
JFP 31, e21, 139 pages, 2021. c⃝ The Author(s), 2021. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
doi:10.1017/S0956796821000125

Gradual type theory

MAX S. NEW
Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA

(e-mail: maxsnew@umich.edu)

DANIEL R. L ICATA
Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA

(e-mail: dlicata@wesleyan.edu)

AMAL AHMED
Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA

(e-mail: amal@ccs.neu.edu)

Abstract

Gradually typed languages are designed to support both dynamically typed and statically typed pro-
gramming styles while preserving the benefits of each. Sound gradually typed languages dynamically
check types at runtime at the boundary between statically typed and dynamically typed modules.
However, there is much disagreement in the gradual typing literature over how to enforce complex
types such as tuples, lists, functions and objects. In this paper, we propose a new perspective on
the design of runtime gradual type enforcement: runtime type casts exist precisely to ensure the
correctness of certain type-based refactorings and optimizations. For instance, for simple types, a
language designer might desire that beta-eta equality is valid. We show that this perspective is useful
by demonstrating that a cast semantics can be derived from beta-eta equality. We do this by provid-
ing an axiomatic account program equivalence in a gradual cast calculus in a logic we call gradual
type theory (GTT). Based on Levy’s call-by-push-value, GTT allows us to axiomatize both call-by-
value and call-by-name gradual languages. We then show that we can derive the behavior of casts
for simple types from the corresponding eta equality principle and the assumption that the language
satisfies a property called graduality, also known as the dynamic gradual guarantee. Since we can
derive the semantics from the assumption of eta equality, we also receive a useful contrapositive: any
observably different cast semantics that satisfies graduality must violate the eta equality. We show
the consistency and applicability of our axiomatic theory by proving that a contract-based imple-
mentation using the lazy cast semantics gives a logical relations model of our type theory, where
equivalence in GTT implies contextual equivalence of the programs. Since GTT also axiomatizes
the dynamic gradual guarantee, our model also establishes this central theorem of gradual typing.
The model is parameterized by the implementation of the dynamic types, and so gives a family of
implementations that validate type-based optimization and the gradual guarantee.

1 Introduction

Gradually typed languages (Siek & Taha, 2006; Tobin-Hochstadt & Felleisen, 2008) are
designed to support the gradual migration from dynamically typed to statically typed pro-
gramming with a unified syntax and implementation. This is based on the hypothesis that

1D19 12 5 1 8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796821000125
https://orcid.org/0000-0001-8141-195X
mailto:maxsnew@umich.edu
mailto:dlicata@wesleyan.edu
mailto:amal@ccs.neu.edu
https://crossmark.crossref.org/dialog?doi=10.1017/S0956796821000125&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

2 M. S. New et al.

dynamically typed and statically typed languages have complementary benefits, and are
better in different contexts in the software development life cycle. Dynamically typed code
can be written without conforming to a strict syntactic type discipline, so the programmer
can always run their program interactively with minimal effort. This makes dynami-
cally typed languages ideal for prototyping and implementing one-off scripts. Statically
typed programs, on the other hand, are checked at compile time for internal consis-
tency, detecting errors before the program even runs and providing mathematically sound
reasoning principles that simplify correctness arguments, justify type-based refactorings,
enable compiler optimizations and underlie formal software verification. This make stat-
ically typed languages ideal for long-term program maintenance and reusable libraries.
Gradually typed languages are designed with the perspective that dynamically typed and
statically typed styles are useful at different times in the software development process,
and so enable gradual migration from a dynamically typed to a statically typed style.
That is, gradual languages support syntax for both static and dynamic typing, and allow
for dynamic code to be migrated to a static style simply by adding type annotations. The
language should support gradual migration in that any mix of statically typed and dynam-
ically typed program modules should be executable as long as the statically typed portions
type check. That is, you don’t have to migrate the entire codebase from dynamic to static
typing before running, or manually implement any glue code for the dynamic and static
modules to interoperate.
There are two main approaches to howmixed static–dynamic programs are run. The first

approach, which we call “optional typing”, is to erase all type information and simply run
as if the program were a dynamically typed program. The philosophy of optional typing
is that static types are simply a static analysis for catching some bugs. Optional typing is
popular in industry languages such as Hack, TypeScript and Flow. The second approach,
called “sound gradual typing”,1 which is the focus of this paper, is to insert type casts at the
boundary between static and dynamically typed code. These casts will error at runtime if
the dynamically typed values do not satisfy the static type specifications. The reason these
type casts are inserted are so that in gradually migrating from dynamic to static style, the
programmer receives the reasoning benefits of static typing: if you have a statically typed
variable that is of type Num, then you can be ensured at runtime it really will be a number.
This means that if the runtime checks are strong enough, statically typed programs in a
sound gradually typed language can receive the same optimizations as in a fully statically
typed language.
So the central design decisions for gradually typed language semantics is the semantics

of these runtime type casts that are inserted at the boundaries between dynamically typed
and statically typed code. These runtime checks ensure that typed reasoning principles are
valid by checking the types of dynamically typed values at runtime when they flow to stat-
ically typed code. For instance, when a statically typed function f : Num→ Num is applied
to a dynamically typed argument x, the language runtime must check if x is a number,
and otherwise raise a dynamic type error. This is usually formalized by translation to an
explicitly typed cast calculus where casts are inserted at these static–dynamic boundaries.
In this case, the application fx in the source language would elaborate to something like
f (⟨Num⇐ ?⟩x). Here ? is the type of dynamically typed values, and the cast ⟨Num⇐ ?⟩x is

1 Terminology from Takikawa et al. (2016).

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 3

read as “cast x from ? to Num”. The behavior of the cast is then given by the operational
semantics of this cast calculus.
While there has been a great deal of research on gradually typed languages and their

semantics, there is little agreement on the semantics of these casts, especially when the
casts involve more complex types such as tuples, lists, functions and objects. This has led
to at least two papers discussing the design space of casts and some trade-offs of their
approaches (Siek et al., 2009; Greenman & Felleisen, 2018). The goal of this paper is to
promote a new perspective on the design of cast semantics by proposing a semantic expla-
nation for cast behavior. Our perspective is that we should base the design of cast semantics
on the desired equational reasoning principles for the statically typed code. In particular,
we will focus on the validity of η equality for simple types, which we will introduce in
more detail shortly. Equational reasoning principles formalize when two programs in a
language have equivalent behavior. They can be used to justify that program refactorings
and optimizations are semantics-preserving. Validity of equational reasoning principles is
a particularly useful way to formalize the benefits of static typing because it is directly
actionable information: if your language ensures certain equational reasoning principles,
then those can be used to justify more optimizations and refactorings. So as a programmer
in a sound gradual language migrates from dynamic to static code, we can see that the
equational theory becomes richer, in a sense quantifying the idea that the programmer has
increased their ability to reason about the code.
We provide evidence that this is a useful perspective on the design of gradual type

semantics by showing that some of the semantics of casts are uniquely determined by
which η principles they satisfy. That is, we can formally derive certain cast semantics
from η equality. As a corollary of this theorem, any cast semantics that differs from the
ones we derive must violate the η reasoning principle, which provides us with specific
concrete trade-offs in reasoning that different cast semantics provide.

1.1 Soundness theorems for sound gradual typing

The extent to which these different semantics have been shown to validate type-based
reasoning has been limited to syntactic gradual type soundness and blame soundness the-
orems. In their general form, these theorems say: “If t is a closed program of type A then
it diverges, or reduces to a runtime error blaming dynamically typed code, or reduces to a
value that satisfies A.” Since the theorem only describes the result of a single run of the pro-
gram, it doesn’t directly justify any of the optimizations or refactorings that gradual types
are supposed to justify. Furthermore, the blame tracking aspect of the theorem is difficult
to understand in general since it relies on the notion of blame defined by the operational
semantics and doesn’t have an agreed on standard.
We argue that existing gradual type soundness theorems are only indirectly expressing

one of the desired properties of the gradual language, which are program equivalences in
the typed portion of the code that are not valid in the dynamically typed portion. These
typed equivalences are essential for ensuring that any reasoning about refactoring or opti-
mization of code that is valid in a fully static setting is also valid for statically typed
portions of a gradually typed program. Thus, preserving appropriate typed equivalences—
the ones that justify refactoring and optimization—should be one of the criteria that
gradually typed languages should satisfy.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

4 M. S. New et al.

In addition to the soundness of type information, we also emphasize that the grad-
ual migration process should be “smooth”. This is captured by the graduality principle
(originally called the dynamic gradual guarantee Boyland, 2014; Siek et al., 2015). The
graduality principle states that migrating from a dynamic to static style should never “inter-
fere” with the results of a computation outside of reporting type errors. As a sports analogy,
we can think of the runtime type checks as the “referee” between the interacting static and
dynamic portions of code, calling out invalid behaviors but not stepping in and kicking the
ball themselves.
More formally, the graduality principle says that given a gradually typed termM , if you

make the type information in M more precise (i.e., use dynamic typing less), producing a
termM ′, thenM ′ should have very similar behavior to the originalM : either they have the
same behavior or they have the same behavior up until the point that M ′ raises an error.

Eta Laws and their Significance. So what are the program equivalences that hold in
statically typed portions of the code but not in dynamically typed portions? Typically, β
reductions are valid program equivalences in both statically typed and dynamically typed
languages since they directly describe the operational behavior of the program. In general
η equality is only satisfied in a typed language, and capture the idea that the behavior of a
term is fully determined by the allowed elimination forms for its type.
The η law of the untyped λ-calculus, which states that any λ-term M≡λx.Mx, is

restricted in a typed language to only hold for terms of function type M : A→ B (i.e., λ
is the unique/universal way of making an element of the function type). This famously
“fails” to hold in call-by-value languages in the presence of effects: ifM is a program that
prints "hello" before returning a function, then M will print now, whereas λx.Mx will
only print when given an argument. But this can be accommodated with one further mod-
ification: the η law is valid in simple call-by-value languages2 (e.g., SML) if we have a
“value restriction” V≡λx.Vx.
The above illustrates that η/extensionality rules must be stated for each type connective,

and be sensitive to the effects/evaluation order of the terms involved. For instance, the η

principle for the Boolean type Bool in call-by-value is that for any term M with a free
variable x : Bool, M is equivalent to a term that performs an if statement on x:

M≡if x(M[true/x])(M[false/x])

If we have an if form that is strongly typed (i.e., errors on non-Booleans) then this tells
us that it is safe to run an if statement on any input of Boolean type (in CBN, by contrast
an if statement forces a thunk and so is not necessarily safe). In addition, even if our if
statement does some kind of coercion, this tells us that the termM only cares about whether
x is “truthy” or “falsy” and so a client is free to change, e.g., one truthy value to a different
one without changing behavior.
This η principle justifies a number of program optimizations, such as dead-code and

common subexpression elimination, and hoisting an if statement outside of the body of a
function if it is well scoped:

2 This does not hold in languages with some intensional feature of functions such as reference equality. We
discuss the applicability of our main results more generally in Section 8.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 5

λx.if y M N≡if y (λx.M) (λx.N)

Any eager datatype, one whose elimination form is given by pattern matching such as
0,+, 1,×, list, has a similar η principle, which enables similar reasoning, such as proofs
by induction. The η principles for lazy types in call-by-name support dual behavioral
reasoning about lazy functions, records, and streams.

1.2 Which cast semantics?

So what, after all, are the semantics of casts? Here, there is a considerable amount of
disagreement in the gradual typing literature. There have been many different proposed
semantics of runtime type checking: “transient” cast semantics (Vitousek et al., 2017) only
checks the head connective of a type (number, function, list, . . .), “eager” cast seman-
tics (Herman et al., 2010) checks runtime type information on closures, whereas “lazy”
cast semantics (Findler & Felleisen, 2002) will always delay a type-check on a function
until it is called (and there are other possibilities, see, e.g., Siek et al., 2009; Greenberg,
2015). Let’s consider some examples to illustrate the design choices involved.

Example 1: Eager versus Lazy Base Type Casts. Say we start with the following simple
dynamically typed expression:

(λx.true)5

In a gradual language based on the style of Siek & Taha (2006), this would be expanded
to annotate every subexpression with the dynamic type:

((λx : ?.(true :: ?)) :: ?)(5 :: ?)

This evaluates to a Boolean true tagged at the dynamic type, with no runtime type errors:

((λx : ?.(true :: ?)) :: ?)(5 :: ?))→ (true :: ?)[5 :: ?/x]= true :: ?

However, let’s say the programmer decides to add types to the function λx.true and
decides the variable x should be a string. How then should the program

((λx : String.true) :: ?)(5 :: ?)

evaluate? The graduality principle says that adding types should either result in the same
answer or a new type error, so graduality allows for the program to successfully return
true :: ? or to introduce a type error. Additionally, any whole-program notion of type
soundness would also allow both an error and returning true :: ? since both possibilities
satisfy the type ?.
However, despite both of these theorems allowing the possibility of successfully return-

ing 5, in all call-by-value cast semantics that we know of (in which strings and numbers
are incompatible types) result in an error saying that 5 does not satisfy the type String.
Why is this the case? In a gradual language, the annotation x : String should be action-
able information to the programmer. Knowing that x is a String means that string-based
operations (getting the length, inspecting characters within its length) are safe to perform
on x .

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

6 M. S. New et al.

On the other hand, if the language is a lazy or call-by-name calculus, we argue that
the correct behavior is for the program to return true without failing. This is because in
a lazy language, variables represent delayed (“thunked”) computations and in this case x
will be bound to a computation that checks if 5 is a string, erroring if it is ever forced. It is
appropriate that this check is not run in the typed version of the program because the input
x is never forced.
So this example shows us that (1) gradual typing can introduce new type errors even

when dynamic typing would succeed (2) the semantics of casts should be sensitive to the
evaluation order of the language.

Example 2: Eager versus Lazy Function Casts. Function types are central to functional
programming, and so have understandably been the main focus of functional gradually
typed language semantics. There are at least two common cast semantics for simple
functional languages, which we call eager and lazy.
To see the difference, let’s consider the following example function:

fd = (λx : String.string-length x) :: ?→ ?

Here fd is a just the built-in string-length function η-expanded and cast to be a dynamic to
dynamic function, this should be or reduce to a value in most cast calculi. What happens if
we erroneously cast fd to the type Num→ Num? In lazy cast semantics, function casts like
this are given simply by wrapping the function in input and output casts. So in this case

fd :: Num→ Num

will reduce to a term equivalent to

λn : Num.((λx : String.string-length x)(n :: ?)) :: ? :: Num

That is, it will reduce to a function value that if called, will take a number n as input, casts
it to ?, applies the original function to that and then casts the result to Num. This will always
result in an error, because the input n will be cast to the incompatible type String.
Eager cast semantics, on the other hand is based on the idea that it is fairly easy to see,

if we maintain some runtime type information, that casting fd to Num→ Num will result
in a function that always errors, because fd is a function of type String→ Num, so the
semantics should instead error immediately when the cast to Num→ Num is applied, rather
than returning a function that always errors.
Note again that both behaviors are allowed by type soundness and graduality since they

only differ in when an error might happen. However, if we inspect what equational reason-
ing principles are valid in the language, we see that βη equivalence favors lazy function
semantics.
In particular, in call-by-value, the η law for functions says that any function value f of

type A→ B is equivalent to its η expansion:

f ∼= λx : A.fx

In call-by-name, the η law applies to all terms of function type, not just values. Returning
to our example, since fd is a function value of type ?→ ?, the η equation tells us that

fd ∼= λd : ?.fd d

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 7

Call this term fη. Then in particular, if the η equation is valid for contextual equivalence,
we should have

fd :: Num→ Num∼= fη :: Num→ Num

In lazy function semantics, this does indeed hold. However, in eager function semantics,
we lose precision in the runtime type information of fη. fη is only known to have the type
?→ ?, whereas fd is known to have the more precise type String→ Num, so fη :: Num→
Num reduces to a function that always errors while fd :: Num→ Num errors immediately.
While this might seem a rather minor difference, η expansions are quite common in

higher order functional libraries, and good functional compilers will perform η contrac-
tions to remove the need to construct a closure at runtime. In eager function semantics,
these η contractions are not equivalence-preserving transformations: an η contraction
might change a successful run of a program with an erroring one. Since most optimizing
compilers rely on heuristics to determine how much optimization to perform, this means
that whether or not certain η redexes are contracted will decide whether or not their pro-
gram errors, and so it is probably best for the user that a compiler for eager semantics never
contracts an η redex.

Example 3: Eager versus Lazy Product Casts. Compared to functions, products have
received less focus in the gradual typing literature, but there is a somewhat similar divide
between eager and lazy product semantics.
To illustrate the difference, consider what happens when we cast a pair

(5, "hello") :: ?× ? :: Num× Num

In eager product semantics, when we cast a tuple to a product type, evaluation proceeds by
casting each component of the tuple, and then reconstructing the tuple with the result of
the casts:

let (5 :: ? :: Num)= x1; let (“hello" :: ? :: Num)= x2; (x1, x2)
This then results in an error because the right-hand side of the tuple is a string and not a
number.
In lazy product semantics, however, a product cast checks now if the tuple is a pair, and

only checks the components of the tuple when they are projected out. So in this case, the
cast above would not error, and if the first component is projected it would also not error,
but if the second component were projected there would be a dynamic error raised.
Again graduality allows for both possibilities, but in this case most type soundness the-

orems would rule out the lazy semantics, though Greenman & Felleisen (2018) discuss
alternative “tag soundness” theorems that allow this behavior. However, the lesser known
η principle for eager products only allows for the eager product semantics. The eager
product η equation says that any term M with a free variable p of product type A1 × A2 is
equivalent to a term that immediately pattern matches on the tuple:

p : A1 × A2 ⊢M ∼= split p to (x1, x2).M[(x1, x2)/p]

This implies in particular that pattern matching on any pair value is a safe operation, i.e.,
it never causes an error to be raised. However, in lazy product cast semantics, pattern

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

8 M. S. New et al.

matching on a pair will project out both sides of the tuple and therefore trigger further
casts, so it might produce an error.
For an example of how this might affect a larger program context, consider a program

that takes in a tuple and returns a function:

λp : A1 × A2.λx : A′.split p to (x1, x2).M
A routine refactoring might lift this pattern match higher in the program so that it happens
once instead of each time the produced function is called:

λp : A1 × A2.split p to (x1, x2).λx : A′.M
Depending on the compiler, this might make a big difference in space usage as well if M
only uses one component of the pair. In the first case, p in its entirety would be included in
the closure, whereas it is easier for an optimizing compiler to see that only x2 is needed in
the closure in the latter.
On the other hand, if we have a lazy product type, where each side of the pair is only

evaluated when it is projected out, then the lazy product cast semantics ismore appropriate.
In this case, we have the lazy product η law which says that any term of product type is
equivalent to one where each side is the projection:

M ∼= (π1M , π2M) : A1 × A2
When this is true in an effectful language, the pair constructor must be lazy, since otherwise
we would be duplicating M’s effects. In this case the eager product cast would be overly
strict because it might error immediately, whereas in a lazy language, the error should be
delayed.

Casts from Equations. These examples illustrate that questions of evaluation order and
validity of equational reasoning principles should inform the design of gradual typing cast
semantics. In fact, if we take a closer look at the semantics of lazy function and eager and
lazy product casts, we can see that they are very close to just η expanding the term, except
that they introduce some new casts:

when f : A→ B, f :: A′ → B′ ∼= λx′ : A′.(f (x′ :: A)) :: B′

p :: A× B :: A′ × B′ ∼= split p to (x1, x2).(x1 :: A :: A′, x2 :: B :: B′)(eager)

p :: A× B :: A′ × B′ ∼= ((π1p) :: A :: A′, (π2p) :: B :: B′)(lazy)
This is suggestive of a deeper connection between the cast semantics and the η equations.
In fact, in the next section, we are able to show using a novel formulation of the graduality
principle that these η principles directly lead to a derivation of the correct corresponding
cast semantics. This shows us that the correct eager or lazy behavior of a cast is directly
linked to the evaluation order in the intended programming language and in particular to
the particular type that is involved. We are able to do this for call-by-name and call-by-
value evaluation orders by using a more general language

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 9

1.3 An axiomatic approach to gradual typing

In this paper, we systematically study the relationship between casts and equational rea-
soning principles by working with an axiomatic theory of gradual program equivalence, a
language and logic we call gradual type theory (GTT). Gradual type theory is the combi-
nation of a language of terms and gradual types with a simple logic for proving program
equivalence and error approximation (equivalence up to one program erroring when the
other does not) results. We use the logic to axiomatize the equational properties we may
want in our gradual language, and then we explore what the derivable consequences of
those axioms are. The critical benefit of gradual type theory (GTT) is that it can be used
both to explore language design questions and to verify behavioral properties of specific
programs, such as correctness of optimizations and refactorings.
To get off the ground, we take two properties of the gradual language for granted. First,

we assume a compositionality property: that any cast from A to B can be factored through
the dynamic type ?, i.e., the cast ⟨B⇐ A⟩t is equivalent to first casting up from A to ? and
then down to B: ⟨B⇐ ?⟩⟨?⇐ A⟩t. These casts often have quite different performance char-
acteristics, but should have the same extensional behavior: of the cast semantics presented
in Siek et al. (2009), only the partially eager detection strategy violates this principle, and
this strategy is not common.
The second property we take for granted is that the language satisfies the graduality

property mentioned earlier. Graduality says that if we change the types in a program to be
“more precise”—e.g., by changing from the dynamic type to a more precise type such as
integers or functions—the program will either produce the same behavior as the original
or raise a dynamic type error. Conversely, if a program does not error and some types
are made “less precise” then behavior does not change. Graduality is in fact central to our
approach so we take some time now to introduce some basic notions. First, we define a
“precision” ordering on types: A⊑ A′, read “A is more precise than A′”. This ordering is
typically generated by a rule that says the dynamic type is the least precise, i.e., A⊑ ?
for any A, and a congruence rule that says all type constructors are monotone in every
argument. Notably, this includes the domain and codomain of the function type, differing
from subtyping. This ordering is then extended to a “term precision” ordering t⊑ t′ that
captures the notion that t is the result of making all of the types in t′ more precise. Typically
this includes only congruence rules. Then the graduality principle says that if t⊑ t′, that
is t is syntactically more precise than t′, then it is also semantically more precise in that
its behavior is either the same as that of t′, or it results in a dynamic type error. Gradual
type theory is based on axiomatizing this semantic notion of term precision. It includes
a term precision ordering t⊑ t′, but this is interpreted as the semantic idea that t “errors
more” than t′ rather than the stricter syntactic notion. This semantic notion of error ordering
naturally arises in logical relations proofs of graduality (New & Ahmed, 2018; New et al.,
2020).

1.4 Technical overview of GTT

The gradual type theory developed in this paper unifies our previous work on operational
(logical relations) reasoning for gradual typing in a call-by-value setting (New & Ahmed,

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

10 M. S. New et al.

2018) (which did not consider a proof theory), and on an axiomatic proof theory for gradual
typing (New&Licata, 2018) in a call-by-name setting (which considered only function and
product types, and denotational but not operational models).
In this paper, we develop an axiomatic gradual type theory GTT for a unified lan-

guage that includes both call-by-value/eager types and call-by-name/lazy types (Sections 2,
3), and show that it is sound for contextual equivalence via a logical relations model
(Sections 5, 6, 7). Because the η principles for types play a key role in our approach, it
is necessary to work in a setting where we can have η principles for both eager and lazy
types. We use Levy’s Call-by-Push-Value (Levy, 2003) (CBPV), which fully and faith-
fully embeds both call-by-value and call-by-name evaluation with both eager and lazy
datatypes,3 and underlies much recent work on reasoning about effectful programs (Bauer
& Pretnar, 2013; Lindley et al., 2017). GTT can prove results in and about existing call-
by-value gradually typed languages, and also suggests a design for call-by-name and full
call-by-push-value gradually typed languages.
In prior work (New & Licata, 2018; New & Ahmed, 2018), gradual type casts are

decomposed into upcasts and downcasts, as suggested above. A type precision relation
A⊑ A′ controls which casts exist: a type precision A⊑ A′ induces an upcast from A to
A′ and a downcast from A′ to A. Then, a term precision judgement is used for equa-
tional/approximational reasoning about programs. Term precision relates two terms whose
types are related by type precision, and the upcasts and downcasts are each specified by
certain term precision judgements holding. This specification axiomatizes only the prop-
erties of casts needed to ensure the graduality theorem, and not their precise behavior, so
cast reductions can be proved from it, rather than stipulated in advance. The specification
defines the casts “uniquely up to equivalence”, which means that any two implementations
satisfying it are behaviorally equivalent.
We generalize this axiomatic approach to call-by-push-value (Section 2), where there

are both eager/value types and lazy/computation types. This is both a subtler question than
it might at first seem, and has a surprisingly nice answer: we find that upcasts are natu-
rally associated with eager/value types and downcasts with lazy/computation types, and
that the modalities relating values and computations induce the downcasts for eager/value
types and upcasts for lazy/computation types. Moreover, this analysis articulates an impor-
tant behavioral property of casts that was proved operationally for call-by-value in New
& Ahmed (2018) but missed for call-by-name in New & Licata (2018): upcasts for eager
types and downcasts for lazy types are both “pure” in a suitable sense, which enables more
refactorings and program optimizations. In particular, we show that these casts can be taken
to be (and are essentially forced to be) “complex values” and “complex stacks” (respec-
tively) in call-by-push-value, a standard syntactic notion in CBPV (Levy, 2003) which
corresponds to a behavioral property of thunkability and linearity (Munch-Maccagnoni,
2014) which formalize notions of purity for CBV and CBN. We argue in Section 8 that
this property is related to blame soundness.
Our gradual type theory naturally has two dynamic types, a dynamic eager/value type

and a dynamic lazy/computation type, where the former can be thought of as a sum of all
possible values, and the latter as a product of all possible behaviors. At the language design

3 The distinction between “lazy” versus “eager” casts above is different than lazy versus eager datatypes.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 11

level, gradual type theory can be used to prove that βη and graduality are only compatible
with specific cast semantics: for value types, the “eager” cast semantics is compatible and
for computation types the “lazy” cast semantics (Section 3). These behavioral equivalences
can then be used in reasoning about optimizations, refactorings and correctness of specific
programs.

1.5 Contract-based models

To show the consistency of GTT as a theory, and to give a concrete operational inter-
pretation of its axioms and rules, we provide a concrete model based on an operational
semantics. The model is a contract interpretation of GTT in that the “built-in” casts of
GTT are translated to ordinary functions in a CBPV language that perform the necessary
checks.
To keep the proofs high-level, we break the proof into two steps. First (Sections 5, 6),

we translate the axiomatic theory of GTT into an axiomatic theory of CBPV extended with
recursive types and an uncatchable error, implementing casts by CBPV code that does con-
tract checking. Then (Section 7), we give an operational semantics for the extended CBPV
and define a step-indexed biorthogonal logical relation that interprets the ordering relation
on terms as contextual error approximation, which underlies the definition of graduality as
presented in New & Ahmed (2018). Combining these theorems gives an implementation
of the term language of GTT in which β, η are observational equivalences and the dynamic
gradual guarantee is satisfied.
Due to the uniqueness theorems of GTT, the only part of this translation that is not

predetermined is the definition of the dynamic types themselves and the casts between
“ground” types and the dynamic types. We use CBPV to explore the design space of pos-
sible implementations of the dynamic types, and give one that faithfully distinguishes all
types of GTT, and another more Scheme-like implementation that implements sums and
lazy pairs by tag bits. Both can be restricted to the CBV or CBN subsets of CBPV, but the
unrestricted variant is actually more faithful to Scheme-like dynamically typed program-
ming, because it accounts for variable argument functions. Our modular proof architecture
allows us to easily prove correctness of β, η and graduality for all of these interpretations.

1.6 Contributions

The main contributions of the paper are as follows.

1. We present Gradual Type Theory in Section 2, a simple axiomatic theory of
gradual typing. The theory axiomatizes three simple assumptions about a gradual
language: compositionality, graduality and type-based reasoning in the form of η

equivalences.
2. We prove many theorems in the formal logic of Gradual Type Theory in Section
3. These include the unique implementation theorems for casts, which show that
for each type connective of GTT, the η principle for the type ensures that the casts
must implement the lazy contract semantics. Furthermore, we show that upcasts are
always pure functions and dually that downcasts are always strict functions, as long
as the base type casts are pure/strict.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

12 M. S. New et al.

3. We connect this derivation back to a familiar CBV calculus, showing explicitly
that almost all cast reductions are derivable from the simple specification for casts
in GTT.

4. To substantiate that GTT is a reasonable axiomatic theory for gradual typing, we
construct models of GTT in Sections 5, 6 and 7. This proceeds in two stages. First
(Section 5), we use call-by-push-value as a typed metalanguage to construct several
models of GTT using different recursive types to implement the dynamic types of
GTT and interpret the casts as embedding-projection pairs. This extends standard
translations of dynamic typing into static typing using type tags: the dynamic value
type is constructed as a recursive sum of basic value types, but dually the dynamic
computation type is constructed as a recursive product of basic computation types.
This dynamic computation type naturally models stack-based implementations of
variable-arity functions as used in the Scheme language.

5. We then give an operational model of the term precision ordering as contextual error
approximation in Sections 6 and 7. To construct this model, we extend previous
work on logical relations for error approximation from call-by-value to call-by-
push-value (New & Ahmed, 2018), simplifying the presentation in the process.

This article is an extension of a conference publication (New et al., 2019). Compared to
the previous paper, we include additional proofs and definitions in all of the technical sec-
tions. Additionally, we prove new theorems aboutmost precise types in GTT and provide a
simple lemma that abstracts over the details of the unique implementation proofs. Finally,
we add a new section that connects GTT more concretely to a familiar call-by-value cast
calculus to demonstrate more concretely the consequences of the unique implementations
theorems.

2 Axiomatic gradual type theory

In this section we introduce the syntax of Gradual Type Theory, an extension of call-by-
push-value (Levy, 2003) to support the constructions of gradual typing. First, we introduce
call-by-push-value and then describe in turn the gradual typing features: dynamic types,
casts and the precision orderings on types and terms.

2.1 Background: Call-by-push-value

We present the syntax of GTT types and terms in Figure 1, and the typing rules in Figure 2.
GTT is an extension of CBPV, so we first present CBPV as the unshaded rules in Figure 1.
CBPV makes a distinction between value types A and computation types B, where value
types classify values % ⊢ V : A and computation types classify computations % ⊢M : B.
Effects are computations: for example, we might have an error computation!B : B of every
computation type, or printing print V ;M : B if V : string and M : B, which prints V
and then behaves as M .

Value Types and Complex Values. The value types include eager products 1 and
A1 × A2 and sums 0 and A1 + A2, which behave as in a call-by-value/eager language (e.g.,

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 13

A ::= ? |UB | 0 | A1 + A2 | 1 | A1 × A2
B ::= ¿ | FA |⊤ | B1 & B2 | A→ B

T ::= A | B

V ::= ⟨A′! A⟩V | x | thunk M | abort V | inl V | inr V | case V {x1.V1 | x2.V2}
| () | split V to ().V ′ | (V1, V2) | split V to (x, y).V ′

M , S ::=
⟨B " B′⟩M | • |!B | force V | abort V | case V {x1.M1 | x2.M2}

| split V to ().M | split V to (x, y).M
| retV | bind x←M ;N | {} | {π)→M1 | π ′)→M2} | πM | π ′M | λx : A.M |M V

E ::= V |M

% ::= · | %, x : A
& ::= · | • : B
' ::= · | ', x⊑ x′ : A⊑ A′
(::= · | •⊑ • : B⊑ B′

Fig. 1. GTT type and term syntax.

a pair is only a value when its components are). The notion of value V is more per-
missive than one might expect, and expressions % ⊢ V : A are sometimes called complex
values to emphasize this point: complex values include not only closed runtime values, but
also open values that have free value variables (e.g., x : A1, x2 : A2 ⊢ (x1, x2) : A1 × A2), and
expressions that pattern match on values (e.g., p : A1 × A2 ⊢ split p to (x1, x2).(x2, x1) :
A2 × A1). Thus, the complex values x : A⊢ V : A′ are a syntactic class of “pure functions”
from A to A′ (though there is no pure function type internalizing this judgement), which can
be treated like values by a compiler because they have no effects (e.g., they can be freely
duplicated or discarded without affecting the program’s effects). For each pattern-matching
construct (e.g., case analysis on a sum, splitting a pair), we have both an elimination rule
whose branches are values (e.g., split p to (x1, x2).V) and one whose branches are com-
putations (e.g., split p to (x1, x2).M). To abbreviate the typing rules for both in Figure 2,
we use the following convention defined in Figure 1: E for either a complex value or a
computation, and T for either a value type A or a computation type B, and a judgement
% | &⊢ E : T for either % ⊢ V : A or % | &⊢M : B (this is a bit of an abuse of notation
because & is not present in the former). Complex values can be translated away without
loss of expressiveness by moving all pattern matching into computations (see Section 6,
but they are convenient for us to use to reason about the fact that certain casts (upcasts) are
pure.

Shifts. A key notion in CBPV is the shift types FA and UB, which mediate between value
and computation types: FA is the computation type of potentially effectful programs that
return a value of type A, whileUB is the value type of thunked computations of type B. The
introduction rule for FA is returning a value of type A (retV), while the elimination rule is

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

14 M. S. New et al.

% ⊢ V : A and % | &⊢M : B

UPCAST
% ⊢ V : A A⊑ A′
% ⊢ ⟨A′! A⟩V : A′

DNCAST
% | &⊢M : B′ B⊑ B′
% | &⊢ ⟨B " B′⟩M : B

VAR

%, x : A, %′ ⊢ x : A
HOLE

% | • : B⊢ • : B
ERR

% | ·⊢!B : B

UI
% | ·⊢M : B

% ⊢ thunk M :UB

UE
% ⊢ V :UB

% | ·⊢ force V : B

FI
% ⊢ V : A

% | ·⊢ retV : FA

FE
% | &⊢M : FA %, x : A | ·⊢N : B

% | &⊢ bind x←M ;N : B

0E
% ⊢ V : 0

% | &⊢ abort V : T

+IL
% ⊢ V : A1

% ⊢ inl V : A1 + A2

+IR
% ⊢ V : A2

% ⊢ inr V : A1 + A2

+E
% ⊢ V : A1 + A2

%, x1 : A1 | &⊢ E1 : T
%, x2 : A2 | &⊢ E2 : T

% | &⊢ case V {x1.E1 | x2.E2} : T
1I

% ⊢ () : 1

1E
% ⊢ V : 1 % | &⊢ E : T
% | &⊢ split V to ().E : T

×I
% ⊢ V1 : A1 % ⊢ V2 : A2

% ⊢ (V1, V2) : A1 × A2

×E
% ⊢ V : A1 × A2

%, x : A1, y : A2 | &⊢ E : T
% | &⊢ split V to (x, y).E : T

→I
%, x : A | &⊢M : B

% | &⊢ λx : A.M : A→ B

→E
% | &⊢M : A→ B % ⊢ V : A

% | &⊢M V : B
⊤I
% | &⊢ {} :⊤

&I
% | &⊢M1 : B1 % | &⊢M2 : B2

% | &⊢ {π)→M1 | π ′)→M2} : B1 & B2

&E
% | &⊢M : B1 & B2

% | &⊢ πM : B1

&E’
% | &⊢M : B1 & B2
% | &⊢ π ′M : B2

Fig. 2. GTT typing.

sequencing a computation M : FA with a computation x : A⊢N : B to produce a computa-
tion of a B (bind x←M ;N). While any closed complex value V is equivalent to an actual
value, a computation of type FA might perform effects (e.g., printing) before returning a
value, or might error or non-terminate and not return a value at all. The introduction and
elimination rules for U are written thunk M and force V , and say that computations of
type B are bijective with values of type UB. As an example of the action of the shifts, 0
is the empty value type, so F0 classifies effectful computations that never return, but may
perform effects (and then, must e.g., non-terminate or error), while UF0 is the value type
where such computations are thunked/delayed and considered as values. 1 is the trivial
value type, so F1 is the type of computations that can perform effects with the possibility

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 15

of terminating successfully by returning (), and UF1 is the value type where such compu-
tations are delayed values. UF is a monad on value types (Moggi, 1991), while FU is a
comonad on computation types.

Computation Types. The computation type constructors in CBPV include first the lazy
unit ⊤ and lazy product B1 & B2, which behave as in a call-by-name language (e.g., a
component of a lazy pair is evaluated only when it is projected). Functions A→ B have a
value type as input and a computation type as a result. The equational theory of effects in
CBPV computations may be surprising to those familiar only with call-by-value, because at
higher computation types effects have a call-by-name-like equational theory. For example,
at computation type A→ B, print c; λx.M = λx.print c;M . Intuitively, the reason is
that A→ B is not treated as an observable type (one where computations are run): the
states of the operational semantics are only those computations of type FA for some value
type A. So the only way to “run” a function computation is to supply it with an argument,
and applying both of the above to an argument V is defined to result in print c;M[V/x].
This does not imply that the corresponding equations holds for the call-by-value function
type, which we discuss below. As another example, all computations are equal at type ⊤,
even computations that perform different effects (print c versus {} versus !), because
there is by definition no way to use a computation of type ⊤ to produce a term of an
observable type FA. Consequently, U⊤ is isomorphic to 1.

Complex Stacks. Just as the complex values V are a syntactic class of terms that have no
effects, CBPV includes a judgement for “stacks” S, a syntactic class of terms that reflect
all effects of their input. A stack % | • : B⊢ S : B′ can be thought of as a linear/strict func-
tion from B to B′, which must use its input which we write as • exactly once at the head
redex position. We can always use the same variable name • since stacks always have
only one input “hole”. Also for this reason we sometimes write the substitutions S[M/•]
or S[S′/•] as simply S[M] or S[S′]. Uses of effects can be hoisted out of stacks, because
we know the stack will run them exactly once and first. For example, there will be contex-
tual equivalences S[!]=! and S[print V ;M]= print V ; S[M]. Just as complex values
include pattern matching, complex stacks include pattern matching on values and introduc-
tion forms for the stack’s output type. For example, • : B1 & B2 ⊢ {π)→ π ′• | π ′)→ π•} :
B2 & B1 is a complex stack, even though it mentions • more than once, because running
it requires choosing a projection to get to an observable of type FA, so each time it is
run it uses • exactly once. Similarly, • :UB⊢ {} :⊤ is a (complex) stack despite never
using its input, since computations of type ⊤ are dead code and so the evaluation can
never be forced. In the equational theory of CBPV, F and U are adjoint, in the sense
that stacks • : FA⊢ S : B are bijective with values x : A⊢ V :UB, as both are bijective with
computations x : A⊢M : B.
To compress the presentation in Figure 2, we use a typing judgement % | &⊢M : B with

a “stoup”, a typing context & that is either empty or contains exactly one assumption
• : B, so % | ·⊢M : B is a computation, while % | • : B⊢M : B′ is a stack. The typing rules
for ⊤ and & treat the stoup additively (it is arbitrary in the conclusion and the same in
all premises); for a function application to be a stack, the stack input must occur in the
function position. The elimination form for UB, force V , is the prototypical non-stack

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

16 M. S. New et al.

computation (& is required to be empty), because forcing a thunk does not use the stack’s
input.

Embedding Call-by-Value and Call-by-Name. To help understand how CBPV relates
to more standard CBV and CBN evaluation orders, we give a brief overview of their
translations into CBPV.
First, CBV types A can be translated to CBPV value types Av . For CBV with

1,×, 0,+,→ all but→ are translated to themselves and the CBV function type A→ A′ is
translated to U(Av → FA′v): a CBV function is a thunk that takes an argument value and
returns a result value. Then a CBV expression x1 : A1, . . .⊢ e : A is translated to a compu-
tation x1 : Av

1, . . .⊢ ev : FAv . That is, variables in a CBV expression are bound to values,
and cbv expression always return a value (or perform effects). The translation is similar
to that of monadic form or ANF in that it introduces many bind/return forms to make the
evaluation order explicit.
Next, CBN types B can be translated to CBPV computation types Bn. For CBN with

1, &,+, 0,→, the unit 1 and lazy product & are translated to themselves, but the others
must introduce thunks appropriately. The CBN function type B1→ B2 is interpreted as
UBn1→ Bn2: a CBN function receives its argument as a thunk and then behaves as its output
type. The 0 type is interpreted as UF0: a computation that returns a value of the empty
value type. The + type is similarly interpreted as F(U(Bn1)+U(Bn2)): a CBN computation
of sum type returns a tagged thunk of one of the two options. Next, a CBN expression
x1 : B1, . . .⊢ e : B is translated to a computation x1 :U(Bn1), . . .⊢ en : Bn. That is, variables
in CBN are always bound to thunks but the expression might not be directly observable
without being applied to arguments.
Call-by-push-value subsumes call-by-value and call-by-name in that these embeddings

are full and faithful: two CBV or CBN programs are equivalent if and only if their embed-
dings into CBPV are equivalent, and every CBPV program with a CBV or CBN type can
be back-translated (Levy, 2003).

Computation/β and Extensionality/η Principles. We include the standard CBPV β and
η principles in a table in Figure E.2 as order equivalences. We’ll say more about this
ordering later, but for now it can simply be considered to mean observationally equivalent.
The β principles tell us how computations can be reduced, and are all reductions in the
operational semantics to be defined later. They all essentially establish the same pattern:
an introduction form followed by an elimination form reduces, binding variables as appro-
priate. We review some of the CBPV-specific rules. The Uβ rules says forcing a thunk
evaluates to the body of the thunk. The Fβ rule acts like a let-rule: binding a return of
a value substitutes the value in the continuation. For the lazy product rule, the projection
selects the appropriate case to run. There are no rules for 0β and ⊤β since they lack an
introduction and elimination rule, respectively.
The main advantage of CBPV for our purposes is that it accounts for the η/extensionality

principles of both eager/value types and lazy/computation types. While the β rules are
true even in untyped calculi, the η principles encode what reasoning the types give us.
Intuitively, they axiomatize that the rules of the system are in some sense complete for
observing terms of the type. Except for the shifts U , F, these follow a certain pattern. For

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 17

Type β η

+
case inl V{x1.E1 | . . .}⊒⊑ E1[V/x1]
case inr V{. . . | x2.E2}⊒⊑ E2[V/x2]

E[V/x]⊒⊑ case V{x1.E[inl x1/x]
| x2.E[inr x2/x]}

where x : A1 + A2 ⊢ E : T
0 − E[V/x]⊒⊑ abort V

where x : 0⊢ E : T

× split (V1, V2) to (x1, x2).E
E[V/x]⊒⊑ split V to (x1, x2).
E[(x1, x2)/x]
where x : A1 × A2 ⊢ E : T

⊒⊑ E[V1/x1, V2/x2]
1 split () to ().E⊒⊑ E E[V/x]⊒⊑ split V to ().E[()/x] : T

where x : 1⊢ E : T
U force thunk M ⊒⊑M V ⊒⊑ thunk (force V)

V :UB

F bind x← retV ;M ⊒⊑M[V/x]
S[M]⊒⊑ bind x←M ; S[retx]
where • : FA⊢ S : B

→ (λx : A.M) V ⊒⊑M[V/x]
N ⊒⊑ λx : A.N x
where N : A→ B

&
π{π)→M | π ′)→M ′}⊒⊑M
π ′{π)→M | π ′)→M ′}⊒⊑M ′

N ⊒⊑ {π)→ πN | π ′)→ π ′N}
where N : B1 & B2

⊤ -
N ⊒⊑ {} :⊤
where N :⊤

Fig. 3. CBPV/GTT computation and extensionality principles.

value type constructors, the η principle tells us something about terms (values, computa-
tions and stacks) that have a free variable whose type is formed using the type constructor.
The η principle says any term E using x is equivalent to one that immediately matches on
the variable x and then only uses the results of the pattern match to use x. So, for example,
the +η rule says a term E is equivalent to one that pattern matches on x and then in each
case, uses inl xl or inr xr in place of x. This equation formalizes the idea that there is
nothing more to a value of type A1 + A2 than the information you get out of it from pattern
matching.
The computation type constructor η laws are instead about computations (and stacks)

whose type is the relevant type constructor. They say that any computation of a given
type is equivalent to one formed using the introduction rule, and whose cases derive from
applying the elimination rules to the original computation. So for instance, the function
type η says that any computation (or stack) is equivalent to one formed by a λ that applies
the original computation to the λ parameter. The &η says any computation of lazy product
type is equivalent to a pair whose cases derive from applying the appropriate projection
to the original. Finally the ⊤η says that any computation of type ⊤ is “dead code” and
equivalent to the empty case.
The final two η principles are for the U and F type. The U η is more like a computation

type η in that it tells us something about values of type UB: all of them are equivalent to a
thunk that forces the original value. The Fη is similar to the value type η principles in that

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

18 M. S. New et al.

it tells us about computations S[M] that are a stack applied to a term M : FA. Any such
stack is equivalent to one that binds M to a value and then uses only that value.

2.2 Gradual typing in GTT

Next, we discuss the additions that make CBPV into our gradual type theory GTT.

The Dynamic Type(s). A dynamic type plays a key role in gradual typing, and since GTT
has two different kinds of types, we have a new question of whether the dynamic type
should be a value type, or a computation type, or whether we should have both a dynamic
value type and a dynamic computation type. Our modular, type-theoretic presentation of
gradual typing allows for any of these choices, and none of the internal theorems we prove
about one depend on the presence of the other. However, when we discuss models of the
language in Section 5.2 we will mainly discuss models of GTT with both dynamic value
and computation, and justify why this does not sacrifice much generality. In our models,
values of the dynamic value type ? are tagged values of other types, while computations of
the dynamic computation type ¿ are instead like objects that can respond to any “method”,
i.e., can be applied to any sequence of arguments and projections πi.
We add both ? and ¿ to the grammar of types in Figure 1. We do not give introduction

and elimination rules for the dynamic types, because we would like constructions in GTT
to imply results for many different possible implementations of them. Instead, the terms
for the dynamic types will arise from type precision and casts.

