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Abstract variations in uplift, erosion, climate, and bedrock are commonly invoked as key controls

on drainage basin morphology, yet the scale of landforms that define changes in regional drainage
networks has not been addressed, limiting our ability to predict their planform evolution. Here we use
two-dimensional (2D) continuous wavelet transforms of topography in Cascadia to highlight dominant
topographic features at different scales. Surprisingly, our wavelet analysis shows that for wavelengths

>30 km, the Cascadia Forearc Lowland (CFL) spans the entire margin. Separately, we compare observed
catchment boundaries with synthetic boundaries generated on topography filtered with 2D Gaussian
functions. We observe reorganization of synthetic drainage networks from an arc-to-coast drainage system
into arc-spanning, margin-parallel river systems, akin to the modern Willamette River and coincident
with the CFL. In concert with field observations of stream capture and Willamette Valley expansion, we
propose that the Cascadia forearc is actively transitioning to a predominately margin-parallel river system.

Plain Language Summary River networks form as a result of the cumulative effects of
bedrock uplift and erosional processes. Spatial variations in uplift, climate, and bedrock erodibility are
typically considered to be the primary controls on the extent of drainage basins, yet the scale of landforms
associated with drainage reorganization have not been systematically addressed. Here, we apply several
filtering and topographic transformation techniques (two-dimensional continuous wavelet transforms
and Gaussian filters) to extract landforms of variable scale and compare them to synthetic drainage
networks in the Cascadia forearc. We observe that drainage networks mapped on filtered topography
highlight growth of the Cascadia Forearc Lowland at scales >30 km. Integration of these “synthetic”
drainage networks into a margin-parallel river system, similar to the modern Willamette Valley, supports
field observations of stream capture and river network reorganization. We propose that these methods
are useful for predicting future drainage configurations and isolating the relevant tectonic processes
responsible for changing river networks.

1. Introduction

The dynamic and tenuous nature of watershed boundaries, which define water resources, aquatic habitat,
and the flux of sediment and organic materials, is readily apparent in landscapes that exhibit stream capture
and drainage divide migration. The spatial extent and morphology of terrestrial river networks are dictated
by the contribution of uplift acting over multiple spatiotemporal scales and the competing effects of erosion
superimposed on variable bedrock lithologies (e.g., Forte et al., 2016; Gallen, 2018; Goren et al., 2014; Mitch-
ell & Yanites, 2019; Whipple et al., 2017b). Where landscapes exist in a state of disequilibrium, such that
drainage network morphology is not well adjusted to external drivers of uplift or erosion, channels respond
by vertically incising or steepening (or aggrading and gentling; e.g., Kirby & Whipple, 2012), and drain-
age divides that separate adjacent catchments may horizontally migrate (e.g., Goren et al., 2014; Whipple
et al., 2017b; Willett et al., 2014). As such, as uplift and erosion fluctuate over space and/or time, drainage
basins continually evolve and morph from prior configurations in order to move toward “steady state” (Gor-
en et al., 2014; Willett et al., 2014), though reorganization may continue long after significant uplift ceases
(Beeson et al., 2017).

Prediction of the topographic scales responsible for setting drainage basin boundaries, and consequently
the geophysical processes that drive drainage reorganization, has been an ongoing effort. River systems
on Earth deviate markedly from predicted drainage pathways defined by long wavelength (>1,000 km)

STRUBLE ET AL.

1of 11



A7 |
ra\“1%7
ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2020GL091413

topography owing to tectonic processes that act over shorter wavelengths and timescales, unlike on other
planetary bodies such as Mars or Titan (Black et al., 2017). In terrestrial landscapes undergoing drainage
reorganization, unstable divides appear to migrate toward long wavelength filtered (synthetic) topographic
divides (Moodie et al., 2018; Wegmann et al., 2007). However, the precise scale of landforms that define the
extent and stability of drainage basins remains unclear. Furthermore, while the direction of divide migra-
tion and in some cases the magnitude of disequilibrium can be predicted by local relief and river steepness
(Forte & Whipple, 2018; Whipple et al., 2017b), hillcrest asymmetry (Mudd & Furbish, 2005), and the x met-
ric, an integrated quantity of drainage area along a river profile (Perron & Royden, 2013; Willett et al., 2014),
it is challenging to define the scale of processes responsible for drainage basin disequilibrium or diagnose
why catchments exist in a state of dynamic adjustment (O'Hara et al., 2019; Whipple et al., 2017a; Yang
et al., 2015).

