IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Auto-Scaling Network Service Chains Using
Machine Learning and Negotiation Game

Sabidur Rahman ™, Graduate Student Member, IEEE, Tanjila Ahmed, Graduate Student Member, IEEE,
Minh Huynh, Member, IEEE, Massimo Tornatore ~, Senior Member, IEEE,
and Biswanath Mukherjee =, Fellow, IEEE

1 Abstract—Network Function Virtualization (NFV) enables
2 Network Operators (NOs) to efficiently respond to the increas-
s ing dynamicity of network services. Virtual Network Functions
4 (VNFs) running on commercial off-the-shelf servers are easy to
s deploy, update, monitor, and manage. Such virtualized services
¢ are often deployed as Service Chains (SCs), which require in-
7 sequence placement of computing and memory resources as well
s as routing of traffic flows. Due to the ongoing migration towards
s cloudification of networks, the concept of auto-scaling which
10 originated in Cloud Computing, is now receiving attention from
11 networks professionals too. Prior studies on auto-scaling use mea-
12 sured load to dynamically react to traffic changes. Moreover, they
13 often focus on only one of the resources (e.g., compute only, or
14 network capacity only). In this study, we consider three differ-
15 ent resource types: compute, memory, and network bandwidth.
16 In prior studies, NO takes auto-scaling decisions, assuming ten-
17 ants are always willing to auto-scale, and Quality of Service
18 (QoS) requirements are homogeneous. Our study proposes a
19 negotiation-game-based auto-scaling method where tenants and
20 NO both engage in the auto-scaling decision, based on their
21 willingness to participate, heterogeneous QoS requirements, and
22 financial gain (e.g., cost savings). In addition, we propose a proac-
23 tive Machine Learning (ML) based prediction method to perform
24 SC auto-scaling in dynamic traffic scenario. Numerical examples
25 show that our proposed SC auto-scaling methods powered by
26 ML present a win-win situation for both NO and tenants (in
27 terms of cost savings).

28 Index Terms—Auto-scaling, service chains, virtual network
29 functions, machine learning, negotiation game, cost savings, QoS,
30 resource disaggregation, edge datacenters.

Manuscript received July 27, 2019; revised December 20, 2019 and April
11, 2020; accepted May 13, 2020. This work was supported by NSF Grant
No. 1716945. The associate editor coordinating the review of this arti-
cle and approving it for publication was K. Xue. (Corresponding author:
Sabidur Rahman.)

Sabidur Rahman and Biswanath Mukherjee are with the Department of
Computer Science, University of California at Davis, Davis, CA 95616 USA
(e-mail: krahman@ucdavis.edu; bmukherjee @ucdavis.edu).

Tanjila Ahmed is with the Department of Electrical and Computer
Engineering, University of California at Davis, Davis, CA 95616 USA (e-mail:
tanahmed @ucdavis.edu).

Minh Huynh is with AT&T Labs, Florham Park, NJ 07932 USA (e-mail:
mahuynh@ucdavis.edu).

Massimo Tornatore is with the Department of Electronics and Information,
Politecnico di Milano, 20133 Milano, Italy, and also with the Department of
Computer Science, University of California at Davis, Davis, CA 95616 USA
(e-mail: mtornatore @ucdavis.edu).

Digital Object Identifier 10.1109/TNSM.2020.2995900

I. INTRODUCTION

ETWORK functions, such as those implemented in

firewall, switch, router, Customer Premises Equipment
(CPE), etc. have been traditionally deployed on proprietary
hardware equipment, referred to as “middleboxes”. This
has made equipment upgrade, deployment of new features,
and maintenance complex and time consuming for Network
Operators (NO). Recent migration towards Network Function
Virtualization promises faster service deployment and flexi-
ble management [1]. Virtual Network Functions (VNFs) allow
us to use Commercial-Off-The-Shelf (COTS) hardware to
replace costly vendor hardware. VNFs can be hosted as vir-
tual machine (VM) instances inside cloud datacenters (DCs),
or in edge datacenter (Edge-DCs) locations such as smaller
metro datacenters (Metro-DCs), telecom Central Office Re-
architected as a Datacenter (CORD) [2], etc.

Network functions are often placed in an ordered sequence
to process traffic flows resulting in Service Chains (SCs)
[3]-[6]. A Service Chain involves a set of specific Network
Functions (NFs) to be traversed, and a certain amount of
network bandwidth to route the traffic through them. Fig. 1
shows two example service chains (SC; and SC3) in a geo-
distributed DC/Edge-DC scenario. SCp illustrates a service
chain which traverses nodes 6, 3, 2, and 1, where three network
functions are hosted (VMs NFy and NFy at node 6, and NF3
at node 2). In addition to the computing and memory resources
located at nodes, the NO allocates necessary network band-
width capacity (N) to maintain Quality of Service (QoS) as
per the tenant’s request. Similarly, traffic flow for SCy tra-
verses nodes 10, 14, 13, and 12, with NF; at node 10 and
NFs5 at node 13.

Often a SC is placed according to a tenant’s request.
Traditionally, a tenant leases enough resources from the NO
to support the tenant’s peak load. For a static allocation of
resources, after the NO finalizes the initial placement of a SC
with resources required by the tenant, the allocated (comput-
ing, memory, and bandwidth) resources remain unchanged for
the rest of the SC’s lifetime [6]. But, in practice, the traffic
demand flowing through the SCs (for the respective tenant)
can vary over time, leading to a dynamic resource-allocation
scenario. This idea of auto-scaling (i.e., varying the number
of allocated resources automatically based on load) originated
in cloud computing [7].

Cloud service providers implement auto-scaling capability
for computational resources, so a tenant pays leasing cost only

1932-4537 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

al

72

73

74

75

https://orcid.org/0000-0001-9957-8336
https://orcid.org/0000-0003-0740-1061
https://orcid.org/0000-0002-1483-1257

sC,

@ NF, @NF,OINF

Fig. 1.

Example deployment of service chains.

76 for the resources used (via pay-per-use payment methods).
77 However, auto-scaling in cloud computing and auto-scaling
78 SCs have some key differences: i) Cloud computing load vs.
79 network traffic load: In cloud computing, workload mostly
o consists of computation tasks serving applications and users.
81 On the other hand, SC workload consists of network traffic
g2 that requires to be served by network functions (NFs) (e.g.,
83 Firewalls, etc.). Due to the different types of workload (e.g.,
s« cloud VM hosting ‘Pokemon Go’ application server vs. service
s chain VM hosting ‘Firewall VNF’), methods and results from
s cloud-computing domain are not directly applicable to SCs.
&7 Hence, we need to study novel auto-scaling methods which use
ss network traffic load data (to learn from the network-specific
s load characteristics) and obtain new results demonstrating
9 the impact of SC auto-scaling (instead of assuming that
91 SC auto-scaling will have the same impact as cloud auto-
o2 scaling on cost, etc.) i) Cloud QoS requirements vs. SC
93 QoS requirements: Cloud services served by DC operators and
94 service chains deployed by NOs usually have different QoS
os requirements. SC auto-scaling methods have to consider these
96 different QoS requirements and deploy resources accordingly.
o7 Indeed, our proposed negotiation-game-based approach studies
98 the impact of different levels of QoS sensitivity from tenants,
99 and investigates its impact on cost savings, resource utilization,
100 etc., which is a major novelty of this study. iii) Cloud resources
101 vs. SC resources: In cloud computing studies, mostly virtual
102 machines (VMs) (consuming compute and memory resources)
103 are of focus. Hence, the cloud computing auto-scaling meth-
104 0ods do not consider network bandwidth as a resource to be
105 auto-scaled. On the other hand, for service chains, network
106 bandwidth is critical, in addition to computing and memory
107 resources consumed by NFs. Hence, novel SC auto-scaling
s methods [21]-[24] are being proposed to jointly auto-scale
100 network and cloud resources.

