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Abstract 

Holding model misspecification constant, the behavior of fit indices depends on factors such as 

the number of variables being modeled (model size), and the average observed correlation 

(magnitude of factor loadings or measurement quality). We examine by simulation the interplay 

of these factors with sample size in CFA models. When a biased estimator of the fit index is used 

(CFI, TLI, or GFI), the behavior of the sample indices depends on sample size, rendering 

establishing cutoff values impossible. When an unbiased estimator is used (SRMR, or RMSEA) 

the behavior of the indices matches that of the population parameter and depends on the average 

R2 of the observed variables (communality); and for the RMSEA, also on model size. The use of 

the unbiased SRMR with a cutoff value adjusted by R2 is recommended as it enables assessing the 

degree of a model misspecification across model size, sample size, and measurement quality.  

Keywords: Structural equation modeling (SEM), goodness-of-fit indices, magnitude of factor 

loadings, reliability paradox.  
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One of the main issues applied researchers have to deal with when applying structural equation 

modeling (SEM) is the assessment of the goodness of fit of the proposed model. Whether a SEM 

model fits the data exactly can be assessed using the chi-square test. In applications, however, the 

test often rejects the model of interest. At this point, applied researchers turn to goodness-of-fit 

indices to determine whether the model may be retained, or should be rejected. Goodness-of-fit 

indices are sample statistics that summarize the discrepancy between the observed and expected 

values for the means and covariance matrix under the SEM model. The model is retained or 

rejected if these sample statistics exceed some cutoff criteria provided in the sample (e.g., Hu & 

Bentler, 1999). Thus, sample goodness-of-fit indices are used as if they were goodness-of-fit 

statistics (Marsh et al., 2004) while ignoring their sampling variability (Maydeu-Olivares, 2017). 

An alternative view, more consistent with current practices elsewhere in statistics, is to 

consider the effect size of the misfit after the model is rejected by the test of exact fit (Maydeu-

Olivares, 2017; Saris, Satorra, & van der Veld, 2009). Effect sizes of model misfit are population 

parameters that capture the discrepancy between the fitted model and the data generating process, 

and the decision on whether to retain or reject a model is based not solely on the result on the test 

of exact fit but also on the magnitude of the population parameter and its confidence interval 

(Maydeu-Olivares, 2017). Various forms of effect sizes exist in the SEM literature, including 

measures which are unstandardized (e.g., the root mean squared error of approximation, or 

RMSEA: Browne & Cudeck, 1993, Steiger, 1990); standardized (e.g., the standardized root mean 

squared residual, or SRMR: Jöreskog & Sörbom, 1988); or relative (e.g., the goodness-of-fit index, 

or GFI, Jöreskog & Sörbom, 1988; Maiti & Mukherjee, 1990; the comparative fit index, or CFI: 

Bentler, 1990; and the Tucker-Lewis index or TLI: Tucker & Lewis, 1973). These approaches can 

be reconciled by considering sample goodness-of-fit indices as estimators (not necessarily optimal) 
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of population parameters (effect sizes of model misfit or ‘population goodness-of-fit indices’), and 

in this article we will refer to them as population and sample goodness-of-fit indices, respectively.  

Current goodness-of-fit indices standards (e.g. Hu & Bentler, 1999) involve the use of 

constant cutoff criteria derived using sample goodness-of-fit indices. In other words, the same 

cutoff is applied regardless of the model fitted (Marsh et al. 2004; Barrett, 2007), and the cutoffs 

were derived via simulation without taking into account sampling variability (Maydeu-Olivares, 

2017). However, previous research has shown that holding model misfit constant, the behavior of 

population (Savalei, 2012; Shi, Lee, & Maydeu-Olivares, 2019; Shi, Maydeu-Olivares, & 

DiStefano, 2018), and sample goodness-of-fit indices (Anderson & Gerbing, 1984; Fan & Sivo, 

2005; Marsh et al., 1988) is not constant. Rather, it depends on factors extraneous to the degree of 

model misspecification. Two such main factors have emerged in the literature: a) the number of 

observed variables being modeled, aka model size (Anderson & Gerbing, 1984; Herzog et al., 

2007; Jackson, 2003; Kenny & McCoach, 2003; Moshagen, 2012; Shi, Lee, & Terry, 2015; Shi et 

al., 2019), and b) the magnitude of factor loadings, precision of measurement, and average 

correlation among the observed variables. Recent research has examined in detail the effect of 

model size on the validity of the cutoff values for close fit. However, to our knowledge, only Shi 

et al. (2018; 2019) have considered the effect of the magnitude of factor loadings on the validity 

of the cutoff values for close fit. Shi et al. (2018) examined the effect of the magnitude of the factor 

loadings only on SRMR population values, whereas Shi et al. (2019) examined the effect of factor 

loadings both at the population and sample levels, but only included the CFI, TLI, and RMSEA 

indices.  

Shi et al. (2019) found that model size had an important impact on the population values of 

CFI, TLI, and RMSEA, and when fitting large SEM models, a disagreement between the sample 
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goodness-of-fit indices and their population counterparts would likely be observed, particularly 

when the quality of measurement was poor (i.e., low factor loadings). They also noted that the 

phenomenon of the reliability paradox (i.e., poor measurement quality associated with better 

model fit) might have operated both for RMSEA population values and their sample estimates. 

Concerning the study by Shi et al. (2018), they found that the larger the average factor loading, the 

larger the model misspecification as measured by the population SRMR, and that the phenomenon 

of the reliability paradox might also operate for the SRMR population values. Furthermore, they 

found that the effect of factor loadings on the population SRMR was best captured by considering 

the average R2 of the observed variables (communality in factor analysis models) and that a cutoff 

criterion in terms of 2SRMR / R  effectively separates models with a substantially ignorable 

misspecification (SIM) from non-SIM models, and avoids the phenomenon of the reliability 

paradox. As noted above, Shi et al. (2019) found a sizable effect of the magnitude of factor 

loadings on the performance of fit indices. However, the emphasis of their study was on the effect 

of model size (i.e., the number of variables being modeled), and the effect of the magnitude of 

factor loadings was not analyzed in detail.  

The present study aims at filling both gaps. We performed an extensive simulation study to 

investigate a) the effect of the magnitude of factor loadings on various goodness-of-fit indices both 

in the population and in finite samples, b) the adequacy in finite samples of using an SRMR cutoff 

criterion adjusted by the average R2 of the observed variables (communality in factor analysis 

models), and the potential advantages of the SRMR correction over other fit indices, as it is the 

only index that addresses the phenomenon of the reliability paradox.  