Signal processing has proven successful in topographic and geophysical studies including drainage network
and stream profile analysis (Black et al., 2017; Moodie et al., 2018; Roberts, 2019; Roberts et al., 2019; We-
gmann et al., 2007), landform extraction and morphometrics (Doane et al., 2019; Lashermes et al., 2007;
Perron et al., 2008; Sangireddy et al., 2017; Sare et al., 2019), and measurement of lithospheric thickness,
mantle flow, and crustal strain rates (Audet, 2011, 2014; Bomberger et al., 2018; Davies et al., 2019; Turcotte
et al., 2002). Here, we demonstrate that two-dimensional (2D) continuous wavelet transforms (CWTs) of
topography highlight the scale of landforms defined by local structural, lithologic, and base level controls
as well as regional landforms defined by subduction and mantle flow; many of these landforms do not
correspond with mapped drainage divides. In addition, we separately establish the scale-dependency of
drainage basins by mapping synthetic drainage networks on topography Gaussian filtered to progressively
longer wavelengths. Where the elevation and location of topographic highs differ between Gaussian-filtered
digital elevation models, major river divides appear to migrate. We isolate the scale-dependency of drainage
basins by quantifying the similarity between synthetic drainage basin boundaries and those of the actual
landscape by using the Jaccard Similarity Index (JSI), a statistic of the degree of overlap (i.e., similarity)
between the sample sets (Jaccard, 1900).

We focus on the central and southern Cascadia forearc, including the Klamath, Rogue, Umpqua, and Wil-
lamette Rivers (Figure 1, S1), where drainage reorganization is a common and ongoing process. Multiple
large discrete stream captures have been mapped at the crest of the Oregon Coast Range (OCR) along
the western margin of the Willamette Valley (WV) (Baldwin & Howell, 1949; Chylek, 2002; Moeller, 1990;
Niem, 1976) and in the Umpqua and Rogue River catchments (Figures S1, S2, and S3), where rivers that
used to flow directly from the Cascades to the Pacific Ocean (arc-to-coast) were diverted into margin-par-
allel catchments such as the Willamette River. The driver of these reorganization events, including the
role of uplift in the OCR, remains ambiguous; potential controls on river network changes include crustal
faults bounding alluviated valleys that contribute to basin subsidence and geomorphic adjustment (Blakely
et al., 2000; von Dassow, 2018; Wells et al., 2017, 1998; Yeats et al., 1996) as well as deeper subduction pro-
cesses (e.g., Becker et al., 2014; Blakely et al., 2005; Delph et al., 2018; Ramachandran et al., 2006).

2. Methods

We utilized 3-arc second (90 m) Shuttle Radar Topography Mission (SRTM) digital elevation models
(DEMs), a sufficient resolution to ensure that major rivers route correctly and low-relief drainage divides
are accurately resolved. To visualize the pattern of dominant landforms over various wavelengths <200 km,
we applied CWTs to a DEM spanning the entire Cascadia margin. This analysis enables us to identify the
wavelengths at which particular physiographic features become readily apparent. Separately, in order to
identify the scales at which discrete changes in catchment boundaries and substantial modifications to the
regional drainage network configuration occur, we filtered (i.e., smoothed), topography over progressively
longer wavelengths using Gaussian filtering and mapped synthetic drainage networks and corresponding
drainage divides. We then quantified the similarity of these synthetic drainage basins to those generated
with the unfiltered DEM to establish the scale-dependency of the drainage network and constrain the top-
ographic wavelengths that are responsible for drainage basin evolution.
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Figure 1. Two dimensional (2D) Continuous wavelet transform of topography reveals convex (red) and concave (blue) regions corresponding to the specified
wavelength. Dominant landforms observed: (a) 30 km wavelength: Hillslopes and valleys, potentially corresponding with lithologic contrasts and shallow
crustal faults (Basin and Range). Cascades volcanoes apparent. Gray lines are major rivers, labeled at outlet. Great Basin rivers omitted. See Figure S1 for all
rivers and landforms labeled and wind gap locations. (b) 45 km: Broader landforms reveal influence of regional tectonics. Willamette Valley (WV) displays
connectivity with neighboring drainage basins. (c) 80 km: WV and other forearc lowlands consolidating. (d-e) 100 km-160 km: Cascadia Forearc Lowland
clearly apparent. (f) 200 km: Olympic and Klamath Mountains and Cascades Arc persist. Growing white space corresponds with clipped wavelet edge effects, a