1o Auto-scaling of SCs brings the economic benefit of pay-per-
11 use for NO and tenants. The tenant pays lower leasing cost
112 (due to lower resource usage) when the traffic load is low and
113 higher leasing cost (due to higher resource usage) when the
4 traffic load is higher. Tenants can reduce their leasing cost
s significantly by leasing network services from the NO which
116 offers auto-scaled services. On the other hand, NO can attract
117 more tenants by offering economic benefits of auto-scaling.

1

o

1

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

NO can use the freed resources to serve SCs experiencing
higher load and can even serve additional SCs (and additional
tenants).

During the auto-scaling process, there can be a small dura-
tion of time, when the resources allocated to the tenant is
not sufficient for the traffic load, leading to degraded service,
negatively impacting QoS. Now, some tenants could tolerate
a short duration of QoS degradation (e.g., video streaming).
These tenants may be willing to auto-scale even when the
economic gain is relatively low. But some other tenants could
be very sensitive to QoS degradation (e.g., bank, stockbrokers,
etc.) These tenants might participate in auto-scaling only when
the economic gain is high.

Prior studies on SC have mostly focused on static and
dynamic methods for SC resource placement [3], [6], [20],
[22]. A few recent studies [21]-[24] have proposed heuris-
tic algorithms to auto-scale SCs using prediction methods
such as auto-regression [23]. However, these studies consider
NO-driven auto-scaling, i.e., the NO allocates/de-allocates
resources from SCs by assuming that tenants are always will-
ing to release resources (or to accept additional resources),
without considering the tenants’ willingness to cooperate in
the auto-scaling process, QoS sensitivity, etc.

In practice, some tenants may have more QoS-sensitive SCs
(e.g., a bank requiring connectivity for financial operations)
than others (e.g., a video content provider). Hence, depending
on the services supported over the chain, the tenant may have
preferences (e.g., willingness or unwillingness) to participate
in auto-scaling. From an economic point of view, in this study,
we assume that tenant’s decision will also depend on how
much refund it will gain by giving back resources to the NO.

In NO-driven auto-scaling method, the NO pays full refund
of the tenant’s leasing cost. But considering the fundamental
economics, NO will be interested to pay less refund. Hence,
NO’s goal is to maximize the amount of re-collected free
resources while paying minimum refund. To the best of our
knowledge, our study is the first to explore a negotiation-
game-based SC auto-scaling where tenants and NOs jointly
participate in the auto-scaling decision based on their
benefits.

Prior studies on auto-scaling (applied to SCs, or more gen-
erally, to cloud systems) have used reactive threshold-based
approaches as well as proactive prediction methods (based
on auto-regression, moving average, etc.) In this study, we
enhance our previous ML prediction model in [8] and inves-
tigate an improved proactive Machine Learning (ML) based
prediction methods (with different input, output, and feature
set than those in [8]) to predict traffic demand for a given
interval, ahead of time. We use the data collected from a pri-
vate ISP to compare the performance of our proposed ML
prediction method with the prediction methods proposed in
prior studies.

We observe that each network function uses different num-
ber of computing and memory resources [20], depending
on the traffic it is serving. But, in prior studies, these two
resources are considered together as a single VM unit. In
addition, many works ([18]-[19]) do not consider auto-scaling
of network bandwidth at all. Hence, our proposed method

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

17

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

20!

@

210

RAHMAN et al.: AUTO-SCALING NETWORK SERVICE CHAINS USING MACHINE LEARNING AND NEGOTIATION GAME 3

models the problem with computing, memory, and network
bandwidth as separate, dis-aggregated, and scalable resources.

Significant contributions of our study on the auto-scaling
method are as follows:

1) To the best of our knowledge, we propose the
first SC-negotiation-game-based auto-scaling method
(Negotiated Resource Auto-Scaling for Service Chains
(NRASC) algorithm) that allows the NO and tenants
to engage in negotiation, based on QoS sensitivity and
financial gain.

We propose another heuristic algorithm (Operator-driven
Auto-Scaling for Service Chains (ORASC)) which
allows us to compare the effectiveness of NRASC and
the impact of our proposed prediction methods.

Our study explores various ML-based prediction meth-
ods including Deep Neural Networks (DNN) and Long
Short-Term Memory (LSTM).

Our study compares our proposed method with three
prior works: dynamic-threshold-based approach derived
from cloud auto-scaling (DT) [10], a recent SC
auto-scaling study (AR) [23], and an artificial-neural-
network-based method [35]. Results demonstrate higher
gain from our proposed methods.

We propose a SC resource model that considers disag-
gregation of resources (compute, memory, bandwidth,
etc.).

The rest of this study is organized as follows. Section II
reviews prior work on auto-scaling for cloud computing,
VNFs, and SCs. Section III provides a formal problem state-
ment for SC auto-scaling. Section IV describes the proposed
ML-based prediction methods and two auto-scaling algo-
rithms. Section V discusses the performance of ML-based
prediction and shows numerical results on the auto-scaling
algorithms. Section VI concludes the study.

2)

3)

4)

5)

II. BACKGROUND AND RELATED WORK

211 A. Auto-Scaling for Cloud Services

212

213

214

215

216

217

218

219

22

o

221

222

223

224

225

22

3

227

228

229

230

23

Prior studies on auto-scaling for cloud computing can be
classified in two groups: threshold-based vs. prediction-based
(time series analysis, auto-regression, etc.) Threshold-based
approaches have been used by DC owners [7] for scaling
computing resources. Static-threshold-based approaches [9],
[10], [11] use predefined upper and lower thresholds for
scaling, which is not practical in a dynamic demand sce-
nario. Improvements have been proposed using dynamic-
threshold-based approaches [12], [13], [14]. As for prediction-
based approaches, prior studies have used Auto-Regression
(AR) [15], Moving Average (MA) [16], and Auto-Regressive
Moving Average (ARMA) [17] to predict future workload for
cloud virtual machine auto-scaling.

We have studied the proposed methods in cloud comput-
ing, adopted their threshold-based approach (DT), modified it
for auto-scaling SCs, and we compare it with our proposed
method in results section, to reflect the improvement over
the state-of-the-art. In addition, a recent study [23] proposes
a dynamic SC scaling method using auto-regression (AR),
another method used in cloud auto-scaling. In results section,

we compare our method with both DT and AR, and present
improvements achieved by our proposed method.