The present manuscript goes beyond Shi et al. (2019) in that we include two important 

goodness-of-fit indices that were not investigated in their study: the SRMR and the GFI. More 
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specifically, our simulation includes two indices (RMSEA and SRMR) for which unbiased 

estimates are implemented in SEM software, and three indices in which biased estimators are 

currently in use (CFI, TLI, and GFI)1, and we are interested in assessing whether sample size 

moderates the effect of factor loadings on the average behavior of sample indices if a biased 

estimator is used. Put differently, we conjecture that the behavior of the sample indices will closely 

match that of their population counterparts when an unbiased estimator is used (SRMR or 

RMSEA), whereas when a biased estimator is used (biased SRMR, CFI, TLI, and GFI), sample 

size will be a major driver of the behavior of the index in small samples rendering any cutoff 

established at the population level (or using large samples) useless. The present article also goes 

beyond Shi et al. (2018) in that it verifies whether a cutoff criterion established at the population 

level that depends on the strength of the associations among the observed variables (i.e., the 

magnitude of factor loadings in factor analysis models) may be effective in applications.  

The remainder of this article is organized as follows. First, we briefly describe the goodness-

of-fit indices used and we review the literature on the effect of factor loadings on goodness-of-fit 

indices. Next, we describe the design of our simulation study in which we manipulate model size, 

model misspecification, magnitude of factor loadings, and sample size. We then summarize the 

results, evaluate our sample size × factor loading effect × biased estimator hypothesis, and evaluate 

the adequacy of the SRMR adjusted by communality cut-off criterion proposed by Shi et al. (2018) 

in finite samples. We conclude with a general discussion of the results and their practical 

implications for applied researchers.  

Effect of the magnitude of factor loadings on goodness-of-fit indices 

 
1 For good measure, we also include the biased SRMR in our study.  
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 The present study explores the effect of the magnitude of the factor loadings on the 

estimated SRMR, RMSEA, CFI, TLI, and GFI goodness-of-fit indices. Table 1 provides a brief 

description of these indices and their formulas both at the population and at the sample levels. 

----- INSERT TABLE 1 ABOUT HERE ----- 

The current estimators (see Table 1) for the SRMR, CFI, TLI, and GFI are consistent (i.e., 

they converge to the population parameter as sample size increases) but they are not asymptotically 

unbiased (in large samples the mean of the sampling distribution of the estimator does not coincide 

with the parameter). It is important to use unbiased estimators because the sample goodness-of-fit 

indices can be severely biased at small to moderate sample sizes (Steiger, 1990). Confidence 

intervals are also highly valuable in small samples because the point estimates may display a large 

sampling variability.  

Arguably, the most widely used goodness-of-fit index is the RMSEA. The popularity of this 

index stems from being first defined at the population level (as an effect size of misfit) and defining 

the sample RMSEA as an approximately unbiased estimate of the population parameter (see 

Browne & Cudeck, 1993). Also, a confidence interval for the population parameter, and if desired, 

a statistical test of close fit (H0: RMSEA ≤ c) can be easily obtained. However, the use of the 

population RMSEA parameter itself is problematic, as its magnitude is impossible to interpret 

because it is in an unstandardized metric (adjusted by degrees of freedom). Researchers cannot 

really judge whether any given value of the RMSEA (say 0.05) is large or small (Savalei, 2012).  

The interpretation problems of unstandardized effect sizes such as the RMSEA can be 

overcome using standardized effect such as the SRMR, which can be approximately interpreted as 

the average residual correlation. The sample SRMR is a consistent estimator of the population 

parameter but it is not asymptotically unbiased. Recently, Maydeu-Olivares (2017) derived an 
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unbiased estimator of the population SRMR that is implemented in lavaan (Rosseel, 2012). We 

will include this unbiased estimator of the SRMR in our study to gauge the effect of using unbiased 

estimators of a population goodness-of-fit index parameter vs. simply a consistent estimator (e.g., 

the sample SRMR).  

 The interpretation problem of the population RMSEA can be alternatively overcome if a 

relative fit index is used. The fitted model can be compared to an independence model (CFI) or to 

a saturated model (GFI). Finally, the widely popular TLI index incorporates features of the CFI 

(fit relative to an independence model) and RMSEA (adjustment for model parsimony). The 

current estimators for these goodness-of-fit indices are consistent (see Bentler, 1990) but they are 

not unbiased. For instance, the sample CFI proposed by Bentler (1990) - also known as McDonald 

and Marsh’s (1990) relative non-centrality index (RNI), see Table 1 - involves an unbiased 

estimator of its numerator and its denominator, but the estimate of the ratio that conforms the CFI 

is not itself unbiased. An unbiased estimator of the GFI exists (Maiti & Mukherjee, 1990: eq. 19) 

but it is not implemented in SEM software and will not be considered here. Recently, Lai (2019) 

has proposed two new consistent estimators for the CFI. However, they are not implemented in 

SEM software and they do not appear to outperform the current formula (Shi, DiStefano, Maydeu-

Olivares, & Lee, 2021).  

Confidence intervals can be obtained for the SRMR (Maydeu-Olivares, 2017), and the CFI 

(Lai, 2019) and in principle, confidence intervals for the GFI and TLI can also be obtained but we 

are not aware of any proposal. Nevertheless, the focus of the present study is on the average 

behavior of point estimates and the influence of measurement precision (magnitude of factor 

loadings).  
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In CFA models, larger factor loadings lead to larger correlations among the observed 

variables, and to increased precision of measurement. As a result, a review of the literature of the 

impact of the magnitude of factor loadings on the behavior of goodness-of-fit indices must also 

include literature on the effects of the size of the observed correlations and/or precision of 

measurement on goodness-of-fit indices. For instance, Steiger (2000) considered a simple path 

model and found that RMSEA was sensitive to the size of the correlation between the observed 

variables, controlling for the size of the misspecification. Saris et al. (2009) reported a similar 

finding in path analysis models (see also Cole & Preacher, 2014).  

Hancock and Mueller (2011; see also McNeish et al., 2018) introduce the term reliability 

paradox to denote the finding that “models with poorer quality measurement appear to have better 

data–model fit, whereas models with better quality measurement appear to have worse data–model 

fit “ (p. 306) illustrating how, holding other factors constant, population values of goodness-of-fit 

indices (GFI and CFI) decrease as standardized loadings increase, while population values of 

badness-of-fit2 indices (SRMR and RMSEA) increase. Browne et al. (2002) gave a statistical 

explanation of why this issue takes place: the power of likelihood ratio test statistic depends on the 

eigenvalues of the model implied covariance matrix, which in turns depends on the variances of 

model errors. The smaller the variance of the model errors, the higher the power of the statistic. In 

factor analysis models, the errors’ variances (uniquenesses) depend on the magnitude of the factor 

loadings. This explains the dependency of the RMSEA to factor loadings’ magnitude. Heene et al. 