width approximately four times the wavelet scale. S: Seattle, P: Portland, (e) Eugene, R: Redding.

2.1. Continuous Wavelet Transforms: Ricker Wavelet

We applied a 2D CWT to the SRTM topographic data using the Ricker (Mexican Hat) wavelet. The Rick-
er wavelet is often used in topographic analyses (Booth et al., 2009; Malamud & Turcotte, 2001; Turcotte
et al., 2002) and depicts the Laplacian of topography (Lashermes et al., 2007; Torrence & Compo, 1998),
revealing concave and convex regions (Figure 1). These mapped concave and convex regions, or landforms,
reveal dominant features as defined by the wavelet scale. Hence, unlike a Gaussian filter, which removes
high-wavenumber information, or a band-pass filter, which isolates a range of wavelengths, the CWT allows
for visualization of topography corresponding to a specific wavelength. High magnitude wavelet coefficients
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denote where the wavelength of topographic curvature corresponds well to the specified wavelet scale.
Thus, a large positive (negative) wavelet coefficient at a particular wavelength indicates that topography is
strongly convex (concave) at that wavelength.

The CWT using the Ricker wavelet is computationally efficient, has few edge effects, and does not assume
stationarity (constant mean, variance) of topographic data (Torrence & Compo, 1998). The generalized 2D
CWT, with a wavelet scale parameter s, elevation z, and location (u,v) is given as

C(s,u,v) = %]i]iz(x,y)v,[x ; u,y ; V]dxdy €))

where y is a wavelet family and C is the resultant wavelet coefficient. Hence, the 2D CWT is a convolution
of zand v,

C(s,u,v) =

“ | =

N

o222 >

A wavelet with a large wavelet scale, s, produces a broad y that reveals long wavelength elements in z, while
small values of s produce a small v, which in turn defines the finer features in z. In other words, a large
(small) wavelet scale extracts long (short) wavelength features in topography.

We defined the relevant scale, s, of the Ricker wavelet using its Fourier wavelength, which is the inverse of
its band-pass frequency (Foufoula-Georgiou & Kumar, 1994; Mallat, 1999). The Fourier wavelength for a
derivative of a Gaussian is defined as,

27s

3

m+ —

where m is the mth derivative of a Gaussian (Torrence & Compo, 1998). Since the Ricker wavelet is the nega-
tive second derivative of a Gaussian, m = 2. Hence, larger wavelet scales, s, correspond to larger topographic
wavelengths, 1. Reorganizing Equation 3, we solved for s for each topographic wavelength of interest, in this
case wavelengths from 5 km to 200 km in increments of 5 km. For each wavelength, we then used Equa-
tion 2 to convolve topography with the 2D Ricker wavelet, given as,

we(xy) = (2 -x’ - yz)eXp{%(xz + yz)} 4

The resultant wavelet coefficients output from Equation 2 signify concave and convex topographic land-
forms corresponding to the input wavelet scale (Figure 1).

2.2. Gaussian Filter and Jaccard Similarity Index

To characterize the scale-dependence of forearc drainage networks, we filtered (i.e., smoothed) the raw
SRTM topographic data using a 2D Gaussian function in 5 km increments up to 200 km. We used the result-
ing filtered DEMs to map synthetic drainage networks and drainage divides. Thus, the resultant drainage
networks are those that would form without the influence of topography that corresponds to a wavenumber
higher than the filter scale. For this analysis, an inverse wavelet transform of coefficients from the CWT
could be used to reconstruct topography for particular wavelengths (Figure 1). Instead, we choose to use
a 2D Gaussian filter which has the advantage of preserving the longest wavelength landforms as these are
primarily responsible for setting the form of river longitudinal profiles (Roberts, 2019; Roberts et al., 2019).
The 2D Gaussian function is defined as,