B. Auto-Scaling for Service Chains

Prior studies on SC focus mostly on static and dynamic
deployment of service chains. Reference [4], [6], [20] dis-
cuss the SC placement problem and propose mathematical
optimization solutions for SC placement. Recent studies have
started exploring SC auto-scaling. Reference [23] proposes
a dynamic scaling method for a specific usecase: mobile
core networks and IP Multimedia Subsystems (IMSs). The
method uses auto regression (AR) as a prediction mecha-
nism (we will compare it to our proposed ML method).
Reference [24] proposed dynamic placement of VNF SCs
across geo-distributed DCs. It converts the offline deploy-
ment problem into Online Regularization-Based Fractional
Algorithm (ORFA).

Reference [25] proposes a heuristic VNF migration algo-
rithm to reduce migration time and VNF embedding cost
for SCs. The study focuses mostly on the migration deci-
sion algorithm, not on auto-scaling. Reference [26] proposes
a heuristic algorithm for end-to-end latency-aware dynamic
SC auto-scaling. Authors do not use any prediction method,
assuming the workload is known from a Wikipedia trace data.

To summarize, references [23]-[26] do not distinguish
among the SC resources (compute, network, storage, etc.), use
traditional prediction methods (AR, ARMA, etc.), and do not
consider tenant’s participation in the auto-scaling decision.

As discussed, prior studies only consider NO-driven auto-
scaling methods. To the best of our knowledge, our study is
the first to explore the negotiation-game-based auto-scaling
where tenants and NO decide on the auto-scaling based on
their benefits (more in Section V). Another novelty of our work
is the integration of ML-based prediction for auto-scaling.

In addition, our method is aware of disaggregated view of
computing, memory, and bandwidth resources (instead of con-
sidering VMs as resource unit). Such disaggregation [27] has
been explored in network resource literature. Using vertical
scaling (adding/removing resources to/from a VM), disaggre-
gation allows granular auto-scaling of resources.

III. PROBLEM DESCRIPTION

Our objective is to develop auto-scaling methods which
use the predicted values from machine learning classifier (see
Fig. 2.a) to dynamically scale the SCs.

Fig. 2.a shows the overall flow of the auto-scaling process.
The “Prediction” module learns from historic data and uses
recent measurement data to predict the traffic demand during
the next interval. Then, the “Scaling algorithm” makes neces-
sary resource allocation/de-allocation based on the prediction.

The first step is to design a method to predict the amount
of required resources in the next interval (y). Section IV
presents an enhanced version of the ML classifier proposed
in [8]. Section V presents the SC auto-scaling algorithms.
First, we propose NO-driven auto-scaling method, ORASC
algorithm, which takes the output from prediction method
and handles the complex SC resource management steps

232

233

234

235

236

287

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

28

Q

28

@©

28

©

29

o

29

292

29

@

294

29

@

296

297

29

@©

29

©

300

30

302

30:

@

304

30!

a

30

>

30

N

30i

®

30!

©

31

5}

3

1

312

313

314

315

QoS
requirement

Preprocess Prediction \ Scal_mg
data | algorithm
_ Actions
Network status data - Network
a)
10 scaling decisions
s(n-2) s(n-1) s(n) s(n+1) s(n+2)
=9 K
w
28
N —— > 3 L
By _* oy : :
[. X v
£ s L
26
o
E5 ¢
=
4
3
a b c d e f g h i k
b) Time

Fig. 2. Auto-Scaling overview: (a) high-level view of auto-scaling decision
life cycle; (b) example steps for prediction decisions.

(such as allocating/de-allocating network capacity in links,
adding/removing computing/memory units to VNFs, migration
of virtual resource units, etc.) Then, we propose another auto-
scaling algorithm based on negotiation game theory, NRASC
algorithm, where tenants actively participate in the auto-
scaling decision process. Our study envisions that, in future,
the proposed method will be part of the automation, orchestra-
tion, and management software of the NO (similar to AT&T’s
ECOMP [28]).

Hence, the problem can be formally defined as follows:
given a network topology, capacity of links, a set of nodes
hosting compute and memory resources and their capacity lim-
its, a set of SCs where tenant traffic flows are already assigned
to a SC (using SC placement methods), minimum and max-
imum limits for each type of resources for each SC, historic
measurement data to train ML algorithms, our method auto-
scales SC resources, using the predicted resource requirement
for the next interval. We assume that SCs do not share comput-
ing/memory/network units among each other, and traffic flows
from one SC do not use another SC. In our study, we con-
sider QoS is maintained if the required number of resources
are allocated for that time period. On the other hand, if less
resources are allocated than required, we consider QoS is
violated, resulting in degraded QoS and QoS penalty.

The input parameters of the problem are as follows.

e Network topology G(V, E): where V is set of network
nodes with computing/memory hosting capability (DC or
Edge-DC) and E is set of network links connecting the
nodes in V.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

e ec E:eisalink where e, e“, and (e’ — e“) represent
total, used, and available bandwidth (capacity) of link e,
respectively.

e veV:where v}, v, and (vl —v¥) represent total, used,
and available capacity of the CPU resource hosting node
v, respectively. Also, v}, v%, and (v}, — v%) represent
total, used, and available capacity of the memory resource
hosting node v, respectively.

e SC: a set of service chains from different tenants (i.e.,
SC = 85C1,8Cy,...).

e F: a set of traffic flows to be served by the SC (i.e.,

F=F,Fy...).

NFy: Virtual Network Function with type NF7, indexed

by [/, hosting location given as NF " number of units

deployed given as NFZX .

e C: computing requirement in number of CPU cores.

M: memory requirement in unit of GB.

e N: network capacity requirement (Gbps).

o SCy € SC represents gth SC. SCj is defined by source
(SC’;), destination (Squ), assigned traffic flows (F;CF),
one or more VNFs ((IVF})) hosting different VNF types,
end-to-end network capacity requirement (N), route SCy
(traversing the VNFs) in which SC; is allocated N
capacity, VNF-specific compute (C) and memory (M)
requirements for each VNF, and sequence is which VNFs
are placed.

e Set of historic traffic load measurement data (H (SCy, t)):
indicates aggregated traffic (from the assigned traffic
flows Fy) served by service chain SCy at time ¢.

e For each SC deployment SC,, upper and lower lim-
its for the required resources are defined. For each
C, M, and N of each NFj inside SC}, there is a minimum
number of allowed units (e.g., C™", M™n N™n,
etc.) and a maximum number of allowed units (e.g.,
Cmaz’ Mmam’ N™az etc).

IV. PROPOSED ML CLASSIFIER

In machine learning, an instance is a set of features/values
representing a specific occurrence of the problem. For exam-
ple, in our study, one feature of the problem instance is time
of day. Another feature is value of the measured traffic load at
a time of the day. We associate each instance (set of features)
of the problem to a class, i.e., a classification decision. We
convert the auto-scaling problem to a classification problem
by training the classifier with a set of correctly-identified
instances, called training set. In training phase, ML classifier
learns a mapping between features and classes. After training
phase, a classifier can be tested using a set of instances, called
test set, which is not part of training set.

The Time vs. “Traffic demand” graph in Fig. 2.b is used to
explain the input and output of the ML classifier. Fig. 2.b
shows different timestamps (a, b, ¢, etc.) and auto-scaling
decisions (s(n—1), s(n), s(n+1), etc.), where s(n) indicates
the auto-scaling decision for the n-th interval. Let measured
network traffic load for given timestamp x be A(z), and
timestamp of auto-scaling step n be given by 7(n), where

7(n)—7(n—1) = ¢.