(2011) extended this work and showed that any test statistic (or fit index) based on the difference 

between the observed and implied covariance matrix (e.g., the SRMR) will also depend on the 

magnitude of the factor loadings. This could also explain the behavior of incremental fit indices 

 
2 Smaller values of the CFI and GFI indicate poorer fit, whereas larger values of the RMSEA and SRMR 

indicate poorer fit. 
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(e.g. CFI, TLI, GFI): decreasing (standardized) factor loadings lead to decreasing values on the 

indices “because the difference between a theoretical model and the null model becomes smaller 

(p. 330)”.  

Monte Carlo Simulation Study 

The guidelines for Monte Carlo simulation designs in SEM recommended by Skrondal (2000) 

and Boomsma (2013) are used to present the design of the simulation study. 

Step 1: Research question and theoretical framework 

This study explores the effect of the magnitude of the factor loadings (λ) on the estimated 

SRMR, RMSEA, CFA, CFI, TLI, and GFI goodness-of-fit indices both in correctly specified and 

misspecified models. The design of the study includes varying conditions of model size (p) and 

sample size (N). The sample RMSEA is an approximately unbiased estimator of the population 

parameter (Browne & Cudeck, 1993). The sample estimators of the CFI, TLI, and GFI currently 

in use are consistent but not unbiased estimators, whereas for the SRMR we will use both the naïve 

(consistent but biased) sample estimator of the SRMR (SRMRb) currently implemented in most 

SEM software packages, and its unbiased estimator (SRMRu) to better illustrate the effect of using 

biased vs. unbiased estimators.  

The study is a follow-up of previous research on the performance of the unbiased SRMR 

goodness-of-fit index and other commonly used SEM fit indices (Shi et al., 2018; 2019), but 

focuses specifically on how the magnitude of the factor loadings affects the validity of cutoff 

values for close fit. The research questions and hypotheses examined are: First, we expect all 

population fit indices to be impacted by the magnitude of the factor loadings and we aim to answer 

questions such as: If the factor loadings are high or low, what is the best goodness-of-fit index to 

be used? Do I need a specific sample size in my study? Are there other characteristics of the model 
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(e.g., model size) that will affect the decision on the election of the goodness-of-fit index? etc. 

Second, in finite samples, we expect the effect of sample size to be smaller for the unbiased fit 

indices (SRMRu and RMSEA). Finally, we will evaluate whether the Shi et al.’s (2018) correction 

for the SRMR index based on the communality level works reasonably well at the sample level, 

and could be used with other fit indices.  

Step 2: Experimental design 

Population models 

Following Boomsma’s (2013) recommendations, the choice of the population models is 

based on previous research to increase the comparability of the experimental results and contribute 

to their external validity. The generating models follow Shi et al. (2018; 2019). More specifically, 

the population model is a CFA model with two correlated factors in which each item depends on 

a single factor.  

Experimental factors and response variables 

The independent variables are the number of variables in the model (p), the degree of model 

misspecification (ρ), the magnitude of factor loadings (λ), and sample size (N). Table 2 

summarizes the variables used in our design. 

----- INSERT TABLE 2 ABOUT HERE ----- 

The number of observed variables included in the model were p = 12, 36, and 72; representing 

small, medium, and large model sizes frequently encountered in psychological research. The same 

number of indicators per factor was used. Model misspecification was introduced by ignoring the 

multidimensionality of the population model and fitting a single-factor model to the simulated 

data. The level of model misspecification was manipulated by changing the magnitude of the 

correlation between the factors in the data generating model (ρ =.70, .80, .90, and 1.00). The 
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smallest inter-factor correlation (ρ = .70) indicates the greatest level of misspecification 

considered; a correlation of ρ = .80 indicates a medium level of misspecification, a correlation of 

ρ = .90 a small or substantively ignorable misspecification (SIM: Shi et al. 2018), and a correlation 

of ρ = 1.00 corresponds to no model misspecification.  

The magnitude of factor loadings was specified using three levels: λ = .30, .60, and .90; 

representing weak, medium, and strong factor loadings, respectively (Briggs & Maccallum, 2003; 

Ximénez, 2006, 2009). When generating the data, the factor loading values used were the same 

for all variables across factors. The variances of the error terms were set as 1 – λ2.  

Sample sizes included N = 100, 200, 500, and 1000 observations representing small, 

medium, large, and very large sample sizes. A wide range of sample sizes was used to determine 

the effect of the magnitude of factor loadings under different conditions of sample size, and to give 

practical recommendations to researchers on which sample sizes to use to warrant an adequate 

assessment of the goodness of fit of their models. 

In summary, the number of conditions examined was 144 = 3 (model sizes) x 4 (degree of 

model misspecification) x 3 (factor loading levels) x 4 (sample size levels).  

Step 3: Estimation and replication 

For each condition, 1,000 replications were generated with the simsem package in R 

(Pornprasertmanit et al., 2013). Data were generated from a multivariate normal distribution. 

Maximum likelihood (ML) estimates of the model parameters and goodness-of-fit indices were 

computed with the lavaan package in R (R Development Core Team, 2019; Rosseel, 2012). 

Population values of the goodness-of-fit indices were obtained by fitting the estimated model (also 

by ML) using lavaan to the population covariance matrices implied by the different simulated 

conditions.  
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Step 4: Analyses of output 

Analyses of variance (ANOVAs) were conducted using as dependent variable the population 

values as well as sample estimates of each goodness-of-fit index, and using the simulation 

conditions as the independent variables. Following Skrondal (2000), a simple meta-model was 

used to analyze the results, which included only the main effects and the double interaction effects 

of each independent variable on the dependent variable. The explained variance associated with 

each of the effects was measured using the partial eta-squared statistic (η2). The magnitude of the 

main effects and double interactions was judged relevant if the partial eta-squared statistic was 

larger than .10. Multiple comparisons were also conducted for the effects that were shown to be 

statistically and practically relevant.  

Results  

The population values of the fit indices and the average sample estimates of the simulation 

under the study conditions are provided as supplementary material. We computed correlations 

among the different sample fit indices to investigate whether they might behave similarly across 

levels of model misspecification and factor loading. The estimated correlations are reported in 

Table 3. As we can see in this table, the patterns of correlations reveal two major clusters of fit 

indices. On the one hand, SRMRu and RMSEA, the unbiased indices, behave similarly (their inter-

correlations are high). The other cluster contains the SRMRb, CFI, TLI, and GFI, which are the 

biased fit indices. However, these indices only appear highly correlated when the factor loadings 

are low. As the magnitude of the factor loadings increase, their inter-correlations depend on the 

degree of model misspecification.  