2\
vol) = e L) ®)
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Figure 2. Actual (a) and synthetic drainage networks corresponding to (b) 30 km, (c) 45, (d) 150, (e) 160, and (f) 195 km wavelengths. Blue lines are synthetic
drainage networks, and gray lines are synthetic drainage divides corresponding to major forearc drainage basins. Each panel highlights discrete changes to
drainage basin extent, defined by drops in JSI (Figure 3). See text for description of each major change. For visual clarity, mapped topography in all panels is
unfiltered (Figure S5 for filtered). Linear channels correspond with filled sinks (prevalent in the upper Columbia Basin). These sinks do not affect our results in
the forearc. We plot the drainage divide at the crest of the Cascades for Willamette-draining channels (i.e., no upper Columbia). CC: Cow Creek.
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For each topographic wavelength (5 km-200 km), we solved for the appropriate scale, s, of the filter using
the Fourier wavelength of a Gaussian function, defined in Equation 3. For a 2D Gaussian function, m = 0
(Torrence & Compo, 1998). We filtered the raw topography DEM with the appropriately scaled Gaussian
function by convolution of ¥ with topography, z, as denoted in Equation 2, thus producing a smoothed
DEM (Figure S5; Sangireddy et al., 2017).

We produced synthetic drainage networks that correspond to each Gaussian filtered DEM by routing flow
over each filtered DEM with the D8 flow routing algorithm in MATLAB using TopoToolbox (Schwanghart
& Scherler, 2014), and we mapped the resulting synthetic drainage divides for forearc catchments with
trunk channels that drain to sea level (Figures 2, S2, and S5). These synthetic stream networks are those that
would form without any influence of landforms smaller than the scale of the Gaussian filter wavelength. We
clipped the Columbia River at the crest of the Cascades in the Columbia River Gorge to limit the drainage
divides to those that flow into the WV.

In order to pinpoint the wavelengths at which discrete changes to drainage basins occur, we calculated the
similarity between each synthetic and unfiltered drainage basin using the Boolean JSI (Jaccard, 1900; Le-
vandowsky & Winter 1971), defined as:

JSI = [2. 25/

(6)

BO

+ |Bf| +

B, 8|

where B, is the original, or unfiltered, drainage basin and By is the synthetic drainage basin. When JSI =1,
B, and By are identical when JSI = 0, the drainage basins have no overlap. Thus, fluctuations in JSI corre-
spond to changes in drainage basin extent in the Gaussian filtered DEMs (Figure 3). Specifically, gradual
and abrupt drops in JSI at particular wavelengths correspond to synthetic divide migration and stream
capture, respectively, between drainage basins in Gaussian filtered and unfiltered DEMs (Figure 3). JSI has
been used previously to quantify the divide migration between timesteps in a landscape evolution model
(O'Hara et al., 2019) and how well modeled lava flows predict real flows (Richardson & Karlstrom, 2019).
Our use of JSI here, however, is the first to quantify the scale-dependency of drainage network boundaries
as a function of topographic wavelength. Finally, since Gaussian filtering tends to “smear” topography, thus
shifting the coastline and decreasing JSI, we clipped both filtered and unfiltered drainage basin outlets at
sea level defined in unfiltered topography.