316

317

318

319

320

321

322

328

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

RAHMAN et al.: AUTO-SCALING NETWORK SERVICE CHAINS USING MACHINE LEARNING AND NEGOTIATION GAME 5

a2 A. Feature Selection (Input)

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

40

402

403

404

405

406

407

408

409

410

M

412

413

414

415

416

417

418

419

420

42

422

423

424

425

426

427

Feature selection is the first important step towards defin-
ing the ML classifier. All our features are of numeric value.
Referring to Fig. 2.a, we convert the traffic load measurements
into the following features:
o Timestamp of decision: 7(n)
e Day of Month (DoM): for 7(n)
e Day of Week (DoW): for 7(n)
o Weekday or Weekend (W): for 7(n)
o Hour of Day (HoD): for 7(n)
e Minute of Hour (MoH): for 7(n)
o Measured traffic at time 7(n): A(7(n))
e Traffic change from 7(n-1) to 7(n): A(r(n)) —
A(r(n—1))

e Measured traffic at time 7(n — 1): A(7(n — 1))

o Traffic change from 7(n-2) to 7(n — 1): A(7(n —1)) —
A(r(n —2))

e Measured traffic at time 7(n —2) : A(7(n —2)) ...

o Traffic change from 7(n — 11) to 7(n — 10): A(7(n —
10)) = A(7(n — 11))

o Measured traffic at time 7(n — 11) : A(7(n — 11))

We consider measured traffic up to n—11, giving us total 27
features, containing temporal information of measured traffic
load and traffic load change from recent past. In Section VI,
we explain how and why we choose these 27 features. Features
1-6 capture the temporal properties in the data, and rest of the
features capture measured loads and how loads change over
time. We explain the impact of these features on ML classi-
fier using attribute selection algorithms, Principal Component
Analysis (PCA), etc., in Section VL

B. Class Definition (Output)

Next step is to define the output of the ML classifier, i.e.,
set of target classes that the classifier tries to predict. Note
that, to provide a comprehensive prediction tool, we perform
prediction of all resources (bandwidth, memory, and comput-
ing). But, as a certain amount of traffic requires a certain
and pre-calculable amount of computing and memory capac-
ity (depending on NF type, traffic type, etc.), we decided to
derive conversion function from network bandwidth require-
ment to computing and memory requirement. Later, we present
the conversion as functions; and, in Section VI, we show the
numerical values that are used for conversion.

In our study, class depicts bandwidth requirement in Gbps,
which is an integer value between N,]g”m and N/ To gen-
erate the labeled training set (instances with known class
labels), we ensure that the scaling decision taken at step n
allocates enough bandwidth to serve the traffic until the next
decision-making step n + 1.

To illustrate the trade-off between minimizing QoS viola-
tion and maximizing cost reduction, we propose two different
approaches to generate the class values:

1) QoS Priority ML (QPML): In SC auto-scaling, there is

a trade-off between QoS and cost reduction. We need to
allocate more resources to guarantee QoS, but allocat-
ing more resources reduces cost saving. QPML gives
priority to QoS over cost saving. To guarantee QoS,

TABLE I
EXAMPLE INSTANCES WITH KNOWN LABELS

Ce Fea. | Fea. | Fea. | Fea. QPML CPML
ase 1 2 3 4 Class Class

1 15 | 3 1 2 qos(A(h)) q%‘ig;')“

os(A(t

2 15 3 1 2 gos(A(h)) ?n +(1)())

auto-scaling decision at step n (present) considers traffic
changes until the next auto-scaling step n + 1. QPML
generates the class value as follows:

s(n) = max(A(t)),Vte{r(n),...,7(n+ 1)} (1)

where ¢ is timestamp with traffic data between steps n
and n + 1 (including 7(n) and 7(n + 1)).

Cost Priority ML (CPML): In some cases, network
owner/leaser may choose to ignore short-lived bursty
traffic between steps n and n + 1 to save cost by
avoiding over-provisioning of resources and accepting
short-lived degradation. CPML considers measured traf-
fic load only at step n (present) and at next auto-scaling
step n + 1 (future). CPML generates the class value as
follows:

s(n) = max(A(7(n)), \(t(n + 1))

2)

@)

where 7(n) is the time at which step i takes place and
7(n + 1) is the time when step n + 1 occurs.

C. Data Generation

After defining the input and output of the classifier, the
next task is dataset generation. For training-set and test-set
generation, we assume that realistic traffic-load measurement
data H(SCy, t) is available for each of the SCs. Table I shows
an example of training instance for QPML and CPML for
scaling decision at steps n—1 and n (Fig. 2) where f,g,h,i, etc.
are time values.

D. Machine Learning Algorithms

Selecting the right ML algorithm is the next task towards
training the classifier. We explore different algorithms in the
ML suite WEKA [30], including decision-tree-based algo-
rithms (Random Tree, J48, REPTree, Random Forest), rule-
based algorithms (Decision Table), artificial neural networks
(ANN), and Bayesian-network-based algorithms (BayesNet).
A brief introduction to the algorithms is covered in [8].

In our study, we also compare the accuracy of the machine
learning algorithms with Deep Neural Networks (DNN) and
Long Short-Term Memory (LSTM). DNN [34] is an artifi-
cial neural network (ANN) with multiple layers between the
input and output layers. DNN can extract complex relation-
ship between the input and the output. This has made DNN a
successful prediction method in many studies.

LSTM [33] is an artificial recurrent neural network (RNN)
architecture often used in the field of deep learning. We
have used ‘ADAM algorithm’, an adaptive learning rate
optimization algorithm. In contrast to DNN, LSTM has loops,

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

47

472 allowing prediction of future events while remembering past
473 events. Detail architecture and design of DNN and LSTM can
474 be found in [34] and [33], respectively.

475 E. Performance Evaluation

a7s A test dataset is used to evaluate the performance of the
477 trained classifier. Given a trained classifier and a test set, the
478 test outcome is divided into four groups: i) True Positive (TP):
479 positive instances correctly classified; ii) False Positive (FP):
40 negative samples incorrectly classified as positive; iii) True
1 Negative (TN): negative samples correctly classified; iv) False
> Negative (FN): positive samples wrongly classified as negative.
43 We consider three different performance metrics:

44 (a) Precision (%): Precision corresponds to the fraction of

44

®

4

o

485 predicted positives which are in fact positive. Precision
486 is a strong indication of accuracy for the classifier.
487 Precision is given by percentage of: TP/(TP + FP).

48 (b) False Positive (%): FP is an important indicator of clas-
489 sifier as lower FP indicates less classification mistakes.
a0 (¢) ROC area: Receiver Operating Characteristic (ROC)
491 curve is a graphical plot in which true positive rate
402 (TP/((TP + FN)) is plotted as function of the false pos-
493 itive rate (FP/(FP + TN)). ROC area is a robust metric
494 for classifier performance.