----- INSERT TABLE 3 ABOUT HERE ----- 
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Figures 1 and 2 show the average sample estimates of each fit index against factor loading 

levels (λ = .30, .60, and .90), sample size (N = 100, 200, 500, and 1000), model size (p = 12, 36, 

and 72), and model misspecification (ρ = 1.00 no misspecification, ρ = 0.90 substantially ignorable 

misspecification or SIM, ρ = 0.80 medium misspecification, and ρ = 0.70 large misspecification). 

These graphs also include the corresponding population value (solid line). A horizontal red line 

has been drawn in these figures to mark the recommended cutoff values for SRMR (.08), RMSEA 

(.05), CFI (.95), TLI (.95), and CFI (.95) suggested by Hu and Bentler (1999). 

----- INSERT FIGURE 1 ABOUT HERE ----- 

----- INSERT FIGURE 2 ABOUT HERE ----- 

SRMR results  

The results from the ANOVA showed that the magnitude of factor loadings, model 

misspecification, and their interaction have the largest effects on the population SRMR (η2 = 1.00 

in all three cases). The pattern of the solid lines in the graphs of Figure 1a indicate that the 

population SRMR value decreases as factor loading also decreases, and that this effect is more 

pronounced as the level of model misspecification increases. At the population level, the use of 

Hu and Bentler’s cutoff (SRMR < .08) will lead us to conclude that all conditions provide a close 

fit to the estimated model except for models severely misspecified (with ρ = .70), and with very 

large factor loadings (λ = .90). 

As seen in the graphs of Figure 1a, the behavior of the unbiased SRMR (SRMRu) matches 

very well the behavior of the population SRMR. In fact, the largest discrepancy between the 

average behavior of the SRMRu and the population SRMR occurs when the model is exactly 

specified, the number of observed variables is small, and sample size is also small. In the SIM 

condition (a one-factor model fitted to two-factors model data with ρ = .90), as the factor loading 
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increased from .30 to .60 and to .90 both the population and the sample SRMRu increased from 0 

to .02, and to .04. In contrast, when the two-factor data were generated using ρ = .80, both the 

population and sample SRMRu increased from .01 to .04, and to .08. Finally, when the two-factor 

data were generated using ρ = .70, both the population and sample SRMRu increased from 0 to 

.05, and to .13. 

The pattern of results for the sample SRMRb index is quite different (see the graphs in Figure 

2a). The results from the ANOVA showed that sample size is a main driver of the behavior of this 

index (η2 = .99), and as sample size increases, it provides an increasingly misleading impression 

of poor fit (average value of sample index is higher than population value). Interestingly, the effect 

of sample size is hampered by the magnitude of the factor loadings, as the smaller the factor 

loading, the larger the effect of sample size on the behavior of this index. Thus, the discrepancy 

between the average value of the SRMRb and its population counterpart suggest that the fit is 

poorest when small sample sizes (N = 100 or 200) and weak factor loadings (λ = .30) are employed, 

but all conditions show acceptable goodness-of-fit values according to Hu and Bentler’s cutoff 

(SRMR < .08). However, for the conditions of medium and large model misspecification the 

sample results are more similar to their population counterparts, indicating that the goodness of fit 

worsens as the magnitude of factor loadings increases and that sample size exerts an effect. For 

example, for small samples (N = 100), fit is unacceptable regardless of the level of the factor 

loading, and this effect is more pronounced for models including a larger number of indicators.  

In summary, results indicate that the unbiased estimator of the SRMR (SRMRu) behaves 

better than the naïve estimator (SRMRb), and leads to different conclusions in terms of model fit. 

The population SRMR can be accurately approximated by the SRMRu index and suggests an 

acceptable fit (SRMRu < .08) in all the study conditions except when the model misspecification 
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is severe (i.e., when collapsing two factors with ρ = .70), and the magnitude of the factor loadings 

is very large (i.e., λ = .90). In contrast, the average behavior of the biased index (SRMRb) differs 

from its population counterpart across all conditions. For example, under correctly specified 

models, when the factor loadings were λ = .30 and the sample size N = 100, the average estimates 

of SRMRb changed from .00 (perfect fit) in the population, to .07 (close fit) in the sample, and as 

p increased from 12 to 72 variables the average estimates of SRMRb changed from .07 (close fit) 

to .09 (poor fit). Additionally, as expected, sample size is a main driver of the behavior of the 

SRMRb index whereas the SRMRu index is not affected by the number of observations in the 

sample. 

RMSEA results 

At the population level, the largest effects found in the ANOVA for RMSEA are the 

magnitude of factor loadings (λ, η2 = .95), model misspecification (ρ, η2 = .90), and their 

interaction (ρ x λ, η2 = .88). The population RMSEA value increases as the level of model 

misspecification also increases, but this effect depends on the magnitude of the factor loadings. At 

the population level, the use of Hu and Bentler’s cutoff (RMSEA < .05) will lead us to conclude 

that all conditions provide a close fit to the estimated model when λ = .30. However, the RMSEA 

suggests that fit is much poorer (values between .09 and .17) when the model is misspecified and 

the magnitude of the factor loadings is very large (λ = .90). 

At the sample level, the results from the ANOVA showed that the main drivers of the 

behavior of the RMSEA index are also the magnitude of the factor loadings (λ, η2 = .93), model 

misspecification (ρ, η2 = .85), and their interaction (ρ x λ, η2 = .84). The graphs of Figure 1b show 

that under the three conditions of model misspecification, the estimated RMSEA values suggest 

close fit (RMSEA < .05) when λ = .30 and .60, in all cases except for N = 100. However, for λ = 
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.90 fit is very poor for all sample sizes and worsens as model size decreases. Our finding of 

RMSEA decreasing as the number of indicators per factor increases is congruent with Kenny and 

McCoach’s (2003), and Savalei‘s (2012) studies. The graphs of Figure 1b also make it clear that 

as p increases, the difference between the population RMSEA and the sample average values 

becomes larger. For example, under correctly specified models with N = 100 and λ = .30 the 

difference between the population RMSEA and the sample average RMSEA increased from .03 

(close fit when p = 12) to .08 (poor fit when p = 72). 

In summary, and as with the unbiased SRMR index, our results indicate that the population 

RMSEA can be accurately approximated by the sample RMSEA index across all study conditions 

and suggest that the fitted model provides a close approximation to all data generating models 

employed except when λ = .90 and there is model misspecification by altering the dimensionality 

of the model (i.e., when collapsing two factors with ρ values between .70 and .90). However, the 

RMSEA index is affected by model size whereas the SRMR goodness-of-fit indices are not. In 

particular, holding other factors constant, the RMSEA decreases as the number of variables in the 

model decreases (see also Savalei, 2012).  