2.2.1 Type precision

The type precision relation of gradual type theory is written A⊑ A′ and read as “A is more
precise than A′”; intuitively, this means that A′ supports more behaviors than A. Our pre-
vious work (New & Ahmed, 2018; New & Licata, 2018) analyzes this as the existence of
an upcast from A to A′ and a downcast from A′ to A which form an embedding-projection
pair (ep pair) for term error approximation (an ordering where runtime errors are mini-
mal): the upcast followed by the downcast is a no-op, while the downcast followed by the
upcast might error more than the original term, because it imposes a runtime type check.
Syntactically, type precision is defined (1) to be reflexive and transitive (a preorder), (2)
where every type constructor is monotone in all positions and (3) where the dynamic type
is greatest in the type precision ordering. This last condition, the dynamic type is the most
dynamic type, implies the existence of an upcast ⟨?! A⟩ and a downcast ⟨A " ?⟩ for
every type A: any type can be embedded into it and projected from it. However, this by
design does not characterize ? uniquely—instead, it is open-ended exactly which types
exist (so that we can always add more), and some properties of the casts are undetermined;
we exploit this freedom in Section 5.2.
This extends in a straightforward way to CBPV’s distinction between value and com-

putation types in Figure 4: there is a type precision relation for value types A⊑ A′ and
for computation types B⊑ B′, which (1) each are preorders (VTYREFL, VTYTRANS,
CTYREFL, CTYTRANS), (2) every type constructor is monotone (+MON,×MON, &MON
,→MON) where the shifts F and U switch which relation is being considered (UMON,

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 19

A⊑ A′ and B⊑ B′
VTYREFL

A⊑ A

VTYTRANS
A⊑ A′ A′ ⊑ A′′

A⊑ A′′
CTYREFL

B⊑ B′

CTYTRANS
B⊑ B′ B′ ⊑ B′′

B⊑ B′′

VTYTOP

A⊑ ?

UMON
B⊑ B′

UB⊑UB′

+MON
A1 ⊑ A′1 A2 ⊑ A′2
A1 + A2 ⊑ A′1 + A′2

×MON
A1 ⊑ A′1 A2 ⊑ A′2
A1 × A2 ⊑ A′1 × A′2

CTYTOP

B⊑ ¿

FMON
A⊑ A′
FA⊑ FA′

&MON
B1 ⊑ B′1 B2 ⊑ B′2
B1 & B2 ⊑ B′1 & B′2

→MON
A⊑ A′ B⊑ B′
A→ B⊑ A′ → B′

Precision contexts · dyn−vctx
' dyn−vctx A⊑ A′

', x⊑ x′ : A⊑ A′ dyn−vctx

· dyn−cctx
B⊑ B′

(•⊑ • : B⊑ B′) dyn−cctx

Fig. 4. GTT type precision and precision contexts.

FMON) and (3) the dynamic types ? and ¿ are the most dynamic value and compu-
tation types, respectively (VTYTOP, CTYTOP). For example, we have U(A→ FA′)⊑
U(?→ F?), which is the analogue of A→ A′ ⊑ ?→ ? in call-by-value: because → pre-
serves embedding-retraction pairs, it is monotone, not contravariant, in the domain (New
& Ahmed, 2018; New & Licata, 2018).

2.2.2 Casts

It is not immediately obvious how to add type casts to CBPV, because CBPV exposes finer
judgemental distinctions than previous work considered. However, we can arrive at a first
proposal by considering how previous work would be embedded into CBPV. In the previ-
ous work on both CBV and CBN (New & Ahmed, 2018; New & Licata, 2018), every type
precision judgement A⊑ A′ induces both an upcast from A to A′ and a downcast from A′ to
A. Because CBV types are associated to CBPV value types and CBN types are associated to
CBPV computation types, this suggests that each value type precision A⊑ A′ should induce
an upcast and a downcast, and each computation type precision B⊑ B′ should also induce
an upcast and a downcast. In CBV, a cast from A to A′ typically can be represented by a
CBV function A→ A′, whose analogue in CBPV is U(A→ FA′), and values of this type
are bijective with computations x : A⊢M : FA′, and further with stacks • : FA⊢ S : FA′.
This suggests that a value type precision A⊑ A′ should induce an embedding-projection
pair of stacks • : FA⊢ Su : FA′ and • : FA′ ⊢ Sd : FA, which allow both the upcast and
downcast to a priori be effectful computations. Dually, a CBN cast typically can be rep-
resented by a CBN function of type B→ B′, whose CBPV analogue is a computation
of type UB→ B′, which is equivalent with a computation x :UB⊢M : B′, and with a
value x :UB⊢ V :UB′. This suggests that a computation type precision B⊑ B′ should
induce an embedding-projection pair of values x :UB⊢ Vu :UB′ and x :UB′ ⊢ Vd :UB,

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

20 M. S. New et al.

where both the upcast and the downcast again may a priori be (co)effectful, in the sense
that they may not reflect all effects of their input.
However, this analysis ignores an important property of CBV casts in practice: upcasts

always terminate without performing any effects, and in some systems upcasts are even
defined to be values, while only the downcasts are effectful (introduce errors). For exam-
ple, for many types A, the upcast from A to ? is an injection into a sum/recursive type,
which is a value constructor. Our previous work on a logical relation for call-by-value
gradual typing (New & Ahmed, 2018) proved that all upcasts were pure in this sense as a
consequence of the embedding-projection pair properties (but their proof depended on the
only effects being divergence and type error). In GTT, we can make this property explicit
in the syntax of the casts, by making the upcast ⟨A′! A⟩ induced by a value type pre-
cision A⊑ A′ itself a complex value, rather than computation. On the other hand, many
downcasts between value types are implemented as a case analysis looking for a specific
tag and erroring otherwise, and so are not complex values.
We can also make a dual observation about CBN casts. The downcast arising from B⊑

B′ has a stronger property than being a computation x :UB′ ⊢M : B as suggested above:
it can be taken to be a stack • : B′ ⊢ ⟨B " B′⟩• : B, because a downcasted computation
evaluates the computation it is “wrapping” exactly once. One intuitive justification for this
point of view, which we make precise in Section 5, is to think of the dynamic computation
type ¿ as a recursive product of all possible behaviors that a computation might have,
and the downcast as a recursive type unrolling and product projection, which is a stack.
From this point of view, an upcast can introduce errors, because the upcast of an object
supporting some “methods” to one with all possible methods will error dynamically on the
unimplemented ones.
These observations are expressed in the (shaded) UPCAST and DNCASTS rules for casts

in Figure 2: the upcast for a value type precision is a complex value, while the downcast for
a computation type precision is a stack (if its argument is). Indeed, this description of casts
is simpler than the intuition we began the section with: rather than putting in both upcasts
and downcasts for all value and computation type precisions, it suffices to put in only
upcasts for value type precisions and downcasts for computation type precisions, because
of monotonicity of type precision for U /F types. The downcast for a value type precision
A⊑ A′, as a stack • : FA′ ⊢ ⟨FA " FA′⟩• : FA as described above, is obtained from FA⊑
FA′ as computation types. The upcast for a computation type precision B⊑ B′ as a value
x :UB⊢ ⟨UB′! UB⟩x :UB′ is obtained from UB⊑UB′ as value types. Moreover, we
will show below that the value upcast ⟨A′! A⟩ induces a stack • : FA⊢ . . . : FA′ that
behaves like an upcast, and dually for the downcast, so this formulation implies the original
formulation above.
We justify this design in two ways in the remainder of the paper. In Section 5, we show

how to implement casts by a contract translation to CBPV where upcasts are complex
values and downcasts are complex stacks. However, one goal of GTT is to be able to prove
things about many gradually typed languages at once, by giving different models, so one
might wonder whether this design rules out useful models of gradual typing where casts
can have more general effects. In Theorem 3.7, we show instead that our design choice is
forced for all casts, as long as the casts between ground types and the dynamic types are
values/stacks.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 21

2.2.3 Term precision: Judgements and structural rules

The final piece of GTT is the term precision relation, a syntactic judgement that is used for
reasoning about the behavioral properties of terms in GTT. To a first approximation, term
precision can be thought of as syntactic rules for reasoning about contextual approximation
relative to errors (not divergence), where E⊑ E′ means that either E errors or E and E′
have the same result. However, a key idea in GTT is to consider a heterogeneous term
precision judgement E⊑ E′ : T ⊑ T ′ between terms E : T and E′ : T ′ where T ⊑ T ′—i.e.,
relating two terms at two different types, where the type on the right is less precise than the
type on the left. This judgement structure allows simple axioms characterizing the behavior
of casts (New & Licata, 2018) and axiomatizes the graduality property (Siek et al., 2015).
Crucially, we include not just the congruence/monotonicity rules typically used in syntactic
type precision, but also rules that close the relation under CBPV βη equality. Here, we
break this judgement up into value precision V ⊑ V ′ : A⊑ A′ and computation precision
M ⊑M ′ : B⊑ B′. To support reasoning about open terms, the full form of the judgements
are as follows:

• % ⊑ %′ ⊢ V ⊑ V ′ : A⊑ A′ where % ⊢ V : A and %′ ⊢ V ′ : A′ and % ⊑ %′ and A⊑ A′.
• % ⊑ %′ | &⊑&′ ⊢M ⊑M ′ : B⊑ B′ where % | &⊢M : B and %′ | &′ ⊢M ′ : B′.

where % ⊑ %′ is the pointwise lifting of value type precision, and &⊑&′ is the optional
lifting of computation type precision. We write ' : % ⊑ %′ and (:&⊑&′ as syntax for
“zipped” pairs of contexts that are pointwise related by type precision, x1 ⊑ x′1 : A1 ⊑
A′1, . . . , xn ⊑ x′n : An ⊑ A′n, which correctly suggests that one can substitute related terms
for related variables. We will implicitly zip/unzip pairs of contexts, and sometimes write,
e.g., % ⊑ % to mean x⊑ x : A⊑ A for all x : A in %.
The main point of our rules for term precision is that there are no type-specific axioms

in the definition beyond the βη-axioms that the type satisfies in a non-gradual language.
Thus, adding a new type to gradual type theory does not require any a priori consideration
of its gradual behavior in the language definition; instead, this is deduced as a theorem
in the type theory. The basic structural rules of term precision in Figure 5 say that it is
reflexive and transitive (TMDYNREFL, TMDYNTRANS), that assumptions can be used and
substituted for (TMDYNVAR, TMDYNVALSUBST, TMDYNHOLE, TMDYNSTKSUBST).
We also include congruence rules for each term constructor, which essentially says that
all term constructors are monotone in every subterm. We include the function cases to
give an example, the remaining rules are straightforward and are found in the appendix
(Figure A.1).
We will often abbreviate a “homogeneous” term precision (where the type or context

precision is given by reflexivity) by writing, e.g., % ⊢ V ⊑ V ′ : A⊑ A′ for % ⊑ % ⊢ V ⊑
V ′ : A⊑ A′, or'⊢ V ⊑ V ′ : A for'⊢ V ⊑ V ′ : A⊑ A, and similarly for computations. The
entirely homogeneous judgements % ⊢ V ⊑ V ′ : A and % | &⊢M ⊑M ′ : B can be thought
of as a syntax for contextual error approximation (as we prove below). We write V ⊒⊑ V ′
(“equiprecision”) to mean term precision relations in both directions (which requires that
the types are also equiprecise % ⊒⊑ %′ and A⊑ A′), which is a syntactic judgement for
contextual equivalence.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

22 M. S. New et al.

'⊢ V ⊑ V ′ : A⊑ A′ and ' | (⊢M ⊑M ′ : B⊑ B′

TMDYNREFL

% ⊑ % | &⊑&⊢ E⊑ E : T ⊑ T
TMDYNVAR

', x⊑ x′ : A⊑ A′,'′ ⊢ x⊑ x′ : A⊑ A′

TMDYNTRANS
% ⊑ %′ | &⊑&′ ⊢ E⊑ E′ : T ⊑ T ′

%′ ⊑ %′′ | &′ ⊑&′′ ⊢ E′ ⊑ E′′ : T ′ ⊑ T ′′
% ⊑ %′′ | &⊑&′′ ⊢ E⊑ E′′ : T ⊑ T ′′

TMDYNVALSUBST
'⊢ V ⊑ V ′ : A⊑ A′

', x⊑ x′ : A⊑ A′,'′ | (⊢ E⊑ E′ : T ⊑ T ′
' | (⊢ E[V/x]⊑ E′[V ′/x′] : T ⊑ T ′

TMDYNHOLE

' | •⊑ • : B⊑ B′ ⊢ •⊑ • : B⊑ B′

TMDYNSTKSUBST
' | (⊢M1 ⊑M ′1 : B1 ⊑ B′1

' | •⊑ • : B1 ⊑ B′1 ⊢M2 ⊑M ′2 : B2 ⊑ B′2
' | (⊢M2[M1/•]⊑M ′2[M ′1/•] : B2 ⊑ B′2

→ICONG
', x⊑ x′ : A⊑ A′ | (⊢M ⊑M ′ : B⊑ B′

' | (⊢ λx : A.M ⊑ λx′ : A′.M ′ : A→ B⊑ A′ → B′

→ECONG
' | (⊢M ⊑M ′ : A→ B⊑ A′ → B′ '⊢ V ⊑ V ′ : A⊑ A′

' | (⊢M V ⊑M ′ V ′ : B⊑ B′

Fig. 5. GTT term precision (structural rules and selected congruence rules).

2.2.4 Term precision axioms

Finally, we assert some term precision axioms that describe the behavior of programs. The
cast universal properties at the top of Figure 6, following New & Licata (2018), say that
the defining property of an upcast from A to A′ is that it is the most precise term of type A′

that is less precise than x, a “least upper bound”. That is, ⟨A′! A⟩x is a term of type A′
that is less precise than x (the “bound” rule), and for any other term x′ of type A′ that is less
precise than x, ⟨A′! A⟩x is more precise than x′ (the “best” rule). Dually, the downcast
⟨B " B′⟩• is the most dynamic term of type B that is more precise than •, a “greatest
lower bound”. These defining properties are entirely independent of the types involved in
the casts, and do not change as we add or remove types from the system.
We will show that these defining properties already imply that the shift of the upcast

⟨A′! A⟩ forms a Galois connection/adjunction with the downcast ⟨FA " FA′⟩, and
dually for computation types (see Theorem 3.3). They do not automatically form a Galois
insertion/coreflection/embedding-projection pair, but we can add this by the retract axioms
in Figure 6. Together with other theorems of GTT, these axioms imply that any upcast fol-
lowed by its corresponding downcast is the identity (see Theorem 3.4). This specification
of casts leaves some behavior undefined: for example, we cannot prove in the theory that
⟨F(1+ 1) " F?⟩⟨?! 1⟩ reduces to an error. We choose this design because there are
valid models in which it is not an error, for instance if the unique value of 1 is represented
as the Boolean true. In Section 5.2, we show additional axioms that fully characterize the
behavior of the dynamic type.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 23

Cast Universal Properties

Bound Best
Up x : A⊢ x⊑ ⟨A′! A⟩x : A⊑ A′ x⊑ x′ : A⊑ A′ ⊢ ⟨A′! A⟩x⊑ x′ : A′
Down • : B′ ⊢ ⟨B " B′⟩•⊑ • : B⊑ B′ •⊑ • : B⊑ B′ ⊢ •⊑ ⟨B " B′⟩• : B

Retract Axiom
x : A⊢ ⟨FA " F ?⟩(ret(⟨?! A⟩x))⊑ retx : FA

x :UB⊢ ⟨B " ¿⟩(force (⟨U¿! UB⟩x))⊑ force x : B

Error Properties

ERRBOT
%′ | ·⊢M ′ : B′

% ⊑ %′ | ·⊢!⊑M ′ : B⊑ B′

STKSTRICT
% | x : B⊢ S : B′

% | ·⊢ S[!B]⊑!B′ : B′

Fig. 6. GTT term precision axioms.

Additionally, for each of the βη principles phrased in terms of⊒⊑ in Figure E.2 we add
two axioms: ⊑ in each direction.
The final axioms assert properties of the runtime error term !: it is the most precise

term (has the fewest behaviors) of every computation type, and all complex stacks are
strict in errors, because stacks force their evaluation position. We state the first axiom
in a heterogeneous way, which includes congruence % ⊑ %′ ⊢!B ⊑!B′ : B⊑ B′. Note in
particular that at this point none of the rules introduce an error in a term where it was not
already present, because we do not presuppose for instance that casting from function type
to dynamic to a product type is an error. We consider both how to add axioms like these
and how to construct models where these axioms are not satisfied in Section 5.

3 Theorems in gradual type theory

In this section, we show that the axiomatics of gradual type theory determine most prop-
erties of casts, which shows that these behaviors of casts are forced in any implementation
of gradual typing satisfying graduality and β, η. When elided, proofs are included in the
appendix.

3.1 Derived cast rules

As noted above, monotonicity of type precision for U and F means that we have the
following as instances of the general cast rules:

Lemma 3.1 (Shifted Casts).
The following are derivable:

% | &⊢M : FA′ A⊑ A′
% | &⊢ ⟨FA " FA′⟩M : FA

% ⊢ V :UB B⊑ B′
% ⊢ ⟨UB′! UB⟩V :UB′

Proof. They are instances of the general upcast and downcast rules, using the fact that U
and F are congruences for type precision, so in the first rule FA⊑ FA′, and in the second,
UB⊑UB′. #

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

24 M. S. New et al.

The cast universal properties in Figure 6 imply the following seemingly more general
rules for reasoning about casts:

Lemma 3.2 (Upcast and downcast left and right rules).
The following are derivable:

A′ ⊑ A′′ '⊢ V ⊑ V ′ : A⊑ A′
'⊢ V ⊑ ⟨A′′! A′⟩V ′ : A⊑ A′′ UPR

'⊢ V ⊑ V ′′ : A⊑ A′′
'⊢ ⟨A′! A⟩V ⊑ V ′′ : A′ ⊑ A′′ UPL

B⊑ B′ ' | (⊢M ′ ⊑M ′′ : B′ ⊑ B′′
' | (⊢ ⟨B " B′⟩M ′ ⊑M ′′ : B⊑ B′′

DNL
' | (⊢M ⊑M ′′ : B⊑ B′′

' | (⊢M ⊑ ⟨B′ " B′′⟩M ′′ : B⊑ B′
DNR

In sequent calculus terminology, in the term precision judgement an upcast is left-
invertible, while a downcast is right-invertible, in the sense that any time we have a
conclusion with an upcast on the left/downcast on the right, we can without loss of general-
ity apply these rules (this comes from upcasts and downcasts forming a Galois connection).
We write the A⊑ A′ and B′ ⊑ B′′ premises on the non-invertible rules to emphasize that the
premise is not necessarily well formed given that the conclusion is.
We did not include explicit congruence rules for casts in Figure A.1 because they are

derivable:

Lemma 3.3 (Cast congruence rules).
The following congruence rules for casts are derivable:

A⊑ A′ A′ ⊑ A′′
x⊑ x′ : A⊑ A′ ⊢ ⟨A′′! A⟩x⊑ ⟨A′′! A′⟩x′ : A′′

A⊑ A′ A′ ⊑ A′′
x : A⊢ ⟨A′! A⟩x⊑ ⟨A′′! A⟩x : A′ ⊑ A′′

B⊑ B′ B′ ⊑ B′′
•′ ⊑ •′′ : B′ ⊑ B′′ ⊢ ⟨B " B′⟩•′ ⊑ ⟨B " B′′⟩•′′ : B

B⊑ B′ B′ ⊑ B′′
•′′ : B′′ ⊢ ⟨B " B′′⟩•′′ ⊑ ⟨B′ " B′′⟩•′′ : B⊑ B′

Proof. In all cases, uses the invertible and then non-invertible rule for the cast. For the first
rule, by upcast left, it suffices to show x⊑ x′ : A⊑ A′ ⊢ x⊑ ⟨A′′! A′⟩x′ : A⊑ A′′ which
is true by upcast right, using x⊑ x′ in the premise. The other cases follow by a similar
argument. #
Next, while in GTT we assume the existence of upcast values from value precision and

downcast stacks from computation precision, sometimes we can prove that certain terms
satisfy the following definition of “downcast value” and “upcast stack”.
In GTT, we assert the existence of value upcasts and computation downcasts for deriv-

able type precision relations. While we do not assert the existence of all value downcasts
and computation upcasts, we can define the universal property that identifies a term as
such:

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 25

Definition 3.1 (Upcast stack/Value downcast).

1. If B⊑ B′, a stack upcast from B to B′ is a stack • : B⊢ ⟨⟨B′! B⟩⟩• : B′ that satisfies
the computation precision rules of an upcast • : B⊢ •⊑ ⟨⟨B′! B⟩⟩• : B⊑ B′ and
•⊑ •′ : B⊑ B′ ⊢ ⟨⟨B′! B⟩⟩•⊑ •′ : B′.

2. If A⊑ A′, a value downcast from A′ to A is a complex value x : A′ ⊢ ⟨⟨A " A′⟩⟩x : A
that satisfies the value precision rules of a downcast x : A′ ⊢ ⟨⟨A " A′⟩⟩x⊑ x : A⊑ A′
and x⊑ x′ : A⊑ A′ ⊢ x⊑ ⟨⟨A " A′⟩⟩x′ : A.

One convenient application of this is that we can simplify the statement of several prop-
erties by “forgetting” that an upcast ⟨A′! A⟩ is a value, and instead using a derivable
upcast ⟨⟨FA′! FA⟩⟩ as defined in the following (and dually for computation types).

Definition 3.2 (Upcast stacks/Downcast values4).
If A⊑ A′, then we define

⟨⟨FA′! FA⟩⟩E= bind x← E ret⟨A′! A⟩x.
which is an upcast stack.
If B⊑ B′ then we define

⟨⟨UB "UB′⟩⟩V = thunk (⟨B " B′⟩(force V))
which is a downcast value.

3.2 Type-generic properties of casts

The universal property axioms for upcasts and downcasts in Figure 6 define them uniquely
up to equiprecision (⊒⊑): anything with the same property is behaviorally equivalent to a
cast.

Theorem 3.1 (Specification for Casts is a Universal Property).

1. If A⊑ A′ and x : A⊢ V : A′ is a complex value such that x : A⊢ x⊑ V : A⊑ A′ and
x⊑ x′ : A⊑ A′ ⊢ V ⊑ x′ : A′ then x : A⊢ V ⊒⊑ ⟨A′! A⟩x : A′.

2. If B⊑ B′ and •′ : B′ ⊢ S : B is a complex stack such that •′ : B′ ⊢ S ⊑ •′ : B⊑ B′ and
•⊑ •′ : B⊑ B′ ⊢ •⊑ S : B then •′ : B′ ⊢ S ⊒⊑ ⟨B " B′⟩•′ : B

Proof. For the first part, to show ⟨A′! A⟩x⊑ V , by upcast left, it suffices to show x⊑ V :
A⊑ A′, which is one assumption. To show V ⊑ ⟨A′! A⟩x, we substitute into the second
assumption with x⊑ ⟨A′! A⟩x : A⊑ A′, which is true by upcast right.
For the second part, to show S ⊑ ⟨B " B′⟩•′, by downcast right, it suffices to show

S ⊑ •′ : B⊑ B′, which is one of the assumptions. To show ⟨B " B′⟩•′ ⊑ S, we substitute
into the second assumption with ⟨B " B′⟩•′ ⊑ •′, which is true by downcast left. #
This shows the specification for the casts uniquely determines the behavior of the cast.

In the next subsection we will show that we can derive the behavior for many casts.
Casts satisfy an identity and composition law:

4 Readers familiar with category theory should note that these are simply the functorial actions of the F and U
type constructors.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

26 M. S. New et al.

Theorem 3.2 (Casts (de)composition). For any A⊑ A′ ⊑ A′′ and B⊑ B′ ⊑ B′′:
1. x : A⊢ ⟨A! A⟩x⊒⊑ x : A
2. x : A⊢ ⟨A′′! A⟩x⊒⊑ ⟨A′′! A′⟩⟨A′! A⟩x : A′′
3. • : B⊢ ⟨B " B⟩•⊒⊑ • : B
4. • : B′′ ⊢ ⟨B " B′′⟩•⊒⊑ ⟨B " B′⟩(⟨B′ " B′′⟩•) : B⊑ B

In particular, this composition property implies that the casts into and out of the dynamic
type are coherent, for example, if A⊑ A′ then ⟨?! A⟩x⊒⊑ ⟨?! A′⟩⟨A′! A⟩x.

Theorem 3.3 (Casts form Galois Connections). If A⊑ A′, then the following hold
1. •′ : FA′ ⊢ ⟨⟨FA′! FA⟩⟩⟨FA " FA′⟩•′ ⊑ •′ : FA′
2. • : FA⊢ •⊑ ⟨FA " FA′⟩⟨⟨FA′! FA⟩⟩• : FA

If B⊑ B′, then the following hold
1. x :UB′ ⊢ ⟨UB′! UB⟩⟨⟨UB "UB′⟩⟩x⊑ x :UB′
2. x :UB⊢ x⊑ ⟨⟨UB "UB′⟩⟩⟨UB′! UB⟩x :UB

The retract property says roughly that x⊒⊑ ⟨T ′ " T⟩⟨T ′! T⟩x (upcast then down-
cast does not change the behavior), strengthening the ⊑ of Theorem 3.3. In Figure 6,
we asserted the retract axiom for casts with the dynamic type. This and the composition
property implies the retraction property for general casts:

Theorem 3.4 (Retract Property for General Casts). If A⊑ A′ and B⊑ B′, then
1. • : FA′ ⊢ ⟨⟨FA′! FA⟩⟩⟨FA " FA′⟩•⊒⊑ • : FA′
2. x :UB⊢ ⟨⟨UB "UB′⟩⟩⟨UB′! UB⟩x⊒⊑ x :UB

3.3 Deriving behavior of casts

We now come to the central technical consequence of the axioms of GTT, that we can
derive the behavior of most casts from just η principles and our definition of upcasts and
downcasts as least upper bounds and greatest lower bounds, respectively. We call these
“unique implementation” theorems because they derive an implementation from the speci-
fication that by Theorem 3.1 is unique up to observational equivalence: any implementation
that satisfies graduality and the associated η principle must be equivalent to the one given
here.
Together, the universal property for casts and the η principles for each type imply that

the casts must behave as in “wrapping” cast semantics, which we will demonstrate more
explicitly in Section 4:

Theorem 3.5 (Cast Unique Implementation Theorem for +,×,→, &). All of the equiva-
lences in Figure 7 are derivable.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 27

⟨A′1 + A′2! A1 + A2⟩s⊒⊑ case s{x1.inl (⟨A′1! A1⟩x1) | x2.inr (⟨A′2! A2⟩x2)}

⟨F(A′1 + A′2) " F(A1 + A2)⟩• ⊒⊑ bind (s : (A′1 + A′2))← •; case s
{x′1. bind x1← (⟨FA1 " FA′1⟩(retx′1));

ret(inl x1)
| x′2. bind x2← (⟨FA2 " FA′2⟩(retx′2));

ret(inr x2)
}

⟨A′1 × A′2! A1 × A2⟩p⊒⊑ split p to (x1, x2).(⟨A′1! A1⟩x1, ⟨A′2! A2⟩x2)

⟨F(A′1 × A′2) " F(A1 × A2)⟩• ⊒⊑ bind p′ ← •; split p′ to (x′1, x′2).
bind x1←⟨FA1 " FA′1⟩retx′1;
bind x2←⟨FA2 " FA′2⟩retx′2; ret(x1, x2)

⊒⊑ bind p′ ← •; split p′ to (x′1, x′2).
bind x2←⟨FA2 " FA′2⟩retx′2;
bind x1←⟨FA1 " FA′1⟩retx′1; ret(x1, x2)

⟨B1 & B2 " B′1 & B′2⟩•⊒⊑ {π)→ ⟨B1 " B′1⟩π• | π ′)→ ⟨B2 " B′2⟩π ′•}

⟨U(B′1 & B′2)! U(B1 & B2)⟩p
⊒⊑ thunk {π)→ force (⟨UB′1! UB1⟩(thunk π (force p)))

| π ′)→ force (⟨UB′2! UB2⟩(thunk π ′(force p)))
}

⟨A→ B " A′ → B′⟩•⊒⊑ λx.⟨B " B′⟩(• (⟨A′! A⟩x))

⟨U(A′ → B′)! U(A→ B)⟩f ⊒⊑ thunk (λx′. bind x←⟨FA " FA′⟩(retx′);
force (⟨UB′! UB⟩(thunk ((force f) x)))

⊒⊑ thunk (λx′.force ⟨UB′! UB⟩(thunk (bind x←⟨FA " FA′⟩(retx′);
(force f) x)))

Fig. 7. Derivable Cast Behavior for +,×, &,→

Proof. The proofs are included in the appendix, and use the upcast/downcast lemmas 3.5,
3.6, which we define at the end of this subsection. #
For each value type connective, we derive the semantics of the upcast and the seman-

tics of the corresponding downcast where F is applied to the connective. Dually for the
computation type connectives we derive the downcast and the upcast where a U is applied.
Note that all of the definitions of casts are essentially the same as the definitions of the
operational behavior given in the “wrapping” semantics of gradual typing.
Notably, for the eager product × and the function type→, we derive that two a priori

different implementations both satisfy the specification and so are equivalent. Consider
first the upcast implementation ⟨A′1 × A′2! A1 × A2⟩V . We simply pattern match on the
input and cast each side:

⟨A′1 × A′2! A1 × A2⟩V ⊒⊑ split V to (x1, x2).(⟨A′1! A1⟩x1, ⟨A′2! A2⟩x2)
Since upcasts are values, it doesn’t matter in which order these two upcasts are done. On
the other hand, consider the downcast between F of two product types ⟨F(A1 × A2) "
F(A′1 × A′2)⟩. We start by binding the hole to a variable p, and splitting it into its
components x1 and x2:

bind p← •; split p to (x1, x2).M

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

28 M. S. New et al.

What should M be? The analogous step to the upcast would be to downcast each compo-
nent of the pair x1 and x2 and form a new pair with the results. However unlike the upcast
case, downcasts are effectful so we must choose which one to evaluate first. Either the left:

M = bind ⟨A1 " A′1⟩[retx1]← y1; bind ⟨A2 " A′2⟩[retx2]← y2; ret(y1, y2)

Or the right:

M = bind ⟨A1 " A′1⟩[retx1]← y1; bind ⟨A2 " A′2⟩[retx2]← y2; ret(y1, y2)

Both of these turn out to be equivalent in GTT’s inequational theory. It makes sense
operationally that these two are equivalent, since all either can do is error. If we were
to incorporate blame, then each side might raise a different error but would blame the
same party.
There is a similar (non-)choice for the function type, which is intuitively the choice

between enforcing domain or codomain first. When upcasting a thunked function type
⟨U(A′ → B′)! U(A→ B)⟩, we start by creating a thunk and taking an argument

⟨U(A′ → B′)! U(A→ B)⟩Vf ⊒⊑ thunk (λy : A′.M)

We then have two choices. First, we can downcast the input first, and then upcast a thunk
that calls the original function.

M = bind x←⟨FA " FA′⟩[rety]; force ⟨UB′! UB⟩(thunk ((force Vf)x))
Or we can upcast a thunk that will downcast the input itself:

M = force ⟨UB′! UB⟩(thunk (bind [←⟨FA " FA′⟩; rety]x(force Vf)x))
If B= FAo and B′ = FA′o, then there is no ambiguity as we clearly must downcast the input
first, call the function and then upcast the result, and both are equivalent to the call-by-value
function cast:

bind [←⟨FA " FA′⟩; rety]xbind xo← (force Vf)x; ret⟨A′o! Ao⟩x
However, if B= A2→ B2 and B

′ = A′2→ B′2 then the function types areU(A1→ A2→ B2)
and U(A′1→ A′2→ B′2) and correspond to functions of two arguments in call-by-value.
Then the choice of enforcing domain or codomain first corresponds to the choice of enforc-
ing argument contracts from left-to-right or right-to-left (or anything in between for further
more inputs). As with the product, the orderings turn out to be equivalent.
We can similarly derive cast implementations for the “double shifts”:

Theorem 3.6 (Cast Unique Implementation Theorem forUF, FU). Let A⊑ A′ and B⊑ B′.
1. x :UFA⊢ ⟨UFA′! UFA⟩x⊒⊑ thunk (⟨⟨FA′! FA⟩⟩(force x)) :UFA′
2. • : FUB′ ⊢ ⟨FUB " FUB′⟩•⊒⊑ bind x′ :UB′ ← •; ret(⟨⟨UB "UB′⟩⟩x)

Proof. The proofs are in the appendix, but use the upcast/downcast Lemmas 3.5, 3.6. #
While we can prove each of these cases directly, the proofs are fairly repetitive and

similar. Instead we package up the proof principle into a couple of lemmas, which abstract
over the details of the proof. First, since all of these proof principles are parameterized,

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 29

A+ ::= X
B+ ::= Y

) ::= · |), X val type |), Y comp type

Fig. 8. GTT open types.

we need to formally define parameterized types in order to prove our general lemmas. We
define these open types in Figure 8, which adds value and computation type variables to
GTT. We write θ for a substitution of (correctly kinded) type variables and write θ ⊑ θ ′ to
mean that type precision holds pointwise. We say a substitution θ instantiates) if for each
type variable X val type (Y comp type), θ (X) is a closed value type (resp. computation
type).
Then we can discuss type constructors as simply types with non-empty). For example,

X1 val type, X2 val type⊢ X1 + X2 val type
Y comp type⊢UY val type
X1 val type, X2 val type⊢ F(X1 + X2) comp type

are all open types. It is easy to see that all type constructors are monotone in type precision,
because we included a congruence rule for every type constructor in Figure 4:

Lemma 3.4 (Monotonicity of Type Constructors). For any type constructor) val type⊢
C, if θ ⊑ θ ′ then C[θ]⊑C[θ ′].

Proof. By induction on C. #
The following lemma gives a method to show a polymorphic value

!C[θ ′]! C[θ]"

is an upcast from C[θ] to C[θ ′]. It reduces to verification of three properties: well-
typedness, monotonicity and identity extension. Of these, only identity extension is
nontrivial to prove. This lemma will be used to prove the unique implementation theorems.

Lemma 3.5 (Upcast Lemma). Let)⊢C val type be an open value type.
Suppose !C[θ ′]! C[θ]"− is a family of values, parameterized by θ , θ ′ such that

1. (Well-typedness) For all typing substitutions θ ⊑ θ ′ instantiating),

x :C[θ]⊢ !C[θ ′]! C[θ]"x :C[θ ′]
2. (Monotonicity) For all substitutions θl, θ ′l , θr, θ

′
r that instantiate) and satisfy θl ⊑

θ ′l , θl ⊑ θr, θ ′l ⊑ θ ′r and θr ⊑ θ ′r,

x⊑ x′ :C[θl]⊑C[θr]⊢ !C[θr]! C[θl]"⊑ !C[θ ′r]! C[θ ′l]" :C[θr]⊑C[θ ′r]

3. (Identity Extension) For all substitutions θ instantiating),

x :C[θ]⊢ !C[θ]! C[θ]"x⊒⊑ x :C[θ]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

30 M. S. New et al.

Then if θ ⊑ θ ′, then !C[θ ′]! C[θ]" satisfies the universal property of an upcast, so by
Theorem 3.1

x :C[θ]⊢ !C[θ ′]! C[θ]"x⊒⊑ ⟨C[θ ′]! C[θ]⟩x :C[θ ′]
Moreover, the left-to-right direction uses only the left-to-right direction of identity
extension, and the right-to-left uses only the right-to-left direction.

Proof. First we need to show

x⊑ x′ :C[θ]⊑C[θ ′]⊢ !C[θ ′]! C[θ]"x⊑ x′ :C[θ ′].
Monotonicity gives that

!C[θ ′]! C[θ]"x⊑ !C[θ ′]! C[θ ′]"x′ :C[θ ′]

but by the left-to-right direction of identity extension the right hand side is more precise
than x′, so transitivity gives the result:

!C[θ ′]! C[θ]"x⊑ !C[θ ′]! C[θ ′]"x′ ⊑ x′

The other direction is similar. To show

x :C[θ]⊢ x⊑ !C[θ ′]! C[θ]"x :C[θ]⊑C[θ ′]
By monotonicity, we have

!C[θ]! C[θ]"x⊑ !C[θ ′]! C[θ]"x :C[θ]⊑C[θ ′]
so transitivity with the right-to-left direction of identity extension gives the result:

x⊑ !C[θ]! C[θ]"x⊑ !C[θ ′]! C[θ]"x

Then Theorem 3.1 implies that !C[θ ′]! C[Ai, Bi]" is equivalent to ⟨C[θ ′]!
C[Ai, Bi]⟩. #
We have then also the exact dual lemma for downcasts:

Lemma 3.6 (Downcast Lemma). Let)⊢C comp type be an computation type.
Suppose !C[θ] " C[θ ′]"− is a family of stacks parameterized by θ , θ ′ satisfying the

following properties.

1. (Well-typedness) For all θ ⊑ θ ′ instantiating)

• :C[θ ′]⊢ !C[θ] " C[θ ′]"• :C[θ]
2. (Monotonicity) For all substitutions θl, θ ′l , θr, θ

′
r that instantiate) and satisfy θl ⊑

θ ′l , θl ⊑ θr, θ ′l ⊑ θ ′r and θr ⊑ θ ′r,

•⊑ • :C[θr]⊑C[θ ′r]⊢ !C[θl] " C[θr]"•⊑ !C[θ ′l] " C[θ ′r]"•′ :C[θl]⊑C[θ ′l]

3. (Identity Extension) For all substitutions θ instantiating),

• :C[θ]⊢ !C[θ] " C[θ]"•⊒⊑ • :C[θ]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 31

Then !C[θ] " C[θ ′]" satisfies the universal property of a downcast, so by Theorem 3.1
• :C[θ ′]⊢ !C[θ] " C[θ ′]"•⊒⊑ ⟨C[θ] " C[θ ′]⟩• :C[θ]

Moreover, the left-to-right direction uses only the left-to-right direction of identity
extension, and the right-to-left uses only the right-to-left direction of identity extension.

Proof. The proof is the exact dual of the proof of Lemma 3.5. #
As an example derivation we prove the case for a downcast for function types:

⟨A→ B " A′ → B′⟩•⊒⊑ λx.⟨B " B′⟩(• (⟨A′! A⟩x))
Here the type constructor is X val type, Y comp type⊢ X→ Y comp type. We apply the
downcast lemma with the definition being

!A→ B " A′ → B′"= λx.⟨B " B′⟩(• (⟨A′! A⟩x))
Then well-typedness clearly holds, and monotonicity follows by congruence for all
constructors and Lemma 3.3 for the casts. Finally, for identity extension we need to show

λx.⟨B " B⟩(• (⟨A! A⟩x))⊒⊑ • : A→ B

First, by the decomposition Theorem 3.2 this is equivalent to

λx. • x⊒⊑ • : A→ B

Which is precisely η equivalence for →. The cases for the other connectives proceed
similarly.

3.4 Upcasts must be values, downcasts must be stacks

It may seem like an arbitrary choice to define upcasts as values and downcasts as stacks,
rather than the a priori more general definition that upcasts from A to A′ are effectful
terms x : A⊢ FA′, which is equivalent to assuming that they are given by a stack upcast
⟨FA′! FA⟩ and dually that computations be given by an a priori nonlinear term z :UB′ ⊢
UB, which is equivalent to a value downcast ⟨UB "UB′⟩. However, we show now that
this choice is essentially forced upon us, under the mild assumption that certain “ground”
up/downcasts are values/stacks. For this section, we define a ground type5 to be generated
by the following grammar:

G ::= 1 | ?× ? | 0 | ?+ ? |U¿ G ::= ?→ ¿ |⊤ | ¿ & ¿ | F?
Let GTTG be the fragment of GTT where the only primitive casts are those between

ground types and the dynamic types, i.e., the cast terms are restricted to ⟨?! G⟩V , ⟨FG "
F?⟩, ⟨G " ¿⟩E, ⟨U¿! UG⟩E.

Lemma 3.7 (Casts are Admissible). In GTTG, it is admissible that

1. for all A⊑ A′ there is a complex value ⟨⟨A′! A⟩⟩ satisfying the universal property
of an upcast and a complex stack ⟨⟨FA " FA′⟩⟩ satisfying the universal property of
a downcast

5 In gradual typing, “ground” is used to mean a one-level unrolling of a dynamic type, not first-order data.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

32 M. S. New et al.

2. for all B⊑ B′ there is a complex stack ⟨⟨B " B′⟩⟩ satisfying the universal property
of a downcast and a complex value ⟨⟨UB′! UB⟩⟩ satisfying the universal property
of an upcast.

Proof. To streamline the exposition above, we stated Theorems 3.2, 3.5 , 3.6 as showing
that the “definitions” of each cast are equiprecise with the cast that is a priori postulated
to exist (e.g., ⟨A′′! A⟩ ⊒⊑ ⟨A′′! A′⟩⟨A′! A⟩). However, the proofs factor through
Theorem 3.1 and Lemmas 3.5 and 3.6, which show directly that the right-hand sides have
the desired universal property—i.e., the stipulation that some cast with the correct univer-
sal property exists is not used in the proof that the implementation has the desired universal
property. Moreover, the proofs given do not rely on any axioms of GTT besides the univer-
sal properties of the “smaller” casts used in the definition and the βη rules for the relevant
types. So these proofs can be used as the inductive steps here, in GTTG.
In the appendix (Definition B.1) we define an alternative type precision relation where

casts into dynamic types are factored through ground types, and use that to drive the
induction here. #
As discussed in Section 2.2.2, rather than an upcast being a complex value x : A⊢ ⟨A′!

A⟩x : A′, an a priori more general type would be a stack • : FA⊢ ⟨FA′! FA⟩• : FA′, which
allows the upcast to perform effects; dually, an a priori more general type for a downcast
• : B′ ⊢ ⟨B " B′⟩• : B would be a value x :UB′ ⊢ ⟨UB "UB′⟩x :UB, which allows the
downcast to ignore its argument. The following shows that in GTTG, if we postulate such
stack upcasts/value downcasts as originally suggested in Section 2.2.2, then in fact these
casts must be equal to the action of U /F on some value upcasts/stack downcasts, so the
potential for effectfulness/nonlinearity affords no additional flexibility.

Theorem 3.7 (Upcasts are Necessarily Values, Downcasts are Necessarily Stacks).
Suppose we extend GTTG with the following postulated stack upcasts and value downcasts
(in the sense of Definition 3.1): For every type precision A⊑ A′, there is a stack upcast
• : FA⊢ ⟨FA′! FA⟩• : FA′, and for every B⊑ B′, there is a complex value downcast
x :UB′ ⊢ ⟨UB "UB′⟩x :UB.
Then there exists a value upcast ⟨⟨A′! A⟩⟩ and a stack downcast ⟨⟨B " B′⟩⟩ such that

• : FA⊢ ⟨FA′! FA⟩•⊒⊑ (bind x : A← •; ret (⟨⟨A′! A⟩⟩x))
x :UB′ ⊢ ⟨UB "UB′⟩x⊒⊑ (thunk (⟨⟨B " B′⟩⟩(force x)))

Proof. Lemma 3.7 constructs ⟨⟨A′! A⟩⟩ and ⟨⟨B " B′⟩⟩, so the proof of Theorem 3.6
(which really works for any ⟨⟨A′! A⟩⟩ and ⟨⟨B " B′⟩⟩ with the correct universal properties,
not only the postulated casts) implies that the right-hand sides of the above equations
are stack upcasts and value downcasts of the appropriate type. Since stack upcasts/value
downcasts are unique by an argument analogous to Theorem 3.1, the postulated casts must
be equal to these. #
Indeed, the following a priori even more general assumption provides no more

flexibility:

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 33

Theorem 3.8 (Upcasts are Necessarily Values, Downcasts are Necessarily Stacks II).
Suppose we extend GTTG only with postulated monadic upcasts x :UFA⊢ ⟨UFA′!
UFA⟩x :UFA′ for every A⊑ A′ and comonadic downcasts • : FUB′ ⊢ ⟨FUB " FUB′⟩• :
FUB for every B⊑ B′.
Then there exists a value upcast ⟨⟨A′! A⟩⟩ such that
x :UFA⊢ ⟨UFA′! UFA⟩x⊒⊑ thunk (bind x : A ← force x; ret (⟨⟨A′! A⟩⟩x))

and a stack downcast ⟨⟨B " B′⟩⟩ such that

• : FUB′ ⊢ ⟨FUB " FUB′⟩•⊒⊑ bind x′ :UB′ ← •;

ret (thunk (⟨⟨B " B′⟩⟩(force x)))

In CBV terms, the monadic upcast is like an upcast from A to A′ having type (1→ A)→ A′,
i.e., it takes a thunked effectful computation of an A as input and produces an effectful
computation of an A′.

Proof. Again, Lemma 3.7 constructs ⟨ ⟨A′! A⟩ ⟩ and ⟨ ⟨B " B′⟩ ⟩, so the proof of
Theorem 3.6 gives the result. #

3.5 Equiprecision and isomorphism

There are two natural notions of equivalence of types in GTT: equiprecision and iso-
morphism. We say value types A and A′ are equiprecise, written A⊒⊑ A′ when they are
equivalent in the precision ordering in that A⊑ A′ and A′ ⊑ A. Computation type precision
is defined analogously. In CBPV, the appropriate definition of isomorphism is pure value
isomorphism between value types and linear stack isomorphism between computation
types, defined as follows:

Definition 3.3 (Isomorphism).

1. We write A∼=v A′ for a value isomorphism between A and A′, which consists of
two values x : A⊢ V ′ : A′ and x′ : A′ ⊢ V : A such that x : A⊢ V [V ′/x′]⊒⊑ x : A and
x′ : A′ ⊢ V ′[V/x]⊒⊑ x′ : A′.

2. We write B∼=c B′ for a computation isomorphism between B and B′, which consists
of two stacks • : B⊢ S′ : B′ and •′ : B′ ⊢ S : B such that • : B⊢ S[S′/•]⊒⊑ • : B and
•′ : B′ ⊢ S′[S/•]⊒⊑ •′ : B′.

Note that value and computation isomorphisms are a stronger condition than isomor-
phism in call-by-value and call-by-name. An isomorphism in call-by-value between types
A and A′ corresponds to a computation isomorphism FA∼=c FA′, and dually a call-by-name
isomorphism between B and B′ corresponds to a value isomorphism UB∼=v UB′ (Levy,
2017).
As discussed in our previous work on call-by-name GTT (New & Licata, 2018, 2020),

equiprecision is stronger than isomorphism: isomorphism says that the “elements” of the

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

34 M. S. New et al.

types are in one-to-one correspondence, but equiprecision says additionally that those “ele-
ments” are represented in the same way at the dynamic type. To see this formally, first
observe:

Theorem 3.9 (Equiprecision implies Isomorphism).