3. Results
3.1. 2D CWT Reveals Cascadia Forearc Landforms

The 2D CWT of topography for each applied wavelet scale reveals concave and convex landforms corre-
sponding to particular wavelengths. In other words, high-magnitude wavelet coefficients for a particular
scale denote landforms well characterized by that wavelength. Specifically, at small wavelengths (<30 km),
we observe that high magnitude wavelet coefficients highlight and correspond well with hillslopes and
valleys, volcanoes in the Cascades, and shallow crustal structures, such as normal fault-bounded mountain
ranges in the Basin and Range Province (Figure 1a). As wavelength increases, regional landforms that span
multiple river catchments become more apparent (Figure 1b). Specifically, for wavelengths at which the
contribution of subduction zone deformation is dominant (~80 km-160 km; Becker et al., 2014; Bomberger
et al., 2018 and references therein), the coastal ranges and Cascades arc continuously traverse the entire
length of the subduction zone. We similarly observe persistent lengthening of the WV as it merges with near-
by depositional basins in the southern and northern extents of the margin (Figure 1c), including the Puget
Lowland. We note, however, that connectivity exists between arc-parallel lowland terrain at wavelengths as
small as 45 km (Figure 1b). At wavelengths of 100 km and higher, this Cascadia Forearc Lowland extends
along the entire margin of the subduction zone, from the Strait of Georgia in the north to Mount Shasta in
the south (Figures 1d-1f). While the coastal ranges become less prominent at wavelengths >150 km, the
high-elevation Olympic and Klamath Mountains remain pronounced, potentially a reflection of rapid uplift
rates associated with localized mantle upwelling (Balco et al., 2013; Bodmer et al., 2019; Kelsey et al., 1994).
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Figure 3. Jaccard Similarity Index (JSI) quantifies scale-dependence of drainage basins. High JSI indicates little change between synthetic and unfiltered
catchments. Low JSI indicates greater change due to mobile divides and captures. Drops in JSI include: (a) 15 km wavelength: Synthetic capture of Cow Creek
by Rogue River. (b) 30 km: Umpqua River captures the Rogue River through Cow Creek, indicating reverse in capture direction. (c) 40 km: Willamette River
diverted into Puget Sound. (d) 45 km: Sacramento River captures Trinity River headwaters (Klamath River tributary). (e) 65 km: trunk channel of Trinity River
drains directly to sea level. (f) ~90 km-155 km: Klamath River outlet migrates northward. (g) 160 km: Klamath River diverted into merged Umpqua/Rogue
system. (h) 190 km: Willamette River diverted across Marys/Yaquina drainage divide. Oscillation in JSI for Willamette River between 130 km and 160 km due
to Columbia River outlet alternating between Chehalis River and Puget Sound. Oscillation an artifact introduced from Pleistocene glaciation due to clipping

outlets at sea level.

Finally, the longest analyzed wavelengths (~160 km-200 km) correspond to integrated whole-lithosphere
effects such as gravitational potential flows and coupling with mantle flow, most apparent in the Cascades
and High Lava Plains (Figures 1le and 1f; Becker et al., 2014; Faccenna & Becker, 2020). We acknowledge,
however, that the limited size of our study area and the clipping of edge effects (e.g., Figure 1f) lend caution
to our analysis of these longest wavelength landforms.

3.2. Synthetic Drainage Networks Reveal the Future of Cascadia Forearc Drainages

Stream captures are common along the western margin of the WV and Cascadia Forearc Lowland, where
rivers that previously flowed from the arc to the coast were diverted into the Willamette River (Figures S1
and S2; Baldwin & Howell, 1949; Chylek, 2002; Moeller, 1990; Niem, 1976). The extension of the WV in 2D
CWT topography beyond its mapped drainage divides and the observation that stream capture is an ongoing
process that appears to be migrating south through time (Baldwin & Howell, 1949; Chylek, 2002), encour-
ages an examination of how the drainage network is adjusting to long wavelength landforms and variations
in uplift rate between the OCR and the Cascadia Forearc Lowland.

To constrain the scale dependence of the Cascadia drainage network, we calculated JSI for the Willamette,
Umpqua, Rogue, and Klamath Rivers, as they remain coherent drainage basins across a wide range of wave-
lengths. JSI values for the Rogue and the Umpqua Rivers gradually decrease as Gaussian filter wavelength
increases, up to ~15 km, at which point the synthetic divide between the Umpqua and Rogue Rivers shifts
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northward as the synthetic Rogue River captures Cow Creek (Figures S1 and S2), the southernmost tributary
of the Umpqua River that was recently captured from the Coquille River (Figure S3). Synthetic capture of
Cow Creek by the Rogue River is partially explained by the lack of adjustment of Cow Creek to base level
lowering imposed by the Umpqua basin-knickpoints resulting from recent capture from the Coquille River
have yet to migrate to the low-relief headwaters captured by the synthetic Rogue River (Figure S3). This
low-relief reach of Cow Creek appears in filtered topography as a broad, poorly integrated surface primed
for capture. At a wavelength of 30 km, however, the polarity of synthetic divide migration reverses, and
the synthetic Umpqua River captures the Rogue River through Cow Creek (Figures 2 and S2), resulting in
an abrupt drop in JSI for both the Rogue and Umpqua Rivers (Figure 3). Synthetic capture of the Rogue
River by the Umpqua River reflects progressive and continuing growth of the Umpqua drainage basin and
suggests that faster uplift in the southern OCR and Klamath Mountains may drive the Rogue River to seek a
new route to base level (Balco et al., 2013; Bodmer et al., 2019; von Dassow, 2018; Kelsey et al., 1994).