495 V. SC AUTO-SCALING METHODS

a6 In this section, we propose two SC auto-scaling meth-
7 ods: (i) Operator-driven and (ii) Negotiation-game-driven. The
498 Operator-driven SC scaling algorithm (ORASC) helps us
499 to quantify and compare different prediction methods from
soo the literature with our proposed machine learning approach
sot (Figs. 7-9 in results). To mimic traditional SC scaling meth-
so2 0ds, ORASC considers fixed level of QoS sensitivity and fixed
so3 refund. On the other hand, negotiation-game-driven SC scaling
4+ algorithm (NRASC) is our novel SC scaling method, which is
so5 the first to propose a solution for multiple levels of QoS sensi-
so6 tivity (for tenants) and negotiated refund (between tenants and
so7 NO). Later, we compare ORASC and NRASC to demonstrate
sos the win-win scenario brought by NRASC (see Figs. 10-13 in
s00 results).

sto Both methods utilize prediction methods to auto-scale SC
1 resources. The methods consider Network Management and
2 Orchestration (NMO) and Distributed Cloud Management
si3 (DCM) entities which control network and compute/memory
s14 resources, respectively. Also, prediction methods are re-trained
s1s after a certain interval to keep them up to date. Re-training
s16 threshold o determines if prediction methods need to be
s17 re-trained.

4

©

5

=}

5

5

s A. Operator-Driven SC Scaling Method (ORASC)

sto In Operator-driven auto-scaling (Algorithm 1), NO uses
s20 predicted demand to allocate/de-allocate resources from SCs
s21 assuming that tenants are always willing to release resources
s22 (or to accept additional resources).

s2s Algorithm 1 uses the predicted bandwidth requirement
s24 (line 4) to determine the required number of computing (line 6)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Algorithm 1 Operator-Driven Resource Auto-Scaling for
Service Chains (ORASC)
1: Initialize with given input parameters in Section III;
2: Train prediction methods (Section V) for each SC; using
input data H(SCy, t);

3: for each SC; in SC do

4: NP « prediction method output for SCy;

5: for each NF; served in SC; do

6: CP « f1(NP,NFy); > amount of computing
units

7: MP + f2(NP,NF}); > amount of memory units

8 C + true;

: RAM(C, C?, M, MP ,N,NP, NF;,5Cq,();
10: end for
11: end for
12: if o is expired then
13: go to line 2;
14: else
15: Update o;
16: go to line 3;
17: end if

and memory (line 7) resources for each NF, using bandwidth-
to-computing conversion function f1(.) and bandwidth-to-
memory conversion function f2(.), respectively. In line 9,
the algorithm calls function RAM(.) (i.e., Algorithm 2) with
appropriate parameters. RAM(.) scales up (lines 6-34) or down
(lines 36-42) the resources according to the demand change.
RAM(.) also handles scenarios such as not enough resources
at the DC/Edge-DC (lines 23-33), resource requirement did
not change (lines 3-4), and tenant demand has grown so much
that QoS can not be satisfied with the current SC resources; so,
NO needs to deploy an additional SC in a new route where we
have enough (computing, storage, and bandwidth) resources to
serve the tenant (lines 44-49).

Run-time complexity of ORASC is O(g*I), where ¢ = num-
ber of SCs and / = average number of NFs in SCs.

B. Negotiation-Game-Driven SC Scaling Method (NRASC)

ORASC proposes the traditional way of auto-scaling chains
where the operator takes the auto-scaling decision based on
performance metrics, without consulting tenants’ preferences.
But, in practice, depending on the usecase of the service
chain, the tenant may have preferences (e.g., willingness or
unwillingness) to participate in auto-scaling.

From QoS point of view, tenant’s decision will depend on
the priority level of the service chain. For example, a bank
handling sensitive information might be more risk-averse than
a video-streaming service. Hence, a bank will be less will-
ing to auto-scale its SCs (keeping all free resources to itself),
compared to the video service provider.

From economic point of view, tenant’s decision will depend
on how much refund it will gain by giving back free resources
to NO. In ORASC, we assume the NO pays full refund to
tenants. But, in practice, NO will be interested to pay less
refund. Hence, NO’s goal is to maximize free resource collec-
tion while paying minimum refund. Also, tenants with higher

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

56

=

56

562

563

564

RAHMAN et al.: AUTO-SCALING NETWORK SERVICE CHAINS USING MACHINE LEARNING AND NEGOTIATION GAME 7

Algorithm 2 Resource Allocation Method (RAM)

1: Input: C, C?, M, M?, NF}, SCy, (;

2: > unchanged requirement
3. if CP == C & MP == M then

4: Load balance (DCM) traffic flows in F;

5: > more resources required
6: else if C? > C & MP > M then

7 V4 NFlh;

8: d; + CP —

9: 6j ~— MP — M;

10: 0p +— NP — N;

11: > enough resources at v
12: if (0! — %) >8; & (v}, — v¥%) > &, then

13: if SCy does not have d;, additional bandwidth then
14: Find new route S qu " with NP bandwidth;

15: SCy + scr'

16: Re-route traffic through SC';

17: end if

18: Allocate §; additional Cs and 5j additional Ms,
19: to NF] at location v;

20: Load balance (DCM) traffic flows in F'y;

21: > not enough resources at v
22: else

23: v’ +~ DCM finds optimum location to host NFy;
24: Allocate C? and MP at v’ via DCM;

25: Migrate necessary data from NFj instance at v
26: to v’ via DCM;

27: Turn on NF} instance at v’ with allocated compute
28: and memory resources and migrated data;

29: Find new route S C’qr " with NP bandwidth

30: through v';

31: SCT + SCy';

32: Re-route traffic through SC/;

33: Release C' & M at v via DCM;

34: end if

35: > remove extra resources
36: else if CP < C & MP < M & (== true then

37: V4 NFlh;

38: 0; — C — CP,

39: dj < M — MP;

40: DCM finds optimum §; C's and 0, M's to de-allocate
41: from NFj instance at v location;

42: Load balance traffic flows in F'y;

43: > SC QoS upper limit
44: else if C? > (C™% then

45: Consult NMS, DCM, and placement algorithm to

46: create a new SCs, SC’&;

47: Reroute and load balance flows from

48: Fy between SCy and SCy;

49: end if

QoS requirement will release free resources only if the NO
is paying high refunds. Our proposed negotiation-game-based
method allows the NO and its tenants to negotiate such that
both can achieve a win-win equilibrium.

Let the list of unused resources in service chain SCj for next

interval o be given by S C’é(. Leasing cost paid by tenant for

=3 | |
[1R | . se=s |

‘ 2. Free resources? «/
4. Yes, 3 3.R/SCE>5C5?
=sss
6. Free resources?Vv
8.No, 0 | 7. R/SC{;ZSCI}?*

9. R=R+A ‘

| 10. Free resources?*
12. No, O | 11. R/SCE > SC3? v/

14. Free resources?V

|

L a \/
M 15. R/SCLI 2 SCq :
‘\‘» Continues until no frele resources

| or Operator reached maximum R

Fig. 3. Example negotiation between NO and tenants.

current unused (and available resources) in SCj is expressed
as SC’qL. NO’s ‘Offered Refund (OR)’ for a certain negotia-
tion round is expressed by R and ‘Refund Ratio’, a, is the
ratio between ‘Offered Refund’ and leasing cost of unused
resources, o = R/SC’qL.

Tenant’s ‘Expected Refund (ER)’ for service chain SCy is
expressed as SCg". SCg" denotes that tenant is willing to par-
ticipate in auto-scaling (i.e., releasing its unused resources) if
a> SCF.

