,21,22 ratcheting pairs,23 and promenading pairs.24,25 In
the context of orbital pilot-wave dynamics, walker motion in
a rotating frame has yielded analogs for quantized Larmor
levels,26,27 Zeeman splitting,28 and multimodal quantum-like
statistics emerging in the chaotic regime.27,29 The stability of
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hydrodynamic spin states, characterized by a droplet trapped
in a circular orbit by its own wave field, has been considered
in a number of studies29,30 and is revisited in this issue.31

Walker motion in a simple harmonic well is characterized
by orbital trajectories that are quantized in both energy and
mean angular momentum.32,33 Coherent quantum-like statis-
tics also emerge in the hydrodynamic analog of the quantum
corral,34,35 where statistical projection effects and an analog of
the “quantum mirage” have been reported.36 The Faraday sys-
tem has also been explored as an optical analog; for example,
a narrow channel has been explored as a walker waveguide,37

and walker trapping in the vicinity of a linear array of pillars is
reminiscent of particle trapping with the Talbot effect.38 The
majority of these hydrodynamic and optical analogs will be
revisited in this focus issue.

A hierarchy of theoretical models have been developed
to rationalize various walker behaviors.26,39–43 In this focus
issue, Turton et al.44 review these models, providing valu-
able perspective in detailing their successes and failures. A
table summarizes the different theoretical models developed
by the HQA community. Stroboscopic models, deduced by
averaging the equations of motion over the droplet’s bouncing
period,39 prescribe the horizontal motion of walkers assum-
ing perfect synchronization between the droplet’s bouncing
motion and the resulting wave form. While the stroboscopic
models have proven to be relatively successful in describ-
ing single-droplet behavior,29,33,40,42,45 they have limitations
in describing the dynamics and stability of orbiting pairs22

and promenading pairs.25 A current area of focus in the HQA
community is thus resolving the variability in the vertical
bouncing dynamics,43 a feature explicitly neglected in the
stroboscopic models. The importance of variability in the
bouncing dynamics is highlighted in three separate studies in
this special issue.46–48 Finally, the recent theoretical models
of Nachbin et al.16 and Faria49 allow for robust treatment of
walker-boundary interactions19,50 and will both be called upon
in this focus issue.

The manner in which quantum-like behavior emerges in
the walker system is well studied in the context of “closed”
systems, which arise when the drop is confined spatially
through either imposed boundaries or applied forces. Exam-
ples include walker motion in corrals34,36 or in the presence of
a central spring force,32,33 both of which will be revisited in
this focus issue, and walker motion in a rotating frame.26,27,29

In such closed systems, the droplet navigates its monochro-
matic wave field, which imposes a dynamic constraint on its
motion. At relatively low memory, this constraint gives rise
to stable quantized orbits. As the memory is increased pro-
gressively, the quantized orbital states go unstable via one
of the classic routes to chaos.35,51–53 At high memory, the
walker switches between unstable periodic orbits, resulting in
multimodal, quantum-like statistics.27,32 While some of this
behavior is captured by the stroboscopic models, discrepan-
cies suggest the significance of variable vertical dynamics. In
this issue, Perrard and Labousse48 revisit walker motion in a
harmonic potential and postulate that uncertainty in the verti-
cal dynamics may be responsible for the chaotic switching in
closed systems. The routes to chaos in this rich new dynamical
system are evidently relatively subtle.

The walker behavior in open systems is no less rich,
but the links with quantum systems are not as clear. For
example, the extent to which quantum-like behavior arises in
the diffraction of walkers from single and double slits remains
a point of contention.17–19 While the experiments of Pucci
et al.19 indicate that the walker behavior is predictable over
the majority of parameter space considered, they did find
unpredictable, evidently chaotic, behavior at the highest mem-
ories considered, the origins of which are not well understood.
While Nachbin et al.16 elucidated how unpredictability arises
in tunneling between cavities, the manner in which it arises
in tunneling across a barrier in an effectively open system14

is similarly unclear. We note that Perrard and Labousse’s48

proposal that noise associated with variability in the bouncing
dynamics may be a source of chaos is expected to be equally
valid in open and closed walkers and so may have some bear-
ing on this class of open systems. In this issue, Valani et al.54

demonstrate the rich behavior of walker-walker collisions as
described with a stroboscopic model. Tadrist et al.47 demon-
strate the importance of vertical phase variations as the source
of unpredictability and chaos in colliding walkers. Finally,
Galeano-Rios et al.46 demonstrate that the perturbation of the
vertical motion through the influence of the transient wave
generated by their partner is critical. Evidently, variability in
the vertical dynamics may prove to be a critical ingredient
for chaos in both open and closed hydrodynamic pilot-wave
systems.