1. If A⊒⊑ A′, then ⟨A′! A⟩ and ⟨A! A′⟩ form a value isomorphism A∼=v A′.
2. If B⊒⊑ B′, then ⟨B " B′⟩ and ⟨B′ " B⟩ form a computation isomorphism B∼=c B′.

On the other hand, we should not expect that isomorphism implies equiprecision, since
there are many nontrivial isomorphisms that will have different encodings in the dynamic
type. For instance there is an isomorphism UB× 1∼=v UB but the former will typically be
represented as a pair of a thunk and a dummy value. For another example, U(B1 & B2)∼=v

UB1 ×UB2 but the former would typically be represented as a single closure that can be
called with either of two methods, whereas the latter will be a pair of two closures each of
which implements one of the two methods.

3.6 Most precise types

Though it is common in gradually typed surface languages to have a most dynamic type
in the form of the dynamic type ?, it is less common to have a least dynamic type ⊥ .
Having a least dynamic type causes issues with certain definitions. For instance sometimes
the type consistency relation A∼ A′ is defined as existence of a type more precise than
each: ∃Al.Al ⊑ A∧ Al ⊑ A′, but this definition would be trivial given the presence of a
most precise type.
We consider here the semantic consequences of having a least dynamic/most precise

value type ⊥ v or computation type ⊥ c. In either case, the consequences are mild: the most
precise value type ⊥ v must be isomorphic to 0 while for the most precise computation type
⊥ c we cannot derive that ⊥ c ∼=⊤, we can prove U ⊥ c ∼=U⊤.
In the case of the most precise value type ⊥ v, we have a pure value x : ⊥ v ⊢ ⟨A! ⊥ v⟩x :

A for every value type A. This suggests that the empty type 0 is a candidate to be ⊥ v, and in
fact we can show the two are isomorphic. To prove this we first recall some general facts
about the empty type, in category theoretic terms that it is a strictly initial object.

Lemma 3.8 ((strictly) initial object). All of the following are true.

1. For all (value or computation) types T, there exists a unique expression x : 0⊢ E :
T. In category-theoretic terms, 0 is initial in the category of value types and values.

2. For all B, there exists a unique stack • : F0⊢ S : B. In category-theoretic terms, F0
is initial in the category of computation types and stacks.

3. Suppose there is a type A with a complex value x : A⊢ V : 0. Then V is an
isomorphism A∼=v 0. In category-theoretic terms, 0 is strictly initial.

Note however that we cannot prove that F0 is strictly initial in the category of stacks.
With this lemma in hand, we can show that ⊥ v must be value-isomorphic to 0:

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 35

Theorem 3.10 (Most Precise Value Type). If ⊥ v is a type such that ⊥ v ⊑ A for all A, then
in GTT with 0, ⊥ v ∼=v 0.

Proof. We have the upcast x : ⊥ v ⊢ ⟨0! ⊥ v⟩x : 0, so Lemma 3.8 gives the result. #
However, note that unless we already know there is an empty type 0, we see no way to

prove that ⊥ v is initial in that all terms x : ⊥ v ⊢M are equivalent.
Thinking dually, a most precise computation type would have a linear stack • : B⊢

⟨⊥ c " B⟩• : ⊥ c for every computation type B, so an obvious candidate would be the lazy
unit ⊤, the dual of the empty type. However, the duality here is not perfect and we will
only be able to prove the weaker fact that U⊤ and U ⊥ c are isomorphic.
To prove this, we first recall the defining property of ⊤, that it is in category-theoretic

terms a terminal object, but not provably a strictly terminal object, breaking the precise
duality with 0.

Lemma 3.9 (Terminal objects).

1. For any computation type B, there exists a unique stack • : B⊢ S :⊤, i.e., ⊤ is a
terminal object in the category of computation types and stacks.

2. (In any context %,) there exists a unique complex value V :U⊤, i.e., U⊤ is a
terminal object in the category of value types and values.

3. (In any context %,) there exists a unique complex value V : 1, i.e., 1 is also a
terminal object.

4. U⊤∼=v 1

Note that we cannot show that ⊤ is strictly terminal. Next, we can show that U ⊥ c is
isomorphic to U⊤.

Theorem 3.11 (Most Precise Computation Type). If ⊥ c is a type such that ⊥ c ⊑ B for all
B, and we have a terminal computation type ⊤, then U ⊥ c ∼=v U⊤.

Proof. First, though we can define stacks • :⊤⊢ ⟨⊥ c "⊤⟩• : ⊥ c and • : ⊥ c ⊢ {} :⊤, we
can only prove one direction of the isomorphism:

• :⊤⊢ {}[⟨⊥ c "⊤⟩ • /•]= {}⊒⊑ • :⊤
Since ⊤ is not a strict terminal object, the dual of the above argument does not give the
other property of a stack isomorphism ⊥ c ∼=c ⊤.
On the other hand, we can define values

x :U ⊥ c ⊢ ⟨U⊤! U ⊥ c⟩x :U⊤

y :U⊤⊢ ⟨⟨U ⊥ c "U⊤⟩⟩y :U ⊥ c
And these do exhibit the isomorphism U ⊥ c ∼=v U⊤. First, by the retract axiom

x :U ⊥ c ⊢ ⟨⟨U ⊥ c "U⊤⟩⟩⟨U⊤! U ⊥ c⟩x⊒⊑ x :U ⊥ c

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

36 M. S. New et al.

Types A ::= ? | A→ A | 1 | A× A | 0 | A+ A
Ground types G ::= ?→ ? | 1 | ?× ? | 0 | ?+ ?
Terms M ,N ::= ! | x | let x=M ;N | ⟨A⇐ A⟩M | () | split M to ().N

| (M ,N) | split M to (x, y).N | inl M | inr M
| case M{x1.N1 | x2.N2} | λx : A.M | M N

Values V ::= ⟨?⇐G⟩V | λx : A.M | () | (V , V) | inl V | inr V
Evaluation Contexts S ::= • | ⟨B⇐ A⟩S | let x= S;N | (S,N) | (V , S)

| split S to (x, y).N | inl S | inr S
| case S{x1.N1 | x2.N2} | S N | V S

Environments % ::= · | %, x : A
Substitutions γ ::= · | γ , V/x

Fig. 9. CBV cast calculus.

and the opposite composite

y :U⊤⊢ ⟨U⊤! U ⊥ c⟩⟨⟨U ⊥ c "U⊤⟩⟩y :U⊤
is the identity by uniqueness for U⊤ (Lemma 3.9). #
Given these two Theorems 3.10, 3.11, it is then sensible to ask what are the conse-

quences of defining 0 and ⊤ to be most precise types. If this is the case then, like in
Section , we can derive what the behavior of their casts would be.

Theorem 3.12. If 0⊑ A, then
z : 0⊢ ⟨A! 0⟩z⊒⊑ absurd z • : FA⊢ ⟨F0 " FA⟩•⊒⊑ bind _← •;!F0

If ⊤⊑ B, then
• :⊤⊢ ⟨⊤ " B⟩•⊒⊑ {} u :U⊤⊢ ⟨UB! U⊤⟩u⊒⊑ thunk !

4 Application: Deriving call-by-value operational semantics

To show how GTT can be used to inform the semantics of cast calculi, we show how
the uniqueness principles of Theorem 3.1 justify most of the operational behavior of a
standard Call-by-value cast calculus. A similar process is possible for call-by-name but we
have previously studied this in New & Licata (2018) so we do not cover it here.

4.1 A call-by-value cast calculus

We present the syntax of a typical call-by-value cast calculus in Figure 9, borrowed from
previous work (New & Ahmed, 2018), but using syntax for pattern matching that is in line
with GTT. We define ground types G to be each of the non-? connectives applied to ?. A
big difference from GTT is that casts are not separated into upcasts and downcasts a priori:
instead there is a cast ⟨A⇐ A′⟩M for any two types:

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 37

% ⊢M : A
% ⊢ ⟨A′ ⇐ A⟩M : A′

Other than this rule, all other typing rules are those of the simply typed λ calculus (STLC).
As in a typical call-by-value calculus, instead of values V being a separate syntactic cate-
gory from general terms M , they are instead a subset. Values include the ordinary STLC
values, and additionally tagged values of the dynamic type ⟨?⇐G⟩V . We fix the evalua-
tion order by defining evaluation contexts, which we write as S since they correspond to
CBPV stacks.
Next in Figure 10, we present the operational semantics of our calculus. The first six

rules correspond to ordinary CBV reductions so we don’t bother to name them. The
remaining rules are specific to casts. First, ?ID says that casting from ? to ? is the iden-
tity. The next two rules DECOMPUP,DECOMPDN break down complex casts to and from
the dynamic type to go through the associated ground type (note that for every type A
except ?, there is precisely one ground type G such that A⊑G). The next two rules
TAGMATCH,TAGMISMATCH say that casting a tagged value ⟨?⇐G⟩V to a ground type
G′ succeeds if the tag is the same (G=G′) and fails if the tag is different (G ̸=G′). Finally,
the SILLY rule is a catch all that says when casting between two completely unrelated
types, the cast fails. The remaining rules give the behavior of casts between two types with
the same head connective, implementing the wrapping strategy.

4.2 From CBV to GTT

Our goal is to show that the operational reductions of our CBV cast calculus are in a
sense derivable from the axioms of GTT. To make this concrete, we will define a type-
preserving translation of our CBV calculus termsM into GTT computationsMc and prove
that for all but two reduction rulesM)→N in the CBV calculus, Mc ⊒⊑Nc is provable in
GTT. The only rules that do not follow from the axioms of GTT are those that result in
errors: TAGMISMATCH and SILLY. The reason for this is that nothing in GTT encodes the
“disjointness” of different type connectives, and so from the perspective of our axiomatics,
which types are disjoint is a design decision for the models. We explore in Section 5.2 some
alternative design choices for gradual languages.
We define the type and term translation in Figure 11. First, we translate CBV types A to

CBPV value types FA, with the only nontrivial case being the translation of function types.
Next the computation type translation is mostly straightforward, making the evaluation
order explicit using bind M← x;N . The only nonstandard case is the rule for casts, where
as discussed in the Introduction, we define the semantics of all casts to factorize as an
upcast to the dynamic type followed by a downcast out of the dynamic type. Finally note
that since we are working in CBV, we never need to use the computation dynamic type ¿
because it never appears in the type translation of any CBV type.

Theorem 4.1. If M)→N by any rule except TAGMISMATCH or SILLY, then Mc ⊒⊑Nc.

Proof. The proof is in the appendix. Besides some basic lemmas for manipulating
substitutions and evaluation contexts, the correspondence of cases is as follows:

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

38 M. S. New et al.

S[let x= V ;N])→ S[N[V/x]] S[(λx : A.M) V])→ S[M[V/x]]

S[split () to ().N])→ S[N] S[split (V1, V2) to (x1, x2).N])→ S[N[V1/x1][V2/x2]]

S[case inl V{x1.N1 | x2.N2}])→ S[N1[V/x1]]

S[case inr V{x1.N1 | x2.N2}])→ S[N2[V/x2]]

?ID

S[⟨?⇐ ?⟩V])→ S[V]

DECOMPUP
A⊑G A ̸=G

S[⟨?⇐ A⟩V])→ S[⟨?⇐G⟩⟨G⇐ A⟩V]

DECOMPDN
A⊑G A ̸=G

S[⟨A⇐ ?⟩V])→ S[⟨A⇐G⟩⟨G⇐ ?⟩V]
TAGMATCH

S[⟨G⇐ ?⟩⟨?⇐G⟩V])→ S[V]

TAGMISMATCH
G ̸=G′

S[⟨G′ ⇐ ?⟩⟨?⇐G⟩V])→!

SILLY
A⊑GA B⊑GB GA ̸=GB

S[⟨B⇐ A⟩V])→!

→CAST
S[⟨A′1→ A′2⇐ A1→ A2⟩V])→ S[λx : A′1.⟨A′2⇐ A2⟩(V (⟨A1⇐ A′1⟩x))]

1CAST

S[⟨1⇐ 1⟩()])→ S[()]

×CAST
S[⟨A′1 × A′2⇐ A1 × A2⟩(V1, V2)])→ S[(⟨A′1⇐ A1⟩V1, ⟨A′2⇐ A2⟩V2)]

+CASTL
S[⟨A′1 + A′2⇐ A1 + A2⟩(inl V)])→ S[⟨A′1⇐ A1⟩V]

+CASTR
S[⟨A′1 + A′2⇐ A1 + A2⟩(inr V)])→ S[⟨A′2⇐ A2⟩V]

Fig. 10. CBV cast calculus operational semantics.

1. ?ID and 1CAST follow by the decomposition Theorem 3.2.
2. TAGMATCH follows by the retract property.
3. The remaining cast cases→CAST,×CAST,+CASTL,+CASTR follow by the cases
for the corresponding connective in Theorem 3.5.

#

5 Contract models of GTT

To show the soundness of our theory, and demonstrate its relationship to operational def-
initions of observational equivalence and the gradual guarantee, we develop models of

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 39

?ty = ?
(A→ A′)ty =U(Aty→ FA′ty)

1ty = 1
(A1 × A2)ty = Aty1 × A

ty
2

0ty = 0
(A1 + A2)ty = Aty1 + Aty2

xc = retx
(let x=M ;N)c = bind x←Mc;Nc

(⟨A2⇐ A1⟩M)c = ⟨FAty2 " F?⟩⟨⟨F?! FAty1 ⟩⟩[Mc]

(λx : A.M)c = ret(thunk (λx : Aty.Mc))

(M N)c = bind f ←Mc; bind x←Nc; force f x
()c = ret()

(split S to ().N)c = bind z← Sc; split z to ().Nc

(M1,M2)c = bind x1←Mc
1 ; bind x2←Mc

2 ; ret(x1, x2)
(split M to (x, y).N)c = bind z←Mc; split z to (x, y).Nc

(abort M)c = bind z←Mc; abort z
(inl M)c = bind x←Mc; retinl x
(inr M)c = bind x←Mc; retinr x

(case M{x1.N1 | x2.N2})c = bind z←Mc; case z{x1.Nc1 | x2.Nc2}

Fig. 11. CBV to GTT translation.

GTT using observational error approximation of a non-gradual CBPV calculus. We call
this the contract translation because it translates the built-in casts of the gradual lan-
guage into ordinary terms implemented in a non-gradual language. While contracts are
typically implemented in a dynamically typed language, our target is typed, retaining type
information similarly to manifest contracts (Greenberg et al., 2010). We give some imple-
mentations of the dynamic value type in the usual way as a recursive sum of basic value
types, i.e., using type tags. We also give some more exotic implementations of the dynamic
computation type to demonstrate the design space. These are a kind of dual: a recursive
product of basic computation types that we can think of as an “object-oriented” dynamic
type that is a universal receiver of any message.
Writing #M$ for any of the contract translations, the remaining sections of the paper

establish two main theorems that give a semantic meaning to the axiomatic term precision
relation. First, we will show that if two terms of the same type are equi-dynamic, then
their elaborations are observationally equivalent. This gives a simple interpretation of equi-
precision for terms. For simplicity, we fix F(1+ 1) as the type of observations. This is

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

40 M. S. New et al.

fairly arbitrary; we could also have chosen F1 or F applied to any finite datatype and
arrive at essentially equivalent results.

Theorem 5.1 (Equi-precision implies Observational Equivalence). If % ⊢M1 ⊒⊑M2 : B,
then for any closing GTT context C : (% ⊢ B)⇒ (·⊢ F(1+ 1)), #C[M1]$ and #C[M2]$ have
the same behavior: both diverge, both run to an error, or both run to true or both run to
false.

Second, we give a semantic meaning to the term precision relation. We interpret it using
a kind of observational approximation that is analogous to observational equivalence, but
capturing the idea that one side may error. However, there is an additional difficulty which
is that while equi-precise terms have the same type, and so can be placed in the same
context, in general if M1 ⊑M2 then M1 has a more precise type than M2, so we cannot
necessarily place them in the same context. To overcome this issue, we can insert casts
on either term to force them to be of the same type, and then apply a straightforward
notion of observational approximation. We formalize this as follows, noting that a “valid
interpretation of the dynamic types” will be defined later (Definition 5.2):

Theorem 5.2 (Graduality). If %1 ⊑ %2 ⊢M1 ⊑M2 : B1 ⊑ B2, then for any GTT context C :
(%1 ⊢ B1)⇒ (·⊢ F(1+ 1)), and any valid interpretation of the dynamic types, either
1. #C[M1]$⇓!, or
2. #C[M1]$⇑ and #C[⟨B1 " B2⟩M2[⟨%2! %1⟩%1]]$⇑, or
3. #C[M1]$⇓ retV, #C[⟨B1 " B2⟩M2[⟨%2! %1⟩%1]]$⇓ retV, and V = true or
V = false.

This is not precisely the same as definitions of the gradual guarantee (Siek et al., 2015)
that are defined by saying that term precision is an invariant of the operational seman-
tics, since those give a direct theorem about how two programs of different type evaluate.
For instance the original gradual guarantee would directly imply that if M1 ⊑M2 and
M1 reduces to a value then so does M2. This can still be derived from our theorem in a
more complex way using some additional operational reasoning. First, by our theorem if
·⊢M1 ⊑M2 : FA1 ⊑ FA2, then

bind x←M1; rettrue⊑ bind x←M2; rettrue : F(1+ 1)
Next, it is easy to see from the determinism of the operational semantics (to be intro-
duced later) that for any N , #N$ reduces to a value if and only if #bind x←N ; rettrue$
reduces to true. So if #M1$ reduces to a value, #bind x←M1; rettrue$ reduces to
true. Then by the third case of the graduality theorem (using the identity context),
#bind x←M2; rettrue$ reduces to true and so #M2$ reduces to a value.
As a corollary we deduce that the logic of precision is consistent.

Corollary 5.1 (Consistency of GTT). ·⊢ rettrue ⊑ retfalse : F(1+ 1) is not prov-
able in GTT.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 41

Proof. They are distinguished by the identity context. #
We break down this proof into three major steps.

1. (This section) We translate GTT into a statically typed CBPV* language where
the casts of GTT are translated to “contracts” in CBPV*: i.e., CBPV terms that
implement the runtime type checking. We translate the term precision of GTT
to an inequational theory for CBPV. Our translation is parameterized by the
implementation of the dynamic types, and we demonstrate several implementations.

2. (Section 6) Next, we eliminate all uses of complex values and stacks from the CBPV
language. We translate the complex values and stacks to terms with a proof that they
are “pure” (thunkable or linear Munch-Maccagnoni, 2014). This part has little to do
with GTT specifically, except that it shows the behavioral property that corresponds
to upcasts being complex values and downcasts being complex stacks.

3. (Section 7) Finally, with complex values and stacks eliminated, we give a stan-
dard operational semantics for CBPV and define a logical relation that is sound
and complete with respect to observational error approximation. Using the logical
relation, we show that the inequational theory of CBPV is sound for observational
error approximation.

By composing these, we get a model of GTT where equiprecision is sound for observa-
tional equivalence and an operational semantics that satisfies the graduality theorem.

5.1 Call-by-push-value

Next, in Figure 12, we define the call-by-push-value language CBPV* that will be the
target for our contract translations of GTT. We write + ::= and − ::= to indicate the dif-
ferences from the grammar in Figure 1. CBPV* is almost a subset of GTT obtained as
follows: We remove the casts and the dynamic types ?, ¿ (the shaded pieces) from the
syntax and typing rules in Figures 1 and 2. There is no type precision, and the inequa-
tional theory of CBPV* is the homogeneous fragment of term precision in Figure 5 and
Figure A.1 (judgements % ⊢ E⊑ E′ : T where % ⊢ E, E′ : T , with all the same rules in that
figure thus restricted). The inequational axioms are the Type Universal Properties (βη

rules) and Error Properties (with ERRBOT made homogeneous) from Figure 6. See the
appendix (Figures E.1, E.2, E.3) for an explicit description of these rules. To implement the
casts and dynamic types, we add general (iso-)recursive value types (µX .A, the fixed point
of X val type⊢ A val type) and (iso-)corecursive computation types (νY .B, the fixed point
of Y comp type⊢ B comp type). The recursive type µX .A is a value type with constructor
roll, whose eliminator is pattern matching, whereas the corecursive type νY .B is a compu-
tation type defined by its eliminator (unroll), with an introduction form that we also write
as roll. We extend the inequational theory with monotonicity of each term constructor of
the recursive types, and with their βη rules. Note that CBPV* is the axiomatic version of
call-by-push-value with complex values and stacks, while CBPV , (defined in Section 6)
will designate the operational version of call-by-push-value with only operational values
and stacks.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

42 M. S. New et al.

Value Types A + ::= µX .A | X
− ::= ?

Computation Types B + ::= νY .B | Y
− ::= ¿

Values V + ::= rollµX .A V
− ::= ⟨A! A⟩V

Terms M + ::= rollνY .B M | unroll M
M − ::= ⟨B " B⟩M

Both E + ::= unroll V to roll x.E

% ⊢ V : A[µX .A/X]
% ⊢ rollµX .A V :µX .A

µI

% ⊢ V :µX .A
%, x : A[µX .A/X] | &⊢ E : T

% | &⊢ unroll V to roll x.E : T
µE

% | &⊢M : B[νY .B]
% | &⊢ rollνY .B M : νY .B

νI

% | &⊢M : νY .B
% | &⊢ unroll M : B[νY .B]

νE
% ⊢ V ⊑ V ′ : A[µX .A/X]

% ⊢ roll V ⊑ roll V ′ :µX .A
µICONG

% ⊢ V ⊑ V ′ :µX .A %, x : A[µX .A/X] | &⊢ E⊑ E′ : T
% | &⊢ unroll V to roll x.E⊑ unroll V ′ to roll x.E′ : T

µECONG

% | &⊢M ⊑M ′ : B[νY .B/Y]
% | &⊢ roll M ⊑ roll M ′ : νY .B

νICONG

% | &⊢M ⊑M ′ : νY .B
% | &⊢ unroll M ⊑ unroll M ′ : B[νY .B/Y]

νECONG

Recursive Type Axioms

Type β η

µ unroll roll V to roll x.E⊒⊑ E[V/x]
E⊒⊑ unroll x to roll y.E[roll y/x]

where x :µX .A⊢ E : T
ν unroll roll M ⊒⊑M • : νY .B⊢ •⊒⊑ roll unroll • : νY .B

Fig. 12. CBPV* types, terms, recursive types (differences from GTT).

5.2 Interpreting the dynamic types

As shown in Theorems 3.2, 3.5, 3.6, almost all of the contract translation is uniquely deter-
mined already. However, the interpretation of the dynamic types and the casts between the
dynamic types and ground types G and G are not determined (they were still postulated
in Lemma 3.7). For this reason, our translation is parameterized by an interpretation of
the dynamic types and the ground casts. By Theorems 3.3, 3.4, we know that these must
be embedding-projection pairs (ep pairs), which we now define in CBPV*. There are two
kinds of ep pairs we consider: those between value types and those between computation
types. For the value ep pairs, the embedding models the upcast ⟨A′! A⟩ and the projection
models the downcast ⟨FA " FA′⟩. For the computation ep pairs, the projection models the
downcast ⟨B " B′⟩ and the embedding models the upcast ⟨UB′! UB⟩.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 43

Definition 5.1 (Value and Computation Embedding-Projection Pairs).

1. A value ep pair from A to A′ consists of an embedding value Ve typed as x : A⊢ Ve :
A′ and projection stack • : FA′ ⊢ Sp : FA, satisfying the retraction and projection
properties:

x : A⊢ retx⊒⊑ Sp[retVe] : FA • : FA′ ⊢ bind x← Sp; retVe ⊑ • : FA′

2. A computation ep pair from B to B′ consists of an embedding value z :UB⊢
Ve :UB′ and a projection stack • : B′ ⊢ Sp : B satisfying retraction and projection
properties:

z :UB⊢ force z⊒⊑ Sp[force Ve] : B w :UB′ ⊢ Ve[thunk Sp[force w]/z]⊑
w :UB′

When it is clear from context, we sometimes write Ve[V ′] for Ve[V ′/x].

These are related to more standard notions of embedding-projection pairs as follows. A
value ep pair is equivalent to an ep pair between FA and FA′ in the stack category where
the embedding is induced by a value A⊢ A′. Similarly, a computation ep pair is equivalent
to an ep pair between UB and UB′ in that value category where the projection is induced
by a stack B′ ⊢ B. Note that our value ep pairs are equivalent to the notion called a pre-
embedding in Lindenhovius et al. (2019). Readers familiar with Galois connections should
note that ep pairs are essentially Galois connections where one of the two orderings is an
equivalence.
While this formulation is very convenient in that both kinds of ep pairs are pairs of a

value and a stack, the projection properties are sometimes easier to use in the following
form:

Lemma 5.1 (Alternative Projection). If (Ve, Sp) is a value ep pair from A to A′ and %, y :
A′ | &⊢M : B, then

%, x′ : A′ ⊢ bind x← Sp[retx′];M[Ve/y]⊑M[x′/y]
Similarly, if (Ve, Sp) is a computation ep pair from B to B′, and % ⊢M : B′ then

% ⊢ Ve[thunk Sp[M]]⊑ thunk M :UB′

Using our definition of ep pairs, and using the notion of ground type from Section 3.4
with 0 and ⊤ removed, we define

Definition 5.2 (Dynamic Type Interpretation). A ?, ¿ interpretation ρ consists of (1) a
CBPV value type ρ(?), (2) a CBPV computation type ρ(¿), (3) for each value ground
type G except 0, a value ep pair (x.ρe(G), ρp(G)) from #G$ρ to ρ(?), and (4) for each
computation ground type G except ⊤, a computation ep pair (z.ρe(G), ρp(G)) from #G$ρ
to ρ(¿). We write #G$ρ and #G$ρ for the interpretation of a ground type, replacing ? with
ρ(?), ¿ with ρ(¿), and compositionally otherwise.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

44 M. S. New et al.

We can leave out 0 and ⊤ since the η laws uniquely determine the upcast ⟨?! 0⟩ and
downcast ⟨⊤ " ¿⟩.
Next, we show several possible interpretations of the dynamic type that will all give, by

construction, implementations that satisfy the gradual guarantee. Our interpretations of the
value dynamic type are not surprising. They are the usual construction of the dynamic type
using type tags: i.e., a recursive sum of basic value types. On the other hand, our interpre-
tations of the computation dynamic type are less familiar. In duality with the interpretation
of ?, we interpret ¿ as a recursive product of basic computation types. This interpreta-
tion has some analogues in previous work on the duality of computation (Girard, 2001;
Zeilberger, 2009), but the most direct interpretation (Definition 5.3) does not correspond
to any known work on dynamic/gradual typing. Then we show that a particular choice
of which computation types is basic and which are derived produces an interpretation of
the dynamic computation type as a type of variable-arity functions whose arguments are
passed on the stack, producing a model similar to Scheme without accounting for control
effects (Definition 5.6).

5.2.1 Natural dynamic type interpretation

Our first dynamic type interpretation is to make the value and computation dynamic types
sums and products of the ground value and computation types, respectively. This forms a
model of GTT for the following reasons. For the value dynamic type ?, we need a value
embedding (the upcast) from each ground value type G with a corresponding projection.
The easiest way to do this would be if for each G, we could rewrite ? as a sum of the values
that fit G and those that don’t: ?∼=G+ ?−G because of the following lemma.

Lemma 5.2 (Sum Injections are Value Embeddings). For any A, A′, there are value ep
pairs from A and A′ to A+ A′ where the embeddings are inl and inr .

Proof. Define the embedding of A to just be x.inl x and the projection to be

bind y← •; case y{inl x.retx | inr .!}.
We show this satisfies retraction and projection in the appendix. #
This shows why the type tag interpretation works: it makes the dynamic type in some

sense the minimal type with injections from each G: the sum of all value ground types
?∼= .GG.
The dynamic computation type ¿ can be naturally defined by a dual construction, by the

following dual argument. First, we want a computation ep pair from G to ¿ for each ground
computation type G. Specifically, this means we want a stack from ¿ to G (the downcast)
with an embedding. The easiest way to get this is if, for each ground computation type G, ¿
is equivalent to a lazy product of G and “the other behaviors”, i.e., ¿∼=G& ¿−G. Then the
embedding on π performs the embedded computation, but on π ′ raises a type error. The
following lemma, dual to Lemma 5.2 shows this forms a computation ep pair:

Lemma 5.3 (Lazy Product Projections are Computation Projections). For any B, B′, there
are computation ep pairs from B and B′ to B& B′ where the projections are π and π ′.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 45

Proof. Define the projection for B to be π . Define the embedding by z.{π)→
force z | π ′)→!}. Similarly define the projection for B′. We show this forms an ep pair
in the appendix. #
From this, we see that the easiest way to construct an interpretation of the dynamic

computation type is to make it a lazy product of all the ground types G: ¿∼=&G G. Using
recursive types, we can easily make this a definition of the interpretations:

Definition 5.3 (Natural Dynamic Type Interpretation). We define an interpretation of the
dynamic types that satisfies the isomorphisms

ρ(?)∼= 1+ (ρ(?)× ρ(?))+ (ρ(?)+ ρ(?))+Uρ(¿)

ρ(¿)∼= (ρ(¿) & ρ(¿)) & (ρ(?)→ ρ(¿)) & Fρ(?)

with the ep pairs defined as in Lemmas 5.2 and 5.3.
We construct ?, ¿ explicitly using recursive and corecursive types. Specifically, we make

the recursion explicit by defining open versions of the types:

X , Y ⊢ ?o = 1+ (X × X)+ (X + X)+UY val type
X , Y ⊢ ¿

o
= (Y & Y) & (X→ Y) & FX comp type

Then we define the types ρ(?), ρ(¿) using a standard encoding of mutually recursive types:

ρ(?)= µX .?o[νY .¿o/Y]

ρ(¿)= νY .¿
o
[µX .?o/X]

Then clearly by the roll/unroll isomorphism we get the desired isomorphisms:

ρ(?)∼= ?o[ρ(¿)/Y , ρ(?)/X]= 1+ (ρ(?)× ρ(?))+ (ρ(?)+ ρ(?))+Uρ(¿)

ρ(¿)∼= ¿
c
[ρ(?)/X , ρ(¿)/Y]= (ρ(¿) & ρ(¿)) & (ρ(?)→ ρ(¿)) & Fρ(?)

This dynamic type interpretation is a natural fit for CBPV because the introduction forms
for ? are exactly the introduction forms for all of the value types (unit, pairing,inl, inr,
force), while elimination forms are all of the elimination forms for computation types
(π , π ′, application and binding); such “bityped” languages are related to Girard (2001),
Zeilberger (2009).
Based on this dynamic type interpretation, we can extend GTT to support a truly dynam-

ically typed style of programming, where one can perform case analysis on the dynamic
types at runtime, in addition to the type assertions provided by upcasts and downcasts. This
extension is given in Figure 13. First, we add a type-case form for the dynamic value type
?E, allowing us to check what tag a value was constructed with. Then we add a β law (?β)
that says that the injection of a ground type (besides 0) is handled by the corresponding
branch. Note that here to save space we abbreviate tag types to just their head connec-
tive, so ?× ? is abbreviated as ×, etc. And finally for ? we add an η law (?η) that says
that any term with a dynamically typed variable x : ? is equivalent to one that immediately
pattern matches on x. We add a similar/dual extension for the dynamic computation type.
A dynamic computation is one that can be used as any computation type. Its introduction
form is a “co-type case” (¿I) that co-pattern matches on how the computation might be

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

46 M. S. New et al.

% | &⊢ V : ? %, x1 : 1 | &⊢ E1 : T
%, x× : ?× ? | &⊢ E× : T %, x+ : ?+ ? | &⊢ E+ : T %, xU :U¿ | &⊢ EU : T

% | &⊢ tycase V {x1.E1 | x×.E× | x+.E+ | xU .EU } : T ?E

G ̸= 0
tycase (⟨?! G⟩V) {x1.E1 | x×.E× | x+.E+ | xU .EU }⊒⊑ EG[V/xG]

?β

%, x : ? | &⊢ E : B
E⊒⊑

tycase x {x1.E[⟨?! 1⟩x1/x] | x×.E[⟨?! ×⟩x×/x] | x+.E[⟨?! +⟩x+/x] | xU .E[⟨?! U⟩xU/x]}
?η

% | &⊢M→ : ?→ ¿ % | &⊢M& : ¿ & ¿ % | &⊢MF : F?
% | &⊢ {&)→M& | (→))→M→ | F)→MF} : ¿ ¿I

G ̸=⊤
⟨G " ¿⟩{&)→M& | (→))→M→ | F)→MF}⊒⊑MG

¿β

• : ¿⊢ •⊒⊑ {&)→ ⟨¿ & ¿ " ¿⟩ • | (→))→ ⟨?→ ¿ " ¿⟩ • | F)→ ⟨F? " ¿⟩•} (¿η)

Fig. 13. Natural dynamic type extension of GTT.

used: as a function, lazy product or returner. We add a β law ¿β that says that projecting a
co-type case to a non-⊤ ground computation type selects the corresponding branch (sim-
ilarly abbreviating ¿ & ¿ as &, etc.). And finally, we add an η law ¿η that says that any
dynamically typed computation is equivalent to a co-pattern match.
The axioms we choose might seem to under-specify the dynamic type, but because of

the uniqueness of adjoints, the following are derivable.

Lemma 5.4 (Natural Dynamic Type Extension Theorems). The following are derivable
in GTT with the natural dynamic type extension

⟨F1 " F?⟩retV ⊒⊑ tycase V {x1.retx1 | else !}

⟨F(?× ?) " F?⟩retV ⊒⊑ tycase V {x×.retx× | else !}

⟨F(?+ ?) " F?⟩retV ⊒⊑ tycase V {x+.retx+ | else !}

⟨FU¿ " F?⟩retV ⊒⊑ tycase V {xU .retxU | else !}

force ⟨U¿! U(¿& ¿)⟩V ⊒⊑ {&)→ force V | (→))→! | F)→!}

force ⟨U¿! U(?→ ¿)⟩V ⊒⊑ {&)→! | (→))→ force V | F)→!}

force ⟨U¿! UF?⟩V ⊒⊑ {&)→! | (→))→! | F)→ force V}

We explore this in more detail with the Scheme-like dynamic type interpretation below.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 47

Next, we easily see that if we want to limit GTT to just the CBV types (i.e., the only
computation types are A→ FA′), then we can restrict the dynamic types as follows:

Definition 5.4 (CBVDynamic Type Interpretation). The following is a dynamic type inter-
pretation for the ground types of GTT with the only computation types being the unary
call-by-value functions A→ FA′:

ρ(?)∼= 1+ (ρ(?)+ ρ(?))+ (ρ(?)× ρ(?))+Uρ(¿) ρ(¿)= ρ(?)→ Fρ(?)

with the straightforward encoding similar to that used in Definition 5.3.

And finally if we restrict GTT to only CBN types (i.e., the only value type is Booleans
1+ 1), we can restrict the dynamic types as follows:

Definition 5.5 (CBN Dynamic Type Interpretation). The following a dynamic type
interpretation for the ground types of GTT with only Boolean value types:

ρ(?)= 1+ 1 ρ(¿)∼= (ρ(¿) & ρ(¿)) & (Uρ(¿)→ ρ(¿)) & Fρ(?)

which is easy to encode using corecursive types.

5.2.2 Scheme-like dynamic type interpretation

The above dynamic type interpretations do not correspond to any dynamically typed lan-
guage used in practice, in part because it includes explicit cases for the “additives”, the sum
type + and lazy product type &. Normally, these are not included in this way, but rather
sums are encoded by making each case use a fresh constructor (using nominal techniques
like opaque structs in Racket) and then making the sum the union of the constructors, as
argued in Siek & Tobin-Hochstadt (2016). We leave modeling this nominal structure to
future work, possibly using the fresh type generation model of New et al. (2020), but in
minimalist languages, such as simple dialects of Scheme and Lisp, sum types are often
encoded structurally rather than nominally by using some fixed sum type of symbols, also
called atoms. Then a value of a sum type is modeled by a pair of a symbol (to indicate
the case) and a payload with the actual value. We can model this by using the canonical
isomorphisms

?+ ?∼= ((1+ 1)× ?) ¿ & ¿∼= (1+ 1)→ ¿

and representing sums as pairs, and lazy products as functions.
The fact that isomorphisms are ep pairs is useful for constructing the ep pairs needed in

this Scheme-like dynamic type interpretation.

Lemma 5.5 (Isomorphisms are EP Pairs). If x : A⊢ V ′ : A′ and x′ : A′ ⊢ V : A are an iso-
morphism in that V [V ′/x′]⊒⊑ x and V ′[V/x]⊒⊑ x′, then (x.V ′, bind x′ ← •; retV) are a
value ep pair from A to A′. Similarly if • : B⊢ S′ : B′ and • : B′ ⊢ S : B are an isomorphism
in that S[S′]≡• and S′[S]≡• then (z.S′[force z], S) is an ep pair from B to B′.

So we remove the cases for sums and lazy pairs from the natural dynamic types, and
include some atomic type as a case of ?—for simplicity we will just use Booleans. We also

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

48 M. S. New et al.

do not need a case for 1, because we can identify it with one of the Booleans, say true.
This leads to the following definition:

Definition 5.6 (Scheme-Like Dynamic Type Interpretation). We can define a dynamic type
interpretation with the following type isomorphisms:

ρ(?)∼= (1+ 1)+Uρ(¿)+ (ρ(?)× ρ(?)) ρ(¿)∼= (ρ(?)→ ρ(¿)) & Fρ(?)

We construct ?, ¿ explicitly as follows.
First define X : val type⊢ Tree[X] val type to be the type of binary trees:

Tree= µX ′.X + (X ′ × X ′)
Next, define X : val type, Y : comp type⊢ VarArg[X , Y] comp type to be the type of
variable-arity functions from X to Y:

VarArg= νY ′.Y & (X→ Y ′)

Then we define an open version of ?, ¿ with respect to a variable representing the
occurrences of ? in ¿:

X val type⊢ ?o = Tree[(1+ 1)+U¿
o
] val type

X val type⊢ ¿
o
= VarArg[FX/Y] comp type

Then we can define the closed versions using a recursive type:

?= µX .?o ¿= ¿
o
[?]

The ep pairs for ×,U , F,→ are clear. To define the rest, first note that there is an ep
pair from 1+ 1 to ? by Lemma 5.2. Next, we can define 1 to be the ep pair to 1+ 1 defined
by the left case and Lemma 5.2, composed with this. The ep pair for ?+ ? is defined by
composing the isomorphism (which is always an ep pair) (?+ ?)∼= ((1+ 1)× ?) with the
ep pair for 1+ 1 using the action of product types on ep pairs (proven as part of Theorem
5.8): (?+ ?)∼= ((1+ 1)× ?) ▹ (?× ?) ▹ ? (where we write A ▹ A′ to mean there is an ep
pair from A to A′). Similarly, for ¿& ¿, we use action of the function type on ep pairs (also
proven as part of Theorem 5.8): ¿& ¿∼= ((1+ 1)→ ¿) ▹ (?→ ¿) ▹ ¿

If we factor out some of the recursion to use inductive and coinductive types, we get the
following isomorphisms:

ρ(?)∼= Tree[(1+ 1)+Uρ(¿)/X] ρ(¿)∼= VarArg[ρ(?)/X][Fρ(?)/Y]

That is, a dynamically typed value is a binary tree whose leaves are either Booleans or
closures. We think of this as a simple type of S-expressions. Next, a dynamically typed
computation is a variable-arity function that is called with some number of dynamically
typed value arguments ? and returns a dynamically typed result F?. This captures precisely
the function type of Scheme, which allows for variable-arity functions!
What’s least clear is why the type

VarArg[X][Y]= νY ′.(X→ Y ′) & Y

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 49

Should be thought of as a type of variable-arity functions. First consider the infinite
unrolling of this type:

VarArg[X][Y] ≃ Y & (X→ Y) & (X→ X→ Y) & · · ·
this says that a term of type VarArg[X][Y] offers an infinite number of possible behaviors:
it can act as a function from Xn→ Y for any n. Similarly in Scheme, a function can be
called with any number of arguments. Finally note that this type is isomorphic to a function
that takes a cons-list of arguments:

Y & (X→ Y) & (X→ X→ Y) & · · ·
∼= (1→ Y) & ((X × 1)→ Y) & ((X × X × 1)→ Y) & · · ·
∼= (1+ (X × 1)+ (X × X × 1)+ · · ·)→ Y
∼= (µX ′.1+ (X × X ′))→ Y

But operationally the type VarArg[?][F?] is more faithful model of a Scheme imple-
mentation that uses the C-calling convention because all of the arguments are passed
individually on the stack, whereas the type (µX .1+ (?× X))→ FX is a function that takes
a single argument that is a list. These two are distinguished in Scheme and the “dot args”
notation witnesses the isomorphism. GTT differs from Scheme in that it allows the pro-
grammer to pop the arguments off the stack one at a time, but there is no difference in
expressivity.
Assuming some syntax sugar for recursion and pattern matching we could implement

this isomorphism in CBPV as follows (note that this “reverses” the order of the arguments
in that the argument on the top of the stack will be at the back of the list, but this difference
is just an implementation detail):

dot-args f π ′ = force f (roll inl ())
dot-args f πx= dot-args(thunk (λxs.force f (roll (x, xs))))

The inverse isomorphism can be similarly defined as

apply (f :U(νY ′.X→ Y ′ & Y))(roll inl ())= force f π ′

apply (f :U(νY ′.X→ Y ′ & Y))(roll inr (x, xs))= apply(thunk (force f πx))xs

Based on this dynamic type interpretation we can make a “Scheme-like” extension to
GTT in Figure 14. First, we add a Boolean type B with true, false and if-then-else.
Next, we add in the elimination form for ? and the introduction form for ¿. The elimination
form for ? is a typed version of Scheme’s match macro. The introduction form for ¿ is a
typed, CBPV version of Scheme’s case-lambda construct. Finally, we add type precision
rules expressing the representations of 1, A+ A, and A× A in terms of Booleans that were
explicit in the ep pairs used in Definition 5.6.
The reader may be surprised by how few axioms we need to add to GTT for this exten-

sion: for instance we only define the upcast from 1 to B and not vice versa, and similarly
the sum/lazy pair type isomorphisms only have one cast defined when a priori there are 4
to be defined. Finally for the dynamic types we define β and η laws that use the ground
casts as injections and projections respectively, but we don’t define the corresponding dual
casts (the ones that possibly error).

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

50 M. S. New et al.

1⊑B A+ A⊒⊑B× A B& B⊒⊑B→ B

% ⊢ true, false :B
BI

% ⊢ V :B % ⊢ Et : T % ⊢ Ef : T
% | &⊢ if V then Et else Ef : T

BE

if true then Et else Ef ⊒⊑ Et if false then Et else Ef ⊒⊑ Ef

x :B⊢ E⊒⊑ if x then E[true/x] else E[false/x]

⟨B! 1⟩V ⊒⊑ true ⟨B× A! A+ A⟩inl V ⊒⊑ (true, V)

⟨B× A! A+ A⟩inr V ⊒⊑ (false, V)

π⟨B& B " B→ B⟩M ⊒⊑M true π ′⟨B& B " B→ B⟩M ⊒⊑M false

% | &⊢M→ : ?→ ¿ % | &⊢MF : F?
% | &⊢ {(→))→M→ | F)→MF} : ¿ ¿I

⟨G " ¿⟩{(→))→M→ | F)→MF}⊒⊑MG (¿β)

• : ¿⊢ •⊒⊑ {(→))→ ⟨?→ ¿ " ¿⟩ • | F)→ ⟨F? " ¿⟩•} (¿η)

% | &⊢ V : ?
%, xB :B | &⊢ EB : T

%, xU :U¿ | &⊢ EU : T
%, x× : ?× ? | &⊢ E× : T

% | &⊢ tycase V {xB.EB | xU .EU | x×.E×} : T ?E

G ∈ {B,×,U}
tycase (⟨?! G⟩V) {xB.EB | xU .EU | x×.E×}⊒⊑ EG[V/xG]

(?β)

%, x : ? | &⊢ E : B
E⊒⊑ tycase x {xB.E[⟨?! B⟩xB/x] | x×.E[⟨?! ×⟩x×/x] | xU .E[⟨?! U⟩xU/x]} ?η

Fig. 14. Scheme-like extension to GTT.

In fact all of these expected axioms can be proven from those we have shown. Again we
see the surprising rigidity of GTT: because an F downcast is determined by its dual value
upcast (and vice versa for U upcasts), we only need to define the upcast as long as the
downcast could be implemented already. Because we give the dynamic types the universal
property of a sum/lazy product type respectively, we can derive the implementations of the
“checking” casts. All of the proofs are direct from the uniqueness of adjoints lemma.

Theorem 5.3 (Boolean to Unit Downcast). In Scheme-like GTT, we can prove

⟨F1 " FB⟩•⊒⊑ bind x← •; if x then ret() else !

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 51

#B$= 1+ 1
#true$= inl ()
#false$= inr ()
#if V then Et else Ef $= case #V${x.#Et$ | x.#Ef $}
#tycase x {xB.EB | xU .EU | x×.E×}$=
unroll (x : ?) to roll x′.unroll x′ : Tree[(1+ 1)+U¿] to roll t.case t

{l.case l{xB.#EB$ | xU .#EU$}
| x×.#E×$}

#{(→))→M→ | F)→MF}$= rollνY .(?→Y)&F? {π)→ #M→$ | π ′)→ #MF$}

Fig. 15. Scheme-like GTT extension semantics.

Theorem 5.4 (Tagged Value to Sum). In Scheme-like GTT, we can prove

⟨A+ A! B× A⟩V ⊒⊑ split V to (x, y).if x then inl y else inr y

and the downcasts are given by Lemma 5.5.

Theorem 5.5 (Lazy Product to Tag Checking Function). In Scheme-like GTT, we can
prove

⟨B→ B " B& B⟩•⊒⊑ λx :B.if x then π • else π ′•
and the upcasts are given by Lemma 5.5.