CFI results 

At the population level, the largest effects found in the ANOVA for CFI are the magnitude 

of factor loadings, model misspecification (η2 = 1.00 in both main effects), and their interaction (ρ 

x λ , η2 = .99). The population CFI value decreases as the level of model misspecification increases 

but this effect depends on the magnitude of the factor loadings. At the population level, the use of 

Hu and Bentler’s cutoff (CFI > .95) will lead us to conclude that there is an adequate fit when the 

factor loadings are weak (λ = .30), regardless of model misspecification. However, the CFI will 
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lead us to conclude that fit is much poorer (CFI values between .72 and .92) when the model is 

misspecified and the factor loadings are very large (λ = .90). 

At the sample level, the largest effects on the CFI index are sample size (N, η2 = .81), model 

misspecification (ρ, η2 = .73), model size (p, η2 = .71), and the λ x N interaction effect (λ x N , η2 

= .75), but the magnitude of factor loadings and the p x N and ρ x λ interactions also had a large 

effect (λ, η2
 = .50; p x N , η2

 = .68; and ρ x λ , η2
 = .49). The graphs of Figure 2b show that the 

population CFI (solid line) is a constant of 1.00 independent of p and λ under the correct model. 

However, when the model is correctly specified, the estimated CFI values are indicative of close 

fit (CFI > .95) only for models with medium and very large factor loadings (i.e., λ = .60 and .90) 

and with samples of 200 or more observations. The sample CFI suggests an increasing level of 

misfit as the number of variables increases, and this effect is especially pronounced for N = 100. 

Under the three conditions of model misspecification, the estimated CFI values are indicative of 

good fit (CFI > .95) only in samples with 500 or more observations and this effect depends on 

model size. As p increased from 36 to 72 variables, the sample CFI decreased from .60 to .30 when 

λ = .30, from .90 to .70 when λ = .60, and from .90 to .85 when λ = .90. That is, CFI decreased as 

the number of indicators per factor increased. Figure 2b also makes it clear that as p increases, the 

difference between the population CFI and the sample CFI average values becomes larger. For 

example, under correctly specified models with N = 100 and λ = .30 the difference between the 

population CFI and the average sample CFI increased from .15 (when p = 12) to .70 (when p = 72). 

We conclude that because of the tendency of underestimation of population CFI values across all 

conditions, models with no specification error or with minor specification errors can be rejected if 

evaluated solely based on their sample CFI. 

TLI results 
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The results for the TLI index are very similar to the ones already commented on for the CFI. 

At the population level, the largest effects found in the ANOVA for TLI are due to the magnitude 

of factor loadings and model misspecification (η2 = .99 in both cases), and to their interaction (ρ x 

λ , η2
 = .98). The use of the TLI > .95 cutoff will correctly lead researchers to conclude that their 

model yields an adequate fit when λ = .30 and .60. However, when λ = .90 the use of this cutoff 

will lead to incorrectly rejecting well-fitting models.   

At the sample level, the largest effects are due to sample size (N, η2 = .66), the λ x N 

interaction (λ x N, η2 = .60), model misspecification (ρ, η2 = .59), model size (p, η2 = .45), and 

the p x N interaction (p x N , η2 = .40). However, the magnitude of factor loadings and its 

interaction with model misspecification also exerted an effect (λ , η2 = .28; and ρ x λ, η2 = .26). 

As seen in Figure 2c, the population values of the TLI tended to be underestimated when sample 

size decreased and model size increased. For example, a correctly specified model with 72 

variables and N = 100 would be rejected for all λ values if the .95 cutoff value for TLI were applied: 

the average sample TLI values, in this case, range between .30 and .87. Under the SIM condition, 

consisting of collapsing two highly correlated factors (ρ = .90) into one factor, when sample size 

is 200 or less and the number of variables in the model is 36 or more, the population TLI would 

be substantially underestimated and therefore, the model would be rejected. In this case, these 

effects were more pronounced as the magnitude of the factor loadings was smaller. 

GFI results 

At the population level, the largest effects found in the ANOVA for GFI are due to the 

magnitude of factor loadings (λ, η2 = .98), model misspecification (ρ, η2 = .93), and their 

interaction (ρ x λ , η2 = .94).  The population GFI suggests perfect fit (GFI = 1.00) when λ = .30 

regardless of model misspecification. However, it suggests a very poor fit (GFI values between 
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.20 and .52) when the model is misspecified and λ = .90. In the SIM condition (substantially 

ignorable misspecification) the GFI suggests that fit was adequate (GFI > .95) only for the small 

and medium magnitudes of factor loadings (λ = .30 and .60), whereas for large factor loadings (λ 

= .90) the population GFI failed to reach the cutoff for a good fit. 

At the sample level, the largest effects for the GFI index were also due to the magnitude of 

factor loadings (λ, η2 = .97) and model misspecification (ρ, η2 = .91) main effects, and their 

interaction (ρ x λ , η2
 = .92), but model size and sample size also had a large effect (p, η2

 = .91; N, 

η2 = .77).  The graphs of Figure 2d show that the values for GFI were underestimated as sample 

size decreased and model size increased. For instance, a correct model with 36 or more variables 

would be rejected using the conventional cutoff with samples of 500 or fewer observations. 

Under model misspecification conditions, the discrepancy between the population and the 

estimated GFI increases as the number of observed variables in the model increases and sample 

size decreases, and the estimated GFI is particularly poor for models with large factor loadings (λ 

= .90). In summary, the effect of the magnitude of factor loadings on the sample GFI depends on 

the degree of model misspecification, model size, and sample size, and the sample GFI suggests 

the model fits adequately when the factor loadings have medium and small magnitudes (λ = .30 

and .60), the number of variables is 36 or less, and sample size is 500 or larger. 

Revisiting cutoffs of the SRMR fit index 

As seen in the previous section, our results indicate that the effect of the magnitude of the 

factor loadings is important for the estimation of all the SEM fit indices considered in the study, 

and that model size and sample size are main drivers of the behavior of the majority of these fit 

indices. As expected, when an unbiased point estimator is used (SRMRu and RMSEA) it is possible 

to accurately approximate the population parameters across all study conditions. However, and 
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consistent with previous research, the RMSEA parameter itself is affected by model size and has 

the problem that it is difficult to interpret because it is defined in an unstandardized metric.  