In the Klamath River catchment, we observe multiple abrupt drops in JSI superimposed on a gradual overall
decrease (Figure 3). Abrupt drops in JSI at wavelengths <160 km correspond to synthetic drainage basin
augmentation in the Klamath River headwaters in the Basin and Range Province and High Lava Plains east
of the Cascades and loss of southern tributaries in the Klamath Mountains. The main stem of the Klamath
River has kept pace with high-uplift rates in the Klamath Mountains, as indicated by its well-entrenched
valley system through the range. Entrenchment of the Klamath River is reflected by the remarkable stability
of the main stem of the river through a wide range of wavelengths, although the synthetic outlet of the river
migrates northward at longer (100 km-155 km) wavelengths (Figures 2 and 3). At a wavelength of 160 km,
the synthetic Klamath River is diverted northward into the merged Umpqua-Rogue system (Figures 2 and
3). In addition, southern tributaries of the Klamath River, including the Trinity River, which may be ex-
periencing higher uplift as the Mendocino Triple Junction passes (Balco et al., 2013; Bodmer et al., 2019;
Furlong & Govers, 1999; Kelsey et al., 1994; Lock et al., 2018), are diverted at moderate wavelengths (40 km—
45 km; Figures 2 and 3).

The Willamette River experiences the smallest overall decrease in JSI (Figure 3), reflecting concordance
between the modern WV and the Cascadia Forearc Lowland that we observe in wavelet-transformed to-
pography (Figures 1 and S1). Regions of simulated divide migration and stream capture support geologic
evidence for progressive growth and southward migration of the WV that accentuates the forearc lowland
(Figures 2 and S2). Between 40 km and 45 km wavelengths, the Columbia River is diverted into the Puget
Lowland over the low divide between the Chehalis and Cowlitz Rivers, which is composed of glacial out-
wash that has inundated the forearc (Figure 2). Despite the significant depth of structural basins in the
Puget Lowland (e.g., Ramachandran et al., 2006), the role of tectonics and basin subsidence in driving this
capture event may be somewhat modulated by Plio-Pleistocene glaciation in the Puget Lowland, though Co-
lumbia River sediments have been mapped at the mouth of the Chehalis River (Walsh et al., 1987). Other re-
gions of simulated transience and capture in the northern WV are concentrated along drainage divides with
the Nehalem and Nestucca Rivers and are supported by Paleoroutes of the Columbia River (Figure S2), in-
dicated by emplacement patterns of the Columbia River Basalts (Beeson et al., 1989; Reidel & Tolan, 2013).
In the southwestern WV, we observe mobility of simulated drainage divides with west-draining OCR rivers
(Figure S2), where multiple discrete captures along the divides with the Siuslaw, Alsea, Yaquina, and Siletz
Rivers have been observed (Figure 1; Baldwin & Howell, 1949; Chylek, 2002; Moeller, 1990; Niem, 1976).
Given these captures have already occurred, offset between the synthetic and modern divides is minimal.

4. Discussion and Conclusions

Application of 2D CWTs and Gaussian filters to topography informs the scale and distribution of catch-
ment-defining landforms, which then dictate drainage divide migration over a broad suite of wavelengths.
Notably, in Ricker wavelet-transformed topography, the concave Cascadia Forearc Lowland exhibits some
connectivity at wavelengths >30 km (Figures 1a-1c), and it clearly extends along the entire subduction zone
at wavelengths >100 km (Figures 1d-1f). In turn, synthetic drainage networks mapped on Gaussian filtered
topography illuminate the scale dependency of drainage basins in the Cascadia forearc (Figure 3) and high-
light the influence of hillslope-valley coupling, lithology, and shallow crustal faults at short wavelengths
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(<30 km), regional tectonic deformation at intermediate wavelengths (30 km-160 km), and lithospheric
mechanics or mantle processes at long wavelengths (160 km-200 km).