Theorem 5.6 (Ground Mismatches are Errors). In Scheme-like GTT we can prove

⟨FB " F?⟩retV ⊒⊑ tycase V {xB.retxB | else !}

⟨F(?× ?) " F?⟩retV ⊒⊑ tycase V {x×.retx× | else !}

⟨FU¿ " F?⟩retV ⊒⊑ tycase V {xU .retxU | else !}

force ⟨U¿! U(?→ ¿)⟩V ⊒⊑ {(→))→ force V | F)→!}

force ⟨U¿! UF?⟩V ⊒⊑ {(→))→! | F)→ force V}

Next, note that this model gives an example of why the TAGMISMATCH and SILLY
rules in Section 4 could not be derived from GTT. In the call-by-value calculus, any cast
from a sum type to a product type would fail, but here we have a model where all sum
types can be safely cast to B× ?.
Finally, we note now that all of these axioms are satisfied when using the Scheme-like

dynamic type interpretation and extending the translation of GTT into CBPV* given in
Section 5.3 with the cases in Figure 15.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

52 M. S. New et al.

x : !A"⊢ !⟨A′ ! A⟩" : !A′" • : !B′"⊢ !⟨B " B′⟩" : !B"
x : 0⊢ !⟨A! 0⟩" = absurd x

• : A⊢ !⟨F0 " FA⟩" = bind x← •;!
x : !?"⊢ !⟨?! ?⟩" = x

• : F?⊢ !⟨F? " F?⟩" = •
x : !G"⊢ !⟨?! G⟩" = ρup(G)

• : F?⊢ !⟨FG " F?⟩" = ρdn(G)
x : !A"⊢ !⟨?! A⟩" = !⟨?! ⌊A⌋⟩"[!⟨⌊A⌋! A⟩"/x] (A ̸∈ {?, ⌊A⌋})
• : F?⊢ !⟨A " ?⟩" = !⟨A " ⌊A⌋⟩"[!⟨⌊A⌋ " ?⟩"] (A ̸∈ {?, ⌊A⌋})

x : !A1" + !A2"⊢ !⟨A′1 + A′2 ! A1 + A2⟩" = case x
{x1.!⟨A′1 ! A1⟩"[x1/x]
| x2.!⟨A′2 ! A2⟩"[x2/x]}

• : F(!A′1" + !A′2")⊢ !⟨F(A1 + A2) " F(A′1 + A′2)⟩" = bind x′ ← •; case x′
{x′1.bind x1← (!⟨FA1 " FA′1⟩"[retx′1]); retx1
| x′2.bind x2← (!⟨FA2 " FA′2⟩"[retx′2]); retx2}

x : 1⊢ !⟨1! 1⟩" = x
• : F1⊢ !⟨F1 " F1⟩" = •

x : !A1"× !A2"⊢ !⟨A′1 × A′2 ! A1 × A2⟩" = split x to (x1, x2).
(!⟨A′1 ! A1⟩"[x1/x], !⟨A′2 ! A2⟩"[x2/x])

• : F(!A′1"× !A′2")⊢ !⟨F(A1 × A2) " F(A′1 × A′2)⟩" = bind x′ ← •; split x′ to (x′1, x′2).
bind x1← !⟨FA1 " FA′1⟩"[retx′1];
bind x2← !⟨FA2 " FA′2⟩"[retx′2]; ret(x1, x2)

x :UF!A"⊢ !⟨UFA′ ! UFA⟩" = thunk (bind y← force x; ret!⟨A′ ! A⟩"[y/x])

• : B⊢ !⟨⊤ " B⟩" = {}
x :U⊤⊢ !⟨UB! U⊤⟩" = thunk !

• : ¿⊢ !⟨¿ " ¿⟩" = •
x :U¿⊢ !⟨U¿! U¿⟩" = x

• : ¿⊢ !⟨G " ¿⟩" = ρdn(G)
x :UG ⊢ !⟨U¿! UG⟩" = ρup(G)

• : ¿⊢ !⟨B " ¿⟩" = !⟨B " ⌊B⌋⟩"[!⟨⌊B⌋ " ¿⟩"] (B ̸∈ {¿, ⌊B⌋})
x :U¿⊢ !⟨U¿! UB⟩" = !⟨U¿! U⌊B⌋⟩"[!⟨U⌊B⌋! UB⟩"/x] (B ̸∈ {¿, ⌊B⌋})

• : !B′1"& !B′2"⊢ !⟨B1 & B2 " B′1 & B
′
2⟩" = {π)→ !⟨B1 " B′1⟩"[π•] | π ′)→ !⟨B2 " B′2⟩"[π ′•]}

x :U(!B1"& !B2")⊢ !⟨U(B′1 & B′2)! U(B1 & B2)⟩" = thunk
{π)→ force !⟨B′1 ! B1⟩"[thunk (πforce x)]
| π ′)→ force !⟨B′2 ! B2⟩"[thunk (π ′force x)]}

• : !A′"→ !B′"⊢ !⟨A→ B " A′ → B′⟩" = λx : A.!⟨B " B′⟩"[• (!⟨A′ ! A⟩")]
f :U(!A"→ !UB")⊢ !⟨U(A′ → B′)! U(A→ B)⟩" = thunk λx′ : A′.

bind x← !⟨FA " FA′⟩"[retx′];
force !⟨UB′ ! UB⟩"[thunk ((force f) x′)/x]

• : FUB′ ⊢ !⟨FUB " FUB′⟩" = bind x′ ← •; !⟨B " B′⟩"[force x′]

Fig. 16. Cast to contract translation.

5.3 Contract translation

Having defined the data parameterizing the translation, we now consider the translation of
GTT into CBPV* itself. For the remainder of the paper, we assume that we have a fixed
dynamic type interpretation ρ, and all proofs and definitions work for any interpretation.

5.3.1 Interpreting casts as contracts

The main idea of the translation is an extension of the dynamic type interpretation to
an interpretation of all casts in GTT (Figure 16) as contracts in CBPV*, following the
definitions in Lemma 3.7. We consider the rules ordered for determining which of possibly
overlapping cases to use. We describe a few rules specifically now. The rule for casting
a tag type G to and from ? utilizes the assumed dynamic type interpretation ρ. Next, the

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 53

A ∈ {?, 1, 0}
A⊑ A

A⊑G
A⊑ ?

B⊑ B′
UB⊑UB′

A1 ⊑ A′1 A2 ⊑ A′2
A1 + A2 ⊑ A′1 + A′2

A1 ⊑ A′1 A2 ⊑ A′2
A1 × A2 ⊑ A′1 × A′2

B ∈ {¿,⊤}
B⊑ B

B⊑G
B⊑ ¿

A⊑ A′
FA⊑ FA′

B1 ⊑ B′1 B2 ⊑ B′2
B1 & B2 ⊑ B′1 & B′2

A⊑ A′ B⊑ B′
A→ B⊑ A′ → B′

Fig. 17. Normalized type precision relation.

rule for casting A to ? casts A to its corresponding “tag type” which we write as ⌊A⌋.
⌊A⌋ is defined as the unique tag type G such that A⊑G, so ?× ? for any A× A′, etc.
The corresponding downcast F? to FA is defined similarly The rules for sums, products,
and UF follow from the uniqueness principles proven in the previous section. For the
computation type connectives, first, the casts between tag types G and ¿ use ρ. Next, the
rule for downcasting from ¿ to a non-tag B is analogous to the value type case, using an
analogous notion of ⌊B⌋. The cases for &,→, FU follow the uniqueness theorems. This
definition is not obviously total: we need to verify that it covers every possible case where
A⊑ A′ and B⊑ B′. To prove totality and coherence, we could try induction on the type
precision relation of Figure 4, but it is convenient to first give an alternative, normalized
set of rules for type precision that proves the same relations, which we do in Figure 17.
First, we add reflexivity rules for the base value types. Then we add a rule that says to
prove a value type A is more precise than ? it is sufficient to prove it is more precise than
a ground type G. This is effectively a limited transitivity rule that allows us to compose
a precision proof A⊑G with the “primitive” rules for tag types G⊑ ?. We recover the
rule G⊑ ? by composing with the reflexivity proof G⊑G. Note that there is only one way
this can apply since a type can only be more precise than a single tag type. Then we add
the congruence rules for the value type constructor U ,+,×. Next, we add computation
type precision rules similarly: reflexivity for base types, a rule for proving ¿ is the most
imprecise type and congruence rules for the computation type constructors.

Lemma 5.6 (Normalized Type Precision is Equivalent to Original). T ⊑ T ′ is provable in
the normalized typed precision definition iff it is provable in the original typed precision
definition.

Based on normalized type precision, we show

Theorem 5.7. If A⊑ A′ according to Figure 17, then there is a unique complex value x :
A⊢ #⟨A′! A⟩$x : A′ and if B⊑ B′ according to Figure 17, then there is a unique complex
stack x : B⊢ #⟨B′! B⟩$x : B′

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

54 M. S. New et al.

5.3.2 Interpretation of terms

Next, we extend the translation of casts to a translation of all terms by congruence, since
all terms in GTT besides casts are in CBPV*. This satisfies:

Lemma 5.7 (Contract Translation Type Preservation). If % | &⊢ E : T in GTT, then
#%$ | #&$⊢ #E$: #T$ in CBPV*.

5.3.3 Interpretation of term precision

We have now given an interpretation of the types, terms, and type precision proofs of GTT
in CBPV*. To complete this to form a model of GTT, we need to give an interpretation
of the term precision proofs, which is established by the following “axiomatic gradual-
ity” theorem. GTT has heterogeneous term precision rules indexed by type precision, but
CBPV* has only homogeneous inequalities between terms, i.e., if E⊑ E′, then E, E′ have
the same context and types. Since every type precision judgement has an associated con-
tract, we can translate a heterogeneous term precision to a homogeneous inequality up to
insertion of contract. Our next overall goal is to prove the following

Theorem 5.8 (Axiomatic Graduality). For any dynamic type interpretation,

' : % ⊑ %′ (:&⊑&′ ' | (⊢M ⊑M ′ : B⊑ B′

#%$ | #&′$⊢ #M$[#($]⊑ #⟨B " B′⟩$[#M ′$[#'$]] : #B$

' : % ⊑ %′ '⊢ V ⊑ V ′ : A⊑ A′

#%$⊢ #⟨A′! A⟩$[#V$]⊑ #V ′$[#'$] : #A′$
where we define #'$ to upcast each variable, and #&$ to downcast • if it is non-empty,
and if & = ·, then M[#&$]=M. More explicitly,
1. If ' : % ⊑ %′, then there exists n such that % = x1 : A1, . . . , xn : An and %′ = x′1 :
A′1, . . . , x

′
n : A

′
n where Ai ⊑ A′i for each i≤ n. Then #'$ is a substitution from #%$

to #%′$ defined as

#'$= #⟨A′1! A1⟩$x1/x′1, . . . #⟨A′n! An⟩$xn/x′n
2. If (:&⊑&′, then we similarly define #($ as a “linear substitution”. That is, if

& = &′ = ·, then #($ is an empty substitution and M[#($]=M, otherwise #($ is
a linear substitution from &′ = • : B′ to & = • : B where B⊑ B′ defined as

#($= #⟨B " B′⟩$ • /•

Relative to previous work on graduality (New & Ahmed, 2018), the distinction between
complex value upcasts and complex stack downcasts here guides the formulation of the
theorem; e.g., using upcasts in the left-hand theorem would require more thunks/forces.
Note that an alternative to using homogeneous inequality up to cast would be to provide
a direct logical relations interpretation of the heterogeneous inequality for every pair of
types A⊑ A′ (and B⊑ B′) (New et al., 2020).

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 55

We now develop some lemmas on the way toward proving this result. First, we prove
that from the basic casts being ep pairs, we can prove that all casts as defined in Figure 16
are ep pairs. Before doing so, we prove the following lemma, which is used for transitivity
(e.g., in the A⊑ ? rule, which uses a composition A⊑ ⌊A⌋ ⊑ ?):

Lemma 5.8 (EP Pairs Compose).

1. If (V1, S1) is a value ep pair from A1 to A2 and (V2, S2) is a value ep pair from A2
to A3, then (V2[V1], S1[S2]) is a value ep pair from A1 to A3.

2. If (V1, S1) is a computation ep pair from B1 to B2 and (V2, S2) is a computation ep
pair from B2 to B3, then (V2[V1], S1[S2]) is a computation ep pair from B1 to B3.

Lemma 5.9 (Identity EP Pair). (x.x, •) is an ep pair (value or computation).

Now, we show that all casts are ep pairs. The proof is a somewhat tedious, but
straightforward calculation, and is included in the appendix.

Lemma 5.10 (Casts are EP Pairs).

1. For any A⊑ A′, the casts (x.#⟨A′! A⟩x$, #⟨FA " FA′⟩$) are a value ep pair from
#A$ to #A′$.

2. For any B⊑ B′, the casts (z.#⟨UB′! UB⟩z$, #⟨B " B′⟩$) are a computation ep
pair from #B$ to #B′$.

While tedious, this work pays off greatly in later proofs: this is the only proof in the
entire development that needs to inspect the definition of a “shifted” cast (a downcast
between F types or an upcast between U types). All later lemmas have cases for these
shifted casts, but only use the property that they are part of an ep pair. This is one of the
biggest advantages of using an explicit syntax for complex values and complex stacks: the
shifted casts are the only ones that non-trivially use effectful terms, so after this lemma
is established we only have to manipulate values and stacks, which compose much more
nicely than effectful terms. Conceptually, the main reason we can avoid reasoning about
the definitions of the shifted casts directly is that any two shifted casts that form an ep pair
with the same value embedding/stack projection are equal:

Lemma 5.11 (Embedding determines Projection, and vice versa). For any value x : A⊢
Ve : A′ and stacks • : FA′ ⊢ S1 : FA and • : FA′ ⊢ S2 : FA, if (Ve, S1) and (Ve, S2) are both
value ep pairs, then

S1 ⊒⊑ S2
Similarly for any values x :UB⊢ V1 :UB′ and x :UB⊢ V2 :UB′ and stack • : B′ ⊢ Sp : B,
if (V1, Sp) and (V2, Sp) are both computation ep pairs then

V1 ⊒⊑ V2

The next two lemmas on the way to axiomatic graduality show that Figure 16 translates
⟨A! A⟩ to the identity and ⟨A′′! A′⟩⟨A′! A⟩ to the same contract as ⟨A′′! A⟩, and

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

56 M. S. New et al.

similarly for downcasts. Intuitively, for all connectives except F,U , this is because of
functoriality of the type constructors on values and stacks. For the F,U cases, we will
use the corresponding fact about the dual cast, i.e., to prove the FA to FA downcast is the
identity stack, we know by inductive hypothesis that the A to A upcast is the identity, and
that the identity stack is a projection for the identity. Therefore Lemma 5.11 implies that
the FA downcast must be equivalent to the identity. We now discuss these two lemmas
and their proofs in detail.
First, we show that the casts from a type to itself are equivalent to the identity. Below,

we will use this lemma to prove the reflexivity case of the axiomatic graduality theorem,
and to prove a conservativity result, which says that a GTT homogeneous term precision
is the same as a CBPV* inequality between their translations.

Lemma 5.12 (Identity Expansion). For any A and B,

x : A⊢ #⟨A! A⟩$⊒⊑ x : A • : B⊢ #⟨B " B⟩$⊒⊑ • : B

Second, we show that a composition of upcasts is translated to the same thing as a direct
upcast, and similarly for downcasts. Below, we will use this lemma to translate transitivity
of term precision in GTT.

Lemma 5.13 (Cast Decomposition). For any dynamic type interpretation ρ,

A⊑ A′ ⊑ A′′
x : A⊢ #⟨A′′! A⟩$ρ ⊒⊑ #⟨A′′! A′⟩$ρ [#⟨A′! A⟩$ρ] : A′′

B⊑ B′ ⊑ B′′
• : B′′ ⊢ #⟨B " B′′⟩$ρ ⊒⊑ #⟨B " B′⟩$ρ [#⟨B′ " B′′⟩$ρ]

The final lemma before the graduality theorem lets us “move a cast” from left to right
or vice versa, via the adjunction property for ep pairs. These arise in the proof cases for
return and thunk , because in those cases the inductive hypothesis is in terms of an
upcast (downcast) and the conclusion is in terms of a a downcast (upcast).

Lemma 5.14 (Hom-set formulation of Adjunction). For any value embedding-projection
pair Ve, Sp from A to A′, the following are equivalent:

% ⊢ retVe[V]⊑M : FA′

% ⊢ retV ⊑ Sp[M] : FA
======================

For any computation ep pair (Ve, Sp) from B to B′, the following are equivalent:

%, z′ :UB′ ⊢M ⊑ S[Sp[force z′]] :C
%, z :UB⊢M[Ve/z′]⊑ S[force z] :C==================================

Finally, we prove the axiomatic graduality theorem. In addition to the lemmas above,
the main task is to prove the “compatibility” cases which are the congruence cases for
introduction and elimination rules. These come down to proving that the casts “commute”
with introduction/elimination forms, and are all simple calculations.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 57

Theorem 5.1 (Axiomatic Graduality). For any dynamic type interpretation, the following
are true:

' : % ⊑ %′ (:&⊑&′ ' | (⊢M ⊑M ′ : B⊑ B′
#%$ | #&′$⊢ #M$[#($]⊑ #⟨B " B′⟩$[#M ′$[#'$]] : #B$

' : % ⊑ %′ '⊢ V ⊑ V ′ : A⊑ A′
#%$⊢ #⟨A′! A⟩$[#V$]⊑ #V ′$[#'$] : #A′$

As a corollary, we have the following conservativity result, which says that the
homogeneous term precisions in GTT are sound and complete for inequalities in CBPV*.

Corollary 5.2 (Conservativity). If % | &⊢ E, E′ : T are two terms of the same type in
the intersection of GTT and CBPV*, then % | &⊢ E⊑ E′ : T is provable in GTT iff it is
provable in CBPV*.

Proof. The reverse direction holds because CBPV* is a syntactic subset of GTT. The
forward direction holds by axiomatic graduality and the fact that identity casts are
identities. #

6 Complex value/stack elimination

Next, to bridge the gap between the semantic notion of complex value and stack with
the more rigid operational notion, we perform a “complexity-elimination” pass.6 This
translation transforms computations using complex values into equivalent ones without
them. This demonstrates that complex values do not add any expressive power to the lan-
guage operationally. As an example consider a product upcast ⟨?× ?! A1 × A2⟩V . By
Theorem 3.5, this is equivalent to a pattern match and then tagging both sides of the pair:

split V to (x1, x2).(⟨?! A1⟩x1, ⟨?! A2⟩x2)
However, this is not a value in the operational sense since it has a β× redex if V is a closed
value of product type. So we instead define a translation V† that turns a value V : A into a
computation V† : FA that is equivalent to retV . For instance the pair cast would turn into
the larger term:

bind p← V†; split p to (x1, x2).bind y1←⟨?! A1⟩x1†; bind y2←⟨?! A2⟩x2†;
ret(y1, y2)

We see here that this de-complexification pass is akin to translation to A-normal or
monadic form.
So if complex values add no operational expressive power, why do we use them at all?

The reason is that they greatly simplify using the inequational theory to reason about casts.
Using complex values, all upcasts are values, and so can be substituted for variables. On
the other hand, if upcasts are computations, then (1) we cannot substitute them directly for

6 Levy (2003) provides a similar complexity-elimination pass, but does not prove the inequality preservation
that we require here, so we give an alternative, but equivalent translation for which this property is easy to
verify.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

58 M. S. New et al.

V ::= x | rollµX .A V | inl V | inr V | () | (V1, V2) | thunk M
M ::= !B | let x= V ;M | unroll V to roll x.M | rollνY .B M | unroll M | abort V |

case V {x1.M1 | x2.M2} | split V to ().M | split V to (x, y).M | force V |
retV | bind x←M ;N | λx : A.M |M V | {} | {π)→M1 | π ′)→M2} | πM | π ′M

S ::= • | bind x← S;M | S V | πS | π ′S | unrollνY .B S

Fig. 18. Operational CBPV syntax.

variables without renormalizing the term and (2) if the variable occurs zero times or more
than once, we do not know a priori if such a substitution would be semantics-preserving.
This second reason provides the main difficulty in proving that the de-complexification
pass preserves the inequational theory. To prove this we need to show that for any complex
value V , the de-complexified computation V† is in some sense a “pure” computation. This
notion of purity in CBPV is called thunkability (Führmann, 1999; Munch-Maccagnoni,
2014). In the inequational theory of CBPV, this is defined by saying that a term M : FA is
thunkable if running M to a value and then duplicating its value is the same as running M
every time we need its value. Formally, we define it as

Definition 6.1 (Thunkable Computation). A computation % ⊢M : FA is thunkable if
% ⊢ ret(thunk M)⊒⊑ bind x←M ; ret(thunk (retx)) : FUFA

Since we also use complex stacks in the equational theory, we also need to define a
de-complexification pass for stacks that takes a stack • : B⊢ S : B′ to a computation with
a free variable x :UB⊢ S†[x] : B′ that is equivalent to S[force x]. Similarly, to prove the
de-complexification preserves the inequational theory, we need a semantic property that
all de-complexified complex stacks satisfy that is a dual to thunkability called linearity
(Munch-Maccagnoni, 2014). Intuitively, a term % ⊢M : B′ is linear in a variable x :UB ∈ %

if it acts like a term that immediately forces x once and then never forces x again. This
is described in the CBPV inequational theory as follows: if we have a double thunk z :
UFUB, then either we can force it now and pass the result toM as x, or we can just runM
with a thunk that will force z each time x is forced—but if M forces x exactly once, these
two are the same.

Definition 6.2 (Linear Term). A term % ⊢M :C is linear in x :UB ∈ % if

%, z :UFUB⊢ bind x← force z;M ⊒⊑M[thunk (bind x← (force z); force x)]

Now, let’s define de-complexification. First, the syntax of operational CBPV, the target
of the de-complexification translation as shown in Figure 1 (unshaded), but with recursive
types added as in Section 5.1, and with values and stacks restricted as shown in Figure 18.
In CBPV, values include only introduction forms, as usual for values in operational

semantics, and CBPV stacks consist only of elimination forms for computation types (the
syntax of CBPV enforces an A-normal form, where only values can be pattern matched
on, so case and split are not evaluation contexts in the operational semantics).

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 59

The de-complexification procedure is defined as follows.

Definition 6.3 (De-complexification). We define decomplexification of values, stacks and
computations recursively as follows:

•† = force z
(retV)† = bind x← V†; retx
(M V)† = bind x← V†;M† x

(force V)† = bind x← V†; force x
(absurd V)† = bind x← V†; absurd x

(case V{x1.E1 | x2.E2})† = bind x← V†; case x{x1.E1† | x2.E2†}
(split V to ().E)† = bind w← V†; split w to ().E†

(split V to (x, y).E)† = bind w← V†; split w to (x, y).E†

(unroll V to roll x.E)† = bind y← V†; unroll y to roll x.E†

x† = retx
(inl V)† = bind x← V†; retinl x
(inr V)† = bind x← V†; retinr x

()† = ret()
(V1, V2)† = bind x1← V1†; bind x2← V2†; ret(x1, x2)

(thunk M)† = retthunk M†

(roll V)† = bind x← V†; roll x

The translation is type-preserving and the identity from CBPV*’s point of view

Lemma 6.1 (De-complexification De-complexifies). For any CBPV* term % | &⊢ E : T,
E† is a term of CBPV satisfying %,&† ⊢ E† : T† where ·†= · (• : B)†= z :UB, B†= B,
A†= FA.

Lemma 6.2 (De-complexification is Identity in CBPV*). Considering CBPV as a subset
of CBPV* we have

1. If % | ·⊢M : B then M ⊒⊑M†.
2. If % | &⊢ S : B then S[force z]⊒⊑ S†.
3. If % ⊢ V : A then retV ⊒⊑ V†.

Furthermore, if M , V , S are in CBPV, the proof holds in CBPV.

Finally, we need to show that the translation preserves inequalities (E†⊑ E′† if E⊑ E′),
where the target inequational theory is given by restricting GTT to the homogeneous frag-
ment and adding monotonicity and βη rules for recursive types (see appendix for details).
In particular, the thunkability/linearity properties are needed to prove the preservation of
the η principles for value types and the strictness of complex stacks with respect to errors
under decomplexification.
We need a few lemmas about thunkables and linears to prove that complex values

become thunkable and complex stacks become linear. We show them in detail here because

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

60 M. S. New et al.

many of them correspond to program optimizations that are valid for thunkable/linear
terms and therefore apply to upcasts and downcasts.
First, the following lemma is useful for optimizing programs with thunkable subterms.

Intuitively, since a thunkable has “no effects” it can be reordered past any other effectful
binding. Führmann (1999) calls a morphism that has this property central (after the center
of a group, which is those elements that commute with every element of the whole group).

Lemma 6.3 (Thunkables are Central). If % ⊢M : FA is thunkable and % ⊢N : FA′ and
%, x : A, y : A′ ⊢N ′ : B, then

bind x←M ; bind y←N ;N ′ ⊒⊑ bind y←N ; bind x←M ;N ′

Next, we show thunkables are closed under composition and that return of a value is
always thunkable. This allows us to easily build up bigger thunkables from smaller ones.

Lemma 6.4 (Thunkables compose). If % ⊢M : FA and %, x : A⊢N : FA′ are thunkable,
then

bind x←M ;N

is thunkable.

Lemma 6.5 (Return is Thunkable). If % ⊢ V : A then retV is thunkable.

Proof. By Fβ:

bind x← retV ; retthunk retx⊒⊑ retthunk retV

#
And we can then prove the desired property for complex values:

Lemma 6.6 (Complex Values Simplify to Thunkable Terms). If % ⊢ V : A is a (possibly)
complex value, then % ⊢ V† : FA is thunkable.

Dually, we have that a stack out of a force is linear and that linears are closed under
composition, so we can easily build up bigger linear morphisms from smaller ones.

Lemma 6.7 (Force to a stack is Linear). If % | • : B⊢ S :C, then %, x :UB⊢ S[force x] :
B is linear in x.

Proof.

S[force thunk (bind x← force z; force x)]⊒⊑ S[(bind x← force z; force x)]
(Uβ)

⊒⊑ bind x← force z; S[force x]
(Fη)

#

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 61

Lemma 6.8 (Linear Terms Compose). If %, x :UB⊢M : B′ is linear in x and %, y : B′ ⊢
N : B′′ is linear in y, then %, x :UB⊢N[thunk M/y] :

Lemma 6.9 (Complex Stacks Simplify to Linear Terms). If % | • : B⊢ S :C is a (possibly)
complex stack, then %, z :UB⊢ (S)† :C is linear in z.

Composing this with the previous translation from GTT to CBPV* shows that GTT
value type upcasts are thunkable and computation type downcasts are linear.
Since the translation takes values and stacks to terms, it cannot preserve substitution up

to equality. Rather, we get the following, weaker notion that says that the translation of a
syntactic substitution is equivalent to an effectful composition.

Lemma 6.10 (Compositionality of De-complexification). 1. If %, x : A | &⊢ E : T
and % ⊢ V : A are complex terms, then

(E[V/x])†⊒⊑ bind x← V†; E†

2. If % | • : B⊢ S :C and % | &⊢M : B, then
(S[M])†⊒⊑ S†[thunk M†/z]

Finally we conclude with our desired theorem, that de-complexification preserves the
precision relation.

Theorem 6.1 (De-complexification preserves Precision). If % | &⊢ E⊑ E′ : T then
%,&† ⊢ E†⊑ E′† : T†

Proof. By induction over precision derivations. Details are in the appendix. #
As a corollary, we also get the following conservativity result that says that precision

in CBPV with complex values and stacks coincides with CBPV without them. This shows
that complex values and stacks can be viewed as simply a convenient way to manipulate
thunkable and linear terms and the calculus is not fundamentally different from CBPV.

Corollary 6.1 (Complex CBPV is Conservative over CBPV). If M ,M ′ are terms in CBPV
and M ⊑M ′ is provable in CBPV* then M ⊑M ′ is provable in CBPV.

Proof. Because de-complexification preserves precision, M†⊑M ′† in simple CBPV.
Then it follows because de-complexification is equivalent to identity (in CBPV):

M ⊒⊑M†⊑M ′†⊒⊑M ′

#
7 Operational model of GTT

In this section, we complete our model construction for GTT by providing an operational
semantics and a semantic interpretation of the error ordering ⊑ based on observational
approximation. First, we define a mostly standard CBPV operational semantics, which in
turn provides an operational semantics of GTT by the elaborations defined in Sections 5

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

62 M. S. New et al.

S[!])→0 !
S[case inl V {x1.M1 | x2.M2}])→0 S[M1[V/x1]]
S[case inr V {x1.M1 | x2.M2}])→0 S[M2[V/x2]]
S[split (V1, V2) to (x1, x2).M])→0 S[M[V1/x1, V2/x2]]

S[unroll rollA V to roll x.M])→1 S[M[V/x]]
S[force thunk M])→0 S[M]
S[let x= V ;M])→0 S[M[V/x]]

S[bind x← retV ;M])→0 S[M[V/x]]
S[(λx : A.M) V])→0 S[M[V/x]]

S[π{π)→M | π ′)→M ′}])→0 S[M]
S[π ′{π)→M | π ′)→M ′}])→0 S[M ′]

S[unroll rollB M])→1 S[M]

M %⇒0M

M1)→i M2 M2 %⇒j M3

M1 %⇒i+j M3

Fig. 19. CBPV operational semantics.

and 6. Then, we define a notion of observational approximation that captures the core
semantic idea of graduality: M ⊑N when they have the same behavior, except M some-
times errors when N does not. Finally, we prove graduality by showing that our term
precision syntax is sound for observational approximation. To prove this last point, we
construct a more flexible semantic formulation of the error ordering: a step-indexed
biorthogonal logical relation for CBPV. This section is necessarily fairly technical, espe-
cially Section 7.3, which concerns the logical relation and will be most useful for those
interested in logical relations for graduality and CBPV more generally.

7.1 Call-by-push-value operational semantics

We use a small-step operational semantics for CBPV as shown in Figure 19. Note that
for this definition, V and S represent simple values and stacks as shown in Figure 18,
not the more general complex values and stacks. The single-step semantics M)→i N is, if
we ignore the i, the ordinary small-step semantics of CBPV as found in Levy (2003), but
written in a Felleisen-Hieb style using stacks in place of evaluation contexts. The index i,
used later in our step-indexed logical relation, is used to count the reductions that unroll
uses of recursive or corecursive types: those reductions cost 1 step while others are free
(0 steps). We then define a quantitative version of the reflexive, transitive closureM %⇒i N
where the reflexivity step costs 0 and a chain of reductions adds the cost of each step. Note
that in the remainder of this section we will only ever need to reduce closed computations
of type FA.
We can then observe the following standard operational properties. (We write M)→N

with no index when the index is irrelevant.)

Lemma 7.1 (Reduction is Deterministic). If M)→M1 and M)→M2, then M1 =M2.

Lemma 7.2 (Subject Reduction). If ·⊢M : FA and M)→M ′ then ·⊢M ′ : FA.

Lemma 7.3 (Progress). If ·⊢M : FA then one of the following holds:
M =! M = retV with V : A ∃M ′.M)→M ′

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 63

The standard progress-and-preservation properties allow us to define the “final result”
of a computation as follows:

Corollary 7.1 (Possible Results of Computation). For any ·⊢M : F(1+ 1), one of the
following is true:

M ⇑ M ⇓! M ⇓ rettrue M ⇓ retfalse

Proof. We defineM ⇑ to hold when ifM %⇒i N then there exists N ′ with N)→N ′. For the
terminating results, we define M ⇓ R to hold if there exists some i with M %⇒i R. Then we
prove the result by coinduction on execution traces. IfM ∈ {!, rettrue, retfalse} then
we are done, otherwise by progress, M)→M ′, so we need only observe that each of the
cases above is preserved by)→. #

Definition 7.1 (Results). A result is one of /,!, rettrue. We denote results by R.
We define the result of a closed program ·⊢M : F(1+ 1) as follows, justified by by
Corollary 7.1.

result(M)=
{

/ if M ⇑
R if M ⇓ R

7.2 Observational equivalence and approximation

Next, we define observational equivalence and approximation in CBPV. The (standard)
definition of observational equivalence is that we consider two terms (or values) to be
equivalent when replacing one with the other in any program text produces the same over-
all resulting computation. In Figure 20 we define a context C be a term/value/stack with a
single [·] as some subterm/value/stack, and define a typing C : (% ⊢ B)⇒ (%′ ⊢ B′) to hold
when for any % ⊢M : B, %′ ⊢C[M] : B′ (and similarly for values/stacks). Using contexts,
we can lift any relation on results to relations on open terms, values and stacks.

Definition 7.2 (Contextual Lifting). Given any relation ∼⊆ Result× Result, we can
define its observational lift ∼ctx to be the typed relation defined by

% | & $ E∼ctx E′ ∈ T = ∀C : (% | &⊢ T)⇒ (·⊢ F2). result(C[E])∼ result(C[E′])

The contextual lifting ∼ctx inherits much structure of the original relation ∼ as the fol-
lowing lemma shows. This justifies calling∼ctx a contextual preorder when∼ is a preorder
(reflexive and transitive) and similarly a contextual equivalence when ∼ is an equivalence
(preorder and symmetric).

Lemma 7.4 (Contextual Lifting preserves Preorder, Equivalence properties). If∼ is reflex-
ive, symmetric or transitive, then for each typing, ∼ctx is reflexive, symmetric or transitive
as well, respectively.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

64 M. S. New et al.

CV ::= [·] | rollµX .A CV | inl CV | inr CV | (CV , V) | (V ,CV) | thunk CM

CM ::= [·] | let x=CV ;M | let x= V ;CM | unroll CV to roll x.M
| unroll V to roll x.CM | rollνY .B CM | unroll CM | abort CV
| case CV {x1.M1 | x2.M2} | case V {x1.CM | x2.M2} | case V {x1.M1 | x2.CM }
| split CV to ().M | split V to ().CM | split CV to (x, y).M
| split V to (x, y).CM | force CV | retCV | bind x←CM ;N
| bind x←M ;CM | λx : A.CM |CM V |M CV
| {π)→CM | π ′)→M2} | {π)→M1 | π ′)→CM } | πCM | π ′CM

CS ::= πCS | π ′CS | S CV |CS V | bind x←CS ;M | bind x← S;CM

Fig. 20. CBPV contexts.

In the remainder of the paper we work only with relations that are at least preorders so
we write % rather than ∼.
The most famous use of lifting is for observational equivalence, which is the lifting of

equality of results (=ctx), and we will show that ⊒⊑ proofs in GTT imply observational
equivalences. However, as shown in New & Ahmed (2018), the graduality property is
defined in terms of an observational approximation relation ⊑ that places ! as the least
element, and every other element as a maximal element. Note that this is not the standard
notion of observational approximation, which we write ≼, which makes / a least element
and every other element a maximal element. To distinguish these, we call ⊑ error approx-
imation and ≼ divergence approximation. We present these graphically (with two more)
in Figure 21.
The goal of this section is to prove that a symmetric equality E⊒⊑ E′ in CBPV (i.e.,

E⊑ E′ and E′ ⊑ E) implies contextual equivalence E=ctx E′ and that inequality in CBPV
E⊑ E′ implies error approximation E⊑ctx E′, proving graduality of the operational model:

% | &⊢ E⊒⊑ E′ : T
% | & $ E=ctx E′ ∈ T

% | &⊢ E⊑ E′ : T
% | & $ E⊑ctx E′ ∈ T

Because we have non-well-founded µ/ν types, we use a step-indexed logical relation
to prove properties about the contextual lifting of certain preorders % on results. In step-
indexing, the infinitary relation given by % ctx is related to the set of all of its finitary
approximations % i, which “time out” after observing i steps of evaluation and declare that
the terms are related. This means that the original relation is only recoverable from the
finite approximations if/ is always related to another element: if the relation is a preorder,
we require that / is a least element.
We call such a preorder a divergence preorder.

Definition 7.3 (Divergence Preorder). A preorder on results % is a divergence preorder
if / % R for all results R.

But this presents a problem, because neither of our intended relations (= and ⊑) is a
divergence preorder; rather both have / as a maximal element. However, there is a stan-
dard “trick” for subverting this obstacle in the case of contextual equivalence (Ahmed,

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 65

Diverge Approx. ≼

retfalse rettrue !

/

Error Approx. ⊑

retfalse rettrue /

!

Error Approx. up to left-divergence ≼⊑

retfalse rettrue

!,/

Error Approx. up to right-divergence ⊑≽

/

retfalse rettrue

!

Error Approx. up to right-divergence Op
≼⊒

!

retfalse rettrue

/

Fig. 21. Result orderings.

2006): we notice that we can define equivalence as the symmetrization of divergence
approximation, i.e., M =ctx N if and only if M ≼ctx N and N ≼ctxM , and since ≼ has /

as a least element, we can use a step-indexed relation to prove it. As shown in New &
Ahmed (2018), a similar trick works for error approximation, but since ⊑ is not an equiv-
alence relation, we decompose it rather into two different orderings: error approximation
up to divergence on the left ≼⊑ and error approximation up to divergence on the right
⊑≽, also shown in Figure 21. Note that ≼⊑ is a preorder, but not a poset because !,/ are
order equivalent but not equal. Then clearly ≼⊑ is a divergence preorder and the opposite
of ⊑≽, written ≼⊒ is a divergence preorder.
Then we can completely reduce the problem of proving =ctx and ⊑ctx results to proving

results about divergence preorders by the following characterizations, which can also be
seen as alternative definitions of ≼⊑,⊑≽.

Lemma 7.5 (Decomposing Result Preorders). Let R, S be results.

1. R= S if and only if R⊑ S and S ⊑ R.
2. R= S if and only if R≼ S and S ≼ R.
3. R≼⊑ S iff R⊑ S or R≼ S.
4. R⊑≽ S iff R⊑ S or R≽ S.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

66 M. S. New et al.

Which easily extends to similar facts about the contextual liftings.

Corollary 7.2 (Contextual Decomposition). Let Ro be defined as the transpose relation
xRoy= yRx, then
1. =ctx⇔≼ctx ∧((≼)ctx)◦
2. =ctx⇔⊑ctx ∧((⊑)ctx)◦
3. ⊑ctx⇔≼⊑ctx ∧((≼⊒)ctx)◦

7.3 CBPV step-indexed logical relation

Next, we turn to the problem of proving results about E % ctx E′ where % is a divergence
preorder. Dealing directly with a contextual preorder is practically impossible, so instead
we develop an alternative formulation as a logical relation that is much easier to use.
Fortunately, we can apply standard logical relations techniques to provide an alternate
definition inductively on types. However, since we have non-well-founded type definitions
using µ and ν, our logical relation will also be defined inductively on a step index that
times out when we’ve exhausted our step budget. To bridge the gap between the indexed
logical relation and the divergence preorder we care about, we define the “finitization” of
a divergence preorder to be a relation between programs and results: the idea is that a pro-
gram approximates a result R at index i if it reduces to R in less than i steps or it reduces at
least i times.

Definition 7.4 (Finitized Preorder). Given a divergence preorder % , we define the
finitization of % to be, for each natural number i, a relation between programs and results

% i ⊆ {M | ·⊢M : F(1+ 1)}× Results
defined by

M % i R= (∃M ′. M %⇒i M ′)∨ (∃(j< i).∃RM . M %⇒j RM ∧ RM % R)

Note that in this definition, unlike in the definition of divergence, we only count non-
well-founded steps. This makes it slightly harder to establish the intended equivalence
M % ω R if and only if result(M) % R, but makes the logical relation theorem stronger: it
proves that diverging terms must use recursive types of some sort and so any term that
does not use them terminates. This issue would be alleviated if we had proved type safety
by a logical relation rather than by progress and preservation.
However, the following properties of the indexed relation can easily be established.

First, a kind of “transitivity” of the indexed relation with respect to the original preorder,
which is key to proving transitivity of the logical relation.

Lemma 7.6 (Indexed Relation is a Module of the Preorder). If M % i R and R % R′ then
M % i R′

Proof. IfM %⇒i M ′ then there’s nothing to show, otherwiseM %⇒j<i result(M) so it follows
by transitivity of the preorder: result(M) % R % R′. #

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 67

Then we establish a few basic properties of the finitized preorder.

Lemma 7.7 (Downward Closure of Finitized Preorder). If M % i R and j≤ i then M % j R.

Proof. SinceM % i R, eitherM %⇒i Mi or there exists k < i, RM withM %⇒k RM and RM % R.

1. IfM %⇒i Mi then there exists someMj withM %⇒j Mj since j≤ i.
2. Otherwise, M %⇒k RM where k < i and RM % R. If k ≥ j, then we “time out” and
MjMj for some intermediateMj, otherwise the second case of % j applies. #

Lemma 7.8 (Triviality at 0). For any ·⊢M : F(1+ 1), M % 0 R

Proof. Because M %⇒0M #

Lemma 7.9 (Result (Anti-)reduction). If M %⇒i N then result(M)= result(N).

Lemma 7.10 (Anti-reduction). If M % i R and N %⇒j M, then N % i+j R

Proof.

1. IfM %⇒i M ′ then N %⇒i+j M ′

2. If M %⇒k<i result(M) then N %⇒k+j result(M) and result(M)= result(N) and k + j<
i+ j. #

Next, we define the (closed) logical preorder for values and stacks by induction on types
and the index i in Figure 22. First, we discuss the value relation. For every natural number
i and value type A we define a relation % logA,i between closed values of type A. Two values
should be related when any use of them would result in related behaviors. The relation
is defined in a type-directed fashion, the intuition being that we relate two positive values
when they are built up in the same way: i.e., they have the same introduction form and their
subterms are related. First, the empty type 0 is associated to the empty relation, because
there are no closed values. Next, values of a sum type A+ A′ are related if they are the
same case, and their components are related. The unique unit value is related to itself.
Pairs are related if both subcomponents are related. For values of recursive type µX .A, it
would not be well founded to say that they are related if their unrolled values are related
at the same index i, because this would be at a larger type A[µX .A/X]. Instead, we also
decrease the index by 1 when we relate to subcomponents. This relation bottoms out and
has any well-typed values as related if the index is 0. Finally U is treated differently from
the other value types because it is the only one not eliminated by pattern matching. A thunk
V :UB can only be used by forcing it. By the definition of the operational semantics, this
only ever occurs in the step S[force V], so (ignoring indices for a moment), we should
define V1 % V2 to hold in this case when, given any S1 % S2, the result of S2[force V2]
is approximated by S1[force V1]. To incorporate the indices, we have to quantify over
j≤ i in this definition because we need to know that the values are related in all futures,
including ones where some other part of the term has been reduced (consuming some

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

68 M. S. New et al.

% logA,i ⊆ {·⊢ V : A}× {·⊢ V : A}
V1 % log0,i V2 = ⊥

inl V1 % logA+A′,i inl V2 = V1 % logA,i V2
inr V1 % logA+A′,i inr V2 = V1 % logA′,i V2

() % log1,i () = ⊤
(V1, V ′1) %

log
A×A′,i (V2, V

′
2) = V1 % logA,i V2 ∧ V ′1 %

log
A′,i V

′
2

rollµX .A V1 % logµX .A,i rollµX .A V2 = i= 0∨ V1 % logA[µX .A/X],i−1 V2
V1 % logUB,i V2 = ∀j≤ i. ∀S1 % logB,j S2. S1[force V1] % j result(S2[force V2])

% logB,i ⊆ {· | • : B⊢ S : F(1+ 1)}× {· | • : B⊢ S : F(1+ 1)}
S1[•V1] % logA→B,i S1[•V2] = V1 % logA,i V2 ∧ S1 %

log
B,i S2

S1[π1•] % logB&B′,i S2[π1•] = S1 % logB,i S2
S1[π2•] % logB&B′,i S2[π2•] = S1 % logB′,i S2

S1 % log⊤,i S2 = ⊥
S1[unroll •] % logνY .B,i S2[unroll •] = i= 0∨ S1 % logB[νY .B/Y],i−1 S2

S1 % logFA,i S2 = ∀j≤ i. ∀V1 % logA,j V2. S1[retV1] % j result(S2[retV2])

· % log·,i · = ⊤
γ1, V1/x % log%,x:A,i γ2, V2/x = γ1 % log%,i γ2 ∧ V1 %

log
A,i V2

Fig. 22. Logical relation from a preorder % .

steps). From a mathematical perspective, this quantification over smaller indices is crucial
for ensuring the relation is downward closed.
Next, we define when two stacks are related. We define the relation only for two “closed”

stacks, which both have the same type of their hole B and both have “output” the obser-
vation type F(1+ 1). The reason is that in evaluating a program M , steps always occur
as S[N] %⇒ S[N ′] where S is a stack of this form. An intuition for the relation is that for
negative types, two stacks are related when they start with the same elimination form and
the remainder of the stacks are related. Two function stacks are related if they both apply
the hole to related values, and then apply related stacks to that result (analogous to the
value product). Two product stacks are related if they make the same projection and then
use the result in related ways (analogous to the value sum). There are no stacks out of the
⊤ type, so the relation is empty (analogous to the empty value type). For ν, we handle the
step indices in the same way as for µ, saying both stacks unroll the hole and then use it in
related ways, decrementing the index. Finally, for FA, a stack S[• : FA] is strict in its input
and waits for its input to evaluate down to a value retV , so two stacks with FA holes are
related when in any future world, they produce related behavior when given related values
(analogous to the U type).
Readers interested in logical relations should note that the quantification over related

stacks in the U relation and corresponding quantification over related values in the F rela-
tion are instances of a general construction known as the orthogonal of a relation (Pitts &

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 69

Stark, 1998), and such logical relations are often called biorthogonal. One advantage of the
CBPV language is that it makes the use of orthogonality in logical relations explicit in the
type structure, analogous to the benefits of using Nakano’s later modality (Nakano, 2000)
for step indexing (which we ironically do not do). For instance, in a typical biorthogonal
logical relation for CBV, the CBV function type relation has a somewhat complex defini-
tion involving both orthogonals. The presence of both orthogonals is nicely explained by
the CBPV translation of the CBPV function type: U(A→ FA′), which uses both the U and
F types, and unfolding the definition of % logU(A→FA′),i will produce something essentially the
same as the usual CBV function relation.
Finally, we extend the definition to contexts to closing substitutions pointwise: two clos-

ing substitutions for % are related at i if they are related at i for each x : A ∈ %. Note that
the definition is well founded using the lexicographic ordering on (i, A) and (i, B): either
the type reduces and the index stays the same or the index reduces.
The logical preorder for open terms is defined as usual by quantifying over all related

closing substitutions, but also over all stacks to the observation type F(1+ 1):

Definition 7.5 (Logical Preorder). For a divergence preorder % , its step-indexed logical
preorder is

1. % $M1 % logi M2 ∈ B iff for every γ1 % log%,i γ2 and S1 %
log
B,i S2,

S1[M1[γ1]] % i result(S2[M2[γ2]]).
2. % $ V1 % logi V2 ∈ A iff for every γ1 % log%,i γ2,

V1[γ1] % logA,i V2[γ2].