Based on our findings, our recommendation favor the use of the unbiased SRMR index, 

which is not affected by sample size or by model size, and it is the only fit index formulated in a 

standardized metric and having an associated statistical test of close fit. Given the influence of the 

magnitude of the factor loadings on the SRMRu index, we also suggest, following Shi et al. (2018), 

to use a cutoff value for this index that is a function of the average communality of the observed 

variables, 
2R . More specifically, they proposed using 2SRMR / .05≤R  to identify ‘close fitting’ 

models, and 2SRMR / .10≤R  to identify ‘adequate fitting’ models. However, when putting forth 

their proposal, Shi et al. examined solely the behavior of these cutoff values at the population level. 

It is therefore of interest to examine the validity of these cutoff values in finite samples.  

The left-hand side of Table 4 shows the cutoffs given by Shi et al (2018) for the 2R  values 

used in our study, and the right-hand side of the table offers the sample estimates for the unbiased 

SRMR index under the study conditions. As seen in Table 4, in the models with a small average 

estimated communality ( 2R = .09), corresponding to the condition of weak factor loadings (λ = .30), 

the cutoffs proposed for the SRMR (.005 and .009) are hard to achieve, even under conditions of 

correctly specified models, where the SRMRu study values range from .022 to .102, and for the 

models with SIM (i.e., models collapsing two correlated factors with ρ = .90 into one factor), where 

the SRMRu values range from .044 to .139. These results suggest that the Shi et al. correction does 

not work well when the factor loadings are small and that a sample size of 500 or more observations 

is needed to warrant a close fit, particularly when the model includes a smaller number of 

indicators per factor. However, these results are congruent with the literature on the recovery of 

weak factor loadings (Briggs & Maccallum, 2003; Ximénez, 2006; 2009) that indicates that ML 
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often fails to recover weak factors, particularly with small sample sizes (e.g., N = 100), as is the 

case here. Concerning the cutoffs proposed for the average estimated communalities of .36 and 

.81, corresponding to the conditions of λ = .60 and .90, they are quite accurate both for the correct 

models (SRMRu values from .004 to .026 for λ = .60, and from .0003 to .004 for λ = .90), and for 

the models with SIM (SRMRu values from .039 to .050 for λ = .60, and from .045 to .049 for λ = 

.90). Finally, as expected, in the conditions of medium and large misspecification (i.e., models 

collapsing two factors with correlations of ρ = .80 and .70 into one factor), the estimated cutoffs 

are inappropriate (i.e., 2SRMR / .10>R ) across almost all conditions, indicating the lack of fit of 

the model.  

----- INSERT TABLE 4 ABOUT HERE ----- 

Figure 3 offers a visual presentation of the correction of Shi et al. (2018), illustrating the 

behavior of the sample SRMRu under the simulation conditions, and the proposed cutoffs for 

2SRMR / R . This figure is similar to Figure 1a, but in this case the doted lines represent the sample 

SRMRu values, and the red solid lines, instead of representing Hu and Bentler’s (1999) cutoff value 

(i.e., SRMR < .08), they mark Shi et al.’s (2018) cutoff values for close fit ( 2SRMR / .05≤R , thin 

line) and adequate fit ( 2SRMR / .10≤R , thick line). As can be seen, both in the correct models 

and in the models with SIM, the dotted lines fall below the cutoffs, indicating a close fit; whereas, 

they are above such cutoffs in the models with medium and large model misspecification, 

indicating unacceptable goodness of fit.  

----- INSERT FIGURE 3 ABOUT HERE ----- 

Overall, these results indicate that the correction proposed by Shi et al. (2018) to determine 

the close fit of the SRMR index as a function of the communality works reasonably well at the 

sample level. Our results show that, after this correction, the interpretation of the goodness of fit as 
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a function of the reliability is straightforward. That is, the lower the reliability, the lower the 

goodness of fit, and vice versa. Moreover, Shi et al.’s cutoffs detects misspecified models whereas 

the SRMRu index without the correction cannot detect and reject a misspecified model that 

includes weak or moderate factor loadings. 

Discussion and Conclusion 

This article addressed the problem of how the magnitude of factor loadings affects the 

goodness of fit of the model. Previous research has addressed the problem but has not specifically 

focused on how the magnitude of the factor loadings may affect the validity of the cutoffs typically 

recommended for the SEM indices to assess the goodness of fit of the model. We presented the 

results of a simulation study investigating the problem of how the magnitude of factor loadings 

affects the goodness of fit of the model under varying conditions of model size, model 

misspecification, and sample size. The study focuses on the behavior of two groups of indices: A 

group of unbiased indices: The unbiased SRMR index proposed by Maydeu-Olivares (2017), that 

is the preferred one because it is the only fit index formulated in a standardized metric that has an 

associated statistical test of close fit, and the RMSEA, the most widely used index; and a group of 

biased indices commonly used in practice: The (biased) SRMR, the CFI, the TLI, and the GFI. 

The purpose of the study was to examine the effect of the magnitude of factor loadings on the 

estimation of such indices both in correctly and incorrectly specified models, and both at 

population and at the sample level. We analyzed the correspondence between the sample 

goodness-of-fit indices and their population counterparts to evaluate the validity of the typically 

recommended cutoffs for the population SEM indices (Hu & Bentler, 1999). Conditions regarding 

the characteristics of the model, such as the number of observed variables or the sample size were 

also manipulated to better understand the behavior of the SEM fit indices.  
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Our results indicated that all fit indices were affected by the magnitude of the factor loadings. 

In the group of the unbiased indices (SRMRu and RMSEA), under model misspecification, the 

goodness of fit was poorer in the conditions with the largest factor loadings (i.e., λ = .90), and the 

largest level of model misspecification. However, congruent with previous research (Savalei, 

2012), the RMSEA index suggests model fit is acceptable in misspecified models with a large 

number of variables and large sample size (e.g., p = 72 variables and N > 500). The results in the 

group of the biased indices (SRMRb, CFI, TLI, and GFI) indicated that the magnitude of factor 

loadings also exerted a large effect. However, the interpretation for such indices was opposite to 

the one found for the unbiased indices. The CFI, TLI, and GFI indices rejected the misspecified 

models but fit was much poorer for models with weak factor loadings (λ = .30), and this effect was 

more pronounced when using small sample sizes (N = 200 or 500 observations) and large model 

sizes (p = 36 or 72 variables). In addition, we found that both the model size and the sample size 

were main drivers of the behavior of the biased indices. The CFI, TLI, and GFI indices do not 

yield values that suggest acceptable fit when the model is correct and includes 36 or more 

variables, unless the sample includes 500 or more observations. Thus, we recommend not using 

the CFI, TLI, and GFI indices in models containing a large number of variables and weak factor 

loadings, particularly if the sample size is medium or small. 