Bush2 proposed the extension of existing pilot-wave
models to a generalized pilot-wave framework capable of
achieving behavior inaccessible to the hydrodynamic pilot-
wave system, a theme revisited here in the review of Tur-
ton et al.55 While certain features of the walker system
are essential for the apparent quantum-like behavior, oth-
ers are evidently not. The simplest possible generalization is
an exploration of a parameter regime beyond that accessible
in the laboratory, an approach taken in three studies in this
focus issue.31,56,57 Other possibilities include the considera-
tion of alternative particle-wave couplings or exploration of
pilot-wave dynamics in three spatial dimensions. The results
reported here indicate the vast range of dynamical behaviors
accessible with this generalized pilot-wave framework.

In what follows, we briefly outline the contents of this
focus issue and categorize the contributions into three central
themes. First, we summarize studies of closed pilot-wave sys-
tems, including walker motion in corrals, a circular annulus,
and a simple harmonic potential. Second, we summarize stud-
ies of open systems, including walker-walker interactions in
various guises, walkers interacting with background wave
fields, and walkers interacting with submerged topography.
Finally, we report explorations of a generalized pilot-wave
framework, of dynamical systems inspired by the walker sys-
tem whose range of behavior extends beyond it. We close
with a brief discussion of current perspectives in the field as
informed by this special issue.

II. CLOSED SYSTEMS

In their paper, “Transition to chaos in wave memory
dynamics in an harmonic well: Deterministic and noise-driven
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behaviour,” Perrard and Labousse48 present the results of
an experimental and theoretical investigation of the chaotic
dynamics of a walker in a harmonic well. The authors show
chaotic trajectories in which the droplet oscillates between
strange attractors that can be associated with the eigenstates
of the system. Two distinct transition mechanisms are iden-
tified. The first mechanism is an intermittency dynamics
typical of low-dimensional chaos. As such transitions have
been captured theoretically with stroboscopic models,42,45,53

one may surmise that variability in the vertical dynamics
is not an essential ingredient for them. Conversely, the sec-
ond mechanism, noise-driven chaos, relies explicitly on the
influence of noise in the vertical dynamics. Specifically, it
results from the fact that the global Lyapunov exponent of
the system, although strictly negative, tends asymptotically to
zero when the memory parameter is increased. The walker
then becomes acutely sensitive to the discreteness of droplet
impacts, which induces chaos. Both mechanisms yield insight
into the selection rules for the transitions between eigenstates.

In their contribution, “Walking droplets in a circular cor-
ral: Quantization and chaos,” Cristea-Platon et al.58 report the
results of an experimental investigation of walkers confined to
circular cavities. Prior studies of corrals34,36,51 have focused
on the statistics emerging in the fully chaotic regime arising
at high memory in relatively large corrals. Here, attention is
given to smaller corrals, where periodic and quasi-periodic
orbits are prevalent. These orbits exhibit a double quantization
in average radius and angular momentum reminiscent of that
arising for walker motion in a simple harmonic potential.32,33

The study thus serves to unify the studies of walker motion
in closed systems. In such closed systems, when the mem-
ory time exceeds the crossing time of the domain, the walker
is always encountering a perturbed wave field, so respond-
ing to its environment as it navigates its own wave field.45

In serving to drastically decrease the dimensionality of the
system to a few wave eigenmodes, confinement is respon-
sible for the quantum-like statistics in this and other closed
systems.

Durey et al.59 present the results of a theoretical inves-
tigation of a walker subject to a central force and con-
fined to one-dimensional motion. The discrete-time numerical
model42 makes use of the spectral decomposition of the wave
solution and velocity potential that collapses the dynamics
onto fundamental matrices. The authors rationalize a number
of regimes, including periodic quantized oscillations, chaotic
motion, and the emergence of wave-like statistics. For an
unbounded geometry, the authors deduce a simple relation-
ship between the time-averaged (mean) pilot-wave field and
the statistics of the droplets. Specifically, the mean wave field
is proven to be the convolution of the droplet’s histogram and
the wave field of a stationary bouncer. They further report that
in closed systems such as walker motion in a one-dimensional
simple-harmonic potential, the instantaneous pilot-wave field
converges to the mean, which thus plays the role of an addi-
tional applied potential. The walker dynamics is then cast in
terms of a Langevin-like equation wherein the wave force has
a component associated with the mean-pilot-wave potential as
well as a stochastic element associated with the local perturba-
tion of the instantaneous wave field from its mean. The study

represents a substantial breakthrough in linking the dynamics
and statistics of walking droplets. Moreover, it makes excit-
ing new connections to both Bohmian mechanics9,10 and de
Broglie’s double-solution pilot-wave theory.7,8