3. % | B $ S1 % logi S2 ∈ B′ iff for every γ1 % log%,i γ2 and S
′
1 %

log
B′,i S

′
2,

S′1[S1[γ1]] %
log
B,i S

′
2[S2[γ2]]).

We next want to prove that the logical preorder is a congruence relation, i.e., the fun-
damental lemma of the logical relation. This requires the easy lemma, that the relation on
closed terms and stacks is downward closed.

Lemma 7.11 (Logical Relation Downward Closure). For any type T, if j≤ i then
% logT ,i⊆% logT ,j

Next, we show the fundamental theorem:

Theorem 7.1 (Logical Preorder is a Congruence). For any divergence preorder, the log-
ical preorder E % logi E′ is a congruence relation, i.e., it is closed under applying any
value/term/stack constructors to both sides.

Proof. The proof is straightforward, with one case for each term former, and is included
in the appendix. #

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

70 M. S. New et al.

As a direct consequence we get the reflexivity of the relation:

Corollary 7.3 (Reflexivity). For any % ⊢M : B, and i ∈N, % $M % logi M ∈ B.

Therefore we have the following strengthening of the progress-and-preservation type
soundness theorem: because % i only counts unrolling steps, terms that never use µ or ν

types (for example) are guaranteed to terminate.

Corollary 7.4 (Unary LR). For every program ·⊢M : F(1+ 1) and i ∈N, M % i result(M)

Proof. By reflexivity, · $M % i M ∈ F(1+ 1) and by definition • % logF(1+1),i •, so unrolling
definitions we get M % i result(M). #
Using reflexivity, we prove that the indexed relation between terms and results recovers
the original preorder in the limit as i→ω. We write % ω to mean the relation holds for
every i, i.e., % ω= ⋂

i∈N % i.

Corollary 7.5 (Limit Lemma). For any divergence preorder % , result(M) % R iff M % ω R.

Corollary 7.6 (Logical implies Contextual). If % $ E % logω E′ ∈ B then % $ E % ctx E′ ∈ B.

Proof. Let C be a closing context. By congruence, C[M] % logω C[N], so using empty envi-
ronment and stack,C[M] % ω result(C[N]) and by the limit lemma, we have result(C[M]) %
result(C[N]). #
This establishes that our logical relation can prove graduality, so it only remains to

show that our inequational theory implies our logical relation. Having already validated
the congruence rules and reflexivity, we validate the remaining rules of transitivity, error,
substitution, and βη for each type constructor. Other than the !⊑M rule, all of these hold
for any divergence preorder.
For transitivity, with the unary model and limiting lemmas in hand, we can prove that

all of our logical relations (open and closed) are transitive in the limit. To do this, we first
prove the following kind of “quantitative” transitivity lemma, and then transitivity in the
limit is a consequence.

Lemma 7.12 (Logical Relation is Quantitatively Transitive).

1. If V1 % logA,i V2 and V2 %
log
A,ω V3, then V1 %

log
A,i V3

2. If S1 % logB,i S2 and S2 %
log
B,ω S3, then S1 %

log
B,i S3

Lemma 7.13 (Logical Relation is Quantitatively Transitive (Open Terms)).

1. If γ1 % log%,i γ2 and γ2 % log%,ω γ3, then γ1 % log%,i γ3

2. If % $M1 % logi M2 ∈ B and % $M2 % logω M3 ∈ B, then % $M1 % logi M3 ∈ B.
3. If % $ V1 % logi V2 ∈ A and % $ V2 % logω V3 ∈ A, then % $ V1 % logi V3 ∈ A.
4. If % | • : B $ S1 % logi S2 ∈ B′ and % | • : B $ S2 % logω S3 ∈ B′, then % | • : B $ S1 % logi
S3 ∈ B′.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 71

Corollary 7.7 (Logical Relation is Transitive in the Limit).

1. If % $M1 % logω M2 ∈ B and % $M2 % logω M3 ∈ B, then % $M1 % logω M3 ∈ B.
2. If % $ V1 % logω V2 ∈ A and % $ V2 % logω V3 ∈ A, then % $ V1 % logω V3 ∈ A.
3. If % | • : B $ S1 % logω S2 ∈ B′ and % | • : B $ S2 % logω S3 ∈ B′, then % | • : B $ S1 % logω

S3 ∈ B′.

Next, we verify the β, η equivalences hold as orderings each way.

Lemma 7.14 (β, η). For any divergence preorder, the β, η laws are valid for % logω

And that the logical relation behaves well is closed under substitution of related terms.

Lemma 7.15 (Substitution Principles). For any divergence preorder % , the following are
valid

1.
% $ V1 % logi V2 ∈ A %, x : A $ V ′1 %

log
i V

′
2 ∈ A′

% $ V ′1[V1/x] %
log
i V

′
2[V2/x] ∈ A′

2.
% $ V1 % logi V2 ∈ A %, x : A $M1 % logi M2 ∈ B

% $M1[V1/x] % logi M2[V2/x] ∈ B

For errors, the strictness axioms hold for any % , but the axiom that ! is a least element
is specific to the definitions of ≼⊑,⊑≽

Lemma 7.16 (Error Rules). For any divergence preorder % and appropriately typed
S,M,

S[!] % logω ! ! % logω S[!] !≼⊑logω M M ≼⊒logω !

The lemmas we have proved cover all of the inequality rules of CBPV, so applying them
with % chosen to be ≼⊑ and ≼⊒ gives

Lemma 7.17 (≼⊑ and ⊑≽ are Models of CBPV). If % | &⊢ E⊑ E′ : B then % | & $
E≼⊑ω E′ ∈ B and % | & $ E′ ≼⊒ω E ∈ B.

Because logical implies contextual equivalence, we can conclude with the main
theorem:

Theorem 7.2 (Contextual Approximation/Equivalence Model CBPV). If % | &⊢ E⊑ E′ :
T then % | & $ E⊑ctx E′ ∈ T.
If % | &⊢ E⊒⊑ E′ : T then % | & $ E=ctx E′ ∈ T.

8 Discussion and related work

In this paper, we have given a logic for reasoning about gradual programs in a mixed
call-by-value/call-by-name language, shown that the axioms uniquely determine almost

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

72 M. S. New et al.

all of the contract translation implementing runtime casts, and shown that the axiomatics
is sound for contextual equivalence/approximation in an operational model.
In immediate future work, we believe it is straightforward to add inductive/coinductive

types and obtain similar unique cast implementation theorems. For instance, casting a list’s
element type should necessarily be equivalent to mapping the corresponding cast over the
list:

⟨list(A′)! list(A)⟩ ⊒⊑ map⟨A′! A⟩
In particular, the equations for inductive/recursive types should rule out “shallow” cast
semantics that for example for lists only checks if the value is a list, but not immediately
what its elements are.
Additionally, since more efficient cast implementations such as optimized cast calculi

(the lazy variant in Herman et al., 2010) and threesome casts (Siek & Wadler, 2010), are
equivalent to the lazy contract semantics, they should also be models of GTT, and if so we
could use GTT to reason about program transformations and optimizations in them.

Optimizations. In this paper, we have created an inequational theory for reasoning about
gradually typed programs, with the primary purpose being to prove the graduality the-
orem and our uniqueness principles. Since order equivalence in our theory is sound for
contextual equivalence, this system in principle could be used to justify optimizations of
gradually typed programs or even optimized implementations of languages. While a full
study of optimization is out of scope, we point out how thunkability of upcasts and linear-
ity of downcasts is relevant to many optimizations. Thunkability is a very useful property
for an optimizing compiler: it might more commonly be called “purity” in optimization
literature. It means upcasts can be moved or duplicated freely: hoisted out of or lowered
into a loop or closure for instance. Similarly, linearity is very useful for a compiler for
a lazy language: it might more commonly be called “strictness” in lazy optimization lit-
erature. When a function is known to be strict in an argument, it can be optimized to
instead take that argument by value, avoiding a costly thunk allocation at each call-site.
Both of these properties (thunkability/purity and linearity/strictness) are useful for compil-
ers to know and require significant program analyses to detect. A compiler for a gradual
language should be able to augment these program analyses with this useful information
about upcasts and downcasts.

Applicability of Cast Uniqueness Principles. The cast uniqueness principles given in
Theorem 3.5 are theorems in the formal logic of Gradual Type Theory, and so there is
a question of to what languages the theorem applies. The theorem applies to any model
of gradual type theory, such as the models we have constructed using call-by-push-value
given in Sections 5, 6, 7. We conjecture that simple call-by-value and call-by-name grad-
ual languages are also models of GTT, by extending the translation of call-by-push-value
into call-by-value and call-by-name in the appendix of Levy’s monograph (Levy, 2003).
In order for the theorem to apply, the language must validate an appropriate version of
the η principles for the types. So, for example, a call-by-value language that has reference
equality of functions does not validate even the value-restricted η law for functions, and
so the case for functions does not apply. It is a well-known issue that in the presence of

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 73

pointer equality of functions, the lazy semantics of function casts is not compatible with
the graduality property, and our uniqueness theorem provides a different perspective on
this phenomenon (Findler et al., 2004; Strickland et al., 2012; Siek et al., 2015). However,
we note that the cases of the uniqueness theorem for each type connective are completely
modular: they rely only on the specification of casts and the β, η principles for the par-
ticular connective, and not on the presence of any other types, even the dynamic types.
So even if a call-by-value language may have reference equality functions, if it has the η

principle for strict pairs, then the pair cast must be that of Theorem 3.5.
Next, we consider the applicability to non-eager languages. Analogous to call-by-value,

our uniqueness principle should apply to simple call-by-name gradual languages, where
full η equality for functions is satisfied, but η equality for Booleans and strict pairs requires
a “stack restriction” dual to the value restriction for call-by-value function η. We are not
aware of any call-by-name gradual languages, but there is considerable work on con-
tracts for non-eager languages, especially Haskell (Hinze et al., 2006; Xu et al., 2009).
However, we note that Haskell is not a call-by-name language in our sense for two reasons.
First, Haskell uses call-by-need evaluation where results of computations are memoized.
However, when only considering Haskell’s effects (error and divergence), this difference
is not observable so this is not the main obstacle. The bigger difference between Haskell
and call-by-name is that Haskell supports a seq operation that enables the programmer to
force evaluation of a term to a value. This means Haskell violates the function η princi-
ple because / will cause divergence under seq, whereas λx./ will not. This is a crucial
feature of Haskell and is a major source of differences between implementations of lazy
contracts, as noted in Degen et al. (2012). We can understand this difference by using a dif-
ferent translation into call-by-push-value: what Levy calls the “lazy paradigm”, as opposed
to call-by-name (Levy, 2003). Simply put, connectives are interpreted as in call-by-value,
but with the addition of extra thunks UF, so for instance, the lazy function type A→ B is
interpreted as UFU(UFA→ FB) and the extra UFU here is what causes the failure of the
call-by-name η principle. With this embedding and the uniqueness theorem, GTT produces
a definition for lazy casts, and the definition matches the work of Xu et al. (2009) when
restricting to nondependent contracts.

Comparing Soundness Principles for Cast Semantics. Greenman & Felleisen (2018)
gives a spectrum of differing syntactic type soundness theorems for different seman-
tics of gradual typing. Our work here is complementary, showing that certain program
equivalences can only be achieved by certain cast semantics.
Degen et al. (2012) give an analysis of different cast semantics for contracts in lazy

languages, specifically based on Haskell, i.e., call-by-need with seq. They propose two
properties “meaning preservation” and “completeness” that they show are incompatible
and identify which contract semantics for a lazy language satisfy which of the properties.
The meaning preservation property is closely related to graduality: it says that evaluating
a term with a contract either produces blame or has the same observable effect as running
the term without the contract. Meaning preservation rules out overly strict contract sys-
tems that force (possibly diverging) thunks that wouldn’t be forced in a non-contracted
term. Completeness, on the other hand, requires that when a contract is attached to a value
that it is deeply checked. The two properties are incompatible because, for instance, a pair

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

74 M. S. New et al.

of a diverging term and a value can’t be deeply checked without causing the entire pro-
gram to diverge. Using Levy’s embedding of the lazy paradigm into call-by-push-value
their incompatibility theorem should be a consequence of our main theorem in the follow-
ing sense. We showed that any contract semantics departing from the implementation in
Theorem 3.5 must violate η or graduality. Their completeness property is inherently eager,
and so must be different from the semantics GTT would provide, so either the restricted
η or graduality fails. However, since they are defining contracts within the language, they
satisfy the restricted η principle provided by the language, and so it must be graduality,
and therefore meaning preservation that fails.

Axiomatic Casts. Henglein’s work on dynamic typing also uses an axiomatic semantics
of casts, but axiomatizes behavior of casts at each type directly, whereas we give a uniform
definition of all casts and derive implementations for each type (Henglein, 1994). Because
of this, the theorems proven in that paper are more closely related to our model construction
in Section 5. More specifically, many of the properties of casts needed to prove Theorem
5.8 have direct analogues in Henglein’s work, such as the coherence theorems. Finally, we
note that our assumption of compositionality, i.e., that all casts can be decomposed into an
upcast followed by a downcast, is based on Henglein’s analysis, where it was proven to
hold in his coercion calculus.

Gradual Typing Frameworks. In this work, we have applied a method of “gradualizing”
axiomatic type theories by adding in precision orderings and adding dynamic types, casts
and errors by axioms related to the precision orderings. This is similar in spirit to two recent
frameworks for designing gradual languages: Abstracting Gradual Typing (AGT) (Garcia
et al., 2016) and the Gradualizer (Cimini & Siek, 2016, 2017). All of these approaches
start with a typed language and construct a related gradual language. A major difference
between our approach and those is that our work is based on axiomatic semantics and so
we take into account the equality principles of the typed language, whereas Gradualizer is
based on the typing and operational semantics and AGT is based on the type safety proof of
the typed language. Furthermore, our approach produces not just a single language, but also
an axiomatization of the structure of gradual typing and so we can prove results about many
languages by proving theorems in GTT. The downside to this is that our approach doesn’t
directly provide an operational semantics for the gradual language, whereas for AGT this
is a semi-mechanical process and for Gradualizer, completely automated. Finally, we note
that neither system always agrees with the design that provides the desired η principles.
AGT produces the “eager” semantics for function types, while the Gradualizer produces
the “lazy” semantics for call-by-value products. It isn’t clear how to modify either system
to change the semantics.

Blame. We do not give a treatment of runtime blame reporting, but we argue that the
observation that upcasts are thunkable and downcasts are linear is directly related to blame
soundness (Tobin-Hochstadt & Felleisen, 2006; Wadler & Findler, 2009) in that if an
upcast were not thunkable, it should raise positive blame and if a downcast were not lin-
ear, it should raise negative blame. First, consider a potentially effectful stack upcast of
the form ⟨FA′! FA⟩. If it is not thunkable, then in our logical relation this would mean

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 75

there is a value V : A such that ⟨FA′! FA⟩(retV) performs some effect. Since the only
observable effects for casts are dynamic type errors, ⟨FA′! FA⟩(retV))→!, and we
must decide whether the positive party or negative party is at fault. However, since this
is call-by-value evaluation, this error happens unconditionally on the continuation, so the
continuation never had a chance to behave in such a way as to prevent blame, and so we
must blame the positive party. Dually, consider a value downcast of the form ⟨UB "UB′⟩.
If it is not linear, that would mean it forces its UB′ input either never or more than once.
Since downcasts should refine their inputs, it is not possible for the downcast to use the
argument twice, since, e.g., printing twice does not refine printing once. So if the cast is
not linear, that means it fails without ever forcing its input, in which case it knows nothing
about the positive party and so must blame the negative party. In future work, we plan to
investigate extensions of GTT with more than one ! with different blame labels, and an
axiomatic account of a blame-aware observational equivalence.

Denotational and Category-Theoretic Models. We have presented certain concrete
models of GTT using ordered CBPV with errors, in order to efficiently arrive at a concrete
operational interpretation. It may be of interest to develop a more general notion of model
of GTT for which we can prove soundness and completeness theorems, as in New& Licata
(2018). A model would be a strong adjunction between double categories where one of the
double categories has all “companions” and the other has all “conjoints”, corresponding to
our upcasts and downcasts. Then the contract translation should be a construction that takes
a strong adjunction between two categories and makes a strong adjunction between double
categories where the ep pairs are “Kleisli” ep pairs: the upcast is has a right adjoint, but
only in the Kleisli category and vice versa the downcast has a left adjoint in the co-Kleisli
category.
Furthermore, the ordered CBPV with errors should also have a sound and complete

notion of model, and so our contract translation should have a semantic analogue as well.

Gradual Session Types. Gradual session types (Igarashi et al., 2017) share some sim-
ilarities to GTT, in that there are two sorts of types (values and sessions) with a dynamic
value type and a dynamic session type. However, their language is not polarized in the
same way as CBPV, so there is not likely an analogue between our upcasts always being
between value types and downcasts always being between computation types. Instead, we
might reconstruct this in a polarized session type language (Pfenning & Griffith, 2015).
The two dynamic types would then be the “universal sender” and “universal receiver”
session types.

Dynamically Typed Call-by-Push-Value. Our interpretation of the dynamic types in
call-by-push-value suggests a design for a Scheme-like language with a value and com-
putation distinction. This may be of interest for designing an extension of Typed Racket
that efficiently supports CBN or a Scheme-like language with codata types. While the def-
inition of the dynamic computation type by a lazy product may look strange, we argue that
it is no stranger than the use of its dual, the sum type, in the definition of the dynamic value
type. That is, in a truly dynamically typed language, we would not think of the dynamic

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

76 M. S. New et al.

type as being built out of some sum type construction, but rather that it is the union of
all of the ground value types, and the union happens to be a disjoint union and so we can
model it as a sum type. In the dual, we don’t think of the computation dynamic type as a
product, but instead as the intersection of the ground computation types. Thinking of the
type as unfolding:

¿= F¿∧ (?→ F?)∧ (?→ ?→ F?)∧ · · ·
This says that a dynamically typed computation is one that can be invoked with any finite
number of arguments on the stack, a fairly accurate model of implementations of Scheme
that pass multiple arguments on the stack.

Dependent Contract Checking. We also plan to explore using GTT’s specification of
casts in a dependently typed setting, building on work using Galois connections for casts
between dependent types (Dagand et al., 2018; Eremondi et al., 2019), and work on effect-
ful dependent types based a CBPV-like judgement structure (Ahman et al., 2016; Pédrot
& Tabareau, 2020).

Acknowledgments

The authors would like to thank Ron Garcia, Kenji Maillard and Gabriel Scherer for helpful
discussions about this work. We thank the anonymous POPL 2019 reviewers for helpful
feedback on this article. This material is based on research sponsored by the National
Science Foundation under grants CCF-1910522, CCF-1816837, CCF-1453796 and the
United States Air Force Research Laboratory under agreement numbers FA9550-15-1-
0053 and FA9550-16-1-0292. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the United States Air Force Research
Laboratory, the U.S. Government, or Carnegie Mellon University.

Conflicts of Interest

None.

References

Ahman, D., Ghani, N. & Plotkin, G. D. (2016) Dependent types and fibred computational effects. In
Foundations of Software Science and Computation Structures, pp. 36–54.

Ahmed, A. (2006) Step-indexed syntactic logical relations for recursive and quantified types. In
European Symposium on Programming (ESOP), pp. 69–83.

Bauer, A. & Pretnar, M. (2013) An effect system for algebraic effects and handlers. In Algebra and
Coalgebra in Computer Science, pp. 1–16. Berlin, Heidelberg: Springer.

Boyland, J. (2014) The problem of structural type tests in a gradually typed language. In 21st
Workshop on Foundations of Object-Oriented Languages.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 77

Cimini, M. & Siek, J. G. (2016) The gradualizer: A methodology and algorithm for generating
gradual type systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL’16.

Cimini, M. & Siek, J. G. (2017) Automatically generating the dynamic semantics of gradually typed
languages. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL 2017, pp. 789–803.

Dagand, P.-È., Tabareau, N. & Tanter, È. (2018) Foundations of dependent interoperability. J.
Funct. Program. 28, e9.

Degen, M., Thiemann, P. &Wehr, S. (2012) The interaction of contracts and laziness. Higher-Order
Symb. Comput. 25, 85–125.

Eremondi, J., Tanter, È. & Garcia, R. (2019) Approximate normalization for dependent gradual
types. In International Conference on Functional Programming (ICFP), Berlin, Germany.

Findler, R. B. & Felleisen, M. (2002) Contracts for higher-order functions. In International
Conference on Functional Programming (ICFP), pp. 48–59.

Findler, R. B., Flatt, M. & Felleisen, M. (2004) Semantic casts: Contracts and structural subtyping
in a nominal world. In European Conference on Object-Oriented Programming (ECOOP).

Führmann, C. (1999) Direct models of the computational lambda-calculus. Electr. Notes Theor.
Comput. Sci. 20, 245–292.

Garcia, R., Clark, A. M. & Tanter, É. (2016) Abstracting gradual typing. In ACM Symposium on
Principles of Programming Languages (POPL).

Girard, J.-Y. (2001) Locus solum: From the rules of logic to the logic of rules. Math. Struct. Comput.
Sci. 11(3), 301–506.

Greenberg, M. (2015) Space-efficient manifest contracts. In ACM Symposium on Principles of
Programming Languages (POPL), pp. 181–194.

Greenberg, M., Pierce, B. C. & Weirich, S. (2010) Contracts made manifest. In ACM Symposium
on Principles of Programming Languages (POPL), Madrid, Spain.

Greenman, B. & Felleisen, M. (2018) A spectrum of type soundness and performance. In
International Conference on Functional Programming (ICFP), St. Louis, Missouri.

Henglein, F. (1994) Dynamic typing: Syntax and proof theory. Sci. Comput. Program. 22(3), 197–
230.

Herman, D., Tomb, A. & Flanagan, C. (2010) Space-efficient gradual typing. Higher-Order Symb.
Comput. 23, 167.

Hinze, R., Jeuring, J. & Löh, A. (2006) Typed contracts for functional programming. In International
Symposium on Functional and Logic Programming (FLOPS).

Igarashi, A., Thiemann, P., Vasconcelos, V. T. & Wadler, P. (2017) Gradual session types. Proc.
ACM Program. Lang. 1(ICFP), 38:1–38:28.

Levy, P. B. (2003) Call-by-Push-Value: A Functional/Imperative Synthesis. Springer.
Levy, P. B. (2017) Contextual isomorphisms. In ACM Symposium on Principles of Programming
Languages (POPL).

Lindenhovius, B., Mislove, M. & Zamdzhiev, V. (2019) Mixed linear and non-linear recursive types.
Proc. ACM Program. Lang. 3(ICFP) 11, 1–29.

Lindley, S., McBride, C. & McLaughlin, C. (2017) Do be do be do. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages. POPL 2017. ACM, pp.
500–514.

Moggi, E. (1991) Notions of computation and monads. Inf. Comput. 93(1), 55–92.
Munch-Maccagnoni, G. (2014) Models of a non-associative composition. In Foundations of
Software Science and Computation Structures, pp. 396–410.

Nakano, H. (2000) A modality for recursion. In IEEE Symposium on Logic in Computer Science
(LICS), Santa Barbara, California.

New, M. S. & Ahmed, A. (2018) Graduality from embedding-projection pairs. In International
Conference on Functional Programming (ICFP), St. Louis, Missouri.

New, M. S. & Licata, D. R. (2018) Call-by-name gradual type theory. In FSCD.
New, M. S. & Licata, D. R. (2020) Call-by-name gradual type theory. In LMCS.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

78 M. S. New et al.

New, M. S., Licata, D. R. & Ahmed, A. (2019) Gradual type theory. In ACM Symposium on
Principles of Programming Languages (POPL), Cascais, Portugal.

New, M. S., Jamner, D. & Ahmed, A. (2020) Graduality and parametricity: Together again for the
first time. In ACM Symposium on Principles of Programming Languages (POPL), New Orleans,
Louisiana.

Pédrot, P.-M. & Tabareau, N. (2020) The fire triangle: How to mix substitution, dependent elimi-
nation, and effects. In ACM Symposium on Principles of Programming Languages (POPL), New
Orleans, Louisiana.

Pfenning, F. &Griffith, D. (2015) Polarized substructural session types (invited talk). In International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS).

Pitts, A. & Stark, I. (1998) Operational reasoning for functions with local state. In Higher Order
Operational Techniques in Semantics, Gordon, A. & Pitts, A. (eds), Publications of the Newton
Institute, Cambridge University Press, pp. 227–273.

Siek, J., Garcia, R. & Taha, W. (2009) Exploring the design space of higher-order casts. In European
Symposium on Programming (ESOP). Berlin, Heidelberg: Springer-Verlag, pp. 17–31.

Siek, J. & Tobin-Hochstadt, S. (2016) The recursive union of some gradual types. In A List of
Successes that can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His
60th Birthday, LNCS, Springer, vol. 9600.

Siek, J., Vitousek, M., Cimini, M. & Boyland, J. T. (2015) Refined criteria for gradual typing. In 1st
Summit on Advances in Programming Languages. SNAPL 2015.

Siek, J. G. & Taha, W. (2006) Gradual typing for functional languages. In Scheme and Functional
Programming Workshop (Scheme), pp. 81–92.

Siek, J. G. & Wadler, P. (2010) Threesomes, with and without blame. In ACM Symposium on
Principles of Programming Languages (POPL). ACM, pp. 365–376.

Strickland, T. S., Tobin-Hochstadt, S., Findler, R. B. & Flatt, M. (2012) Chaperones and imper-
sonators: Run-time support for reasonable interposition. In ACM Symposium on Object Oriented
Programming: Systems, Languages, and Applications (OOPSLA), Tucson, Arizona.

Takikawa, A., Feltey, D., Greenman, B., New, M. S., Vitek, J. & Felleisen, M. (2016) Is sound
gradual typing dead? In ACM Symposium on Principles of Programming Languages (POPL), St.
Petersburg, Florida.

Tobin-Hochstadt, S. & Felleisen, M. (2006) Interlanguage migration: From scripts to programs. In
Dynamic Languages Symposium (DLS), pp. 964–974.

Tobin-Hochstadt, S. & Felleisen, M. (2008) The design and implementation of typed scheme. In
ACM Symposium on Principles of Programming Languages (POPL), San Francisco, California.

Vitousek, M. M., Swords, C. & Siek, J. G. (2017) Big types in little runtime: Open-world sound-
ness and collaborative blame for gradual type systems. In ACM Symposium on Principles of
Programming Languages (POPL), Paris, France.

Wadler, P. & Findler, R. B. (2009) Well-typed programs can’t be blamed. In European Symposium
on Programming (ESOP), pp. 1–16.

Xu, D. N., Peyton Jones, S. & Claessen, K. (2009) Static contract checking for haskell. In ACM
Symposium on Principles of Programming Languages (POPL), Savannah, Georgia.

Zeilberger, N. (2009) The Logical Basis of Evaluation Order and Pattern-Matching. Ph.D. thesis,
Carnegie Mellon University.

A Term precision congruence rules

The full congruence rules for GTT are found in Figure A.1. Note that we need not add
congruence rules for ! or upcasts/downcasts since they are already derivable.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 79

+ILCONG
'⊢ V ⊑ V ′ : A1 ⊑ A′1

'⊢ inl V ⊑ inl V ′ : A1 + A2 ⊑ A′1 + A′2

+IRCONG
'⊢ V ⊑ V ′ : A2 ⊑ A′2

'⊢ inr V ⊑ inr V ′ : A1 + A2 ⊑ A′1 + A′2

+ECONG
'⊢ V ⊑ V ′ : A1 + A2 ⊑ A′1 + A′2

', x1 ⊑ x′1 : A1 ⊑ A′1 | (⊢ E1 ⊑ E′1 : T ⊑ T ′
', x2 ⊑ x′2 : A2 ⊑ A′2 | (⊢ E2 ⊑ E′2 : T ⊑ T ′

' | (⊢ case V{x1.E1 | x2.E2}⊑ case V{x′1.E′1 | x′2.E′2} : T ′

0ECONG
'⊢ V ⊑ V ′ : 0⊑ 0

' | (⊢ abort V ⊑ abort V ′ : T ⊑ T ′

1ICONG

'⊢ ()⊑ () : 1⊑ 1

1ECONG
'⊢ V ⊑ V ′ : 1⊑ 1

' | (⊢ E⊑ E′ : T ⊑ T ′
' | (⊢ split V to ().E⊑ split V to ().′E′ : T ⊑ T ′

×ICONG
'⊢ V1 ⊑ V ′1 : A1 ⊑ A′1
'⊢ V2 ⊑ V ′2 : A2 ⊑ A′2

'⊢ (V1, V2)⊑ (V ′1, V ′2) : A1 × A2 ⊑ A′1 × A′2

→ICONG
', x⊑ x′ : A⊑ A′ | (⊢M ⊑M ′ : B⊑ B′

' | (⊢ λx : A.M ⊑ λx′ : A′.M ′ : A→ B⊑ A′ → B′

×ECONG
'⊢ V ⊑ V ′ : A1 × A2 ⊑ A′1 × A′2

', x⊑ x′ : A1 ⊑ A′1, y⊑ y′ : A2 ⊑ A′2 | (⊢ E⊑ E′ : T ⊑ T ′
' | (⊢ split V to (x, y).E⊑ split V ′ to (x′, y′).E′ : T ⊑ T ′

→ECONG
' | (⊢M ⊑M ′ : A→ B⊑ A′ → B′ '⊢ V ⊑ V ′ : A⊑ A′

' | (⊢M V ⊑M ′ V ′ : B⊑ B′

UICONG
' | ·⊢M ⊑M ′ : B⊑ B′

'⊢ thunk M ⊑ thunk M ′ :UB⊑UB′

UECONG
'⊢ V ⊑ V ′ :UB⊑UB′

' | ·⊢ force V ⊑ force V ′ : B⊑ B′

FICONG
'⊢ V ⊑ V ′ : A⊑ A′

' | ·⊢ retV ⊑ retV ′ : FA⊑ FA′

FECONG
' | (⊢M ⊑M ′ : FA⊑ FA′

', x⊑ x′ : A⊑ A′ | ·⊢N ⊑N ′ : B⊑ B′
' | (⊢ bind x←M ;N ⊑ bind x′ ←M ′;N ′ : B⊑ B′

⊤ICONG
' | (⊢ {}⊑ {} :⊤⊑⊤

&ICONG
' | (⊢M1 ⊑M ′1 : B1 ⊑ B′1 ' | (⊢M2 ⊑M ′2 : B2 ⊑ B′2

' | (⊢ {π)→M1 | π ′)→M2}⊑ {π)→M ′1 | π ′)→M ′2} : B1 & B2 ⊑ B′1 & B′2

&ECONG
' | (⊢M ⊑M ′ : B1 & B2 ⊑ B′1 & B′2

' | (⊢ πM ⊑ πM ′ : B1 ⊑ B′1

&E’CONG
' | (⊢M ⊑M ′ : B1 & B2 ⊑ B′1 & B′2

' | (⊢ π ′M ⊑ π ′M ′ : B2 ⊑ B′2

Fig. A.1. GTT term precision (congruence rules).

B Proofs for Section 3

Proof of Lemma 3.2. Proof. For upcast left, substitute V ′ into the axiom x⊑ ⟨A′′!
A′⟩x : A′ ⊑ A′′ to get V ′ ⊑ ⟨A′′! A′⟩V ′, and then use transitivity with the premise.
For upcast right, by transitivity of

x⊑ x′ : A⊑ A′ ⊢ ⟨A′! A⟩x⊑ x′ : A′ ⊑ A′ x′ ⊑ x′′ : A′ ⊑ A′′ ⊢ x′ ⊑ x′′ : A′ ⊑ A′′

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

80 M. S. New et al.

we have

x⊑ x′′ : A⊑ A′′ ⊢ ⟨A′! A⟩x⊑ x′′ : A′ ⊑ A′′

Substituting the premise into this gives the conclusion.
For downcast left, substituting M ′ into the axiom ⟨B " B′⟩•⊑ • : B⊑ B′ gives ⟨B "

B′⟩M ⊑M , and then transitivity with the premise gives the result.
For downcast right, transitivity of

•⊑ •′ : B⊑ B′ ⊢ •⊑ •′ : B⊑ B′ •′ ⊑ •′′ : B′ ⊑ B′′ ⊢ •′ ⊑ ⟨B′ " B′′⟩•′′

gives •⊑ •′′ : B⊑ B′′ ⊢ •⊑ ⟨B′ " B′′⟩•′′, and then substitution of the premise into this
gives the conclusion. #

Proof of Theorem 3.2. Proof. We use Theorem 3.1 in all cases, and show that the right-
hand side has the universal property of the left.

1. Both parts expand to showing x⊑ x : A⊑ A⊢ x⊑ x : A⊑ A, which is true by
assumption.

2. First, we need to show x⊑ ⟨A′′! A′⟩(⟨A′! A⟩x) : A⊑ A′′. By upcast right, it
suffices to show x⊑ ⟨A′! A⟩x : A⊑ A′, which is also true by upcast right.
For x⊑ x′′ : A⊑ A′′ ⊢ ⟨A′′! A′⟩(⟨A′! A⟩x)⊑ x′′, by upcast left twice, it suffices
to show x⊑ x′′ : A⊑ A′′, which is true by assumption.

3. Both parts expand to showing • : B⊢ •⊑ • : B, which is true by assumption.
4. To show •⊑ •′′ : B⊑ B′′ ⊢ •⊑ ⟨B " B′⟩(⟨B′ " B′′⟩•), by downcast right (twice),
it suffices to show • : B⊑ •′′ : B′′ ⊢ •⊑ •′′ : B⊑ B′′, which is true by assump-
tion. Next, we have to show ⟨B " B′⟩(⟨B′ " B′′⟩•)⊑ • : B⊑ B′′, and by downcast
left, it suffices to show ⟨B′ " B′′⟩•⊑ • : B′ ⊑ B′′, which is also true by downcast
left. #

Proof of Theorem 3.3. Proof.

1. By η for F types, •′ : FA′ ⊢ •′ ⊒⊑ bind x′ ← •′; retx′ : FA′, so it suffices to show
bind x←⟨FA " FA′⟩•′; ret(⟨A′! A⟩x)⊑ bind x′ : A′ ← •′; retx′

By congruence, it suffices to show ⟨FA " FA′⟩•′ ⊑ •′ : FA⊑ FA′, which is true by
downcast left, and x⊑ x′ : A⊑ A′ ⊢ ret(⟨A′! A⟩x)⊑ retx′ : A′, which is true by
congruence for ret, upcast left, and the assumption.

2. By η for F types, it suffices to show

• : FA⊢ bind •← x; retx⊑ bind x← •; ⟨FA " FA′⟩(ret(⟨A′! A⟩x)) : FA
so by congruence,

x : A⊢ retx⊑ ⟨FA " FA′⟩(ret(⟨A′! A⟩x))
By downcast right, it suffices to show

x : A⊢ retx⊑ (ret(⟨A′! A⟩x)) : FA⊑ FA′

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 81

and by congruence

x : A⊢ x⊑ ((⟨A′! A⟩x)) : A⊑ A′

which is true by upcast right.
3. By η for U types, it suffices to show

x :UB′ ⊢ ⟨UB′! UB⟩(thunk (⟨B " B′⟩force x))⊑ thunk (force x) :UB′

By upcast left, it suffices to show

x :UB′ ⊢ (thunk (⟨B " B′⟩force x))⊑ thunk (force x) :UB⊑UB′

and by congruence

x :UB′ ⊢ ⟨B " B′⟩force x⊑ force x : B⊑ B′

which is true by downcast left.
4. By η for U types, it suffices to show

x :UB⊢ thunk (force x)⊑ thunk (⟨B " B′⟩(force (⟨UB′! UB⟩x))) :UB
and by congruence

x :UB⊢ (force x)⊑ (⟨B " B′⟩(force (⟨UB′! UB⟩x))) : B
By downcast right, it suffices to show

x :UB⊢ (force x)⊑ (force (⟨UB′! UB⟩x)) : B⊑ B′

and by congruence

x :UB⊢ x⊑ (⟨UB′! UB⟩x) : B⊑ B′

which is true by upcast right. #

Proof of Theorem 3.4. Proof. We need only to show the ⊑ direction, because the
converse is Theorem 3.3.

1. Substituting ret(⟨A′! A⟩x) into Theorem 3.3’s
• : FA⊢ •⊑ bind x← •; ⟨FA " FA′⟩(ret(⟨A′! A⟩x)) : FA

and β-reducing gives

x : A⊢ ret(⟨A′! A⟩x)⊑ ⟨FA " F?⟩(ret(⟨?! A′⟩⟨A′! A⟩x))
Using this, after η-expanding • : FA on the right and using congruence for bind, it
suffices to derive as follows:

⟨FA " FA′⟩(ret(⟨A′! A⟩x)) ⊑ congruence
⟨FA " FA′⟩⟨FA′ " F?⟩(ret(⟨?! A′⟩⟨A′! A⟩x)) ⊑ composition
⟨FA " F?⟩(ret(⟨?! A⟩x)) ⊑ retract axiom for ⟨?! A⟩
retx

2. After using η for U and congruence, it suffices to show

x :UB⊢ ⟨B " B′⟩(force (⟨UB′! UB⟩x))⊑ force x : B

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

82 M. S. New et al.

Substituting x :UB⊢ ⟨UB′! UB⟩x :UB′ into Theorem 3.3’s
x :UB′ ⊢ x⊑ thunk (⟨B′ " ¿⟩(force (⟨U¿! UB′⟩x))) :UB′

gives

x :UB⊢ ⟨UB′! UB⟩x⊑ thunk (⟨B′ " ¿⟩(force (⟨U¿! UB′⟩⟨UB′! UB⟩x))) :
UB′

So we have
⟨B " B′⟩(force ⟨UB′ ! UB⟩x) ⊑
⟨B " B′⟩force (thunk (⟨B′ " ¿⟩(force (⟨U¿! UB′⟩⟨UB′ ! UB⟩x)))) ⊑ β

⟨B " B′⟩(⟨B′ " ¿⟩(force (⟨U¿! UB′⟩⟨UB′ ! UB⟩x))) ⊑ composition
⟨B " ¿⟩(force (⟨U¿! UB⟩x)) ⊑ retract axiom for ⟨B " ¿⟩
retx ⊑ composition

#

Proof of Theorem 3.5. Proof.

1. Sums upcast. We use Lemma 3.5 with the type constructor X1 val type,
X2 val type⊢ X1 + X2 val type. Suppose A1 ⊑ A′1 and A2 ⊑ A′2 and let

s : A1 + A2 ⊢ ⟨⟨A′1 + A′2! A1 + A2⟩⟩s : A′1 + A′2
stand for

case s{x1.inl (⟨A′1! A1⟩x1) | x2.inr (⟨A′2! A2⟩x2)}
This clearly satisfies the typing requirement and monotonicity.
Finally, for identity extension, we need to show

case s{x1.inl (⟨A1! A1⟩x1) | x2.inr (⟨A2! A2⟩x2)}⊒⊑ s
which is true because ⟨A1! A1⟩ and ⟨A2! A2⟩ are the identity, and using “weak
η” for sums, case s{x1.inl x1 | x2.inr x2}⊒⊑ x, which is the special case of the
η rule in Figure 6 for the identity complex value:

case s{x1.inl (⟨A1! A1⟩x1) | x2.inr (⟨A2! A2⟩x2)} ⊒⊑
case s{x1.inl (x1) | x2.inr (x2)} ⊒⊑

s

2. Sums downcast. We use the downcast lemma with X1 val type, X2 val type⊢
F(X1 + X2) comp type. Let

•′ : F(A′1 + A′2)⊢ ⟨⟨F(A1 + A2) " F(A′1 + A′2)⟩⟩•′ : F(A1 + A2)
stand for

bind (s : (A′1 + A′2))← •;
case s{x′1.bind x1← (⟨FA1 " FA′1⟩(retx′1)); ret(inl x1) | . . .}

(where, as in the theorem statement, inr branch is analogous). This clearly satisfies
typing and monotonicity.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 83

Finally, for identity extension, we show

bind (s : (A1 + A2))← •; case s{x1.bind x1← (⟨FA1 " FA1⟩(retx1)); ret(inl x1) | . . .} ⊒⊑
bind (s : (A1 + A2))← •; case s{x1.bind x1← ((retx1)); ret(inl x1) | . . .} ⊒⊑
bind (s : (A1 + A2))← •; case s{x1.ret(inl x1) | x2.ret(inr x2)} ⊒⊑
bind (s : (A1 + A2))← •; rets ⊒⊑
•

using the downcast identity, β for F types, η for sums, and η for F types.
3. Eager product upcast. We use Lemma 3.5 with the type constructor
X1 val type, X2 val type⊢ X1 × X2 val type. Let

p : A1 × A2 ⊢ ⟨⟨A′1 × A′2! A1 × A2⟩⟩s : A′1 × A′2
stand for

split p to (x1, x2).(⟨A′1! A1⟩x1, ⟨A′2! A2⟩x2)
which clearly satisfies the typing requirement and monotonicity.
Finally, for identity extension, using η for products and the fact that ⟨A! A⟩ is the
identity, we have

split p to (x1, x2).(⟨A1! A1⟩x1, ⟨A2! A2⟩x2)⊒⊑ split p to (x1, x2).(x1, x2)⊒⊑ p
4. Eager product downcast.
We use the downcast lemma with X1 val type, X2 val type⊢ F(X1 ×
X2) comp type. Let

•′ : F(A′1 × A′2)⊢ ⟨⟨F(A1 × A2) " F(A′1 × A′2)⟩⟩•′ : F(A1 × A2)
stand for

bind p′ ← •; split p′ to (x′1, x′2).bind x1←⟨FA1 " FA′1⟩retx′1;

bind x2←⟨FA2 " FA′2⟩retx′2; ret(x1, x2)

which clearly satisfies the typing requirement and monotonicity.
Finally, for identity extension, we show

bind p← •; split p to (x1, x2).bind x1←⟨FA1 " FA1⟩retx1;
bind x2←⟨FA2 " FA′2⟩retx2; ret(x1, x2) ⊒⊑
bind p← •; split p to (x1, x2).bind x1← retx1; bind x2← retx2; ret(x1, x2) ⊒⊑
bind p← •; split p to (x1, x2).ret(x1, x2) ⊒⊑
bind p← •; retp ⊒⊑
•

using the downcast identity, β for F types, η for eager products, and η for F types.
An analogous argument works if we sequence the downcasts of the components in
the opposite order:

bind p′ ← •; split p′ to (x′1, x′2).bind x2←⟨FA2 " FA′2⟩retx′2;

bind x1←⟨FA1 " FA′1⟩retx′1; ret(x1, x2)

(the only facts about downcasts used above are congruence and the downcast iden-
tity), which shows that these two implementations of the downcast are themselves
equiprecise.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

84 M. S. New et al.

5. Lazy product downcast. We use Lemma 3.6 with the type constructor
Y 1 comp type, Y 2 comp type⊢ Y 1 & Y 2 val type. Let

•′ : B′1 & B′2 ⊢ ⟨⟨B1 & B2 " B1 & B2⟩⟩•′ : B1 & B2
stand for

{π)→ ⟨B1 " B′1⟩π•′ | π ′)→ ⟨B2 " B′2⟩π ′•′}
which clearly satisfies the typing requirement and monotonicity.
For identity extension, we have, using ⟨B " B⟩ is the identity and η for &,

{π)→ ⟨B1 " B1⟩π• | π ′)→ ⟨B2 " B2⟩π ′•}⊒⊑ {π)→ π• | π ′)→ π ′•}⊒⊑ •
6. Lazy product upcast.
We use Lemma 3.5 with the type constructor Y 1 comp type, Y 2 comp type⊢
U(Y 1 & Y 2) val type. Let

p :U(B1 & B2)⊢ ⟨⟨U(B1 & B2)! U(B1 & B2)⟩⟩p :U(B′1 & B′2)
stand for

thunk {π)→ force (⟨UB′1! UB1⟩(thunk π (force p))) | π ′)→ force (⟨UB′2! UB2⟩}

(thunk π ′(force p)))

which clearly satisfies the typing requirement and monotonicity.
Finally, for identity extension, using η for times, β and η for U types, and the fact
that ⟨A! A⟩ is the identity, we have
thunk {π)→ force (⟨UB1! UB1⟩(thunk π (force p))) | π ′)→ force (⟨UB2! UB2⟩}

(thunk π ′(force p))) ⊒⊑
thunk {π)→ force (thunk π (force p)) | π ′)→ force (thunk π ′(force p))} ⊒⊑

thunk {π)→ π (force p) | π ′)→ π ′(force p)} ⊒⊑
thunk (force p) ⊒⊑

p

7. Function downcast.
We use Lemma 3.6 with the type constructor X val type, Y comp type⊢ X→
Y comp type. Let

•′ : A′ → B′ ⊢ ⟨⟨A→ B " A′ → B′⟩⟩•′ : A→ B

stand for

λx.⟨B " B′⟩(• (⟨A′! A⟩x))
which clearly satisfies the typing requirement and monotonicity.
For identity extension, we have, using ⟨A! A⟩ and ⟨B " B⟩ are the identity and η

for→,
λx.⟨B " B⟩(• (⟨A! A⟩x))⊒⊑ λx.(• (x))⊒⊑ •

8. Function upcast. We use Lemma 3.5 with the type constructor
X val type, Y comp type⊢U(X→ Y) val type. Suppose A⊑ A′ as value types
and B⊑ B′ as computation types and let

p :U(A→ B)⊢ ⟨⟨U(A→ B)! U(A→ B)⟩⟩p :U(A′ → B′)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 85

stand for

thunk (λx′.bind x←⟨FA " FA′⟩(retx′); force (⟨UB′! UB⟩(thunk (force (f) x))))

which clearly satisfies the typing requirement and monotonicity.
Finally, for identity extension, using η for→, β for F types and β/η for U types,
and the fact that ⟨B! B⟩ and ⟨A " A⟩ are the identity, we have

thunk (λx.bind x←⟨FA " FA⟩(retx); force (⟨UB! UB⟩)
(thunk (force (f) x))) ⊒⊑

thunk (λx.bind x← (retx); force (thunk (force (f) x))) ⊒⊑
thunk (λx.force (thunk (force (f) x))) ⊒⊑

thunk (λx.(force (f) x)) ⊒⊑
thunk (force (f)) ⊒⊑

f

9. z : 0⊢ ⟨A! 0⟩z⊒⊑ absurd z : A is immediate by η for 0 on the map z : 0⊢ ⟨A!
0⟩z : A. #

Proof of Theorem 3.6. Proof.