The phenomenon of poor measurement quality being associated with better model fit has 

been named the reliability paradox (Hancock & Mueller, 2011) and has been studied  

mathematically at the population level (Heene et al., 2011), and at the sample level (McNeish, An, 

& Hancock, 2018). The findings of the present study show that the reliability paradox may have 

operated for sample SRMRu and RMSEA values across all conditions under study. However, for 

sample values of CFI, TLI, and GFI our findings show that the reliability paradox does not operate 
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and that the effect of measurement quality depends on other factors such as the sample size and 

model size. These results are congruent with the ones found in the study by Shi et al. (2019), 

implying that sample estimates of CFI, TLI, and GFI, on average, tended to indicate worse fit 

under the condition of poorer measurement quality when a model of large size was fit to a sample 

of small to medium size.  

Our findings also support the validity of the correction proposed by Shi et al. (2018) to 

determine close fit using the SRMR index. Overall, the 2SRMR / R correction was very accurate 

and, more importantly, could detect the model misspecification and thus reject the misspecified 

models. This result is important as, without the correction, the SRMR index could not distinguish 

between different levels of model misspecification. Moreover, the correction provides a 

straightforward interpretation of the SRMR and avoids the reliability paradox. However, future 

research should examine in more detail the appropriateness of the Shi et al. correction in models 

including small factor loadings. Our results showed that, for such models, the correction only does 

well in models with a large number of indicators per factor and when using large sample sizes. 

These results could be due to the particular conditions examined in our study. Thus, future studies 

should continue to examine these effects under other conditions. For instance, in models with non-

identical factor loadings and in models including a mixture of weak, moderate, or high factor 

loadings. Future research can also be directed to develop corrections for other goodness-of-fit 

indices. To our knowledge, no similar correction for the RMSEA has ever been proposed but, 

given the importance of the magnitude of factor loadings and the effect of the reliability paradox 

under certain conditions (see Shi et al., 2019), further research on whether a similar correction 

could be applied to the RMSEA is needed. 
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Overall, researchers should be aware that sample values of fit indices depend on the 

characteristics of the model, such as the magnitude of the factor loadings, the number of observed 

variables or the sample size. For instance, our study has shown that for models with weak factor 

loadings (e.g., λ = .30), the SRMRu and RMSEA indices will suggest that the model fits well even 

in severely misspecified models. In the case of the RMSEA, this effect will be more pronounced 

when the model includes a large number of variables (e.g., p = 72) and the sample size is small 

(e.g. N = 100 or 200). In contrast, the CFI and the TLI indices will incorrectly suggest that fit is 

poor when the magnitude of factor loadings is small (e.g., λ = .30 or .60) and when the model 

includes a larger number of variables (p = 36 or more). In such cases, a sample size of N = 500 

observations or more is needed for these indices to provide an accurate assessment of the degree 

of misfit of the model. Something similar happens with the GFI but in this case the magnitude of 

the factor loadings only affects the goodness of fit when the model is misspecified, and when it 

includes a large number of variables. Given this, one needs to be cautious about deciding the 

goodness-of-fit index to be used to report the results of a study.  

Based on our findings, we conclude that researchers should favor the use of the unbiased 

indices and, if using biased indices, they should be aware that a much larger sample size is needed. 

In addition, we recommend considering not only a single cutoff for assessing the degree of fit of a 

model but different cutoffs based on the average value of the factor loadings. Our recommendation 

is to favor the use of the unbiased SRMR index of Maydeu-Olivares (2017) with the correction 

proposed by Shi et al. (2018) as a function of the communality ( 2SRMR / R ) for the correct 

interpretation of the SRMR.3 Some years ago, Bentler (2007) also offered this recommendation of 

 
3 Presently the unbiased SRMR index and its confidence intervals and tests of close fit are available on 

the lavaan package version 0.6-7 in R (see function lavResiduals). 
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reporting the SRMR, arguing that SRMR needed little further research, as it is interpretable on its 

own. The present research has contributed to that aim by comparing the unbiased SRMR with 

other commonly used SEM indices.  

As is the case with any Simulation study, our results will hold only in conditions similar to 

those considered herein. In the present study our aim was to investigate the drivers of the behavior 

of sample goodness-of-fit indices and relate them to those of population goodness-of-fit indices. 

Congruent with previous research (Maydeu-Olivares et al., 2017; Shi et al., 2018; 2019), we found 

that the main drivers of the behavior of sample goodness-of-fit indices were sample size, factor 

loading, and model size. On the basis of our findings, we suggest that model size can be controlled 

by using a standardized effect size; factor loading by using a correction as proposed by Shi et al. 

(2008); and sample size by using an unbiased estimator and a confidence interval. However, future 

research should continue to examine these effects under different study conditions. For instance, 

further study could be directed to examining more complex models (e.g., hierarchical models or 

structural equation models) and other forms of model misspecification (e.g., omitting cross-

loadings or residual correlations). 

In closing, we hope that this research provides additional information to SEM researchers to 

assist them when conducting the difficult task of assessing the goodness of fit of their models.  
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Table 1  

SEM fit indices used in the study 

Population indices Sample indices Description  
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Unbiased Standardized Root Mean 
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kχ , and df0 and dfk are the chi-square statistics 
and degrees of freedom for the baseline and the fitted model 

Comparative Fit Index, 
Cutoff: CFI .95≥  (Hu & Bentler, 
1999) 
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Tucker-Lewis Index, 
Cutoff: TLI .95≥  (Sharma, 
Mukherjee, Kumar & Dillon, 2005) 
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where S and Σ̂  denote the sample covariances and estimated 
covariances under the fitted model 

Goodness-of-Fit-Index, 
Cutoff: GFI .95≥  (Miles & Shevlin, 
1998) 
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Table 2  

Variables considered in the Monte Carlo study 

Code Variable Levels 
 

p 
 

Number of variables 
 

12 (small model size) 

36 (medium  model size) 

72 (large model size) 
 

ρ Degree of model 
misspecification 

ρ = 1.00 (no misspecification) 

ρ = .90 (small or substantially ignorable 
misspecification, SIM) 

ρ = .80 (medium misspecification) 

ρ = .70 (large misspecification) 
 

λ Magnitude of factor 
loadings 

.30 (small or weak) 

.60 (medium) 

.90 (large) 
 

N Sample size 100 

200 

500 

1000 
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Table 3 

Correlations between population and sample fit indices (along the diagonal) and between sample fit indices (off-diagonal) for various levels of factor 
loading and model misspecification 