In “Standard map-like models for single and multiple
walkers in an annular cavity,” Rahman60 takes a discrete-
dynamical-systems approach in describing single and multiple
walkers confined to a circular annulus. Inspired by the kicked
rotator, a canonical problem in chaos and quantum chaos, the
author develops a simple pilot-wave model in which each
impact imparts a discrete kick to the droplet. The dynami-
cal system then takes the form of the standard map (the most
well-studied one-dimensional map) for the angular position of
the droplet, with the kick strength being the control parame-
ter. The bifurcations and the transition to chaos arising with
increasing kick strength are characterized. The model is then
extended to the case of multiple droplets. The models are
simulated and exhibit several features reported in the exper-
imental studies of strings of walkers in an annular cavity.61

Using dynamical systems techniques and bifurcation theory,
the single droplet model is analyzed to prove results suggested
by the numerical simulations.

In “Walking droplets correlated at a distance,” Nachbin62

reports the results of simulations of two droplets confined
to separate wells and divided by empty wells. The droplets
communicate through their common wave field, and the
intervening empty wells serve as a resonant transmission
line. The droplets exhibit correlated dynamical features, even
when separated by a considerable distance. Specifically, the
position-velocity histograms of the two droplets display sta-
tistical coherence, and the droplets’ complex distributions in
phase space are statistically indistinguishable. Removing one
drop drastically alters the phase space signature, which the
author argues is reminiscent of quantum entanglement. The
author forges provocative new links between the pilot-wave
hydrodynamic system considered and both the Kuramoto
model of coupled oscillators63 and entanglement in stochastic
electrodynamics.11

III. OPEN SYSTEMS

The paper “The interaction of a walking droplet and a
submerged pillar: From scattering to the logarithmic spiral”
by Harris et al.64 presents a striking puzzle. Their experiments
demonstrate that droplets aimed at a submerged pillar scatter
at low memory but execute an expanding logarithmic spiral
around the pillar at higher memory. The form of the spiral
is independent of the droplet’s impact parameter: there is a
universal spiral emerging for a given drop size, pillar size,
and memory. The system behavior is captured numerically
using the theoretical model of Faria,49 in which the pillar
is treated as a region of decreased wave speed. Because the
droplet speed remains equal to its free walking speed along
the spiral, the system was ideally suited to application of the
boost model,65 which was used to infer an effective force due
to the presence of the pillar. Remarkably, the pillar-induced
force is found to be a lift force proportional to the product of
the drop’s walking speed and its instantaneous angular speed
around the post. This system thus presents a macroscopic
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example of pilot-wave-mediated forces giving rise to apparent
“action at a distance.”

In 2008, Eddi et al.23 demonstrated that neighboring
droplets of unequal size interact through their common wave
field, forming a bound pair that self-propels through a ratch-
eting mechanism. In their contribution to this focus issue,
Galeano-Rios et al.46 present an integrated experimental and
theoretical investigation of such ratcheting pairs, detailing the
dependence of the ratcheting behavior on the droplet sizes
and vibrational acceleration. Their experiments demonstrate
that the ratcheters exhibit quantized inter-drop distances, with
this distance depending on the vibrational acceleration. For
a given pair, as the vibrational acceleration increases pro-
gressively, the direction of the ratcheting motion may reverse
up to four times. Numerical simulations based on recent
theoretical developments41,43 reproduce and rationalize the
system behavior. Through demonstrating the critical impor-
tance of the vertical bouncing dynamics and specifically
the transient wave generated during impact on the ratchet-
ing behavior, this study underscores the shortcomings of the
stroboscopic models in capturing close-range droplet-droplet
interactions.