1. We apply the upcast lemma with the type constructor X val type⊢UFX val type.
The term thunk (⟨⟨FA′! FA⟩⟩(force x)) has the correct type and clearly satisfies
monotonicity. Finally, for identity extension, we have

thunk (⟨⟨FA! FA⟩⟩(force x)) ⊒⊑
thunk ((force x)) ⊒⊑

x

using η for U types and the identity principle for ⟨⟨FA! FA⟩⟩ (proved analogously
to Theorem 3.2).

2. We use the downcast lemma with Y comp type⊢ FUY comp type, where bind x′ :
UB′ ← •; ret(⟨⟨UB "UB′⟩⟩x) clearly satisfies typing and monotonicity.
Finally, for identity extension, we have

bind x : B← •; ret(⟨⟨B " B⟩⟩x) ⊒⊑
bind x : B← •; ret(x) ⊒⊑

•
using the identity principle for ⟨⟨B " B⟩⟩ (proved analogously to Theorem 3.2) and
η for F types. #

The admissibility theorem for casts in GTTG, is proved by induction over a restricted
form of type precision derivations.

Definition B.1 (Ground type precision). Let A⊑′ A′ and B⊑′ B′ be the relations defined
by the rules in Figure 4 with the axioms A⊑ ? and B⊑ ¿ restricted to ground types—i.e.,
replaced by G⊑ ? and G⊑ ¿.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

86 M. S. New et al.

Lemma B.1. For any type A, A⊑′ ?. For any type B, B⊑′ ¿.

Proof. By induction on the type. For example, in the case for A1 + A2, we have by the
inductive hypothesis A1 ⊑′ ? and A2 ⊑′ ?, so A1 + A2 ⊑′ ?+ ?⊑ ? by congruence and tran-
sitivity, because ?+ ? is ground. In the case for FA, we have A⊑ ? by the inductive
hypothesis, so FA⊑ F?⊑ ¿. #

Lemma B.2 (⊑ and ⊑′ agree). A⊑ A′ iff A⊑′ A′ and B⊑ B′ iff B⊑′ B′

Proof. The “if” direction is immediate by induction because every rule of ⊑′ is a rule of
⊑. To show⊑ is contained in⊑′, we do induction on the derivation of⊑, where every rule
is true for ⊑′, except A⊑ ? and B⊑ ¿, and for these, we use Lemma B.1. #

Proof of Lemma 3.7 (cont.).

Proof. By induction on type precision A⊑′ A′ and B⊑′ B′.
(We chose not to make this more explicit above, because we believe the equational

description in a language with all casts is a clearer description of the results, because it
avoids needing to hypothesize terms that behave as the smaller casts in each case.)
We show a few representative cases:
In the cases forG⊑ ? orG⊑ ¿, we have assumed appropriate casts ⟨?! G⟩ and ⟨FG "

F?⟩ and ⟨G " ¿⟩ and ⟨U¿! UG⟩.
In the case for identity A⊑ A, we need to show that there is an upcast ⟨⟨A! A⟩⟩ and a

downcast ⟨⟨FA " FA⟩⟩ The proof of Theorem 3.2 shows that the identity value and stack
have the correct universal property.
In the case where type precision was concluded by transitivity between A⊑ A′ and A′ ⊑

A′′, by the inductive hypotheses we get upcasts ⟨⟨A′! A⟩⟩ and ⟨⟨A′′! A′⟩⟩, and the proof
of Theorem 3.2 shows that defining ⟨⟨A′′! A⟩⟩ to be ⟨⟨A′′! A′⟩⟩⟨⟨A′! A⟩⟩ has the correct
universal property. For the downcast, we get ⟨⟨FA " FA′⟩⟩ and ⟨⟨FA′ " FA′′⟩⟩ by the
inductive hypotheses, and the proof of Theorem 3.2 shows that their composition has the
correct universal property.
In the case where type precision was concluded by the congruence rule for A1 + A2 ⊑

A′1 + A′2 from Ai ⊑ A′i, we have upcasts ⟨⟨A′i! Ai⟩⟩ and downcasts ⟨⟨FAi " FA′i⟩⟩ by the
inductive hypothesis, and the proof of Theorem 3.2 shows that the definitions given there
have the desired universal property.
In the case where type precision was concluded by the congruence rule for FA⊑ FA′

from A⊑ A′, we obtain by induction an upcast A⊑ A′ and a downcast ⟨⟨FA " FA′⟩⟩. We
need a downcast ⟨⟨FA " FA′⟩⟩, which we have, and an upcast ⟨⟨UFA "UFA′⟩⟩, which is
constructed as in Theorem 3.6. #

Proof of Theorem 3.9. Proof.

1. We have upcasts x : A⊢ ⟨A′! A⟩x : A′ and x′ : A′ ⊢ ⟨A! A′⟩x′ : A. For the com-
posites, to show x : A⊢ ⟨A! A′⟩⟨A′! A⟩x⊑ x we apply upcast left twice, and
conclude x⊑ x by assumption. To show, x : A⊢ x⊑ ⟨A! A′⟩⟨A′! A⟩x, we have
x : A⊢ x⊑ ⟨A′! A⟩x : A⊑ A′ by upcast right, and therefore x : A⊢ x⊑ ⟨A!

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 87

A′⟩⟨A′! A⟩x : A⊑ A again by upcast right. The other composite is the same proof
with A and A′ swapped.

2. We have downcasts • : B⊢ ⟨B " B′⟩• : B′ and • : B′ ⊢ ⟨B′ " B⟩• : B.
For the composites, to show • : B′ ⊢ •⊑ ⟨B′ " B⟩⟨B " B′⟩•, we apply downcast
right twice, and conclude •⊑ •. For ⟨B′ " B⟩⟨B " B′⟩•⊑ •, we first have ⟨B "
B′⟩•⊑ • : B⊑ B′ by downcast left, and then the result by another application of
downcast left. The other composite is the same proof with B and B′ swapped. #

Proof of Lemma 3.8.

Proof.

1. Take E to be x : 0⊢ abort x : T . Given any E′, we have E⊒⊑ E′ by the η principle
for 0.

2. Take S to be • : F0⊢ bind x← •; abort x : B. Given another S′, by the η principle
for F types, S′ ⊒⊑ bind x← •; S′[retx]. By congruence, to show S ⊒⊑ S′, it suf-
fices to show x : 0⊢ abort x⊒⊑ S[retx] : B, which is an instance of the previous
part.

3. We have y : 0⊢ abort y : A. The composite y : 0⊢ V [abort y/x] : 0 is equiprecise
with y by the η principle for 0, which says that any two complex values with domain
0 are equal.
The composite x : A⊢ abort V : A is equiprecise with x, because

x : A, y : A, z : 0⊢ x⊒⊑ abort z⊒⊑ y : A
where the first is by η with x : A, y : A, z : 0⊢ E[z] := x : A and the second with x :
0, y : 0⊢ E[z] := y : A (this depends on the fact that 0 is “distributive”, i.e., %, x : 0
has the universal property of 0). Substituting abort V for y and V for z, we have
abort V ⊒⊑ x. #

Proof of Lemma 3.9.

Proof.

1. Take S = {}. The η rule for ⊤, • :⊤⊢ •⊒⊑ {} :⊤, under the substitution of • : B⊢
S :⊤, gives S ⊒⊑ {}[S/•]= {}.

2. Take V = thunk {}. We have x :U⊤⊢ x⊒⊑ thunk force x⊒⊑ thunk {} :U⊤
by the η rules for U and ⊤.

3. Take V = (). By η for 1 with x : 1⊢ E[x] := () : 1, we have x : 1⊢ ()⊒⊑
unroll x to roll (). : 1. By η fro 1 with x : 1⊢ E[x] := x : 1, we have x : 1⊢ x⊒⊑
unroll x to roll ().. Therefore x : 1⊢ x⊒⊑ () : 1.

4. We have maps x :U⊤⊢ () : 1 and x : 1⊢ thunk {} :U⊤. The composite on 1 is the
identity by the previous part. The composite on ⊤ is the identity by part (2). #

Proof of Theorem 3.12.

Proof.

1. x : 0⊢ ⟨A! 0⟩x⊒⊑ abort x : A is immediate by η for 0.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

88 M. S. New et al.

2. First, to show • : FA⊢ bind _← •;!⊑ ⟨F0 " FA⟩•, we can η-expand the right-
hand side into bind x : A← •; ⟨F0 " FA⟩retx, at which point the result follows
by congruence and the fact that type error is minimal, so !⊑ ⟨F0 " FA⟩retx.
Second, to show • : FA⊢ ⟨F0 " FA⟩•⊑ bind _← •;!, we can η-expand the left-
hand side to • : FA⊢ bind y←⟨F0 " FA⟩•; rety, so we need to show

• : FA⊢ bind y : 0←⟨F0 " FA⟩•; rety⊑ bind y′ : A← •;! : F0
We apply congruence, with • : FA⊢ ⟨F0 " FA⟩•⊑ • : 0⊑ A by the universal
property of downcasts in the first premise, so it suffices to show

y⊑ y′ : 0⊑ A⊢ rety⊑!F0 : F0

By transitivity with y⊑ y′ : 0⊑ A⊢!F0 ⊑!F0 : F0⊑ F0, it suffices to show
y⊑ y : 0⊑ 0⊢ rety⊑!F0 : F0

But now both sides are maps out of 0, and therefore equal by Lemma 3.8.
3. The downcast is immediate by η for ⊤, Lemma 3.9.
4. First,

u :U⊤⊢ thunk !⊑ thunk (force (⟨UB! U⊤⟩u))⊒⊑ ⟨UB! U⊤⟩u :UB
by congruence, η for U , and the fact that error is minimal. Conversely, to show

u :U⊤⊢ ⟨UB! U⊤⟩u⊑ thunk ! :UB

it suffices to show

u :U⊤⊢ u⊑ thunk !B :U⊤⊑UB
by the universal property of an upcast. By Lemma 3.9, any two elements of U⊤ are
equiprecise, so in particular u⊒⊑ thunk !⊤, at which point congruence for thunk
and !⊤ ⊑!B :⊤⊑ B gives the result. #

C Proofs for Section 4

To reason about substitution and plugging in evaluation contexts in the correctness proofs,
we additionally define a value translation that directly translates CBV values to GTT values
and a stack translation that directly translates CBV evaluation contexts to GTT stacks in
Figure C.1
We then prove a few correctness principles for these with respect to the term translation.

Lemma C.1. Vc ⊒⊑ retV v

Proof. By induction on V .

• ⟨?⇐G⟩V :
(⟨?⇐G⟩V)c = ⟨F? " F?⟩⟨⟨F?! FGty⟩⟩Vc (defn.)

⊒⊑ ⟨⟨F?! FGty⟩⟩Vc (Theorem 3.2)

= bind x← Vc; ret⟨?! Gty⟩x (defn.)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 89

(⟨?⇐G⟩V)v = ⟨?! Gty⟩V
(λx : A.M)v = thunk (λx : Aty.Mc)

()v = ()
(V1, V2)v = (V v

1 , V
v
2)

(inl V)v = inl V v

(inr V)v = inr V v

•s = •
(let x= S;N)s = bind x← Ss;Nc

(⟨A2⇐ A1⟩S)s = bind x← Ss; ⟨FAty2 " F?⟩(ret⟨?! Aty1 ⟩x)
(S N)s = bind f ← Ss; bind x←Nc; force f x
(V S)s = bind x← Ss; force V v x

(split S to ().N)s = bind z← Ss; split z to ().Nc

(S1,M2)s = bind x1← Sc1; bind x2←Mc
2 ; ret(x1, x2)

(V1, S2)s = bind x2← Sc2; ret(V
v
1 , x2)

(split S to (x, y).N)s = bind z← Ss; split z to (x, y).Nc

(abort S)s = bind z← Ss; abort z
(inl S)s = bind x← Ss; retinl x
(inr S)s = bind x← Ss; retinr x

(case S{x1.N1 | x2.N2})s = bind z← Ss; case z{x1.Nc1 | x2.Nc2}

Fig. C.1. CBV value and stack translations.

⊒⊑ bind x← retV v; ret⟨?! Gty⟩x (defn.)

⊒⊑ ret⟨?! Gty⟩V v (Fβ)

= ret(⟨?⇐G⟩V)v (defn.)

• λx : A.M : immediate by reflexivity.
• (): immediate by reflexivity.
• (V1, V2):

(V1, V2)c = bind x1← Vc1 ; bind x2← Vc2 ; ret(x1, x2) (definition)

⊒⊑ bind x1← retV v
1 ; bind x2← retV v

2 ; ret(x1, x2) (I.H., twice)

⊒⊑ ret(V1, V2) (Fβ twice)

• inl V :

(inl V)c = bind x← Vc; retinl x (definition)

⊒⊑ bind x← retV v; retinl x (I.H.)

⊒⊑ retinl V v (Fβ)

• inr V : similar to inl case. #

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

90 M. S. New et al.

Lemma C.2. (M[V/x])c ⊒⊑Mc[V v/x]

Proof. By induction on M . All cases but variable are by congruence and inductive
hypothesis.

• M = x:
(x[V/x])c = Vc (def. substitution)

⊒⊑ retV v (Lemma C.1)

= (retx)[V v/x] (def. substitution)

= (xc)[V v/x] (def. substitution)

• M = y ̸= x:
(y[V/x])c = yc (def. subst.)

⊒⊑ rety (def.)

⊒⊑ (rety)[V/x] (def. subst.)

#

Lemma C.3. (S[M])c ⊒⊑ Ss[Mc]

Proof. By induction on S. Most cases are straightforward by congruence and induction
hypothesis. We show the other cases.

• S = V S:
((V S)[M])c = (V (S[M]))c (defn. plugging)

= bind f ← Vc; bind x← (S[M])c; force f x (defn.)

⊒⊑ bind f ← retV v; bind x← (S[M])c; force f x (Lemma C.1)
⊒⊑ bind x← (S[M])c; force V v x (Fβ)

⊒⊑ bind x← Ss[Mc]; force V v x (I.H.)

⊒⊑ (bind x← Ss; force V v x)[Mc] (defn. of plug)

= (V S)s[Mc]

• S = (V1, S2)
((V1, S2)[M])c = (V1, S2[M])c (defn. plugging)

= bind x1← Vc1 ; bind x2← S2[M]c; ret(x1, x2) (defn.)

⊒⊑ bind x1← retV v
1 ; bind x2← S2[M]c; ret(x1, x2)

(Lemma C.1)

⊒⊑ bind x2← S2[M]c; ret(V v
1 , x2) (Fβ)

⊒⊑ bind x2← Ss2[M
c]; ret(V v

1 , x2) (I.H.)

= (bind x2← Ss2; ret(V
v
1 , x2))[M

c] (defn. plugging)

= (V1, Ss2)[Mc] (defn.)

#

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 91

Finally, for proving the correctness for cast reductions, the following lemma simplifies
a great deal of common reasoning about the translation of casts.

Lemma C.4 (Any Middle Type will Do). If A1, A2 ⊑ A′, then ⟨FA2 " F?⟩⟨⟨F?!
FA1⟩⟩M ⊒⊑ ⟨FA2 " FA′⟩⟨⟨FA′! FA1⟩⟩M

Proof.

⟨FA2 " F?⟩⟨⟨F?! FA1⟩⟩M ⊒⊑ ⟨FA2 " FA′⟩⟨FA′ " F?⟩⟨⟨F?! FA′⟩⟩⟨⟨FA′! FA1⟩⟩M
(Theorem 3.2)

⊒⊑ ⟨FA2 " FA′⟩⟨⟨FA′! FA1⟩⟩M (retraction)

#
Proof of Theorem 4.1.

Proof. In all cases, by Lemma C.3, congruence and S[!]⊒⊑!, it is sufficient to consider
the case that S = •.
First, we have the cases not involving casts, which are standard for the embedding of

call-by-value into call-by-push-value.

• let x= V ;N)→N[V/x]

(let x= V ;N)c = bind x← Vc;Nc

⊒⊑ bind x← retV v;Nc

⊒⊑Nc[V v/x]

⊒⊑ (N[V/x]c)

• (λx : A.M) V)→M[V/x]

((λx : A.M) V)c = bind f ← (ret(thunk (λx : Aty.Mc))); bind x← Vc; force f x
⊒⊑ bind x← Vc; force (thunk (λx : Aty.Mc)) x

⊒⊑ bind x← retV v; force (thunk (λx : Aty.Mc)) x

⊒⊑ force (thunk (λx : Aty.Mc)) V v

⊒⊑ (λx : Aty.Mc) V v

⊒⊑Mc[V v/x]

⊒⊑ (M[V/x])c

• split () to ().N)→N

(split () to ().N)c = bind z← ret(); split z to ().Nc

= split () to ().Nc

=Nc

• split (V1, V2) to (x1, x2).N)→N[V1/x1][V2/x2]

(split (V1, V2) to (x1, x2).N)c = bind z← (V1, V2)c; split z to (x1, x2).Nc

⊒⊑ bind z← ret(V v
1 , V

v
2); split z to (x1, x2).N

c

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

92 M. S. New et al.

⊒⊑ split (V v
1 , V

v
2) to (x1, x2).N

c

⊒⊑Nc[V v
1 /x1][V

v
2 /x2]

⊒⊑ (N[V1/x1][V2/x2])c

• case inl V{x1.N1 | x2.N2})→N1[V/x1]

(case inl V{x1.N1 | x2.N2})c = bind z← (inl V)c; case z{x1.Nc1 | x2.Nc2}
⊒⊑ bind z← ret(inl V v); case z{x1.Nc1 | x2.Nc2}
⊒⊑ case inl V v{x1.Nc1 | x2.Nc2}
⊒⊑Nc1 [V v/x1]

⊒⊑ (N1[V/x1])c

• case inr V{x1.N1 | x2.N2})→N2[V/x2]

Next, we have the interesting cases, those specific to gradual type casts/GTT.

• ⟨?⇐ ?⟩V)→ V :

(⟨?⇐ ?⟩V)c = ⟨F? " F?⟩⟨⟨F?! F?⟩⟩[Vc]
⊒⊑ Vc (Theorem 3.2)

• ⟨?⇐ A⟩V)→ ⟨?⇐G⟩⟨G⇐ A⟩V where A⊑G
⟨?⇐ A⟩Vc ⊒⊑ ⟨F? " F?⟩⟨⟨F?! FAty⟩⟩[Vc]

⊒⊑ ⟨⟨F?! FAty⟩⟩[Vc] (Theorem 3.2)

⊒⊑ ⟨⟨F?! FGty⟩⟩⟨⟨FGty! FAty⟩⟩[Vc] (Theorem 3.2)

• ⟨A⇐ ?⟩V)→ ⟨A⇐G⟩⟨G⇐ ?⟩V : similar to previous case.
• ⟨G⇐ ?⟩⟨?⇐G⟩V)→ V

(⟨G⇐ ?⟩⟨?⇐G⟩V)c = ⟨FGty " F?⟩⟨⟨F?! F?⟩⟩⟨F? " F?⟩⟨⟨F?! FGty⟩⟩[Vc]
⊒⊑ ⟨FGty " F?⟩⟨⟨F?! FGty⟩⟩[Vc] (Theorem 3.2)

⊒⊑ Vc (retraction)

• ⟨A′1→ A′2⇐ A1→ A2⟩V)→ λx : A′1.⟨A′2⇐ A2⟩(V (⟨A1⇐ A′1⟩x))
(⟨A′1→ A′2⇐ A1→ A2⟩V)c

⊒⊑ ⟨FU(A′ty1 → FA′ty2) " F?⟩⟨⟨F?! FU(Aty1 → FAty2)⟩⟩Vc

⊒⊑ ⟨FU(A′ty1 → FA′ty2) " FU(?→ F?)⟩⟨⟨FU(?→ F?)! FU(Aty1 → FAty2)⟩⟩Vc

⊒⊑ ⟨FU(A′ty1 → FA′ty2) " FU(?→ F?)⟩⟨⟨FU(?→ F?)! FU(Aty1 → FAty2)⟩⟩[retV v]

⊒⊑ ⟨FU(A′ty1 → FA′ty2) " FU(?→ F?)⟩ret⟨U(?→ F?)! U(Aty1 → FAty2)⟩V v

⊒⊑ ⟨FU(A′ty1 → FA′ty2) " FU(?→ F?)⟩
retthunk (λx′.bind x←⟨FAty1 " F?⟩(retx′); force (⟨UF?! UFAty2 ⟩
(thunk (force V v x))))

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 93

⊒⊑ ⟨FU(A′ty1 → FA′ty2) " FU(?→ F?)⟩
retthunk (λx′.bind x←⟨FAty1 " F?⟩(retx′); ⟨⟨F?! FAty2 ⟩⟩(force V v x))

⊒⊑ retthunk (⟨A′ty1 → FA′ty2 " ?→ F?⟩(λx′.bind x←⟨FAty1 " F?⟩(retx′);
⟨⟨F?! FAty2 ⟩⟩(force V v x)))

⊒⊑ retthunk (λy′.⟨FA′ty2 " F?⟩((λx′.bind x←⟨FAty1 " F?⟩(retx′);
⟨⟨F?! FAty2 ⟩⟩(force V v x)))(⟨?! A′ty1 ⟩y′))

⊒⊑ retthunk (λy′.⟨FA′ty2 " F?⟩((bind x←⟨FAty1 " F?⟩(ret(⟨?! A′ty1 ⟩y′);
⟨⟨F?! FAty2 ⟩⟩(force V v x))))

⊒⊑ retthunk (λy′.⟨FA′ty2 " F?⟩((bind x←⟨FAty1 " F?⟩⟨⟨F?! FA′ty1 ⟩⟩rety′;
⟨⟨F?! FAty2 ⟩⟩(force V v x))))

⊒⊑ retthunk (λy′.⟨FA′ty2 " F?⟩((bind x← (⟨A1⇐ A′1⟩y′)ty;
⟨⟨F?! FAty2 ⟩⟩(force V v x))))

⊒⊑ retthunk (λy′.⟨FA′ty2 " F?⟩⟨⟨F?! FAty2 ⟩⟩(bind x← (⟨A1⇐ A′1⟩y′)ty;
(force V v x)))

⊒⊑ retthunk (λy′.⟨FA′ty2 " F?⟩⟨⟨F?! FAty1 ⟩⟩(bind f ← Vc;

bind x← (⟨A1⇐ A′1⟩y′)c; (force f x)))
⊒⊑ retthunk (λy′.⟨FA′ty2 " F?⟩⟨⟨F?! FAty1 ⟩⟩(V (⟨A1⇐ A′1⟩y′))c)
⊒⊑ retthunk (λy′.(⟨A′2⇐ A2⟩(V (⟨A1⇐ A′1⟩y′)))c)
⊒⊑ (λy′.⟨A′2⇐ A2⟩(V (⟨A1⇐ A′1⟩y′)))c

• ⟨1⇐ 1⟩())→ ()

(⟨1⇐ 1⟩())c = ⟨F1 " F?⟩⟨⟨F?! F1⟩⟩[ret()]
⊒⊑ ret()
= ()c

• ⟨A′1 × A′2⇐ A1 × A2⟩(V1, V2))→ (⟨A′1⇐ A1⟩V1, ⟨A′2⇐ A2⟩V2)
(⟨A′1 × A′2⇐ A1 × A2⟩(V1, V2))c

⊒⊑ ⟨F(A′ty1 × A
′ty
2) " F?⟩⟨⟨F?! F(Aty1 × A

ty
2)⟩⟩(V1, V2)c

⊒⊑ ⟨F(A′ty1 × A
′ty
2) " F(?× ?)⟩⟨⟨F(?× ?)! F(Aty1 × A

ty
2)⟩⟩(V1, V2)c

⊒⊑ ⟨F(A′ty1 × A
′ty
2) " F(?× ?)⟩⟨⟨F(?× ?)! F(Aty1 × A

ty
2)⟩⟩ret(V v

1 , V
v
2)

⊒⊑ ⟨F(A′ty1 × A
′ty
2) " F(?× ?)⟩(ret⟨(?× ?)! (Aty1 × A

ty
2)⟩(V v

1 , V
v
2))

⊒⊑ ⟨F(A′ty1 × A
′ty
2) " F(?× ?)⟩

(ret(split (V v
1 , V

v
2) to (x1, x2).(⟨?! Aty1 ⟩x1, ⟨?! Aty2 ⟩x2)))

⊒⊑ ⟨F(A′ty1 × A
′ty
2) " F(?× ?)⟩(ret(⟨?! Aty1 ⟩V v

1 , ⟨?! Aty2 ⟩x2))
⊒⊑ split (⟨?! Aty1 ⟩V v

1 , ⟨?! Aty2 ⟩V v
2) to (y1, y2).

bind x′1←⟨FA′ty1 " F?⟩rety1;
bind x′2←⟨FA′ty2 " F?⟩rety2; ret(x′1, x′2)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

94 M. S. New et al.

⊒⊑ bind x′1←⟨FA′ty1 " F?⟩ret⟨?! Aty1 ⟩V v
1 ;

bind x′2←⟨FA′ty2 " F?⟩ret⟨?! Aty2 ⟩V v
2 ; ret(x

′
1, x

′
2)

⊒⊑ bind x′1←⟨FA′ty1 " F?⟩⟨⟨?! Aty1 ⟩⟩retV v
1 ;

bind x′2←⟨FA′ty2 " F?⟩⟨⟨?! Aty2 ⟩⟩retV v
2 ; ret(x

′
1, x

′
2)

⊒⊑ bind x′1←⟨FA′ty1 " F?⟩⟨⟨?! Aty1 ⟩⟩Vc1 ;
bind x′2←⟨FA′ty2 " F?⟩⟨⟨?! Aty2 ⟩⟩Vc2 ; ret(x′1, x′2)

⊒⊑ bind x′1←⟨A′1⇐ A1⟩Vc1 ; bind x′2←⟨A′2⇐ A2⟩Vc2 ; ret(x′1, x′2)
= (⟨A′1⇐ A1⟩V1, ⟨A′2⇐ A2⟩V2)c

• ⟨A′1 + A′2⇐ A1 + A2⟩(inl V))→ ⟨A′1⇐ A1⟩V
(⟨A′1 + A′2⇐ A1 + A2⟩(inl V))c

⊒⊑ ⟨F(A′ty1 + A′ty2) " F?⟩⟨⟨F?! F(Aty1 + Aty2)⟩⟩(inl V)c

⊒⊑ ⟨F(A′ty1 + A′ty2) " F(?+ ?)⟩⟨⟨F(?+ ?)! F(Aty1 + Aty2)⟩⟩(inl V)c

⊒⊑ ⟨F(A′ty1 + A′ty2) " F(?+ ?)⟩⟨⟨F(?+ ?)! F(Aty1 + Aty2)⟩⟩ret(inl V v)

⊒⊑ ⟨F(A′ty1 + A′ty2) " F(?+ ?)⟩ret⟨(?+ ?)! (Aty1 + Aty2)⟩(inl V v)

⊒⊑ ⟨F(A′ty1 + A′ty2) " F(?+ ?)⟩
ret(case inl V v{x1.inl ⟨?! A1⟩x1 | x2.inr ⟨?! A2⟩x2})

⊒⊑ ⟨F(A′ty1 + A′ty2) " F(?+ ?)⟩ret(inl ⟨?! A1⟩V v)

⊒⊑ case (inl ⟨?! A1⟩V v){x1.⟨FA′ty1 " F?⟩retx1 | x2.⟨FA′ty2 " F?⟩retx2}
⊒⊑ ⟨FA′ty1 " F?⟩ret⟨?! A1⟩V v

⊒⊑ ⟨FA′ty1 " F?⟩⟨⟨F?! FA1⟩⟩retV v

⊒⊑ ⟨FA′ty1 " F?⟩⟨⟨F?! FA1⟩⟩Vc
⊒⊑ (⟨A′1⇐ A1⟩V)c

• ⟨A′1 + A′2⇐ A1 + A2⟩(inr V))→ ⟨A′2⇐ A2⟩V : similar to inl case. #

D Proofs for Section 5

Proof of Lemma 5.1. Proof. For the first,

bind x← Sp[retx′];M[Ve/y]⊒⊑ bind y← (bind x← Sp[retx′]; retVe);M
(comm conv, Fβ)

bind y← retx′;M (projection)

M[x′/y] (Fβ)

For the second,

Ve[thunk Sp[M]]⊒⊑ Ve[thunk Sp[force thunk M]] (Uβ)

⊑ thunk M (projection)

#

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 95

The proof of Lemma 5.2 relies on the following induction principle for the returner type:

Lemma D.1 (F(+) Induction Principle). % | · : F(A1 + A2)⊢M1 ⊑M2 : B holds
if and only if %, V1 : A1 ⊢M1[retinl V1]⊑M2[retinl V2] : B and %, V2 : A2 ⊢
M2[retinr V2]⊑M2[retinr V2] : B

Proof of Lemma 5.2 (cont.).

Proof. This satisfies retraction (using F(+) induction (Lemma D.1), inr case is the
same):

bind y← inl x; case y{inl x.retx | inr .!}⊒⊑ case inl x{inl x.retx | inr .!}
(Fβ)

⊒⊑ retx (+β)

and projection (similarly using F(+) induction):
x′ :A+ A′ ⊢ bind (bind y← retx′; case y{inl x.retx | inr .!})← x; retinl x
⊒⊑ bind (case x′{inl x.retx | inr .!})← x; retinl x (Fβ)

⊒⊑ (case x′{inl x.bind x← retx; retinl x | inr .bind x←!; retinl x})
(commuting conversion)

⊒⊑ (case x′{inl x.retinl x | inr .!}) (Fβ,! strictness)
⊑ (case x′{inl x.retinl x | inr y.retinl y}) (! bottom)
⊒⊑ retx′ (+η)

#

Proof of Lemma 5.3. Proof. This satisfies retraction:

πforce thunk {π)→ force z | π ′)→!}⊒⊑ π{π)→ force z | π ′)→!} (Uβ)

⊒⊑ force z (&β)

and projection:

thunk {π)→ force thunk πforce w | π ′)→!}
⊒⊑ thunk {π)→ πforce w | π ′)→!} (Uβ)

⊑ thunk {π)→ πforce w | π ′)→ π ′force w} (! bottom)
⊒⊑ thunk force w (&η)

⊒⊑w (Uη)

#

Proof of Lemma 5.6. Proof. It is clear that the normalized system is a subset of the
original: every normalized rule corresponds directly to a rule of the original system, except
the normalized A⊑ ? and B⊑ ¿ rules have a subderivation that was not present originally.
For the converse, first we show by induction that reflexivity is admissible:

1. If A ∈ {?, 1, 0}, we use a normalized rule.
2. If A ̸∈ {?, 1, 0}, we use the inductive hypothesis and the monotonicity rule.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

96 M. S. New et al.

3. If B ∈ {¿,⊤} use the normalized rule.
4. If B ̸∈ {¿,⊤} use the inductive hypothesis and monotonicity rule.

Next, we show that transitivity is admissible:

1. Assume we have A⊑ A′ ⊑ A′′

a. If the left rule is 0⊑ A′, then either A′ = ? or A′ = 0. If A′ = 0 the right rule is
0⊑ A′′ and we can use that proof. Otherwise, A′ = ? then the right rule is ?⊑ ?
and we can use 0⊑ ?.

b. If the left rule is A⊑ A where A ∈ {?, 1} then either A= ?, in which case A′′ = ?
and we’re done. Otherwise the right rule is either 1⊑ 1 (done) or 1⊑ ? (also
done).

c. If the left rule is A⊑ ? with A ̸∈ {0, ?} then the right rule must be ?⊑ ? and we’re
done.

d. Otherwise the left rule is a monotonicity rule for one ofU ,+,× and the right rule
is either monotonicity (use the inductive hypothesis) or the right rule is A′ ⊑ ?
with a sub-proof of A′ ⊑ ⌊A′⌋. Since the left rule is monotonicity, ⌊A⌋= ⌊A′⌋, so
we inductively use transitivity of the proof of A⊑ A′ with the proof of A′ ⊑ ⌊A′⌋
to get a proof A⊑ ⌊A⌋ and thus A⊑ ?.

2. Assume we have B⊑ B′ ⊑ B′′.
a. If the left rule is ⊤⊑ B′ then B′′ ∈ {¿,⊤} so we apply that rule.
b. If the left rule is ¿⊑ ¿, the right rule must be as well.
c. If the left rule is B⊑ ¿ the right rule must be reflexivity.
d. If the left rule is a monotonicity rule for &,→, F then the right rule is either also
monotonicity (use the inductive hypothesis) or it’s a B⊑ ¿ rule and we proceed
with ? above

Finally we show A⊑ ?, B⊑ ¿ are admissible by induction on A, B.
1. If A ∈ {?, 0} we use the primitive rule.
2. If A ̸∈ {?, 0} we use the A⊑ ? rule and we need to show A⊑ ⌊A⌋. If A= 1, we use
the 1⊑ 1 rule, otherwise we use the inductive hypothesis and monotonicity.

3. If B ∈ {¿,⊤} we use the primitive rule.
4. If B ̸∈ {¿,⊤} we use the B⊑ ¿ rule and we need to show B⊑ ⌊B⌋, which follows by
inductive hypothesis and monotonicity.

Every other rule in Figure 4 is a rule of the normalized system in Figure 17. #
To keep proofs high-level, we establish the following cast reductions that follow easily

from β, η principles.

Lemma D.2 (Cast Reductions). The following are all provable

#⟨A′1 + A′2! A1 + A2⟩$[inl V]⊒⊑ inl #⟨A′1! A1⟩$[V]
#⟨A′1 + A′2! A1 + A2⟩$[inr V]⊒⊑ inr #⟨A′2! A2⟩$[V]
#⟨F(A1 + A2) " F(A′1 + A′2)⟩$[retinl V]⊒⊑ bind x1← #⟨A1 " A′1⟩$[retV];
retinl x1

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 97

#⟨F(A1 + A2) " F(A′1 + A′2)⟩$[retinr V]⊒⊑ bind x2← #⟨A2 " A′2⟩$[retV];
retinr x2
#⟨F1 " F1⟩$⊒⊑ •
#⟨1! 1⟩$[x]⊒⊑ x
#⟨F(A1 × A2) " F(A′1 × A′2)⟩$[ret(V1, V2)]
⊒⊑ bind x1← #⟨FA1 " FA′1⟩$[retV1]; bind x2← #⟨FA2 " FA′2⟩$[retV2];
ret(x1, x2)

#⟨A′1 × A′2! A1 × A2⟩$[(V1, V2)]⊒⊑ (#⟨A′1! A1⟩$[V1], #⟨A′2! A2⟩$[V2])
(#⟨A→ B " A′ → B′⟩$M) V ⊒⊑ (#⟨B " B′⟩$M) (#⟨A′! A⟩$V)
(force (#⟨U(A′ → B′)! U(A→ B)⟩$V)) V ′
⊒⊑ bind x←⟨FA " FA′⟩[retV ′]; force (#⟨UB′! UB⟩$(thunk (force V x)))

π#⟨B1 & B2 " B′1 & B′2⟩$M ⊒⊑ #⟨B1 " B′1⟩$πM
π ′#⟨B1 & B2 " B′1 & B′2⟩$M ⊒⊑ #⟨B2 " B′2⟩$π ′M
πforce (#⟨U(B′1 & B′2)! U(B1 & B2)⟩$V)⊒⊑ force #⟨UB′1! UB1⟩$

thunk (πforce V)
π ′force (#⟨U(B′1 & B′2)! U(B1 & B2)⟩$V)⊒⊑ force #⟨UB′2! UB2⟩$

thunk (π ′force V)
#⟨FUB " FUB′⟩$[retV]⊒⊑ retthunk #⟨B " B′⟩$force V
force #⟨UFA′! UFA⟩$[V]⊒⊑ bind x← force V ; thunk ret⟨A′! A⟩x

Proof of Lemma 5.8.

Proof.

1. First, retraction follows from retraction twice:

S1[S2[retV2[V1[x]]]]⊒⊑ S1[ret[V1[x]]]⊒⊑ x
and projection follows from projection twice:

bind x← S1[S2[•]]; retV2[V1[x]]⊒⊑ bind x← S1[S2[•]];
bind y← ret[V1[x]]; retV2[y] (Fβ)

⊒⊑ bind y← (bind x← S1[S2[•]]; ret[V1[x]]);
retV2[y] (Commuting conversion)

⊑ bind y← S2[•]; retV2[y] (Projection)

⊑ • (Projection)

2. Again retraction follows from retraction twice:

S1[S2[force V2[V1[z]]]]⊒⊑ S1[force V1[z]]⊒⊑ force z

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

98 M. S. New et al.

and projection from projection twice:

V2[V1[thunk S1[S2[force w]]]]⊒⊑ V2[V1[thunk S1[force thunk S2[force w]]]]
(Uβ)

⊑ V2[thunk S2[force w]] (Projection)

⊑w (Projection)

#

Proof of Lemma 5.10.

Proof. By induction on normalized type precision derivations.

1. A⊑ A (A ∈ {?, 1}), because identity is an ep pair.
2. 0⊑ A (that A ∈ {?, 0} is not important):
a. Retraction is

x : 0⊢ retx⊒⊑ bind y← retabsurd x;! : FA

which holds by 0η
b. Projection is

• : FA⊢ bind x← (bind y← •;!); retabsurd x⊑ • : FA
Which we calculate:

bind x← (bind y← •;!); retabsurd x
⊒⊑ bind y← •; bind x←!; retabsurd x (comm conv)

⊒⊑ bind y← •;! (Strictness of Stacks)

⊑ bind y← •; rety (! is ⊥)
⊒⊑ • (Fη)

3. +:
a. Retraction is

x : A1 + A2 ⊢
#⟨F(A1 + A2) " F(A′1 + A′2)⟩$[ret#⟨A′1 + A′2! A1 + A2⟩$[x]]
= #⟨F(A1 + A2) " F(A′1 + A′2)⟩$

[retcase x{x1.inl #⟨A′1! A1⟩$[x1] | x1.inr #⟨A′2! A2⟩$[x2]}]
⊒⊑ case x (commuting conversion)

{x1.#⟨F(A1 + A2) " F(A′1 + A′2)⟩$[retinl #⟨A′1! A1⟩$[x1]]
| x2.#⟨F(A1 + A2) " F(A′1 + A′2)⟩$[retinr #⟨A′2! A2⟩$[x2]]}

⊒⊑ case x (cast computation)

{x1.bind x1← #⟨FA1 " FA′1⟩$[ret#⟨A′1! A1⟩$x1]; retinl x1
| x2.bind x2← #⟨FA2 " FA′2⟩$[ret#⟨A′2! A2⟩$x2]; retinr x2}

⊒⊑ case x{x1.retinl x1 | x2.retinr x2} (IH retraction)

⊒⊑ retx (+η)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 99

b. For Projection:

• : A′1 + A′2 ⊢
bind x← #⟨F(A1 + A2) " F(A′1 + A′2)⟩$; #⟨A′1 + A′2! A1 + A2⟩$[x]
= bind x← (bind x′ ← •; case x′{x′1.bind x1← #⟨FA1 " FA′1⟩$[ret x′1];

ret inl x1 | x′2. · · ·});
#⟨A′1 + A′2! A1 + A2⟩$

⊒⊑ bind x← •;′ case x′ (Commuting Conversion)

{x′1.bind x1← #⟨FA1 " FA′1⟩$[retx′1]; #⟨A′1 + A′2! A1 + A2⟩$retinl x1
| x′2.bind x2← #⟨FA2 " FA′2⟩$[retx′2]; #⟨A′1 + A′2! A1 + A2⟩$retinr x2}

⊒⊑ bind x← •;′ case x′ (Cast Computation)

{x′1.bind x1← #⟨FA1 " FA′1⟩$[retx′1]; retinl #⟨A′1! A1⟩$x1
| x′2.bind x2← #⟨FA2 " FA′2⟩$[retx′2]; retinr #⟨A′2! A2⟩$x2}

⊑ bind x← •;′ case x′{x′1.retinl x′1 | x′2.retinr x′2} (IH projection)

⊒⊑ bind x← •;′ retx′ (+η)

⊒⊑ • (Fη)

4. ×:
a. First, Retraction:

x : A1 × A2 ⊢
#⟨F(A1 × A2) " F(A′1 × A′2)⟩$[ret#⟨A′1 × A′2! A1 × A2⟩$[x]]
= #⟨F(A1 × A2) " F(A′1 × A′2)⟩$[retsplit x to (x1, x2).(#⟨A′1! A1⟩$[x1],

#⟨A′2! A2⟩$[x2])]
⊒⊑ split x to (x1, x2).#⟨F(A1 × A2) " F(A′1 × A′2)⟩$[ret(#⟨A′1! A1⟩$[x1],

#⟨A′2! A2⟩$[x2])] (commuting conversion)

⊒⊑ split x to (x1, x2). (cast reduction)

bind y1← #⟨FA1 " FA′1⟩$[ret#⟨A′1! A1⟩$[x1]];
bind y2← #⟨FA2 " FA′2⟩$[ret#⟨A′2! A2⟩$[x2]];
ret(y1, y2)

⊒⊑ split x to (x1, x2).bind y1← retx1; bind y2← retx2; ret(y1, y2)
(IH retraction)

⊒⊑ split x to (x1, x2).ret(x1, x2) (Fβ)

⊒⊑ retx (×η)

b. Next, Projection:

• : FA′ ⊢
bind x← #⟨F(A1 × A2) " F(A′1 × A′2)⟩$[•]; ret#⟨A′1 × A′2! A1 × A2⟩$[x]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

100 M. S. New et al.

⊒⊑ bind x′ ← •; split x′ to (x′1, x′2). (Fη,×η)

bind x← #⟨F(A1 × A2) " F(A′1 × A′2)⟩$[ret(x′1, x′2)];
ret#⟨A′1 × A′2! A1 × A2⟩$[x]

⊒⊑ bind x′ ← •; split x′ to (x′1, x′2). (cast reduction)

bind x1← #⟨FA1 " FA′1⟩$[retx′1];
bind x2← #⟨FA2 " FA′2⟩$[retx′2];
ret#⟨A′1 × A′2! A1 × A2⟩$[(x1, x2)]

⊒⊑ bind x′ ← •; split x′ to (x′1, x′2). (cast reduction)

bind x1← #⟨FA1 " FA′1⟩$[retx′1];
bind x2← #⟨FA2 " FA′2⟩$[retx′2];
ret(#⟨A′1! A1⟩$[x1], #⟨A′2! A2⟩$[x2])

⊒⊑ bind x′ ← •; split x′ to (x′1, x′2). (Fβ, twice)

bind x1← #⟨FA1 " FA′1⟩$[retx′1];
bind x2← #⟨FA2 " FA′2⟩$[retx′2];
bind y′2← ret#⟨A′2! A2⟩$[x2];
bind y′1← ret#⟨A′1! A1⟩$[x1];
ret(y′1, y

′
2)

⊑ bind x′ ← •; split x′ to (x′1, x′2). (IH Projection)

bind x1← #⟨FA1 " FA′1⟩$[retx′1];
bind y′2← retx′2;
bind y′1← ret#⟨A′1! A1⟩$[x1];
ret(y′1, y

′
2)

⊒⊑ bind x′ ← •; split x′ to (x′1, x′2). (Fβ)

bind x1← #⟨FA1 " FA′1⟩$[retx′1];
bind y′1← ret#⟨A′1! A1⟩$[x1];
ret(x′1, y

′
2)

⊑ bind x′ ← •; split x′ to (x′1, x′2). (IH Projection)

bind y′1← retx′1;
ret(x′1, y

′
2)

⊒⊑ bind x′ ← •; split x′ to (x′1, x′2).ret(x′1, x′2) (Fβ)

⊒⊑ bind x′ ← •; retx′ (×η)

⊒⊑ • (Fη)

5. U : By inductive hypothesis, (x.#⟨UB′! UB⟩$, ⟨B " B′⟩) is a computation ep pair
a. To show retraction we need to prove:

x :UB⊢ retx⊒⊑ bind y← (retthunk #⟨UB′! UB⟩$);

retthunk #⟨B " B′⟩$[force y] : FUB′

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 101

Which we calculate as follows:

x :UB⊢
#⟨FUB " FUB′⟩$[(ret#⟨UB′! UB⟩$[x])]
⊒⊑ retthunk (#⟨B " B′⟩$[force #⟨UB′! UB⟩$[x]]) (Cast Reduction)

⊒⊑ retthunk force x (IH Retraction)

⊒⊑ retx (Uη)

b. To show projection we calculate:

bind x← #⟨FUB " FUB′⟩$[•]; #⟨UB′! UB⟩$[x]
⊒⊑ bind x′ ← •; bind x← #⟨FUB " FUB′⟩$[retx′]; #⟨UB′! UB⟩$[x]

(Fη)

⊒⊑ bind x′ ← •; bind x← retthunk (#⟨B " B′⟩$[force x′]);
#⟨UB′! UB⟩$[x] (Cast Reduction)

⊒⊑ bind x′ ← •; #⟨UB′! UB⟩$[thunk (#⟨B " B′⟩$[force x′])] (Fβ)

⊑ bind x′ ← •; x′ (IH Projection)

⊒⊑ • (Fη)

1. There’s a few base cases about the dynamic computation type, then
2. ⊤:
a. Retraction is by ⊤η:

z :U⊤⊢ force z⊒⊑ {} :⊤
b. Projection is

thunk !⊑ thunk force w (! is ⊥)
⊒⊑w (Uη)

3. &:

a. Retraction

z :U(B1 & B2)⊢
#⟨B1 & B2 " B′1 & B′2⟩$[force #⟨U(B′1 & B′2)! U(B1 & B2)⟩$[z]]
⊒⊑ {π)→ π#⟨B1 & B2 " B′1 & B′2⟩$[force #⟨U(B′1 & B′2)! U(B1 & B2)⟩$[z]]

(&η)

| π ′)→ π ′#⟨B1 & B2 " B′1 & B′2⟩$[force #⟨U(B′1 & B′2)! U(B1 & B2)⟩$[z]]}
⊒⊑ {π)→ #⟨B1 " B′1⟩$[πforce #⟨U(B′1 & B′2)! U(B1 & B2)⟩$[z]]

(Cast reduction)

| π ′)→ #⟨B2 " B′2⟩$[π ′force #⟨U(B′1 & B′2)! U(B1 & B2)⟩$[z]]}
⊒⊑ {π)→ #⟨B1 " B′1⟩$[force #⟨UB′1! UB1⟩$[thunk πforce z]]

(Cast reduction)

| π ′)→ #⟨B2 " B′2⟩$[force #⟨UB′2! UB2⟩$[thunk π ′force z]]}

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

102 M. S. New et al.

⊒⊑ {π)→ force thunk πforce z | π ′)→ force thunk π ′force z}
(IH retraction)

⊒⊑ {π)→ πforce z | π ′)→ π ′force z} (Uβ)

⊒⊑ force z (&η)

b. Projection

w :UB′1 & B
′
2 ⊢

#⟨U(B′1 & B′2)! U(B1 & B2)⟩$[thunk #⟨B1 & B2 " B′1 & B′2⟩$[force w]]
⊒⊑ thunk force #⟨U(B′1 & B′2)! U(B1 & B2)⟩$
[thunk #⟨B1 & B2 " B′1 & B′2⟩$[force w]] (Uη)

⊒⊑ thunk {π)→ πforce #⟨U(B′1 & B′2)! U(B1 & B2)⟩$
[thunk #⟨B1 & B2 " B′1 & B′2⟩$[force w]]

| π ′)→ π ′force #⟨U(B′1 & B′2)! U(B1 & B2)⟩$}
[thunk #⟨B1 & B2 " B′1 & B′2⟩$[force w]] (&η)

⊒⊑ thunk {π)→ force #⟨UB′1! UB1⟩$
[thunk πforce thunk #⟨B1 & B2 " B′1 & B′2⟩$[force w]]

| π ′)→ force #⟨UB′2! UB2⟩$}
[thunk π ′force thunk #⟨B1 & B2 " B′1 & B′2⟩$[force w]] (cast reduction)
⊒⊑ thunk {π)→ force #⟨UB′1! UB1⟩$
[thunk π#⟨B1 & B2 " B′1 & B′2⟩$[force w]] (Uβ)

| π ′)→ force #⟨UB′2! UB2⟩$}
[thunk π ′#⟨B1 & B2 " B′1 & B′2⟩$[force w]]

⊒⊑ thunk {π)→ force #⟨UB′1! UB1⟩$[thunk #⟨B1 " B′1⟩$[πforce w]]
(cast reduction)

| π ′)→ force #⟨UB′2! UB2⟩$[thunk #⟨B2 " B′2⟩$[π ′force w]]}
⊒⊑ thunk {π)→ force #⟨UB′1! UB1⟩$
[thunk #⟨B1 " B′1⟩$[force thunk πforce w]] (Uβ)

| π ′)→ force #⟨UB′2! UB2⟩$[thunk #⟨B2 " B′2⟩$}
[force thunk π ′force w]]

⊑ thunk {π)→ force thunk πforce w | π ′)→ force thunk π ′force w}
(IH projection)

⊒⊑ thunk {π)→ πforce w | π ′)→ π ′force w} (Uβ)

⊒⊑ thunk force w (&η)

⊒⊑w (Uη)

4. →:
a. Retraction

z :U(A→ B)⊢
#⟨A→ B " A′ → B′⟩$[force #⟨U(A′ → B′)! U(A→ B)⟩$[z]]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 103

⊒⊑ λx : A.(#⟨A→ B " A′ → B′⟩$[force #⟨U(A′ → B′)! U(A→ B)⟩$[z]]) x
(→ η)

⊒⊑ λx : A.#⟨B " B′⟩$[(force #⟨U(A′ → B′)! U(A→ B)⟩$[z])(#⟨A′! A⟩$[x])]
(cast reduction)

⊒⊑ λx : A. (cast reduction)

#⟨B " B′⟩$[bind y← #⟨FA " FA′⟩$[ret⟨A′! A⟩[x]];
force ⟨UB′! UB⟩[thunk ((force z) y)]]

⊒⊑ λx : A.#⟨B " B′⟩$[bind y← retx; force ⟨UB′! UB⟩
[thunk ((force z) y)]] (IH Retraction)

⊒⊑ λx : A.#⟨B " B′⟩$[force ⟨UB′! UB⟩[thunk ((force z) x)]] (Fβ)

⊒⊑ λx : A.force thunk ((force z) x) (IH retraction)

⊒⊑ λx : A.(force z) x (Uβ)

⊒⊑ force z (→ η)

b. Projection

w :U(A′ → B′)⊢
#⟨U(A′ → B′)! U(A→ B)⟩$[thunk #⟨A→ B " A′ → B′⟩$[force w]]
⊒⊑ thunk force #⟨U(A′ → B′)! U(A→ B)⟩$[thunk #⟨A→ B " A′ → B′⟩$

[force w]] (Uη)

⊒⊑ thunk λx′ : A′.