The locations of simulated capture points identified in our analysis coincide with independent geolog-
ic evidence for shifting drainages, allowing us to hindcast past captures and predict future captures of
coast-draining rivers in southern Cascadia. When coupled with field observations of stream capture and
growth of margin-parallel rivers in the forearc (Figures 2, S3, and S4; Baldwin & Howell, 1949; Chylek, 2002;
Moeller, 1990; Niem, 1976), the simulated diversion of arc-to-coast rivers at wavelengths >30 km suggests
that Gaussian filtered topography is an effective predictor of future divide transience and stream capture
between major river catchments. Geologic variability in lithology and structure modulate and control
drainage basin morphology and contribute to drainage reorganization on short temporal and spatial scales
(Forte et al., 2016; Gallen, 2018), including intracatchment reorganization. Nonetheless, long-wavelength
topography better predicts future drainage configurations (Campbell, 1896; Moodie et al., 2018; Wegmann
et al., 2007), as it is more persistent than transitory lithologic and structural heterogeneities. Persistence of
long-wavelength topographic divides provides a prolonged, exogenic boundary condition that directs the
flow of rivers and alters the geometry of drainage networks (Faccenna et al., 2019; Moodie et al., 2018).

Our results suggest that southern Cascadia arc-to-coast draining rivers (Umpqua, Rogue, Klamath) are
evolving into a configuration more evocative of the WV. Observed WV captures and predicted future growth
of margin-parallel rivers is likely a result of differential uplift along the margin, continued OCR uplift that
outpaces river incision, and/or active subsidence within the forearc topographic low, though the relative
importance of these options is unclear. We suggest, however, that observed growth of the WV in concert
with the formation of structural basins (e.g., Blakely et al., 2000; McPhee et al., 2014) implicates crustal
subsidence as an important boundary condition for setting drainage network geometry and driving forearc
drainage reorganization. The spatial variability in uplift rates that would be implied by the transition of the
Cascadia forearc to a margin-parallel river system may be due to recent reorganization of oceanic plates and
subduction (Bassett & Watts, 2015; Bodmer et al., 2015; Calvert et al., 2011; Hawley & Allen, 2019); mantle
wedge serpentinization, corner flow, and high rates of slab sinking driving forearc subsidence and/or OCR
uplift (Audet et al., 2010; Becker et al., 2014; Blakely et al., 2005; Brocher et al., 2003; Delph et al., 2018;
Hyndman & Peacock, 2003; Johnson & Tebo, 2018; Ramachandran et al., 2006); clockwise rotation and
crustal faulting of the forearc forcing basin formation (Blakely et al., 2000; Wells & McCaffrey, 2013; Wells
et al., 2017, 1998); or some combination thereof. Isolating the effect of these mechanisms on topography,
while beyond the scope of this work, will elucidate the role of variable-scale tectonic processes on setting
drainage basin morphology, as well as clarify active processes driving relief formation in forearcs.

Utilization of 2D CWTs and Gaussian filters represents a promising paradigm for interpreting drainage
network disequilibrium and predicting future pathways of reorganization as well as investigating the char-
acteristic wavelength of tectonic and surface processes that define and dictate river network extent and
morphology. Wavelet- and Gaussian-transformed topography may be exploited to inform fish genetics and
paleogeographic reconstructions, sediment provenance, and landscape evolution models and may provide
linkages between surface processes and mantle and crustal dynamics measured using seismic tomography
and geodesy. Finally, future studies are needed to address how river discharge and sediment supply interact
with variable-wavelength topography, and whether Gaussian filtered synthetic drainage networks corre-
spond with specific timescales of landscape transience and adjustment.

Data Availability Statement

All SRTM topographic data are available for download from OpenTopography (https://portal.opentopogra-
phy.org/raster?opentopoIlD=0OTSRTM.082015.4326.1) or in MATLAB through TopoToolbox (https://topo-
toolbox.wordpress.com).
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