Fig. 3 explains the negotiation game between NO and ten-
ants with an example. At step 1, NO offers refund R to Tenant
1 (Expected Refund (ER) = 0.2). As refund R satisfies the
tenant’s expected refund level, the tenant agrees to auto-scale,
releasing 3 free resources. But, for Tenant 2 (ER = 0.5), refund
R is not enough, hence it rejects to participate in auto-scaling.

In the next round, NO increases the ‘Offered Refund, R’
with A amount and re-starts negotiating. Now, R is suffi-
cient for Tenant 2, so it agrees to participate in auto-scaling.
These negotiation rounds keep going on until there are no free
resources or NO has reached maximum R (equilibrium).

Fig. 3 shows the example of the negotiation game show-
ing a few rounds of negotiation going on between the NO
and the tenants in runtime. However, the implementation in
NRASC (Algorithm 3) does not require physical communi-
cation between the tenants and NO. In NRASC algorithm,
the tenants’ parameters required for the negotiation rounds
are available at the beginning of the negotiation game. NO
executes the NRASC by looking into the parameters (e.g.,
expected refund, etc.) already defined by the contracts with
the tenants.

Algorithm 3 uses similar negotiation steps in the context
of service chains. Lines 3-19 create a candidate list for auto-
scaling with SCs which have free resources. Line 21 starts
with an initial R and starts the negotiation with SCs from
the candidate list. If SC agrees (line 25) to auto-scale for the
given R, the algorithm calls RAM(.) functions for each NF
with appropriate parameters. After one round of negotiation,

565

566

567

568

569

570

5

N

2

573

574

575

576

5

N

7

578

579

580

581

582

583

584

585

586

587

588

5

©

9

590

591

593

594

595

596

597

598

599

600

6

=}

1

602

603

6

=3

4

605

606

607

608

609

610

611

612

6

3

614

615

Algorithm 3 Negotiated Resource Auto-Scaling for Service
Chains (NRASC)
1: Initialize with given input parameters in Section III;
2: Train prediction methods (Section V) for each SC; using
input data H(SCy,1);
3: candidate_list < empty
4: for each SC; in SC do
5. NP <« prediction method output for SCq;
6: for each NF; served in SCy do
7
8
9

CP + f1(NP 6 NF));
MP + f2(NP, NF));
: end for
10: Calculate SC’;‘;

11: if SC% is not empty then > unused resources

12: candidate_list < candidate_list U SCy

13: else > may need additional resources
14: for each NI served in SC; do

15: ¢ + false;

16: RAM(C, C?, M, MP,N,NP, NF;,S5Cq,Q);
17: end for

18: end if

19: end for

20: > Negotiation starts

21: Initialize R

22: while (unused resources available || NO has not reached
maximum R) do

23: for each SC; in candidate_list do

24: NO offers R to SCy; Tenant;

25: if R/SCE > SC then

26: > Tenant agrees to release

27: ¢ « true

28: for each NF; served in SCy do

29: RAM(C, CP, M, MP N, NP, NF;,

30: S5Cq, Q)

31: end for

32: end if

33: NO moves to next Tenant with same offer R;

34: end for

35: > Offer more refund in next round

36: R+ R+ A

37: end while

line 37 updates R. This process keeps going on until there are
no free resources or NO has reached maximum R. Runtime
complexity of NRASC is O(g*l + x*q*l), where g = number
of SCs, I = average number of NFs in SCs, and x = average
number of negotiation rounds.

We are aware that, in special circumstances, tenants can be
tempted to engage in collusion (e.g., share information with
one another) to maximize their refund, leading to a broken
negotiation process. We have explored existing mechanisms
to avoid collusion between tenants, and we have identified a
vast literature from both technical [36], [37] and legal [38]
domains. SC scaling is much different than the traditional
game theory problems where we have multiple bandits/outlaws
who do not obey the law. The tenant and the NO are bound by

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

the legal and technical contracts which limit the tenants abil-
ity to share sensitive information. Breaking the legal contracts
will lead to huge financial loss for the tenant compared to the
gain achieved by the collusion. Hence, we can safely illustrate
that NOs (or any other organization handling hundreds of com-
peting tenants over many years) have mechanism in place to
avoid collusion between tenants. Scope of our study is not suf-
ficient to discuss and cover all these mechanisms. However,
we assume that NO will consider using technical [36], [37]
and legal [38] mechanisms to protect the negotiation process
from collusion.

C. Leasing Cost Model

We propose this leasing cost model to show the cost savings
from the tenant’s point of view. Let us define:

Ly: Total leasing cost tenant pays for the service.

L Leasing cost per unit (CPU core) of compute resource
per hour.

Ljs: Leasing cost per unit (GB) of memory per second.

Ly : Leasing cost per unit (Gbps) of bandwidth per hour.

Lp: Penalty per hour due to degraded service (under-
provisioning). Revenue that tenant loses if the service does
not maintain QoS.

Bq: Duration of service for SCy.

¢ Duration of degraded service for SCj.

Leasing cost for one VNF instance NFj:

NFE = (Cx Lo+ M* Ly + N+ Ly) * B4 (3)

During a SC’s life time, auto-scaling methods may introduce
QoS degradation due to under-provisioning of resources (e.g.,
7 Gbps bandwidth is required, but the forecast was 6 Gbps).
Our study captures this degradation of service as a duration
of degraded QoS. We model the revenue penalty occurred by
this duration spent in degraded QoS using Eqn. (4). Leasing
cost for one SC SCy, including QoS degradation penalty, is:

sck = Z(NFf) + Lp * 4. &)
[

VI. ILLUSTRATIVE NUMERICAL EXAMPLES

This section provides performance analysis of the proposed
ML classifier for prediction and then presents results for
ORASC and NRASC.

A. ML Classifier Prediction Accuracy

1) Experimental Setup for ML Classifier: To generate “fea-
tures” and ‘“classes” for training and testing of the ML
classifier, we use realistic traffic load traces from [35]. Traffic
load data (in bits) was collected at every five-minute intervals
over a 1.5-month period from a private ISP and on a trans-
Atlantic link [39]. Maximum traffic load in the data is 10 Gbps,
so we use 10 Gbps as maximum traffic processing at any SC
deployment (N™%%), and minimum N™" is considered as
1 Gbps. As traffic load traces are at every 5-minute interval,
we use a prediction interval (¢) = 10 minutes. However, our
methods are generic to work for other intervals (explained with
Table IV).

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

RAHMAN et al.: AUTO-SCALING NETWORK SERVICE CHAINS USING MACHINE LEARNING AND NEGOTIATION GAME 9

TABLE 11
PREDICTION ACCURACY OF THE PROPOSED CPML CLASSIFIER

algg;_tlhm Precision (%) Posiﬂif: (@) | ROC Area (%)
Random Forest 96.5 0.7 99.7
Random Tree 91.4 1.7 94.7
J48 94.9 1 98.5
REPTree 95.1 0.9 99.3
Decision Table 95.5 1 99.6
ANN 92.8 1.4 99.4
BayesNet 90.9 1.7 99.5
DNN 95.1 0.7 99.8

LSTM 95.7 0.7 -

TABLE III
PREDICTION ACCURACY OF THE PROPOSED QPML CLASSIFIER

algg/ﬂ;hm Precision (%) Posiﬁiljf (@) | ROC Area (%)
Random Forest 95.5 1.2 99.4
Random Tree 90.9 2 93.9
J48 93 1.6 97.3
REPTree 94.2 1.3 99.1
Decision Table 92.8 1.5 99.2
ANN 91.3 1.8 98.3
BayesNet 90.3 1.9 99.1
DNN 92.4 0.7 99.8

LSTM 93.1 1.6 -

667

ML settings used in WEKA [30] are as follows:

s o Random Forest: batch size = 100, number of iterations

669 - 100

670 o Random Tree: batch size = 100, minimum variance
671 proportion = 0.001.

ez o J48: batch size = 100, confidence factor = 0.25.

o3 o REP Tree: batch size = 100, minimum variance propor-
674 tion = 0.001.