(force #⟨U(A′ → B′)! U(A→ B)⟩$[thunk #⟨A→ B " A′ → B′⟩$
[force w]]) x′ (→ η)

⊒⊑ thunk λx′ : A′.

bind x← #⟨FA " FA′⟩$[retx′]; (cast reduction)

force #⟨UB′! UB⟩$[thunk ((force thunk #⟨A→ B " A′ → B′⟩$
[force w]) x)]

⊒⊑ thunk λx′ : A′.

bind x← #⟨FA " FA′⟩$[retx′]; (Uβ)

force #⟨UB′! UB⟩$[thunk ((#⟨A→ B " A′ → B′⟩$[force w]) x)]
⊒⊑ thunk λx′ : A′.

bind x← #⟨FA " FA′⟩$[retx′]; (cast reduction)

force #⟨UB′! UB⟩$[thunk #⟨B " B′⟩$[(force w) (⟨A′! A⟩[x])]]
⊒⊑ thunk λx′ : A′.

bind x← #⟨FA " FA′⟩$[retx′]; (Fβ)

bind x′ ← ret⟨A′! A⟩[x];
force #⟨UB′! UB⟩$[thunk #⟨B " B′⟩$[(force w) x′]]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

104 M. S. New et al.

⊑ thunk λx′ : A′. (IH projection)

bind x′ ← retx′;
force #⟨UB′! UB⟩$[thunk #⟨B " B′⟩$[(force w) x′]]

⊒⊑ thunk λx′ : A′.force #⟨UB′! UB⟩$[thunk #⟨B " B′⟩$[(force w) x′]]
(Fβ)

⊒⊑ thunk λx′ : A′.force #⟨UB′! UB⟩$[thunk #⟨B " B′⟩$
[force thunk ((force w) x′)]] (Fβ)

⊑ thunk λx′ : A′.force thunk ((force w) x′) (IH projection)

⊒⊑ thunk λx′ : A′.((force w) x′) (Uβ)

⊒⊑ thunk force w (→ η)

⊒⊑w (Uη)

5. F:

a. To show retraction we need to show

z :UFA⊢ force z⊒⊑ #⟨FA " FA′⟩$[force thunk (bind x← force z;

ret#⟨A′! A⟩$)]
We calculate:

#⟨FA " FA′⟩$[force thunk (bind x← force z; ret#⟨A′! A⟩$)]
⊒⊑ #⟨FA " FA′⟩$[(bind x← force z; ret#⟨A′! A⟩$)] (Uβ)

⊒⊑ bind x← force z; #⟨FA " FA′⟩$[ret#⟨A′! A⟩$] (comm conv)

⊒⊑ bind x← force z; retx (IH value retraction)

⊒⊑ force z (Fη)

b. To show projection we need to show

w :UFA′ ⊢ thunk (bind x← force thunk #⟨FA " FA′⟩$[force w];

ret#⟨A′! A⟩$)⊑w :UB′

We calculate as follows

thunk (bind x← force thunk #⟨FA " FA′⟩$[force w]; ret#⟨A′! A⟩$)
⊒⊑ thunk (bind x← #⟨FA " FA′⟩$[force w]; ret#⟨A′! A⟩$) (Uβ)

⊑ thunk force w (IH value projection)

⊒⊑w (Uη)

#

Proof of Lemma 5.11.

Proof. By symmetry it is sufficient to show S1 ⊑ S2.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 105

S1 ⊑ S1
bind x← S1; retx⊑ bind x← •; S1[retx]
bind x← S1; retVe ⊑ bind x← •; retx
bind x← S1; retx⊑ bind x← •; S2[retx]

• : FA′ ⊢ S1 ⊑ S2 : FA
similarly to show V1 ⊑ V2:

x :UB⊢ thunk force V2 ⊑ thunk force V2 :UB′

x :UB⊢ thunk force x⊑ thunk Sp[force V2]

x :UB⊢ thunk force V1 ⊑ thunk force V2 :UB′

x :UB⊢ V1 ⊑ V2 :UB′

#
Proof of Lemma 5.12.

Proof. We proceed by induction on A, B, following the proof that reflexivity is admissible
given in Lemma 5.6.

1. If A ∈ {1, ?}, then #⟨A! A⟩$[x]= x.
2. If A= 0, then absurd x⊒⊑ x by 0η.
3. If A=UB, then by inductive hypothesis #⟨B " B⟩$⊒⊑ •. By Lemma 5.9, (x.x, •) is
a computation ep pair from B to itself. But by Lemma 5.10, (#⟨UB! UB⟩$[x], •)
is also a computation ep pair so the result follows by uniqueness of embeddings
from computation projections Lemma 5.11.

4. If A= A1 × A2 or A= A1 + A2, the result follows by the η principle and inductive
hypothesis.

5. If B= ¿, #⟨¿ " ¿⟩$= •.
6. For B=⊤, the result follows by ⊤η.
7. For B= B1 & B2 or B= A→ B′, the result follows by inductive hypothesis and η.
8. For B= FA, by inductive hypothesis, the downcast is a projection for the value
embedding x.x, so the result follows by identity ep pair and uniqueness of
projections from value embeddings. #

Proof of Lemma 5.13.

Proof. By mutual induction on A, B.

1. A⊑ A′ ⊑ A′′

a. If A= 0, we need to show x : 0⊢ #⟨A′′! 0⟩$[x]⊒⊑ #⟨A′′! A′⟩$
[#⟨A′! 0⟩$[x]] : A′′ which follows by 0η.

b. If A= ?, then A′ = A′′ = ?, and both casts are the identity.
c. If A ̸∈ {?, 0} and A′ = ?, then A′′ = ? and #⟨?! ?⟩$[#⟨?! A⟩$]= #⟨?! A⟩$ by
definition.

d. If A, A′ ̸∈ {?, 0} and A′′ = ?, then ⌊A⌋= ⌊A′⌋, which we call G and
#⟨?! A⟩$= #⟨?! G⟩$[#⟨G! A⟩$]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

106 M. S. New et al.

and

#⟨?! A′⟩$[#⟨A′! A⟩$]= #⟨?! G⟩$[#⟨G! A′⟩$[#⟨A′! A⟩$]]
so this reduces to the case for A⊑ A′ ⊑G, below.

e. If A, A′, A′′ ̸∈ {?, 0}, then they all have the same top-level constructor:
i.+: We need to show for A1 ⊑ A′1 ⊑ A′′1 and A2 ⊑ A′2 ⊑ A′′2:

x : #A1$+ #A2$⊢ #⟨A′′1 + A′′2! A′1 + A′2⟩$[#⟨A′1 + A′2! A1 + A2⟩$[x]]
⊒⊑ #⟨A′′1 + A′′2! A1 + A2⟩$[x] : #A′′1$+ #A′′2$

We proceed as follows:

#⟨A′′1 + A′′2! A′1 + A′2⟩$[#⟨A′1 + A′2! A1 + A2⟩$[x]]
⊒⊑ case x (+η)

{x1.#⟨A′′1 + A′′2! A′1 + A′2⟩$[#⟨A′1 + A′2! A1 + A2⟩$[inl x1]]
| x2.#⟨A′′1 + A′′2! A′1 + A′2⟩$[#⟨A′1 + A′2! A1 + A2⟩$[inr x2]]}

⊒⊑ case x (cast reduction)

{x1.#⟨A′′1 + A′′2! A′1 + A′2⟩$[inl #⟨A′1! A1⟩$[x1]]
| x2.#⟨A′′1 + A′′2! A′1 + A′2⟩$[inr #⟨A′2! A2⟩$[x2]]}

⊒⊑ case x (cast reduction)

{x1.inl #⟨A′′1! A′1⟩$[#⟨A′1! A1⟩$[x1]]
| x2.inr #⟨A′′2! A′2⟩$[#⟨A′2! A2⟩$[x2]]}

⊒⊑ case x (IH)

{x1.inl #⟨A′′1! A1⟩$[x1]
| x2.inr #⟨A′′2! A2⟩$[x2]}

= #⟨A′′1 + A′′2! A1 + A2⟩$[x] (definition)

ii.1: By definition both sides are the identity.
iii.×: We need to show for A1 ⊑ A′1 ⊑ A′′1 and A2 ⊑ A′2 ⊑ A′′2:

x : #A1$× #A2$⊢ #⟨A′′1 × A′′2! A′1 × A′2⟩$[#⟨A′1 × A′2! A1 × A2⟩$[x]]
⊒⊑ #⟨A′′1 × A′′2! A1 × A2⟩$[x] : #A′′1$× #A′′2$.

We proceed as follows:

#⟨A′′1 × A′′2! A′1 × A′2⟩$[#⟨A′1 × A′2! A1 × A2⟩$[x]]
⊒⊑ split x to (y, z).#⟨A′′1 × A′′2! A′1 × A′2⟩$[#⟨A′1 × A′2! A1 × A2⟩$[(y, z)]]

(×η)

⊒⊑ split x to (y, z).#⟨A′′1 × A′′2! A′1 × A′2⟩$[(#⟨A′1! A1⟩$[y],
#⟨A′2! A2⟩$[z])] (cast reduction)

⊒⊑ split x to (y, z).(#⟨A′′1! A′1⟩$[#⟨A′1! A1⟩$[y]], #⟨A′′2! A′2⟩$
[#⟨A′2! A2⟩$[z]]) (cast reduction)

⊒⊑ split x to (y, z).(#⟨A′′1! A1⟩$[y], #⟨A′′2! A2⟩$[z]) (IH)

= #⟨A′′1 × A′′2! A1 × A2⟩$[x] (definition)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 107

iv.UB⊑UB′ ⊑UB′′. We need to show
x :UB⊢ #⟨UB′′! UB′⟩$[#⟨UB′! UB⟩$[x]]⊒⊑ #⟨UB′′! UB⟩$[x] :UB′′

By composition of ep pairs, we know

(x.#⟨UB′′! UB′⟩$[#⟨UB′! UB⟩$[x]], #⟨B " B′⟩$[#⟨B′ " B′′⟩$])
is a computation ep pair. Furthermore, by inductive hypothesis, we know

#⟨B " B′⟩$[#⟨B′ " B′′⟩$]⊒⊑ #⟨B " B′′⟩$
so then both sides form ep pairs paired with #⟨B " B′′⟩$, so it follows because
computation projections determine embeddings Lemma 5.11.

2. B⊑ B′ ⊑ B′′

a. If B=⊤, then the result is immediate by η⊤.
b. If B= ¿, then B′ = B′′ = ¿ then both sides are just •.
c. If B ̸∈ {¿,⊤}, and B′ = ¿, then B′′ = ¿

#⟨B " ¿⟩$[#⟨¿ " ¿⟩$]= #⟨B " ¿⟩$
d. If B, B′ ̸∈ {¿,⊤}, and B′′ = ¿ , and ⌊B⌋= ⌊B′⌋, which we call G. Then we need to
show

#⟨B " B′⟩$[#⟨B′ "G⟩$[#⟨G " ¿⟩$]]⊒⊑ #⟨B "G⟩$[#⟨G " [⟩$¿]]
so the result follows from the case B⊑ B′ ⊑G, which is handled below.

e. If B, B′, B′′ ̸∈ {¿,⊤}, then they all have the same top-level constructor:
i.& We are given B1 ⊑ B′1 ⊑ B′′1 and B2 ⊑ B′2 ⊑ B′′2 and we need to show

• : B′′1 & B′′2 ⊢ #⟨B1 & B2 " B′1 & B′2⟩$[#⟨B′1 & B′2 " B′′1 & B′′2⟩$] : B1 & B2
We proceed as follows:

#⟨B1 & B2 " B′1 & B′2⟩$[#⟨B′1 & B′2 " B′′1 & B′′2⟩$]
⊒⊑ {π)→ π#⟨B1 & B2 " B′1 & B′2⟩$[#⟨B′1 & B′2 " B′′1 & B′′2⟩$] (&η)

| π ′)→ π ′#⟨B1 & B2 " B′1 & B′2⟩$[#⟨B′1 & B′2 " B′′1 & B′′2⟩$]}
⊒⊑ {π)→ #⟨B1 " B′1⟩$[π#⟨B′1 & B′2 " B′′1 & B′′2⟩$] (cast reduction)

| π ′)→ #⟨B2 " B′2⟩$[π ′#⟨B′1 & B′2 " B′′1 & B′′2⟩$]}
⊒⊑ {π)→ #⟨B1 " B′1⟩$[#⟨B′1 " B′′1⟩$[π•]] (cast reduction)

| π ′)→ #⟨B2 " B′2⟩$#⟨B′2 " B′′2⟩$[π ′•]}
⊒⊑ {π)→ #⟨B1 " B′′1⟩$[π•] | π ′)→ #⟨B2 " B′′2⟩$[π ′•]} (IH)

= #⟨B1 & B2 " B′′1 & B′′2⟩$ (definition)

ii.→, assume we are given A⊑ A′ ⊑ A′′ and B⊑ B′ ⊑ B′′, then we proceed:
#⟨A→ B " A′ → B′⟩$[#⟨A′ → B′ " A′′ → B′′⟩$]
⊒⊑ λx : A.(#⟨A→ B " A′ → B′⟩$[#⟨A′ → B′ " A′′ → B′′⟩$][•]) x (→ η)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

108 M. S. New et al.

⊒⊑ λx : A.#⟨B " B′⟩$[(#⟨A′ → B′ " A′′ → B′′⟩$[•]) #⟨A′! A⟩$[x]]
(cast reduction)

⊒⊑ λx : A.#⟨B " B′⟩$[#⟨B′ " B′′⟩$[• #⟨A′′! A′⟩$[#⟨A′! A⟩$[x]]]]
(cast reduction)

⊒⊑ λx : A.#⟨B " B′′⟩$[• #⟨A′′! A⟩$[x]]
= #⟨A→ B " A→ B′′⟩$[•] (definition)

iii.FA⊑ FA′ ⊑ FA′′. First, by composition of ep pairs, we know
(x.#⟨A′′! A′⟩$[#⟨A′! A⟩$[x]], #⟨FA " FA′⟩$)[#⟨FA′ " FA′′⟩$]

form a value ep pair. Furthermore, by inductive hypothesis, we know

x : A⊢ #⟨A′′! A′⟩$[#⟨A′! A⟩$[x]]⊒⊑ #⟨A′′! A⟩$[x]
so the two sides of our equation are both projections with the same value
embedding, so the equation follows from uniqueness of projections from value
embeddings. #

Proof of Lemma 5.14.

Proof.

1. Assume retVe[V]⊑M : FA′. Then by retraction, retV ⊑ Sp[retVe[V]] so by
transitivity, the result follows by substitution:

Sp ⊑ Sp retVe[V]⊑M
Sp[retVe[V]]⊑M

2. Assume retV ⊑ Sp[M] : FA. Then by projection, bind x← Sp[M]; retVe[x]⊑M ,
so it is sufficient to show

retVe[V]⊑ bind x← Sp[M]; retVe[x]

but again by substitution we have

bind x← retV ; retVe[x]⊑ bind x← Sp[M]; retVe[x]

and by Fβ, the LHS is equivalent to retVe[V].
3. Assume z′ :UB′ ⊢M ⊑ S[Sp[force z′]], then by projection, S[Sp[force Ve]]⊑
S[force z] and by substitution:

M ⊑ S[Sp[force z′]] Ve ⊑ Ve S[Sp[force Ve]]= (S[Sp[force z′]])[Ve/z′]
M[Ve/z′]⊑ S[Sp[force Ve]]

4. Assume z :UB⊢M[Ve/z′]⊑ S[force z]. Then by retraction, M ⊑
M[Ve[thunk Sp[force z]]] and by substitution:

M[Ve[thunk Sp[force z]]]⊑ S[force thunk Sp[force z]]

and the right is equivalent to S[Sp[force z]] by Uβ. #

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 109

Proof of Theorem 5.8 (Axiomatic Graduality).

Proof. By mutual induction over term precision derivations. For the β, η and reflexivity
rules, we use the identity expansion lemma and the corresponding β, η rule of CBPV*
Lemma 5.12.
For compatibility rules a pattern emerges. Universal rules (positive intro, negative elim)

are easy, we don’t need to reason about casts at all. For “(co)-pattern matching rules” (pos-
itive elim, negative intro), we need to invoke the η principle (or commuting conversion,
which is derived from the η principle). In all compatibility cases, the cast reduction lemma
keeps the proof straightforward.
Fortunately, all reasoning about “shifted” casts is handled in lemmas, and here we only

deal with the “nice” value upcasts/stack downcasts.

1. Transitivity for values: The GTT rule is

' : % ⊑ %′ '′ : %′ ⊑ %′′ '′′ : % ⊑ %′′

'⊢ V ⊑ V ′ : A⊑ A′ '′ ⊢ V ′ ⊑ V ′′ : A′ ⊑ A′′

'′′ ⊢ V ⊑ V ′′ : A⊑ A′′

Which under translation (and the same assumptions about the contexts) is

#%$⊢ #⟨A′! A⟩$[#V$]⊑ #V ′$[#'$] : #A′$
#%′$⊢ #⟨A′! A′⟩$[#V ′$]⊑ #V ′′$[#'′$] : #A′′$
#%$⊢ #⟨A′′! A⟩$[#V$]⊑ #V ′′$[#'′′$] : #A′′$

We proceed as follows, the key lemma here is the cast decomposition lemma:

#⟨A′′! A⟩$[#V$]⊒⊑ #⟨A′′! A′⟩$[#⟨A′! A⟩$[#V$]] (cast decomposition)

⊑ #⟨A′′! A′⟩$[#V ′$[#'$]] (IH)

⊑ #V ′′$[#'′$][#'$] (IH)

⊒⊑ #V ′′$[#'′′$] (cast decomposition)

2. Transitivity for terms: The GTT rule is

' : % ⊑ %′ '′ : %′ ⊑ %′′ '′′ : % ⊑ %′′ (:&⊑&′ (:&′ ⊑&′′ (′′ :&⊑&′′

' | (⊢M ⊑M ′ : B⊑ B′ '′ | (′ ⊢M ′ ⊑M ′′ : B′ ⊑ B′′

'′′ | (′′ ⊢M ⊑M ′′ : B⊑ B′′

Which under translation (and the same assumptions about the contexts) is

#%$ | #&′$⊢ #M$[#($]⊑ #⟨B " B′⟩$[#M ′$[#'$]] : #B$
[5pt]#%′$ | #&′′$⊢ #M ′$[#(′$]⊑ #⟨B′ " B′′⟩$[#M ′′$[#'′$]] : #B′$
#%$ | #&′′$⊢ #M$[#(′′$]⊑ #⟨B " B′′⟩$[#M ′′$[#'′′$]] : #B$

We proceed as follows, the key lemma here is the cast decomposition lemma:

#M$[#(′′$]⊒⊑ #M$[#($][#(′$] (Cast decomposition)

⊑ #⟨B " B′⟩$[#M ′$[#(′$][#'$]] (IH)

⊑ #⟨B " B′⟩$[#⟨B′ " B′′⟩$[#M ′′$[#'′$][#'$]]] (IH)

⊒⊑ #⟨B " B′′⟩$[#M ′′$[#'′′$]] (Cast decomposition)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

110 M. S. New et al.

3. Substitution of a value in a value: The GTT rule is

', x⊑ x′ : A1 ⊑ A′1 ⊢ V2 ⊑ V ′2 : A2 ⊑ A′2 '⊢ V1 ⊑ V ′1 : A1 ⊑ A′1
'⊢ V2[V1/x]⊑ V ′2[V ′1/x′] : A2 ⊑ A′2

Where ' : % ⊑ %′. Under translation, we need to show

#%$, x : #A1$⊢ #⟨A′2! A2⟩$[#V2$]⊑ #V ′2$[#'$][#⟨A′1! A1⟩$[x]/x′] : #A′2$
#%$⊢ #⟨A′1! A1⟩$[#V1$]⊑ #V ′1$[#'$] : #A′1$

#%$⊢ #⟨A′2! A2⟩$[#V2[V1/x]$]⊑ #V ′2[V ′1/x′]$[#'$] : #A′2$
Which follows by compositionality:

#⟨A′2! A2⟩$[#V2[V1/x]$]= (#⟨A′2! A2⟩$[#V2$])[#V1$/x] (Compositionality)

⊑ #V ′2$[#'$][#⟨A′1! A1⟩$[x]/x′][#V1$/x] (IH)

= #V ′2$[#'$][#⟨A′1! A1⟩$[#V1$]/x′]

⊑ #V ′2$[#'$][#V ′1$[#'$]/x′] (IH)

= #V ′2[V ′1/x′]$[#'$]
4. Substitution of a value in a term: The GTT rule is

', x⊑ x′ : A⊑ A′ | (⊢M ⊑M ′ : B⊑ B′ '⊢ V ⊑ V ′ : A⊑ A′

'⊢M[V/x]⊑M ′[V ′/x′] : B⊑ B′

Where ' : % ⊑ %′ and (:&⊑&′. Under translation this is:

#%$, x : #A$ | #&$⊢ #M$⊑ #⟨B " B′⟩$[#M ′$[#'$][#⟨A′! A⟩$[x]/x′]] : #B$
#%$⊢ #⟨A′! A⟩$[#V$]⊑ #V ′$[#'$] : #A′$

#%$ | #&$⊢ #M[V/x]$⊑ #⟨B " B′⟩$[#M ′[V ′/x′]$[#'$]] : #B$
Which follows from compositionality of the translation:

#M[V/x]$= #M$[#V$/x] (Compositionality)

⊑ #⟨B " B′⟩$[#M ′$[#'$][#⟨A′! A⟩$[x]/x′]][#V$/x] (IH)

= #⟨B " B′⟩$[#M ′$[#'$][#⟨A′! A⟩$[#V$]/x′]]
⊑ #⟨B " B′⟩$[#M ′$[#'$][#V ′$[#'$]/x′]] (IH)

= #⟨B " B′⟩$[#M ′[V ′/x′]$[#'$]] (Compositionality)

5. Substitution of a term in a stack: The GTT rule is

' | •⊑ • : B⊑ B′ ⊢ S ⊑ S′ :C⊑C′ ' | ·⊢M ⊑M ′ : B⊑ B′

' | ·⊢ S[M]⊑ S′[M ′] :C⊑C′

Where ' : % ⊑ %′. Under translation this is

#%$ | • : #B′$⊢ #S$[#⟨B " B′⟩$[•]]⊑ #⟨C " C′⟩$[#S′$[#'$]] : #C$
#%$ | ·⊢ #M$⊑ #⟨B " B′⟩$[#M ′$[#'$]] : #B$

#%$ | ·⊢ #S[M]$⊑ #⟨C " C′⟩$[#S′[M ′]$[#'$]] : #C$

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 111

We follows easily using compositionality of the translation:

#S[M]$= #S$[#M$] (Compositionality)

⊑ #S$[#⟨B " B′⟩$[#M ′$[#'$]]] (IH)

⊑ #⟨C " C′⟩$[#S′$[#'$][#M ′$[#'$]]] (IH)

= #⟨C " C′⟩$[#S′[M ′]$[#'$]] (Compositionality)

6. Variables: The GTT rule is

%1 ⊑ %′1, x⊑ x′ : A⊑ A′, %2 ⊑ %′2 ⊢ x⊑ x′ : A⊑ A′

which under translation is

#%1$, x : #A$, #%2$⊢ #⟨A′! A⟩$[x]⊑ #⟨A′! A⟩$[x] : #A′$
which is an instance of reflexivity.

7. Hole: The GTT rule is

' | •⊑ • : B⊑ B′ ⊢ •⊑ • : B⊑ B′

which under translation is

#%$ | • : B′ ⊢ #⟨B " B′⟩$[•]⊑ #⟨B " B′⟩$[•] : B
which is an instance of reflexivity.

8. Error is bottom: The GTT axiom is

'⊢!⊑M : B
where ' : % ⊑ %′, so we need to show

#%$⊢!⊑ #⟨B " B⟩$[#M$[#'$]] : #B$
which is an instance of the error is bottom axiom of CBPV.

9. Error strictness: The GTT axiom is

'⊢ S[!]⊑! : B

where ' : % ⊑ %′, which under translation is

#%$⊢ #S$[!]⊑ #⟨B " B⟩$[!] : #B$
By strictness of stacks in CBPV, both sides are equivalent to !, so it follows by
reflexivity.

10. UpCast-L: The GTT axiom is

x⊑ x′ : A⊑ A′ ⊢ ⟨A′! A⟩x⊑ x′ : A′

which under translation is

x : #A$⊢ #⟨A′! A′⟩$[#⟨A′! A⟩$[x]]⊑ #⟨A′! A⟩$[x] : A′

Which follows by identity expansion and reflexivity.
11. UpCast-R: The GTT axiom is

x : A⊢ x⊑ ⟨A′! A⟩x : A⊑ A′

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

112 M. S. New et al.

which under translation is

x : #A$⊢ #⟨A′! A⟩$[x]⊑ #⟨A′! A⟩$[#⟨A! A⟩$[x]] : #A′$
which follows by identity expansion and reflexivity.

12. DnCast-R: The GTT axiom is

•⊑ • : B⊑ B′ ⊢ •⊑ ⟨B " B′⟩ : B
Which under translation is

• : #B′$⊢ #⟨B " B′⟩$[•]⊑ #⟨B " B⟩$[#⟨B " B′⟩$[•]] : #B$
Which follows by identity expansion and reflexivity.

13. DnCast-L: The GTT axiom is

• : B′ ⊢ ⟨B " B′⟩•⊑ • : B⊑ B′

So under translation we need to show

• : #B′$⊢ #⟨B " B′⟩$[#⟨B′ " B′⟩$[•]]⊑ #⟨B " B′⟩$• : #B$
Which follows immediately by reflexivity and the lemma that identity casts are
identities.

14. 0 elim, we do the term case, the value case is similar

⟨0! 0⟩[#V$]⊑ #V ′$[#'$]
absurd #V$⊑ ⟨B " B′⟩absurd #V ′$[#'$]

Immediate by 0η.
15. + intro, we do the inl case, the inr case is the same:

#⟨A′1! A1⟩$[#V$]⊑ #V ′$[#'$]
#⟨A′1 + A′2! A1 + A2⟩$[inl #V$]⊑ inl #V ′$[#'$]

Which follows easily:

#⟨A′1 + A′2! A1 + A2⟩$[inl #V$]⊒⊑ inl #⟨A′1! A1⟩$#V$ (cast reduction)

⊑ inl #V ′$[#'$] (IH)

16. + elim, we do just the cases where the continuations are terms:
!⟨A′1 + A′2 ! A1 + A2⟩"[!V"]⊑ !V ′"[!'"]

!M1"[!("]⊑ !M ′
1"[!'"][!⟨A′1 ! A1⟩"[x1]/x′1] !M2"[!("]⊑ !M ′

2"[!'"][!⟨A′2 ! A2⟩"[x2]/x′2]
case !V"{x1.!M1"[!("] | x2.!M2"[!("]}⊑ !⟨B " B′⟩"[case !V"′[!'"]{x′1.!M ′

1"[!'"] | x′2.!M ′
2"[!'"]}]

case #V${x1.#M1$[#($] | x2.#M2$[#($]}
⊑ #⟨B " B′⟩$[case #V${x1.#M ′

1$[#'$][#⟨A′1! A1⟩$[x1]/x′1] | x2.#M ′
2$

[#'$][#⟨A′2! A2⟩$[x2]/x′2]}] (IH)

⊒⊑ case #V$ (comm conv)

{x1.#⟨B " B′⟩$[#M ′
1$[#'$][#⟨A′1! A1⟩$[x1]/x′1]]

| x2.#⟨B " B′⟩$[#M ′
2$[#'$][#⟨A′2! A2⟩$[x2]/x′2]]}

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 113

⊒⊑ case #V$ (+β)

{x1.#⟨B " B′⟩$[case inl #⟨A′1! A1⟩$x1{x′1.#M ′
1$[#'$] | x′2.#M ′

2$[#'$]}]
| x2.#⟨B " B′⟩$[case inr #⟨A′2! A2⟩$x2{x′1.#M ′

1$[#'$] | x′2.#M ′
2$[#'$]}]}

⊒⊑ case #V$ (cast reduction)

{x1.#⟨B " B′⟩$[case #⟨A′1 + A′2! A1 + A2⟩$inl x1{x′1.#M ′
1$[#'$] | x′2.#M ′

2$[#'$]}]
| x2.#⟨B " B′⟩$[case #⟨A′1 + A′2! A1 + A2⟩$inr x2{x′1.#M ′

1$[#'$] | x′2.#M ′
2$[#'$]}]}

⊒⊑ #⟨B " B′⟩$[case #⟨A′1 + A′2! A1 + A2⟩$[#V$]{x′1.#M ′
1$[#'$] | x′2.#M ′

2$[#'$]}]
⊑ #⟨B " B′⟩$[case #V ′$[#'$]{x′1.#M ′

1$[#'$] | x′2.#M ′
2$[#'$]}] (IH)

17. 1 intro:

#⟨1! 1⟩$[()]⊑ ()
Immediate by cast reduction.

18. 1 elim (continuations are terms case):

#⟨1! 1⟩$[#V$]⊑ #V ′$[#'$] #M$[#($]⊑ #⟨B " B′⟩$[#M ′$[#'$]]
split #V$ to ().#M$[#($]⊑ ⟨B " B′⟩[split #V$′[#'$] to ().#M ′$[#'$]]

which follows by identity expansion Lemma 5.12.
19. × intro:

#⟨A′1! A1⟩$#V1$⊑ #V ′1[#'$]$ #⟨A′2! A2⟩$#V2$⊑ #V ′2[#'$]$
#⟨A′1 × A′2! A1 × A2⟩$[(#V1$, #V2$)]⊑ (#V ′1[#'$]$, #V ′2[#'$]$)

We proceed:

#⟨A′1 × A′2! A1 × A2⟩$[(#V1$, #V2$)]⊒⊑ (#⟨A′1! A1⟩$#V1$, #⟨A′2! A2⟩$#V2$)
(cast reduction)

⊑ (#V ′1[#'$]$, #V ′2[#'$]$) (IH)

20. × elim: We show the case where the continuations are terms, the value continua-
tions are no different:

#⟨A′1 × A′2! A1 × A2⟩$[#V$]⊑ #V ′$[#'$]
#M$[#($]⊑ #⟨B " B′⟩$[#M ′$[#'$][#⟨A′1! A1⟩$[x]/x′][#⟨A′2! A2⟩$[y]/y′]]

split #V$ to (x, y).#M$[#($]⊑ ⟨B " B′⟩[split #V$′[#'$] to (x′, y′).#M ′$[#'$]]
We proceed as follows:

split #V$ to (x, y).#M$[#($]
⊑ split #V$ to (x, y).#⟨B " B′⟩$[#M ′$[#'$][#⟨A′1! A1⟩$[x]/x′]
[#⟨A′2! A2⟩$[y]/y′]] (IH)

⊒⊑ split #V$ to (x, y). (×β)

split (#⟨A′1! A1⟩$[x], #⟨A′2! A2⟩$[y]) to (x′, y′).#⟨B " B′⟩$[#M ′$[#'$]]
⊒⊑ split #V$ to (x, y). (cast reduction)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

114 M. S. New et al.

split #⟨A′1 × A′2! A1 × A′2⟩$[(x, y)] to (x′, y′).#⟨B " B′⟩$[#M ′$[#'$]]
⊒⊑ split #⟨A′1 × A′2! A1 × A2⟩$[#V$] to (x′, y′).#⟨B " B′⟩$[#M ′$[#'$]]

(×η)

⊑ split #V ′$[#'$] to (x′, y′).#⟨B " B′⟩$[#M ′$[#'$]] (IH)

⊒⊑ #⟨B " B′⟩$[split #V ′$[#'$] to (x′, y′).#M ′$[#'$]]
(commuting conversion)

21. U intro:

#M$⊑ #⟨B " B′⟩$[#M ′$[#'$]]
#⟨UB′! UB⟩$[thunk #M$]⊑ thunk #M ′$[#'$]

We proceed as follows:

#⟨UB′! UB⟩$[thunk #M$]⊑ #⟨UB′! UB⟩$[thunk #⟨B " B′⟩$[#M ′$[#'$]]]
(IH)

⊑ thunk #M ′$[#'$] (alt projection)

22. U elim:

#⟨UB′! UB⟩$[#V$]⊑ #V ′$[#'$]
force #V$⊑ #⟨B " B′⟩$force #V ′$[#'$]

By hom-set formulation of adjunction Lemma 5.14.
23. ⊤ intro:

{}⊑ #⟨⊤ "⊤⟩$[{}]
Immediate by ⊤η

24. & intro:
!M1"[!("]⊑ !⟨B1 " B′1⟩"[!M ′1"[!'"]] !M2"[!("]⊑ !⟨B2 " B′2⟩"[!M ′2"[!'"]]

{π)→ !M1"[!("] | π ′)→ !M2"[!("]}⊑ !⟨B1 & B2 " B′1 & B′2⟩"[{π)→ !M ′1"[!'"] | π ′)→ !M ′2"[!'"]}]

We proceed as follows:

{π)→ #M1$[#($] | π ′)→ #M2$[#($]}
⊑ {π)→ #⟨B1 " B′1⟩$[#M ′

1$[#'$]] | π ′)→ #⟨B2 " B′2⟩$[#M ′
2$[#'$]]} (IH)

⊒⊑ {π)→ π#⟨B1 & B2 " B′1 & B′2⟩$[{π)→ #M ′
1$[#'$] | π ′)→ #M ′

2$[#'$]}]
(cast reduction)

| π ′)→ π ′#⟨B1 & B2 " B′1 & B′2⟩$[{π)→ #M ′
1$[#'$] | π ′)→ #M ′

2$[#'$]}]}
⊒⊑ #⟨B1 & B2 " B′1 & B′2⟩$[{π)→ #M ′

1$[#'$] | π ′)→ #M ′
2$[#'$]}] (&η)

25. & elim, we show the π case, π ′ is symmetric:

#M$[#($]⊑ #⟨B1 & B2 " B′1 & B′2⟩$[#M ′$[#'$]]
π#M$[#($]⊑ #⟨B1 " B′1⟩$[π#M ′$[#'$]]

We proceed as follows:

π#M$[#($]⊑ π#⟨B1 & B2 " B′1 & B′2⟩$[#M ′$[#'$]] (IH)

⊒⊑ #⟨B1 " B′1⟩$[π#M ′$[#'$]] (cast reduction)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 115

26.

#M$[#($]⊑ #⟨B " B′⟩$[#M ′$[#'$][#⟨A′! A⟩$x/x′]]
λx : A.#M$[#($]⊑ #⟨A→ B " A′ → B′⟩$[λx′ : A′.#M ′$[#'$]]

We proceed as follows:

λx : A.#M$[#($]
⊑ λx : A.#⟨B " B′⟩$[#M ′$[#'$][#⟨A′! A⟩$x/x′]] (IH)

⊒⊑ λx : A.(#⟨A→ B " A′ → B′⟩$[λx′.#M ′$[#'$]]) x (cast reduction)

⊒⊑ #⟨A→ B " A′ → B′⟩$[λx′.#M ′$[#'$]] (→ η)

27. We need to show

#M$[#($]⊑ #⟨A→ B " A′ → B′⟩$[#M ′$[#'$]]
#⟨A′! A⟩$[#V$]⊑ #V ′$[#'$]

#M$[#($] #V$⊑ #⟨B " B′⟩$[#M ′$[#'$] #V ′$[#'$]]
We proceed:

#M$[#($] #V$
⊑ (#⟨A→ B " A′ → B′⟩$[#M ′$[#'$]]) #V$ (IH)

⊒⊑ #⟨B " B′⟩$[#M ′$[#'$] (#⟨A′! A⟩$#V$)] (cast reduction)

⊑ #⟨B " B′⟩$[#M ′$[#'$] #V ′$[#'$]] (IH)

28. We need to show

#⟨A′! A⟩$[#V$]⊑ #V ′$[#'$]
ret#V$⊑ #⟨FA " FA′⟩$[ret#V ′$[#'$]]

By hom-set definition of adjunction Lemma 5.14
29. We need to show

#M$[#($]⊑ #⟨FA " FA′⟩$[#M ′$[']]
#N$⊑ #⟨B " B′⟩$[#N$['][#⟨A′! A⟩$x/x′]]

bind x← #M$[#($]; #N$⊑ #⟨B " B′⟩$[bind x′ ← #M ′$[#'$]; #N ′$[#'$]]
We proceed:

bind x← #M$[#($]; #N$
⊑ bind x← #⟨FA " FA′⟩$[#M ′$[']]; #⟨B " B′⟩$[#N$['][#⟨A′! A⟩$x/x′]]

(IH, congruence)

⊒⊑ bind x← #⟨FA " FA′⟩$[#M ′$[']];
bind x′ ← ret#⟨A′! A⟩$[x]; #⟨B " B′⟩$[#N$[']] (Fβ)

⊑ bind x′ ← #M ′$[']; #⟨B " B′⟩$[#N$[']] (Projection)

⊒⊑ #⟨B " B′⟩$[bind x′ ← #M ′$[']; #N$[']] (commuting conversion)

#

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

116 M. S. New et al.

%, x : A, %′ ⊢ x⊑ x : A % | • : B⊢ •⊑ • : B % ⊢!⊑! : B

% ⊢ V ⊑ V ′ : A %, x : A⊢M ⊑M ′ : B
% ⊢ let x= V ;M ⊑ let x= V ′;M ′ : B

% ⊢ V ⊑ V ′ : 0
% ⊢ abort V ⊑ abort V ′ : B

% ⊢ V ⊑ V ′ : A1
% ⊢ inl V ⊑ inl V ′ : A1 + A2

% ⊢ V ⊑ V ′ : A2
% ⊢ inr V ⊑ inr V ′ : A1 + A2

% ⊢ V ⊑ V ′ : A1 + A2 %, x1 : A1 ⊢M1 ⊑M ′1 : B %, x2 : A2 ⊢M2 ⊑M ′2 : B
% ⊢ case V {x1.M1 | x2.M2}⊑ case V ′{x1.M ′1 | x2.M ′2} : B

% ⊢ ()⊑ () : 1

% ⊢ V1 ⊑ V ′1 : A1 % ⊢ V2 ⊑ V ′2 : A2
% ⊢ (V1, V2)⊑ (V ′1, V ′2) : A1 × A2

% ⊢ V ⊑ V ′ : A1 × A2 %, x : A1, y : A2 ⊢M ⊑M ′ : B
% ⊢ split V to (x, y).M ⊑ split V ′ to (x, y).M ′ : B

% ⊢ V ⊑ V ′ : A[µX .A/X]
% ⊢ rollµX .A V ⊑ rollµX .A V

′ :µX .A

% ⊢ V ⊑ V ′ :µX .A %, x : A[µX .A/X]⊢M ⊑M ′ : B
% ⊢ unroll V to roll x.M ⊑ unroll V ′ to roll x.M ′ : B

% ⊢M ⊑M ′ : B
% ⊢ thunk M ⊑ thunk M ′ :UB

% ⊢ V ⊑ V ′ :UB
% ⊢ force V ⊑ force V ′ : B

% ⊢ V ⊑ V ′ : A
% ⊢ retV ⊑ retV ′ : FA

% ⊢M ⊑M ′ : FA %, x : A⊢N ⊑N ′ : B
% ⊢ bind x←M ;N ⊑ bind x←M ′;N ′ : B

%, x : A⊢M ⊑M ′ : B
% ⊢ λx : A.M ⊑ λx : A.M ′ : A→ B

% ⊢M ⊑M ′ : A→ B % ⊢ V ⊑ V ′ : A
% ⊢M V ⊑M ′ V ′ : B

% ⊢M1 ⊑M ′1 : B1 % ⊢M2 ⊑M ′2 : B2
% ⊢ {π)→M1 | π ′)→M2}⊑ {π)→M ′1 | π ′)→M ′2} : B1 & B2

% ⊢M ⊑M ′ : B1 & B2
% ⊢ πM ⊑ πM ′ : B1

% ⊢M ⊑M ′ : B1 & B2
% ⊢ π ′M ⊑ π ′M ′ : B2

% ⊢M ⊑M ′ : B[νY .B/Y]
% ⊢ rollνY .B M ⊑ rollνY .B M ′ : νY .B

% ⊢M ⊑M ′ : νY .B
% ⊢ unroll M ⊑ unroll M ′ : B[νY .B/Y]

Fig. E.1. CBPV inequational theory (congruence rules).

E Proofs for Section 6

Proof of Lemma 6.3.

Proof.

bind x←M ; bind y←N ;N ′

⊒⊑ bind x←M ; bind y←N ; bind x← force thunk retx;N ′ (Uβ, Fβ)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 117

case inl V {x1.M1 | x2.M2}⊒⊑M1[V/x1] case inr V {x1.M1 | x2.M2}⊒⊑M2[V/x2]

%, x : A1 + A2 ⊢M : B
%, x : A1 + A2 ⊢M ⊒⊑ case x{x1.M[inl x1/x] | x2.M[inr x2/x]} : B

split (V1, V2) to (x1, x2).M ⊒⊑M[V1/x1, V2/x2]

%, x : A1 × A2 ⊢M : B
%, x : A1 × A2 ⊢M ⊒⊑ split x to (x1, x2).M[(x1, x2)/x] : B

%, x : 1⊢M : B
%, x : 1⊢M ⊒⊑M[()/x] : B

unroll rollA V to roll x.M ⊒⊑M[V/x]

%, x :µX .A⊢M : B
%, x :µX .A⊢M ⊒⊑ unroll x to roll y.M[rollµX .A y/x] : B

force thunk M ⊒⊑M

% ⊢ V :UB
% ⊢ V ⊒⊑ thunk force V :UB

let x= V ;M ⊒⊑M[V/x]

bind x← retV ;M ⊒⊑M[V/x] % | • : FA⊢ •⊒⊑ bind x← •; retx : FA

(λx : A.M) V ⊒⊑M[V/x]
% ⊢M : A→ B

% ⊢M ⊒⊑ λx : A.M x : A→ B
π{π)→M | π ′)→M ′}⊒⊑M

π ′{π)→M | π ′)→M ′}⊒⊑M ′ % ⊢M : B1 & B2
% ⊢M ⊒⊑ {π)→ πM | π ′)→ π ′M} : B1 & B2

% ⊢M :⊤
% ⊢M ⊒⊑ {} :⊤ unroll rollB M ⊒⊑M

% ⊢M : νY .B
% ⊢M ⊒⊑ rollνY .B unroll M : νY .B

Fig. E.2. CBPV β, η rules.