The paper “Bouncing droplet dynamics above the Fara-
day threshold” by Tambasco et al.66 is the first to system-
atically characterize experimentally the behavior of walkers
on a bath vibrated above the Faraday threshold. Several new
dynamical regimes are reported, including meandering, zig-
zagging, erratic bouncing, coalescence, and trapping. The
erratic bouncing state is similar to a random walk in which
the elementary steps are of the order of the Faraday wave-
length. Similar random walks have been reported below the
Faraday threshold for walkers in confined geometries34,35 and
open systems.67,68 The study suggests the possibility of tun-
ing the relative magnitudes of the background walker wave
fields, and that new HQAs may be discovered just above the
Faraday threshold, where the walker navigates a background
wave field prescribed by the system geometry. Such a sce-
nario might be particularly useful in the context of diffraction,
as it would bear a strong resemblance to the physical pic-
tures proposed by both Bohmian mechanics69 and stochastic
electrodynamics.70

In “Hong-Ou-Mandel-like two-droplet correlations,”
Valani et al.54 present the results of a numerical study of two-
droplet correlations generated by a pair of walkers launched
toward a common origin. By virtue of their pilot-wave cou-
pling, the walkers may either scatter or form one of three
two-droplet bound states, specifically orbiting, promenading,
or drafting pairs. The probability of such pairing is quan-
tified as a function of the parameters of their pilot-wave
model. For certain parameters, the droplets may become cor-
related for certain initial paths and remain uncorrelated for
others, while in other cases, the droplets may never produce
bound states. The study suggests new directions in generat-
ing and rationalizing strongly correlated states in pilot-wave
hydrodynamics.

Tadrist et al.47 present the results of a combined experi-
mental and theoretical study of walker-walker interactions. In
their experiments, walkers are launched toward each other and
either scatter or lock into bound states, specifically orbiting

or promenading pairs. They introduce a new experimental
technique that allows them to deduce the walkers’ impact
phase from visualization of the wave field, a technique that
will prove valuable in resolving the vertical dynamics in
many hydrodynamic pilot-wave systems. They demonstrate
that the behavior during collisions cannot be predicted sim-
ply on the basis of the impact parameter; rather, the system is
chaotic, the origins of the unpredictability being uncertainty
in the vertical bouncing dynamics. They introduce a theoret-
ical model in which they model the droplet as an inelastic
ball riding a field of Faraday waves and demonstrate that the
system behavior depends critically on the vertical dynamics
of the walkers, specifically, the relative phase of the walker
pair. Their study demonstrates that uncertainty in the vertical
bouncing dynamics is responsible for the chaotic behavior in
their system. In so doing, it introduces a new means of pro-
moting chaos through vertical phase variations in a number of
open hydrodynamic pilot-wave systems, including single- and
double-slit diffraction.17–19

IV. GENERALIZED PILOT-WAVE DYNAMICS

In their contribution to this focus issue, Oza et al.31

present theoretical results concerning the stability of hydro-
dynamic spin states. Under the action of a Coriolis force,
the walking droplet executes a circular orbit whose radius
becomes quantized at high memory owing to the droplet’s
interaction with its circularly polarized wave field.26,27 Oza
et al.71 rationalized the observed stability of these orbits and
the onset of chaos arising at high memory. They further
demonstrated theoretically that, if the walker’s wave force is
sufficiently strong, it may result in a circular orbit even in
the absence of rotation. While such hydrodynamic spin states
have not been reported in the laboratory,30 their stability is
considered here in the context of a generalized pilot-wave
framework2 based on the stroboscopic model of Oza et al.72

The authors characterize the parameter regime in which spin
states would be stable and demonstrate that the application
of weak rotation would then result in an analog of Zeeman
splitting, as has been achieved experimentally with orbiting
pairs.28