675 o Decision Table: batch size = 100, search method: best
676 first (hill-climbing algorithm with backtracking).

ez o Artificial Neural Networks (ANN): batch size = 100,
678 learning rate = 0.3.

eo e BayesNet: batch size = 100, search algorithm = K2 (hill-
680 climbing algorithm).

est o DNN: batch size = 100, learning rate = 0.3.

e2 o LSTM: optimization algorithm: ADAM algorithm.

ess 2) Prediction Accuracy of Proposed ML Classifiers: Here,
ess we consider the three performance metrics discussed in
ess Section IV-E to explain the accuracy of the proposed meth-
ess 0ods. In Table II, we compare the prediction accuracy of
es7 the CPML prediction method for different ML algorithms.
ess For results in Tables II and III, we use 40 days of data
eso (40*144 = 5760 instances) for training and two days of
so0 data (2*%144 = 288 instances) for testing. We assume that
o1 the ML model is retrained with new data every two days
ez (0). First, Tables II and III shows that, among different ML
e93 algorithms used to train the classifier, “Random Forest” has
se4 higher precision for both QPML (95.5%) and CPML (96.5%)
ses approaches. Difference in prediction accuracy is due to dif-
eos ferent “class” generation results (from Eqn. (1)) than CPML
eo7 (from Eqn. (2)). Note that, LSTM does not have the ROC Area
sos (%) evaluation metric.

ee9 False Positives are important metric for ML classifiers. If
700 @ ML classifier generates too many false positives, in most

TABLE IV
IMPACT OF PREDICTION INTERVAL () VARIATION ON PRECISION (%)

ML Algorithm | 5 minutes | 10 minutes | 15 minutes
Random Forest 95.3 96.5 93.8
Random Tree 95.3 91.4 90.4
J48 95.2 94.9 92.8
REPTree 93.9 95.1 92.8
Decision Table 94.0 95.5 93.3
ANN 94.2 92.8 90.4
BayesNet 95.4 90.9 87.1
DNN 94.4 95.1 91.6
LSTM 93.8 95.7 91.4

scenarios, the classifier will not be considered as a recom-
mended one. Tables II and III report False Positives (lower
is better) for QPML and CPML with different ML algo-
rithms. Again, “Random Forest” shows lowest FP with 1.2%
for QPML and 0.7% for CPML.

ROC Area is another important and robust metric for ML
prediction models. ROC Area considers the performance of
ML classifier in complete range of true positives and false
positives, and then reports overall performance of the classifier.
Tables II and III show ROC Area (%) for QPML and CPML
(higher is better). Again, Random Forest shows highest ROC
Area with 99.4% for QPML and 99.7% for CPML.

Decision-tree-based algorithms perform better for the
prediction accuracy compared to artificial-neural-network-
based and Bayesian-network-based algorithms. Among
decision-tree-based algorithms, “Random Forest” leads with
highest precision (96.5%), highest ROC Area (99.7%), and
lowest false positives (0.7%). Clearly, the pattern of the data
and feature set favor decision-tree-based algorithms to learn,
as the tree-based algorithm keeps all the intermediate tree
classifiers during the learning process. In addition, “Random
Forest” further improves the performance by averaging/voting
between several tree-classifier instances. However, ANN-
based model uses backpropagation by gradient descent to
set the weights of neurons’ connections. Such ANN-based
models suffer from a fixed learning issue, where the model
fails to learn new trends once the weights are fixed [41]. This
limitation causes lower performance for ANN, compared to
decision-tree-based method such as Random Forest.

Table IV shows the impact of prediction interval (). We
consider intervals of 5, 10, and 15 minutes for CPML. We
observe that, for prediction interval of 5 minutes, Random
Forest (95.3%), Random Tree (95.3%), and BayesNet (95.4%)
present high accuracy. For prediction interval of 15 minutes,
Random Forest (93.8%) performs with the highest accuracy.
On the other hand, as we move away from ¢ = 10 minutes
to ¢ = 15 minutes, the accuracy reduces slightly. Explanation
of this phenomenon is that, for longer ¢, the prediction accu-
racy depends on more data points, limiting the performance of
ML model. But, it is safe to conclude that Random Forest is
performing steadily for all three prediction intervals. We have
explored similar results for QPML as well. Hence, for the rest
of the numerical evaluations, we use results from “Random
Forest”.

3) Learning Curve Analysis (Impact of ‘Number of
Features’ and ‘Training Dataset Size’ on Prediction
Accuracy): Figs. 4-5 provide learning curve of the proposed

701

702

703

704

705

706

707

708

709

710

71

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

74!

©

750

751

752

75!

@®

754

755

756

757

75

®

759

760

76

762

763

764

765

766

767

768

76!

©

770

77

772

773

774

775

776

777

100
=QPML = CPML

95
X
= 90
el
(2]
G 85
(0]
o
o

80

75 +— — - — — —

8 10 15 20 27

Number of Features

Fig. 4. Number of features vs. prediction accuracy in precision (%).

100

=QPML =CPML

Precision (%)
o) © ©
(&)1 o (&3]

0]
o

~
(&)

- | 10 20
Training size (days)

Fig. 5. Training data size vs. prediction accuracy in precision (%).

ML classifier. Learning-curve analysis presented here helps us
to understand the following two important aspects of training
a classifier: “How many features generate best results?” and
“Does more data help or not?”

Our study did not start with fixed 27 features. Instead of
deciding the number of features upfront, we explored differ-
ent number of features and compared their performances, to
determine the best performing configuration. We started by
considering a small number of features (8), observed the high-
est accuracy with 15 features, and then increased up to a
number (27), which clearly shows that the performance is not
improving with more features. As shown in Fig. 4, 15 features
have the highest accuracy, with accuracy going up starting
from 8 features, and going down for 20 and 27 features. Hence,
27 features were the number of features we needed to report
this complete picture. For example, number of features “8”
means we are using only the first eight features from Section
IV-A. As shown in Fig. 4, accuracy of ML classifier increases
with number of features. But, after number of features exceeds
“15”, accuracy decreases. This means that, if we keep adding
more features by moving away from the time of prediction, the
additional features impact the accuracy negatively. Hence, we
use 27 features only to decide the highest performing ‘number
of features’. Once decided, for the rest of the results (shown
in Tables II-VI and Figs. 5-13), we use 15 features.