 λ = .30 λ = .60 λ = .90 
ρ = .70 1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 5. 6. 
1. SRMRu (.64)**      (.93)**      (.66)*      
2. SRMRb .64* (.18)     .01 (.30)     .99** (.56)*     
3. RMSEA .64* .85** (-.37)    -.68* .38 (.62)*    -.63* -.53 (.99)**    
4. CFI -.66* -.82** -.98** (.51)   -.45 -.72** -.23 (.62)*   -.76** -.73** .73** (.77)**   
5. TLI -.73** -.86** -.97** .97** (.46)  -.38 -.74** -.30 1.00** (.57)*  -.32 -.39 -.15 .56 (.17)  
6. GFI -.70** -.80** -.94** .98** .95** (.63)** -.73** -.63* .27 .85** .81** (.92)** -.64* -.54 1.00** .77** -.11 (1.00)** 
ρ = .80                   
1. SRMRu (-.10)      (.89)**      (1.00)**      
2. SRMRb .84** (.17)     -.09 (.23)     .92** (.81)**     
3. RMSEA .63* .87** (-.37)    -.26 .68* (.20)    -.95** -.76** (.99)**    
4. CFI -.55** -.83** -.99** (.48)   -.41 -.70* -.67* (.59)*   -.81** -.85** .70* (.77)**   
5. TLI -.84** -.86** -.81** .76** (.18)  -.38 -.71* -.70* 1.00** (.56)  -.49 -.66** .32 .90** (.29)  
6. GFI -.48 -.81** -.94** .97** .71** (.62)** -.58* -.70* -.36 .90** .88** (.82)** -.97** -.81** .99 ** .77** .42 (1.00)** 
ρ = .90                   
1. SRMRu (-.35)      (.94)**      (1.00)**      
2. SRMRb .83** (.17)     .02 (.18)     .63* (.63)*     
3. RMSEA .60* .89** (-.35)    .22 .83** (-.25)    -.96** -.46 (.97)**    
4. CFI -.49 -.83** -.99** (.45)   -.45 -.69* -.94** (.52)   -.71* -.82** .53 (.73)**   
5. TLI -.27 -.67* -.92** .96** (.56)  -.45 -.69* -.94** 1.00* (.52)  -.59* -.80** .40 .99** (.64)**  
6. GFI -.38 -.81** -.94** .97** .96** (.61)* -.57 -.77** -.85** .91** .91** (.68)* -.98** -.68* .94** .78** .68** (1.00)** 
ρ = 1.00                   
1. SRMRu -      -      -      
2. SRMRb .81** -     .79** -     .80** -     
3. RMSEA .58* .89** -    .57 .90** -    .57 .90** -    
4. CFI -.45 -.82** -.99** -   -.31 -.69* -.93** -   -.29 -.66* -.91** -   
5. TLI -.30 -.74** -.95** .98** -  -.30 -.69* -.93** 1.00** -  -.28 -.65* -.91** 1.00** -  
6. GFI -.34 -.81** -.94** .96** .97** - -.31 -.80** -.94** .90** .91** - -.31 -.80** -.94** .88** .88** - 

Note: Each correlation is based on 1,000 replications * p < .05 ** p <.01. 
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Table 4  

Comparison of the cutoff SRMR corrected values for the estimated SRMRu index 

 

2R  
  
ρ 

SRMR reference values SRMRu study values 

Close   
fit 

Adequate   
fit 

Population 
SRMR 

p = 12 p = 36 p = 72 
N = 100 N = 200 N = 500 N = 1000 N = 100 N = 200 N = 500 N = 1000 N = 100 N = 200 N = 500 N = 1000 

.09 1.00 .005 .009 .000 .102 .097 .066 .047 .094 .071 .044 .030 .083 .057 .033 .022 

 .90 .005 .009 .048 .139 .099 .072 .054 .118 .076 .054 .044 .101 .067 .048 .044 

 .80 .005 .009 .096 .142 .110 .092 .080 .131 .097 .086 .090 .123 .097 .095 .097 

 .70 .005 .009 .144 .150 .128 .121 .122 .157 .133 .136 .142 .156 .143 .147 .147 

.36 1.00 .018 .036 .000 .026 .018 .012 .009 .021 .013 .008 .005 .016 .010 .006 .004 

 .90 .018 .036 .048 .041 .039 .042 .044 .047 .046 .048 .048 .050 .049 .049 .049 

 .80 .018 .036 .096 .079 .086 .090 .091 .095 .095 .096 .097 .097 .098 .098 .099 

 .70 .018 .036 .144 .127 .134 .136 .136 .143 .143 .145 .145 .145 .147 .148 .148 

.81 1.00 .041 .081 .000 .004 .002 .002 .001 .003 .002 .001 .001 .002 .001 .001 .000 

 .90 .041 .081 .048 .045 .046 .046 .046 .049 .048 .048 .049 .049 .049 .049 .049 

 .80 .041 .081 .096 .094 .093 .092 .092 .099 .098 .097 .097 .100 .100 .099 .099 

 .70 .041 .081 .145 .154 .152 .149 .147 .161 .156 .153 .151 .162 .159 .155 .153 

Note. The cells for the Study values in SRMRu show the estimated value for each index under each misspecification condition (ρ) and communality value ( 2R ) for 
each simulated model (with model sizes, p, from 12 to 72 variables and sample sizes, N, from 100 to 1000 observations).
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Figure 1  

Behavior of the sample unbiased indices (SRMRu and RMSEA) under the Simulation study conditions 

 
(a) Behavior of the unbiased SRMR index (SRMRu)     (b) Behavior of the RMSEA index 

   
 
Note: rho is model misspecification (ρ = 1.00, .90, .80, and .70), N is the sample size (100, 200, 500, and 1000), P is the number of observed variables (12, 36, and 72), 
Factor loading is the magnitude of the factor loadings (.30, .60, and .90), pop is the population values for each index, and the red solid line corresponds to Hu and 
Bentler’s (1999) cutoff for each index. 
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Figure 2 

Behavior of the sample biased indices (SRMRb, GFI, CFI, and TLI) under the Simulation study conditions 

(a) Behavior of the biased SRMR index (SRMRb)      (b) Behavior of the CFI index 
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Figure 2 (continued) 

(c) Behavior of the TLI index                   (d) Behavior of the GFI index 

  
 

Note: rho is model misspecification (ρ = 1.00, .90, .80, and .70), N is the sample size (100, 200, 500, and 1000), P is the number of observed variables (12, 36, and 72), 
Factor loading is the magnitude of the factor loadings (.30, .60, and .90), pop is the population values for each index, and the red solid line corresponds to Hu and 
Bentler’s (1999) cutoff for each index. 
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Figure 3 

Behavior of the SRMRu cutoffs of Shi et al. (2018)  

 

 
 
 
Note: Dotted lines indicate behavior of sample SRMRu and population SRMR under the study conditions; 
and red solid lines indicate two cutoffs for 2SRMR /u R = .05 (thin line, close fit) and .10 (thick line, adequate 
fit). 
 
 