The comprehensive theoretical and numerical study of
Valani and Slim,57 “Pilot-wave dynamics of two identical,
in-phase bouncing droplets,” explores the range of behavior
of this particular droplet pair configuration. Rather than con-
straining themselves to experimentally realizable parameters,
they explore the generalized pilot-wave framework proposed
by Bush,2 wherein two control parameters prescribe the rel-
ative magnitudes of the inertial force, the drag force, and
the wave force. In so doing, they discover a remarkably rich
zoology of dynamical states, including experimentally achiev-
able bound states such as in-line oscillations, drafting pairs,
orbiting pairs, and promenading pairs. More exotic bound
states hitherto unobserved in the laboratory were also dis-
covered, including polygonal orbits of promenading pairs,
as well as wandering, lopsided, and reversing promenading
pairs. The study serves to demonstrate that pilot-wave systems
have a fascinatingly rich range of behaviors not necessarily
accessible to the hydrodynamic system.
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In their paper “Exploring orbital dynamics and trapping
with a generalized pilot wave framework,” Tambasco and
Bush56 examine pilot wave dynamics in the presence of a
central “well” of deeper fluid. Since the fluid in the well is
locally above the Faraday threshold, the well creates a Fara-
day wave field that acts as an external potential with a Bessel
form. Experiments show that this wave field may trap walk-
ing droplets on stable circular orbits. The authors then explore
theoretically a generalized pilot-wave framework2 in order
to obtain richer dynamical behavior. Specifically, they alter
the relative strengths of the drop inertia, the propulsive pilot-
wave force, and the imposed Bessel potential. Orbits may
then become unstable at high memory and transition to chaos
through a path reminiscent of the Ruelle-Takens-Newhouse
scenario. A parameter regime is found in which the drop
switches chaotically between unstable circular orbits and ulti-
mately converges to a statistically steady state. The form of
the emergent statistically stationary probability distribution of
the drops position reflects the relative instability of the circular
orbits. The timescale of statistical convergence is character-
ized, and the mean wavefield in the chaotic regime is shown
to be related to the droplet histogram through the convolution
theorem of Durey et al.59 reported in this issue.

In their contribution, “Bouncing ball on a vibrating peri-
odic surface,” Halev and Harris73 explore a dynamical system
representing an elastic ball bouncing on a vertically vibrating
rigid surface with periodic topography. In addition to classical
period-doubling bifurcations, they report horizontal symme-
try breaking that yields a stable “walking” regime. In this
regime, the ball motion consists of a horizontal translation of
one wavelength of the topography at each bounce. Particular
attention is given to characterizing the influence of the bottom
topography, specifically the wave amplitude, wavelength, and
wave shape, on the bouncing behavior.

A hydrodynamic analog to the optical Talbot effect was
recently realized using a periodic array of pillars protrud-
ing from the surface of a vibrating fluid bath.38 When the
pillar spacing is simply related to the Faraday wavelength,
repeated images of the pillars are projected in front of the
array. These self-images have their origins in the sloshing
inter-pillar menisci that act as sources of Faraday waves. The
resulting self-images represent surface wave features that may
serve to trap walkers. In this issue, Sungar et al.74 build
upon this previous study in order to explore the emergence
of Faraday-Talbot patterns when the sloshing ridges between
successive pillar pairs are out of phase. A simple theoreti-
cal model rationalizes the observed self-image locations for
both linear and circular arrays of pillars. In the latter, array
curvature allows for magnification and demagnification of the
self-imaging pattern.

V. OUTLOOK

This focus issue reflects the current state of experimen-
tal, theoretical, and numerical investigations of hydrodynamic
pilot-wave dynamics. Experimental studies have introduced
new phenomenology46,48,64 that will motivate theoretical
developments, as well as new experimental techniques
that will find wide application in the HQA community.

Noteworthy is the technique of Tadrist et al.47 for resolv-
ing the drop’s impact phase through direct observation of
its wave field and the use of bottom topography to exceed
the Faraday threshold in a localized region and so induce an
effective background potential.56 The hierarchy of theoretical
models developed by the HQA community55 has been called
upon to explore both established46,48 and new60,62,64 walker
systems. The limitations of the stroboscopic models in a num-
ber of settings underscore the importance of resolving the
fast dynamical scale,43 specifically that of droplet bouncing,
in order to rationalize the dynamics and stability of bound
states,46 wave-induced trapping,38,66 and routes to chaos in
both open and closed systems.47,48

The contribution of Durey et al.59 represents a signifi-
cant advance in our attempts to connect the dynamical and
statistical behavior of classical pilot-wave systems and to
better understand their relation to realist models of quan-
tum dynamics.8–11 While contributions to this special issue
demonstrate how pilot-wave-mediated forces can generate
both apparent “action at a distance”64 and the long-range sta-
tistical indistinguishability of droplet pairs,62 the definition
of entanglement measures in the walker system is a subject
of current interest and activity.6 This special issue has also
broadened the range of the walker system beyond traditional
quantum31,48,54 and optical analog systems74 to touch upon
quantum chaos,58,60 statistical mechanics,59 and the theory of
coupled oscillators.62 Finally, investigations of a generalized
pilot-wave framework31,56,57 provide early indication that this
vast theoretical landscape will be fertile soil for novel dynami-
cal systems and new HQAs and so will serve to further expand
the phenomenological range of classical systems. It is hoped
that this focus issue will attract the attention and interest of
workers from the dynamical systems community and inspire
some to join our exploration of this exciting new class of
problems.
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