% ⊢!⊑M : B % ⊢ S[!]⊒⊑! : B % ⊢M ⊑M : B % ⊢ V ⊑ V : A % | B⊢ S ⊑ S : B′

% ⊢M1 ⊑M2 : B % ⊢M2 ⊑M3 : B
% ⊢M1 ⊑M3 : B

% ⊢ V1 ⊑ V2 : A % ⊢ V2 ⊑ V3 : A
% ⊢ V1 ⊑ V3 : A

% | B⊢ S1 ⊑ S2 : B′ % | B⊢ S2 ⊑ S3 : B′
% | B⊢ S1 ⊑ S3 : B′

%, x : A⊢M1 ⊑M2 : B % ⊢ V1 ⊑ V2 : A
% ⊢M1[V1/x]⊑M2[V2/x] : B

%, x : A⊢ V ′1 ⊑ V ′2 : A′ % ⊢ V1 ⊑ V2 : A
% ⊢ V ′1[V1/x]⊑ V ′2[V2/x] : A′

%, x : A | B⊢ S1 ⊑ S2 : B′ % ⊢ V1 ⊑ V2 : A
% | B⊢ S1[V1/x]⊑ S2[V2/x] : B′

% | B⊢ S1 ⊑ S2 : B′ % ⊢M1 ⊑M2 : B
% ⊢ S1[M1]⊑ S2[M2] : B′

% | B′ ⊢ S′1 ⊑ S′2 : B′′ % | B⊢ S1 ⊑ S2 : B′
% | B⊢ S′1[S1]⊑ S′2[S2] : B′′

Fig. E.3. CBPV logical and error rules.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

118 M. S. New et al.

⊒⊑ bind x←M ; bind w← retthunk retx; bind y←N ; bind x← force w;N ′

(Fβ)

⊒⊑ bind w← (bind x←M ; retthunk retx); bind y←N ; bind x← force w;N ′

(Fη)

⊒⊑ bind w← retthunk M ; bind y←N ; bind x← force w;N ′ (M thunkable)

⊒⊑ bind y←N ; bind x← force thunk M ;N ′ (Fβ)

⊒⊑ bind y←N ; bind x←M ;N ′ (Uβ)

#
Proof of Lemma 6.4.

Proof.

bind y← (bind x←M ;N); retthunk rety
⊒⊑ bind x←M ; bind y←N ; retthunk rety (Fη)

⊒⊑ bind x←M ; retthunk N (N thunkable)

⊒⊑ bind x←M ; retthunk (bind x← retx;N) (Fβ)

⊒⊑ bind x←M ; bind w← retthunk retx; retthunk (bind x← force w;N)
(Fβ,Uβ)

⊒⊑ bind w← (bind x←M ; retthunk retx); retthunk (bind x← force w;N)
(Fη)

⊒⊑ bind w← retthunk M ; retthunk (bind x← force w;N) (M thunkable)

⊒⊑ retthunk (bind x← force thunk M ;N) (Fβ)

⊒⊑ retthunk (bind x←M ;N) (Uβ)

#

Proof of Lemma 6.6.

Proof. Introduction forms follow from return is thunkable and thunkables compose. For
elimination forms it is sufficient to show that when the branches of pattern matching are
thunkable, the pattern match is thunkable.

1. x: We need to show x†= retx is thunkable, which we proved as a lemma above.
2. 0 elim, we need to show

bind y← absurd V ; retthunk rety⊒⊑ retthunk absurd V

but by η0 both sides are equivalent to absurd V .
3. + elim, we need to show

retthunk (case V{x1.M1 | x2.M2})⊒⊑ bind y← (case V{x1.M1 | x2.M2});

retthunk rety

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 119

retthunk (case V{x1.M1 | x2.M2})
⊒⊑ case V (+η)

{x1.retthunk (case inl x1{x1.M1 | x2.M2})
| x2.retthunk (case inr x2{x1.M1 | x2.M2})}

⊒⊑ case V (+β)

{x1.retthunk M1
| x2.retthunk M2}

⊒⊑ case V (M1,M2 thunkable)

{x1.bind y←M1; retthunk rety
| x2.bind y←M2; retthunk rety}

⊒⊑ bind y← (case V{x1.M1 | x2.M2}); retthunk rety
(commuting conversion)

4. × elim
retthunk (split V to (x, y).M)
⊒⊑ split V to (x, y).retthunk split (x, y) to (x, y).M (×η)

⊒⊑ split V to (x, y).retthunk M (×β)

⊒⊑ split V to (x, y).bind z←M ; retthunk retz (M thunkable)

⊒⊑ bind z← (split V to (x, y).M); retthunk retz
(commuting conversion)

5. 1 elim

retthunk (split V to ().xyM)
⊒⊑ split V to ().retthunk split () to ().M (1η)

⊒⊑ split V to ().retthunk M (1β)

⊒⊑ split V to ().bind z←M ; retthunk retz (M thunkable)

⊒⊑ bind z← (split V to ().M); retthunk retz (commuting conversion)

6. µ elim

retthunk (unroll V to roll x.M)
⊒⊑ unroll V to roll x.retthunk unroll roll x to roll x.M (µη)

⊒⊑ unroll V to roll x.retthunk M (µβ)

⊒⊑ unroll V to roll x.bind y←M ; retthunk rety (M thunkable)

⊒⊑ bind y← (unroll V to roll x.M); retthunk rety
(commuting conversion)

#

Proof of Lemma 6.8.

Proof.

N[thunk M/y][thunk (bind x← force z; force x)/x]
=N[thunk (M[thunk (bind x← force z; force x)])/y]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

120 M. S. New et al.

⊒⊑N[thunk (bind x← force z;M)/y] (M linear)

⊒⊑N[thunk (bind x← force z; force thunk M)/y] (Uβ)

⊒⊑N[thunk (bind x← force z; bind y← retthunk M ; force y)/y] (Fβ)

⊒⊑N[thunk (bind y← (bind x← force z; retthunk M); force y)/y] (Fη)

⊒⊑N[thunk (bind y← force w; force y)/y][thunk (bind x← force z;
retthunk M)/w] (Uβ)

⊒⊑ (bind y← force w;N)[thunk (bind x← force z; retthunk M)/w]
(N linear)

⊒⊑ (bind y← (bind x← force z; retthunk M);N) (Uβ)

⊒⊑ (bind x← force z; bind y← retthunk M ;N (Fη)

⊒⊑ bind x← force z;N[thunk M/y]

#

Proof of Lemma 6.9.

Proof. There are 4 classes of rules for complex stacks: those that are rules for simple
stacks (•, computation type elimination forms), introduction rules for negative compu-
tation types where the subterms are complex stacks, elimination of positive value types
where the continuations are complex stacks and finally application to a complex value.
The rules for simple stacks are easy: they follow immediately from the fact that forcing

to a stack is linear and that complex stacks compose. For the negative introduction forms,
we have to show that binding commutes with introduction forms. For pattern matching
forms, we just need commuting conversions. For function application, we use the lemma
that binding a thunkable in a linear term is linear.

1. •: This is just saying that force z is linear, which we showed above.
2. → elim We need to show, assuming that %, x : B⊢M :C is linear in x and % ⊢N :
FA is thunkable, that

bind y←N ;M y

is linear in x.

bind y←N ; (M[thunk (bind x← force z; force x)/x]) y
⊒⊑ bind y←N ; (bind x← force z;M) y (M linear in x)

⊒⊑ bind y←N ; bind x← force z;M y (Fη)

⊒⊑ bind x← force z; bind y←N ;M y (thunkables are central)

3. → intro

λy : A.M[thunk (bind x← force z; force x)/x]
⊒⊑ λy : A.bind x← force z;M (M is linear)

⊒⊑ λy : A.bind x← force z; (λy : A.M) y (→ β)

⊒⊑ λy : A.(bind x← force z; (λy : A.M)) y (Fη)

⊒⊑ bind x← force z; (λy : A.M) (→ η)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 121

4. ⊤ intro We need to show
bind w← force z; {}⊒⊑ {}

Which is immediate by ⊤η

5. & intro

{π)→M[thunk (bind x← force z; force x)]/x
| π ′)→N[thunk (bind x← force z; force x)/x]}
⊒⊑ {π)→ bind x← force z;M (M ,N linear)

| π ′)→ bind x← force z;N}
⊒⊑ {π)→ bind x← force z; π{π)→M | π ′)→N} (&β)

| π ′)→ bind x← force z; π ′{π)→M | π ′)→N}}
⊒⊑ {π)→ π (bind x← force z; {π)→M | π ′)→N}) (Fη)

| π ′)→ π ′(bind x← force z; {π)→M | π ′)→N})}
⊒⊑ bind x← force z; {π)→M | π ′)→N} (&η)

6. ν intro

roll M[thunk (bind x← force z; force x)/x]
⊒⊑ roll (bind x← force z;M) (M is linear)

⊒⊑ roll (bind x← force z; unroll roll M) (νβ)

⊒⊑ roll unroll (bind x← force z; roll M) (Fη)

⊒⊑ bind x← force z; (roll M) (νη)

7. F elim: Assume %, x : A⊢M : FA′ and %, y : A′ ⊢N : B, then we need to show
bind y←M ;N

is linear inM .

bind y←M[thunk (bind x← force z; force x)/x];N
⊒⊑ bind y← (bind x← force z;M);N (M is linear)

⊒⊑ bind x← force z; bind y←M ;N (Fη)

8. 0 elim: We want to show %, x :UB⊢ absurd V :C is linear in x, which means
showing:

absurd V ⊒⊑ bind x← force z; absurd V

which follows from 0η
9. + elim: Assuming %, x :UB, y1 : A1 ⊢M1 :C and %, x :UB, y2 : A2 ⊢M2 :C are
linear in x, and % ⊢ V : A1 + A2, we need to show

case V{y1.M1 | y2.M2}
is linear in x.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

122 M. S. New et al.

case V
{y1.M1[thunk (bind x← force z; force x)/x]
| y2.M2[thunk (bind x← force z; force x)/x]}
⊒⊑ case V{y1.bind x← force z;M1 | y2.bind x← force z;M2}

(M1,M2 linear)

⊒⊑ bind x← force z; case V{y1.M1 | y2.M2}
10. × elim: Assuming %, x :UB, y1 : A1, y2 : A2 ⊢M : B is linear in x and % ⊢ V : A1 ×

A2, we need to show

split V to (y1, y2).M

is linear in x.

split V to (y1, y2).M[[thunk (bind x← force z; force x)/x]]
⊒⊑ split V to (y1, y2).bind x← force z;M (M linear)

⊒⊑ bind x← force z; split V to (y1, y2).M (comm. conv)

11. µ elim: Assuming %, x :UB, y : A[µX .A/X]⊢M :C is linear in x and % ⊢ V :µX .A,
we need to show

unroll V to roll y.M

is linear in x.

unroll V to roll y.M[thunk (bind x← force z; force x)/x]
⊒⊑ unroll V to roll y.bind x← force z;M (M linear)

⊒⊑ bind x← force z; unroll V to roll y.M (commuting conversion)

#

Proof of Lemma 6.10. Proof.

1. First, note that every occurrence of a variable in E† is of the form retx for some
variable x. This means we can define substitution of a term for a variable in a simpli-
fied term by defining E†[N/retx] to replace every retx : FA with N : FA. Then it
is an easy observation that simplification is compositional on the nose with respect
to this notion of substitution:

(E[V/x])†= E†[V†/retx]
Next by repeated invocation of Uβ,

E†[V†/retx]⊒⊑ E†[force thunk V†/retx]

Then we can lift the definition of the thunk to the top-level by Fβ:

E†[force thunk V†/retx]⊒⊑ bind thunk ← ret; V†wE†[force w/retx]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 123

Then because V† is thunkable, we can bind it at the top-level and reduce an
administrative redex away to get our desired result:

bind thunk ← ret; V†wE†[force w/retx]
⊒⊑ bind x← V†; bind w← retthunk retx; E†[force w/retx]

(V thunkable)

⊒⊑ bind x← V†; E†[force thunk retx/retx] (Fβ)

⊒⊑ bind x← V†; E†[retx/retx] (Uβ)

⊒⊑ bind x← V†; E†

2. Note that every occurrence of z in S† is of the form force z. This means we can
define substitution of a term M : B for force z in S† by replacing force z with
M . It is an easy observation that simplification is compositional on the nose with
respect to this notion of substitution:

(S[M/•])†= S†[M†/force z]

Then by repeated Uβ, we can replace M† with a forced thunk:

S†[M†/force z]⊒⊑ S†[force thunk M†/force z]

which since we are now substituting a force for a force is the same as substituting
the thunk for the variable:

S†[force thunk M†/force z]⊒⊑ S†[thunk M†/z]
#

Proof of Theorem 6.1.

Proof.

1. Reflexivity is translated to reflexivity.
2. Transitivity is translated to transitivity.
3. Compatibility rules are translated to compatibility rules.
4. Substitution of a Value

%, x : A,&† ⊢ E†⊑ E′† : T† % ⊢ V†⊑ V ′† : FA
%,&† ⊢ E[V/x]†⊑ E′[V ′/x]† : T†

By the compositionality lemma, it is sufficient to show:

bind x← V†; E†⊑ bind x← V ′†; E′

which follows by bind compatibility.
5. Plugging a term into a hole:

%, z :UC ⊢ S†⊑ S′† : B %,&† ⊢M†⊑M ′† :C

%,&† ⊢ S[M]†⊑ S′[M ′]† : B

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

124 M. S. New et al.

By compositionality, it is sufficient to show

S†[thunk M†/z]⊑ S′†[thunk M ′†/z]

which follows by thunk compatibility and the simple substitution rule.
6. Stack strictness We need to show for S a complex stack, that

(S[!])†⊒⊑!

By stack compositionality we know

(S[!])†⊒⊑ S†[thunk !/z]

#S$[thunk !/z]⊒⊑ S†[thunk (bind y←!;!)/z] (Stacks preserve !)
⊒⊑ bind y←!; S†[thunk !/z] (S† is linear in z)

⊒⊑! (Stacks preserve !)

7. 1β By compositionality it is sufficient to show

bind x← ret(); split x to ().E†⊒⊑ bind x← ret(); E†

which follows by Fβ, 1β.
8. 1ηWe need to show for %, x : 1 | &⊢ E : T

E†⊒⊑ bind x← retx; split x to ().(E[()/x])†

after a Fβ, it is sufficient using 1η to prove:

(E[()/x])†⊒⊑ E†[()/x]
which follows by compositionality and Fβ:

(E[()/x])†⊒⊑ bind x← ret(); E†⊒⊑ E†[()/x]
9. ×β By compositionality it is sufficient to show

bind x← (bind x1← V1†; bind x2← V2†; ret(x1, x2)); split x to (x1, x2).E†

⊒⊑ bind x1← V1†; bind x2← V2†; E†

which follows by Fη, Fβ,×β.
10. ×ηWe need to show for %, x : A1 × A2 | &⊢ E : T that

E†⊒⊑ bind x← retx; split x to (x1, x2).(E[(x1, x2)/x])†

by Fβ,×η it is sufficient to show

E[(x1, x2)/x]†⊒⊑ E†[(x1, x2)/x]
Which follows by compositionality:

E[(x1, x2)/x]†

⊒⊑ bind x1← x1; bind x2← x2; bind x← ret(x1, x2); E† (compositionality)
⊒⊑ bind x← ret(x1, x2); E† (Fβ)

⊒⊑ E†[(x1, x2)/x]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 125

11. 0ηWe need to show for any %, x : 0 | &⊢ E : T that
E†⊒⊑ bind x← retx; absurd x

which follows by 0η
12. +β Without loss of generality, we do the inl case By compositionality it is

sufficient to show

bind x← (bind x← V†; inl x); case x{x1.E†1 | x2.E†2}⊒⊑ E1[V/x1]†

which holds by Fη, Fβ,+β

13. +ηWe need to show for any %, x : A1 + A2 | &⊢ E : T that
E†⊒⊑ bind x← retx; case x{x1.(E[inl x1/x])† | x2.(E[inl x2/x])†}

E†

⊒⊑ case x{x1.E†[inl x1/x] | x2.E†[inl x2/x]} (+η)

⊒⊑ case x{x1.bind x← retinl x1; E† | x2.bind x← retinl x2; E†} (Fβ)

⊒⊑ case x{x1.E[inl x1]/x† | x2.E[inl x2]/x†} (compositionality)

⊒⊑ bind x← retx; case x{x1.E[inl x1]/x† | x2.E[inl x2]/x†} (Fβ)

14. µβ By compositionality it is sufficient to show

bind x← (bind y← V†; retroll y); unroll x to roll y.E
⊒⊑ bind y← V†; E†

which follows by Fη, Fβ,µβ.
15. µηWe need to show for %, x :µX .A | &⊢ E : T that

E†⊒⊑ bind x← retx; unroll x to roll y.(E[roll y/x])†

by Fβ,×η it is sufficient to show

E[roll y/x]†⊒⊑ E†[roll y/x]
Which follows by compositionality:

E[roll y/x]†

⊒⊑ bind y← rety; bind x← retroll y; E† (compositionality)

⊒⊑ bind x← retroll y; E† (Fβ)

⊒⊑ E†[roll y/x] (Fβ)

16. Uβ We need to show

bind x← retM†; force x⊒⊑M†

which follows by Fβ,Uβ

17. UηWe need to show for any % ⊢ V :UB that
V†⊒⊑ retthunk (bind x← V†; force x)

By compositionality it is sufficient to show

V†⊒⊑ bind x← V†; retthunk (bind x← retx; force x)

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

126 M. S. New et al.

which follows by Uη and some simple reductions:

bind x← V†; retthunk (bind x← retx; force x)
⊒⊑ bind x← V†; retthunk force x (Fβ)

⊒⊑ bind x← V†; retx (Uη)

⊒⊑ V† (Fη)

18. → β By compositionality it is sufficient to show

bind x← V†; (λx : A.M†) x⊒⊑ bind x← V†;M†

which follows by→ β

19. → ηWe need to show

z :U(A→ B)⊢ force z⊒⊑ λx : A.bind x← retx; (force z) x

which follows by Fβ,→ η

20. ⊤ηWe need to show

z :U⊤⊢ force z⊒⊑ {}
which is exactly ⊤η.

21. &β Immediate by simple &β.
22. &ηWe need to show

z :U(B1 & B2)⊢ force z⊒⊑ {π)→ πforce z | π ′)→ π ′force z}
which is exactly &η

23. νβ Immediate by simple νβ

24. νηWe need to show

z :U(νY .B)⊢ force z⊒⊑ roll unroll z

which is exactly νη

25. Fβ We need to show

bind x← V†;M†⊒⊑M[V/x]†

which is exactly the compositionality lemma.
26. FηWe need to show

z :U(FA)force z ⊢ bind x← force z; bind x← retx; retx

which follows by Fβ, Fη #

F Proofs for Section 7

To prove Lemma 7.5, we develop a few lemmas about the interaction between contextual
lifting and operations on relations.
In the following, we write ∼◦ for the opposite of a relation (x∼◦ y iff y∼ x), ⇒ for

containment/implication (∼⇒∼′ iff x∼ y implies x∼′ y), ⇔ for bicontainment/equality,
∨ for union (x(∼∨∼′)y iff x∼ y or x∼′ y), and ∧ for intersection (x(∼∧∼′)y iff x∼ y
and x∼′ y).

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 127

Lemma F.1 (Contextual Lift commutes with Conjunction).

(∼1 ∧∼2)ctx⇔∼1ctx ∧∼2ctx

Lemma F.2 (Contextual Lift commutes with Dualization).

∼◦ctx⇔∼ctx◦

Lemma F.3 (Contextual Decomposition Lemma). Let ∼ be a reflexive relation (=⇒∼),
and & be a reflexive, antisymmetric relation (=⇒ & and (& ∧& ◦)⇔=). Then

∼ctx⇔(∼∨ &)ctx ∧((∼◦ ∨ &)ctx)◦

Proof. Note that despite the notation, & need not be assumed to be transitive. Reflexive
relations form a lattice with ∧ and ∨ with = as ⊥ and the total relation as ⊤ (e.g.,
(=∨∼)⇔∼ because ∼ is reflexive, and (=∧∼)⇔=). So we have

∼⇔ (∼∨ &)∧ (∼∨ & ◦)
because FOILing the right-hand side gives

(∼∧∼)∨ (& ∧∼)∨ (∼∧ & ◦)∨ (& ∧ & ◦)
By antisymmetry, (& ∧ & ◦) is =, which is the unit of ∨, so it cancels. By idempotence,
(∼∧∼) is ∼. Then by absorption, the whole thing is ∼.
Opposite is not de Morgan: (P∨Q)◦ = P◦ ∨Q◦, and similarly for ∧. But it is involutive:

(P◦)◦ ⇔ P.
So using Lemmas F.1, F.2 we can calculate as follows:

∼ctx ⇔ ((∼∨ &)∧ (∼∨ & ◦))ctx
⇔ (∼∨ &)ctx ∧ (∼∨ & ◦)ctx
⇔ (∼∨ &)ctx ∧ ((∼∨ & ◦)◦)◦ctx
⇔ (∼∨ &)ctx ∧ ((∼◦ ∨(& ◦)◦)◦)ctx
⇔ (∼∨ &)ctx ∧ (∼◦ ∨ &)◦ctx
⇔ (∼∨ &)ctx ∧ (∼◦ ∨ &)ctx◦

#
As a corollary, the decomposition of contextual equivalence into diverge approximation

in Ahmed (2006) and the decomposition of precision in New & Ahmed (2018) are really
the same trick:

Proof of Corollary 7.2.

Proof.
For part 1 (though we will not use this below), applying Lemma F.3 with ∼ taken to be

= (which is reflexive) and & taken to be ≼ (which is reflexive and antisymmetric) gives
that contextual equivalence is symmetric contextual divergence approximation:

=ctx⇔(=∨≼)ctx ∧((=◦ ∨ ≼)ctx)◦ ⇔≼ctx ∧((≼)ctx)◦

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

128 M. S. New et al.

For part (2), the same argument with ∼ taken to be = and & taken to be ⊑ (which is
also antisymmetric) gives that contextual equivalence is symmetric contextual precision:

=ctx⇔⊑ctx ∧((⊑)ctx)◦

For part (3), applying Lemma F.3 with ∼ taken to be ⊑ and & taken to be ≼ gives that
precision decomposes as

⊑ctx⇔(⊑∨≼)ctx ∧((⊑◦ ∨≼)ctx)◦ ⇔≼⊑ctx ∧((≼⊒)ctx)◦

Since both ≼⊑ and ≼⊒ are of the form −∨≼, both are divergence preorders. Thus, it
suffices to develop logical relations for divergence preorders below. #

Proof of Theorem 7.1.

Proof. For each congruence rule

% | &⊢ E1 ⊑ E′1 : T1 · · ·
%′ | &′ ⊢ Ec ⊑ E′c : Tc

we prove for every i ∈N the validity of the rule
% | & $ E1 % logi E′1 ∈ T1 · · ·

% | & $ Ec % logi E′c ∈ Tc
1. %, x : A, %′ $ x % logi x ∈ A. Given γ1 % log%,x:A,%′,i γ2, then by definition γ1(x) % logA,i γ2(x).
2. % $! % logi ! ∈ B We need to show S1[!] % i result(S2[!]). By anti-reduction and
strictness of stacks, it is sufficient to show ! % logi !. If i= 0 there is nothing to
show, otherwise, it follows by reflexivity of % .

3.
% $ V % logi V ′ ∈ A %, x : A $M % logi M ′ ∈ B

% $ let x= V ;M % logi let x= V ′;M ′ ∈ B
Each side takes a 0-cost step, so by anti-reduction, this reduces to

S1[M[γ1, V/x]] % i result(S2[M ′[γ2, V ′/x]])

which follows by the assumption %, x : A $M % logi M ′ ∈ B

4.
% $ V % logi V ′ ∈ 0

% $ abort V % logi abort V ′ ∈ B
. By assumption, we get V [γ1] % log0,i V ′[γ2], but

this is a contradiction.

5.
% $ V % logi V ′ ∈ A1

% $ inl V % logi inl V ′ ∈ A1 + A2
. Direct from assumption, rule for sums.

6.
% $ V % logi V ′ ∈ A2

% $ inr V % logi inr V ′ ∈ A1 + A2
Direct from assumption, rule for sums.

7.
% $ V % logi V ′ ∈ A1 + A2 %, x1 : A1 $M1 % logi M ′1 ∈ B %, x2 : A2 $M2 % logi M ′2 ∈ B

% $ case V {x1.M1 | x2.M2} % logi case V ′{x1.M ′1 | x2.M ′2} ∈ B
By case analysis of V [γ1] % logi V ′[γ2].

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 129

a. If V [γ1]= inl V1, V ′[γ2]= inl V ′1 with V1 %
log
A1,i
V ′1, then taking 0 steps, by

anti-reduction the problem reduces to

S1[M1[γ1, V1/x1]] % i result(S1[M1[γ1, V1/x1]])
which follows by assumption.

b. For inr , the same argument.
8. % $ () % logi () ∈ 1 Immediate by unit rule.

9.
% $ V1 % logi V ′1 ∈ A1 % $ V2 % logi V ′2 ∈ A2

% $ (V1, V2) % logi (V ′1, V ′2) ∈ A1 × A2
Immediate by pair rule.

10.
% $ V % logi V ′ ∈ A1 × A2 %, x : A1, y : A2 $M % logi M ′ ∈ B

% $ split V to (x, y).M % logi split V ′ to (x, y).M ′ ∈ B
By V % logA1×A2,i V

′, we

know V [γ1]= (V1, V2) and V ′[γ2]= (V ′1, V ′2) with V1 %
log
A1,i
V ′1 and V2 %

log
A2,i
V ′2. Then

by anti-reduction, the problem reduces to

S1[M[γ1, V1/x, V2/y]] % i result(S1[M ′[γ1, V ′1/x, V
′
2/y]])

which follows by assumption.

11.
% $ V % logi V ′ ∈ A[µX .A/X]

% $ rollµX .A V % logi rollµX .A V ′ ∈µX .A
If i= 0, we’re done. Otherwise i=

j+ 1, and our assumption is that V [γ1] % logA[µX .A/X],j+1 V ′[γ2] and we need to
show that roll V [γ1] % logµX .A,j+1 roll V

′[γ2]. By definition, we need to show

V [γ1] % logA[µX .A/X],j V ′[γ2], which follows by downward closure.

12.
% $ V % logi V ′ ∈µX .A %, x : A[µX .A/X] $M % logi M ′ ∈ B

% $ unroll V to roll x.M % logi unroll V ′ to roll x.M ′ ∈ B
If i= 0, then by

triviality at 0, we’re done. Otherwise, V [γ1] % logµX .A,j+1 V
′[γ2] so V [γ1]=

roll Vµ, V ′[γ2]= roll V ′µ with Vµ % logA[µX .A/X],j V ′µ. Then each side takes 1 step,
so by anti-reduction it is sufficient to show

S1[M[γ1, Vµ/x]] % j result(S2[M ′[γ2, V ′µ/x]])

which follows by assumption and downward closure of the stack, value relations.

13.
% $M % logi M ′ ∈ B

% $ thunk M % logi thunk M ′ ∈UB
. We need to show thunk M[γ1] % logUB,i

thunk M ′[γ2], so let S1 % logB,j S2 for some j≤ i, and we need to show

S1[force thunk M1[γ1]] % j result(S2[force thunk M2[γ2]])

Then each side reduces in a 0-cost step and it is sufficient to show

S1[M1[γ1]] % j result(S2[M2[γ2]])
Which follows by downward closure for terms and substitutions.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

130 M. S. New et al.

14.
% $ V % logi V ′ ∈UB

% $ force V % logi force V ′ ∈ B
.

We need to show S1[force V [γ1]] % i result(S2[force V ′[γ2]]), which follows by
the definition of V [γ1] % logUB,i V ′[γ2].

15.
% $ V % logi V ′ ∈ A

% $ retV % logi retV ′ ∈ FA
We need to show S1[retV [γ1]] % i result(S2[retV ′[γ2]]), which follows by the
orthogonality definition of S1 % logFA,i S2.

16.
% $M % logi M ′ ∈ FA %, x : A $N % logi N ′ ∈ B
% $ bind x←M ;N % logi bind x←M ′;N ′ ∈ B

.

We need to show bind x←M[γ1];N[γ2] % i result(bind x←M ′[γ2];N ′[γ2]). By
M % logi M ′ ∈ FA, it is sufficient to show that

bind x← •;N[γ1] % logFA,i bind x← •;N ′[γ2]

So let j≤ i and V % logA,j V ′, then we need to show

bind x← retV ;N[γ1] % logFA,j bind x← retV ′;N ′[γ2]

By anti-reduction, it is sufficient to show

N[γ1, V/x] % j result(N ′[γ2, V ′/x])
which follows by anti-reduction for γ1 % log%,i γ2 and N %

log
i N

′.

17.
%, x : A $M % logi M ′ ∈ B

% $ λx : A.M % logi λx : A.M ′ ∈ A→ B
We need to show

S1[λx : A.M[γ1]] % i result(S2[λx : A.M ′[γ2]]).

By S1 % logA→B,i S2, we know S1 = S′1[•V1], S2 = S′2[•V2] with S′1 %
log
B,i S

′
2 and V1 %

log
A,i

V2. Then by anti-reduction it is sufficient to show

S′1[M[γ1, V1/x]] % i result(S′2[M ′[γ2, V2/x]])

which follows byM % logi M ′.

18.
% $M % logi M ′ ∈ A→ B % $ V % logi V ′ ∈ A

% $M V % logi M ′ V ′ ∈ B
We need to show

S1[M[γ1] V [γ1]] % i result(S2[M ′[γ2] V ′[γ2]])

so by M % logi M ′ it is sufficient to show S1[•V [γ1]] % logA→B,i S2[•V ′[γ2]] which
follows by definition and assumption that V % logi V ′.

19. % ⊢ {} :⊤We assume we are given S1 % log⊤,i S2, but this is a contradiction.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 131

20.
% $M1 % logi M ′

1 ∈ B1 % $M2 % logi M ′
2 ∈ B2

% $ {π)→M1 | π ′)→M2} % logi {π)→M ′
1 | π ′)→M ′

2} ∈ B1 & B2
We need to show

S1[{π)→M1[γ1] | π ′)→M2[γ1]}] % i result(S2[{π)→M ′
1[γ1] | π ′)→M ′

2[γ2]}]).
We proceed by case analysis of S1 % logB1&B2,i S2

a. In the first possibility S1 = S′1[π•], S2 = S′2[π•] and S′1 %
log
B1,i
S′2. Then by anti-

reduction, it is sufficient to show

S′1[M1[γ1]] % i result(S′2[M ′
1[γ2]])

which follows byM1 % logi M ′
1.

b. Same as previous case.

21.
% $M % logi M ′ ∈ B1 & B2
% $ πM % logi πM ′ ∈ B1

We need to show S1[πM[γ1]] % i result(S2[πM ′[γ2]]),

which follows by S1[π•] % logB1&B2,i S2[π•] and M % logi M ′.

22.
% $M % logi M ′ ∈ B1 & B2
% $ π ′M % logi π ′M ′ ∈ B2

Similar to previous case.

23.
% $M % logi M ′ ∈ B[νY .B/Y]

% $ rollνY .B M % logi rollνY .B M ′ ∈ νY .B
We need to show that

S1[rollνY .B M[γ1]] % i result(S2[rollνY .B M ′[γ2]])

If i= 0, we invoke triviality at 0. Otherwise, i= j+ 1 and we know by S1 % logνY .B,j+1
S2 that S1 = S′1[unroll •] and S2 = S′2[unroll •] with S′1 %

log
B[νY .B/Y],j S

′
2, so by

anti-reduction it is sufficient to show

S′1[M[γ1]] % i result(S′2[M ′[γ2]])

which follows byM % logi M ′ and downward closure.

24.
% $M % logi M ′ ∈ νY .B

% $ unroll M % logi unroll M ′ ∈ B[νY .B/Y]
We need to show

S1[unroll M] % i result(S2[unroll M ′]),

which follows because S1[unroll •] % logνY .B,i S2[unroll •] and M % logi M ′.

#

Proof of Corollary 7.5.

Proof. Two cases

1. If result(M) % R then we need to show for every i ∈N,M % i R. By the unary model
lemma, M % i result(M), so the result follows by the module Lemma 7.6.

2. If M % i R for every i, then there are two possibilities: M is always related to R
because it takes i steps, or at some point M terminates.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

132 M. S. New et al.

a. If M %⇒i Mi for every i ∈N, then result(M)= /, so result(M) % R because % is
a divergence preorder.

b. Otherwise there exists some i ∈M such that M %⇒i result(M), so it follows by
the module Lemma 7.6. #

Proof of Lemma 7.12.

Proof. Proof is by mutual lexicographic induction on the pair (i, A) or (i, B). All cases are
straightforward uses of the inductive hypotheses except the shifts U , F.

1. If V1 % logUB,i V2 and V2 %
log
UB,ω V3, then we need to show that for any S1 %

log
B,j S2 with

j≤ i,
S1[force V1] % j result(S2[force V3])

By reflexivity, we know S2 % logB,ω S2, so by assumption
S2[force V2] % ω result(S2[force V3])

which by the limiting Lemma 7.5 is equivalent to

result(S2[force V2]) % result(S2[force V3])
so then by the module Lemma 7.6, it is sufficient to show

S1[force V1] % j result(S2[force V2])
which holds by assumption.

2. If S1 % logFA,i S2 and S2 %
log
FA,ω S3, then we need to show that for any V1 %

log
j,A V2 with

j≤ i that
S1[retV1] % j result(S3[retV2])

First by reflexivity, we know V2 % logA,ω V2, so by assumption,
S2[retV2] % ω result(S3[retV2])

Which by the limit Lemma 7.5 is equivalent to

result(S2[retV2]) % ω result(S3[retV2])

So by the module Lemma 7.6, it is sufficient to show

S1[retV1] % j result(S2[retV2])
which holds by assumption. #

Proof of Lemma 7.13.

Proof.

1. By induction on the length of the context, follows from closed value case.
2. Assume γ1 % log%,i γ2 and S1 %

log
B,i S2. We need to show

S1[M1[γ1]] % i result(S2[M3[γ2]])

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 133

by reflexivity and assumption, we know

S2[M2[γ2]] % ω result(S2[M3[γ2]])

and by limit Lemma 7.5, this is equivalent to

result(S2[M2[γ2]]) % result(S2[M3[γ2]])
so by the module Lemma 7.6 it is sufficient to show

S1[M1[γ1]] % i result(S2[M2[γ2]])
which follows by assumption.

3. Assume γ1 % log%,i γ2. Then V1[γ1] %
log
A,i V2[γ2] and by reflexivity γ2 % log%,ω γ2 so

V2[γ2] % logA,ω V3[γ2] so the result holds by the closed case.
4. Stack case is essentially the same as the value case. #

Proof of Lemma 7.14.

Proof. The β rules for all cases except recursive types are direct from anti-reduction.

1. µX .A− β:

a. We need to show

S1[unroll rollµX .A V [γ1] to roll x.M[γ1]] % logi result(S2[M[γ2, V [γ2]/x]])
The left side takes 1 step to S1[M[γ1, V [γ1]/x]] and we know

S1[M[γ1, V [γ1]/x]] % logi result(S2[M[γ2, V [γ2]/x]])
by assumption and reflexivity, so by anti-reduction we have

S1[unroll rollµX .A V [γ1] to roll x.M[γ1]] % logi+1 result(S2[M[γ2, V [γ2]/x]])
so the result follows by downward closure.

b. For the other direction we need to show

S1[M[γ1, V [γ1]/x]] % logi result(S2[unroll rollµX .A V [γ2] to roll x.M[γ2]])

Since results are invariant under steps, this is the same as

S1[M[γ1, V [γ1]/x]] % logi result(S2[M[γ2, V [γ2/x]]])
which follows by reflexivity and assumptions about the stacks and substitutions.

2. µX .A− η:

a. We need to show for any %, x :µX .A⊢M : B, and appropriate substitutions and
stacks,

S1[unroll rollµX .A γ1(x) to roll y.M[rollµX .A y/x][γ1]] % logi

result(S2[M[γ2]])

By assumption, γ1(x) % logµX .A,i γ2(x), so we know

γ1(x)= rollµX .A V1

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

134 M. S. New et al.

and

γ2(x)= rollµX .A V2

so the left side takes a step:

S1[unroll roll γ1(x) to roll y.M[roll y/x][γ1]]
%⇒1 S1[M[roll y/x][γ1][V1/y]]
= S1[M[roll V1/x][γ1]]
= S1[M[γ1]]

and by reflexivity and assumptions we know

S1[M[γ1]] % logi result(S2[M[γ2]])
so by anti-reduction we know

S1[unroll rollµX .A γ1(x) to roll y.M[rollµX .A y/x][γ1]]

% logi+1 result(S2[M[γ2]])
so the result follows by downward closure.

b. Similarly, to show

S1[M[γ1]] % logi result(S2[unroll rollµX .A γ2(x) to roll y.M[rollµX .A y/x][γ2]])

by the same reasoning as above, γ2(x)= rollµX .A V2, so because result is
invariant under reduction we need to show

S1[M[γ1]] % logi result(S2[M[γ2]])
which follows by assumption and reflexivity.

3. νY .B− β

a. We need to show

S1[unroll rollνY .B M[γ1]] % i result(S2[M[γ2]])
By the operational semantics,

S1[unroll rollνY .B M[γ1]] %⇒1 S1[M[γ1]]

and by reflexivity and assumptions

S1[M[γ1]] % i S2[M[γ2]]
so the result follows by anti-reduction and downward closure.

b. We need to show

S1[M[γ1]] % i result(S2[unroll rollνY .B M[γ2]])

By the operational semantics and invariance of result under reduction this is
equivalent to

S1[M[γ1]] % i result(S2[M[γ2]])
which follows by assumption.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 135

4. νY .B− η

a. We need to show

S1[roll unroll M[γ1]] % i result(S2[M[γ2]])
by assumption, S1 % logνY .B,i S2, so

S1 = S′1[unroll •]
and therefore the left side reduces:

S1[roll unroll M[γ1]]= S′1[unroll roll unroll M[γ1]]
%⇒1 S′1[unroll M[γ1]]
= S1[M[γ1]]

and by assumption and reflexivity,

S1[M[γ1]] % i result(S2[M[γ2]])
so the result holds by anti-reduction and downward closure.

b. Similarly, we need to show

S1[M[γ1]] % i result(S2[roll unroll M[γ2]])

as above, S1 % logνY .B,i S2, so we know

S2 = S′2[unroll •]
so

result(S2[roll unroll M[γ2]])= result(S2[M[γ2]])
and the result follows by reflexivity, anti-reduction and downward closure.

5. 0η Let %, x : 0⊢M : B.
a. We need to show

S1[absurd γ1(x)] % i result(S2[M[γ2]])
By assumption γ1(x) % log0,i γ2(x) but this is a contradiction

b. Other direction is the same contradiction.
6. +η. Let %, x : A1 + A2 ⊢M : B
a. We need to show

S1[case γ1(x){x1.M[inl x1/x][γ1] | x2.M[inr x2/x][γ1]}] % i result(S2[M[γ2]])
by assumption γ1(x) % logA1+A2,i γ2(x), so either it’s an inl or inr. The cases are
symmetric so assume γ1(x)= inl V1. Then

S1[case γ1(x){x1.M[inl x1/x][γ1] | x2.M[inr x2/x][γ1]}]
= S1[case (inl V1){x1.M[inl x1/x][γ1] | x2.M[inr x2/x][γ1]}]

%⇒0 S1[M[inl V1/x][γ1]]
= S1[M[γ1]]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

136 M. S. New et al.

and so by anti-reduction it is sufficient to show

S1[M[γ1]] % i S2[M[γ2]]
which follows by reflexivity and assumptions.

b. Similarly, We need to show

result(S1[M[γ1]]) % i
result(S2[case γ2(x){x1.M[inl x1/x][γ2] | x2.M[inr x2/x][γ2]}])

and by assumption γ1(x) % logA1+A2,i γ2(x), so either it’s an inl or inr. The cases
are symmetric so assume γ2(x)= inl V2. Then

S2[case γ2(x){x1.M[inl x1/x][γ2] | x2.M[inr x2/x][γ2]}] %⇒0 S2[M[γ2]]

So the result holds by invariance of result under reduction, reflexivity and
assumptions.

7. 1η Let %, x : 1⊢M : B
a. We need to show

S1[M[()/x][γ1]] % i result(S2[M[γ2]])
By assumption γ1(x) % log1,i γ2(x) so γ1(x)= (), so this is equivalent to

S1[M[γ1]] % i result(S2[M[γ2]])
which follows by reflexivity, assumption.

b. Opposite case is similar.
8. ×η Let %, x : A1 × A2 ⊢M : B
a. We need to show

S1[split x to (x1, y1).M[(x1, y1)/x][γ1]] % i result(S2[M[γ2]])
By assumption γ1(x) % logA1×A2,i γ2(x), so γ1(x)= (V1, V2), so

S1[split x to (x1, y1).M[(x1, y1)/x][γ1]]
= S1[split (V1, V2) to (x1, y1).M[(x1, y1)/x][γ1]]
%⇒0 S1[M[(V1, V2)/x][γ1]]

= S1[M[γ1]]
So by anti-reduction it is sufficient to show

S1[M[γ1]] % i result(S2[M[γ2]])
which follows by reflexivity, assumption.

b. Opposite case is similar.
9. Uη Let % ⊢ V :UB
a. We need to show that

thunk force V [γ1] % logUB,i V [γ2]

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 137

So assume S1 % logB,j S2 for some j≤ i, then we need to show

S1[force thunk force V [γ1]] % j result(S2[force V [γ2]])
The left side takes a step:

S1[force thunk force V [γ1]] %⇒0 S1[force V [γ1]]

so by anti-reduction it is sufficient to show

S1[force V [γ1]] % j result(S2[force V [γ2]])
which follows by assumption.

b. Opposite case is similar.
10. Fη

a. We need to show that given S1 % logFA,i S2,

S1[bind x← •; retx] % logFA,i S2
So assume V1 % logA,j V2 for some j≤ i, then we need to show

S1[bind retV1← •; retx] % j result(S2[retV2])
The left side takes a step:

S1[bind retV1← •; retx] %⇒0 S1[retV1]

so by anti-reduction it is sufficient to show

S1[retV1] % j result(S2[retV2])
which follows by assumption

b. Opposite case is similar.
11. → η Let % ⊢M : A→ B

a. We need to show

S1[(λx : A.M[γ1] x)] % i result(S2[M[γ2]])
by assumption that S1 % logA→B,i S2, we know

S1 = S′1[• V1]
so the left side takes a step:

S1[(λx : A.M[γ1] x)]= S′1[(λx : A.M[γ1] x) V1]
%⇒0 S′1[M[γ1] V1]

= S1[M[γ1]]
So by anti-reduction it is sufficient to show

S1[M[γ1]] % i result(S2[M[γ2]])
which follows by reflexivity, assumption.

b. Opposite case is similar.

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

138 M. S. New et al.

12. &η Let % ⊢M : B1 & B2
a. We need to show

S1[{π)→ πM[γ1] | π ′)→ π ′M[γ1]}] % i result(S1[M[γ2]])
by assumption, S1 % logB1&B2,i S2 so either it starts with a π or π ′ so assume that
S1 = S′1[π•] (π ′ case is similar). Then the left side reduces
S1[{π)→ πM[γ1] | π ′)→ π ′M[γ1]}]= S′1[π{π)→ πM[γ1] | π ′)→ π ′M[γ1]}]

%⇒0 S′1[πM[γ1]]

= S1[M[γ1]]
So by anti-reduction it is sufficient to show

S1[M[γ1]] % i result(S2[M[γ2]])
which follows by reflexivity, assumption.

b. Opposite case is similar.
13. ⊤η Let % ⊢M :⊤

a. In either case, we assume we are given S1 % log⊤,i S2, but this is a contradiction.
#

Proof of Lemma 7.15.

Proof. We do the term case, the value case is similar. Given γ1 % log%,i γ2, we have

V1[γ1] % logA,i V2[γ2] so

γ1, V1[γ1]/x % log%,x:A,i γ2, V2[γ2]/x

and by associativity of substitution

M1[V1/x][γ1]=M1[γ1, V1[γ1]/x]
and similarly for M2, so if S1 % logB,i S2 then

S1[M1[γ1, V1[γ1]/x]] % i result(S2[M2[γ2, V2[γ2]/x]])
#

Proof of Lemma 7.16.

Proof.

1. It is sufficient by the limit lemma to show result(S[!]) % ! which holds by
reflexivity because S[!] %⇒0 !.

2. We need to show S[!]≼⊑i R for arbitrary R, so by the limit lemma it is sufficient
to show !≼⊑ R, which is true by definition.

3. By the limit lemma it is sufficient to show R≼⊒! which is true by definition.

#

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

Gradual type theory 139

Proof of Theorem 7.2.

Proof.
For the first part, from Lemma 7.17, we have E≼⊑ω E′ and E′ ≼⊒ω E. By Lemma 7.6,

we then have E≼⊑ctx E′ and E′ ≼⊒ctx E. Finally, by Corollary 7.2, E⊑ctx E′ iff E≼⊑ctx
E′and E((≼⊒)ctx)◦E′, so we have the result.
For the second part, applying the first part twice gives E⊑ctx E′ and E′ ⊑ctx E, and we

concluded in Corollary 7.2 that this coincides with contextual equivalence. #

8 1 2 9 75 7 5 5 8 9 7 0
, 1 5 6 8 1 2 9 75 7 5 / 1 5 . 1 C2:5 85 1 2 9 75 5 5 6 C 5 1D19 12 5 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000125
https://www.cambridge.org/core