Fig. 5 shows impact of training dataset size on prediction
accuracy (precision) of ML classifier. The general intuition
is that, with more data, ML classifier should perform better.
We observe that 7 days of training data has significant
performance improvement over 2 days of training data. One

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

TABLE V
IMPACT OF DIFFERENT FEATURES

Measured Load | DoM | DoW | W | HoD | CPML
v 96.1
v v v v v 96.2
v v v v 83
v v 95.8
v v 95.5

explanation of this phenomenon is that 7 days of training data
offers insights from seasonal pattern and periodicity of the load

778

779

during the whole week (compared to 2 days). Then, 10 days of 70
training data improves the ML model further, but 20 days of 7

training data does not have much additional learning points.
Then, 40 days of training data introduces the monthly pattern
and improves the precision significantly more than 20 days.
For rest of the study, we consider 15 features and 40 days of
training data.

4) More Insights (Feature Ranks and Impact of Different
Features on Prediction Accuracy): Important questions regard-
ing ML classification are: “Can we identify the dominant
features from the feature list?” “Which features impact clas-
sification accuracy more?” “Can we explain how different
combination of features impact the accuracy?”’ Below, we
explore different methods to answer these questions.

First, we wuse attribute (feature) selection algorithm
InfoGainAttributeEval [40] from WEKA which evaluates the
importance of a feature by measuring the information gain
with respect to classification. After ranking the first 15 fea-
tures, features 7, 9, 11, 13, and 15 are ranked 1 through 5, in
that order. This observation gives two important insights: a)
“Measured loads” are most important features that contributed
to accurate classification; and b) “Measured loads” closer to
decision time have more significant impact on classification.

We have confirmed this observation using Principal
Component Analysis (PCA), a statistical procedure (often
used with feature-ranking methods) to find correlated fea-
tures and their impact on classification. In PCA, the first
principal component has the largest possible variance which
accounts for much of the variability in the data. Our PCA
reports a combination of features 7, 9, 11, 13, and 15 as
the first principal component, conveying similar takeaway as
InfoGainAttributeEval. Feature 2 (day of week), feature 1 (day
of month), and feature 3 (weekday or weekend) are ranked
6th, 7th and 8th, respectively. As expected, these three fea-
tures carry information related to the temporal variation of
load, so they are ranked highly in feature ranks. Rest of the
features are ranked in the following sequence: 14, 12, 6, 4, 8,
10, and 5.

Table V shows impact of different features on auto-scaling
decision accuracy. We compare the precision of the algorithms
with different combination of features such as “Measured
Load” (features 7, 9, 11, 13, and 15), DoM (Day of Month),
DoW (Day of week), W (Weekday or Weekend), HoD (Hour
of Day), etc. As discussed earlier, only “Measured load” fea-
ture set shows very high precision. Then, in second row,
“Measured Load” with rest of the temporal features improves
accuracy to 96.2%. Only temporal features (row 3) show

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

827

828

829

830

83

832

833

834

835

836

837

838

839

84

o

84

842

843

844

845

846

847

84

©

849

850

85

852

853

854

855

856

857

858

859

86

=}

861

862

863

864

865

866

867

868

869

870

87

872

873

874

RAHMAN et al.: AUTO-SCALING NETWORK SERVICE CHAINS USING MACHINE LEARNING AND NEGOTIATION GAME

TABLE VI
TRAINING AND TESTING TIMES OF ML CLASSIFIER

ML Algorithm | Training Time (ms) | Testing Time (ms)
Random Forest 1770 20
Random Tree 50 0
J48 280 20
REPTree 150 0
Decision Table 700 0
ANN 16690 0
BayesNet 170 10

significant accuracy of 83%. One interesting observation is
that, if we pick a single temporal feature with “Measured
Load” features, performance degrades. This means tempo-
ral features can help to improve decisions only when they
work together to provide the complete seasonal variations and
patterns.

5) Training and Testing Time of ML Classifiers: Our study
assumes that the ML classifier will run in real-time to pro-
vide auto-scaling decisions. Also, the model will be retrained
every two days with updated data. Hence, it is important to
report the training (off-line model building) and testing (run-
time decision making) times of the ML classifiers. Table VI
shows training time (5760 instances, 40 days of data) and test-
ing time (288 instances, two days of data) for different ML
algorithms. WEKA reports times in seconds upto two dig-
its after decimal point. This means the zeros reported in the
table take milliseconds or less time to make 288 auto-scaling
decisions, which is very promising for real-time deployment
for our method. Also, training times are few seconds or less,
which supports retraining the model every two days.

To compare the algorithms, “MLP” (neural network) takes
longest (16.69s) and “Random Tree” takes shortest (0.05s) to
train the models. In run-time, we see many sub-millisecond
algorithms such as “Decision Table”. On the contrary,
“Random Forest” takes 0.02 seconds. This is an important
decision-making point. For example, in a special case, if the
NO is willing to accept slight loss of accuracy (Decision Table
95.6% vs. Random Tree 96.5%) to obtain faster decisions,
“Decision Table” can be a better choice than “Random Forest”.
Such practical consideration related to ML-based solutions is
a strong motivation for our study.

6) DNN and LSTM Performance Analysis: For DNN and
LSTM, we have used the same dataset, feature set, and training
and testing data ratio as in the previous part of the study.

As the number of hidden layers are a key parameter for the
performance of the DNN, in Fig. 6 we report the accuracy
of DNN model with respect to number of hidden layers. We
observe that, with growing number of hidden layers, the accu-
racy of prediction increases (up to 95.1% for CPML). With
number of hidden layers = 15, for both CPML and QPML,
DNN (95.1% and 92.4%, respectively) performs better than
ANN (92.8% and 91.3%, respectively). However, from hidden
layers = 20, the accuracy starts decreasing. This phenomenon
can be explained by the fact that, as DNN starts adding more
and more hidden layers, it starts overfitting, thus resulting in
lower accuracy.

We also observed the impact of prediction interval () on
prediction accuracy of DNN. Table VII reports the impact of

Fig. 6.
for DNN.

96
94
92

Precision (%)
S

u QPML

Number of hidden layers

TABLE VII

CPML

90
88
86
:
82
80
5 10 15 20 25 30

IMPACT OF PREDICTION INTERVAL () VARIATION ON
ACCURACY OF DNN

No. of hidden layers | 5 minutes | 10 minutes | 15 minutes
5 93.0 89.0 89.4
10 93.7 94.1 89.5
15 94.4 95.1 91.6
20 93.7 92.2 89.9
25 92.6 91.7 89.6

11

Number of hidden layers vs. prediction accuracy in precision (%)

three different decision intervals (p): 5, 10, and 15 minutes.
Again, in all three interval scenarios, DNN outperforms ANN:
5 minutes (DNN 94.4% vs. ANN 94.2%), 10 minutes (DNN
95.1 vs. ANN 92.8%), and 15 minutes (DNN 91.6 vs. ANN
90.4%).

We have also explored LSTM-based prediction using the
same dataset. We have used Deeplearning4j [42] to implement
the LSTM method. The LSTM-based method shows a promis-
ing accuracy of 95.7%, which is higher than DNN (95.1%)
and closely comparable to the highest-performing ML algo-
rithm Random Forest (96.5%). The reason LSTM can not
outperform Random Forest can be explained from two aspects:
1) LSTM is more suitable for time series data prediction [33],
while, in our study, we have modeled the problem as a classifi-
cation problem; and ii) long-term information inside the LSTM
model can often get corrupted (discussed in detail in [43]),
and data of our study is dependent on both short-term daily
variations and long-term weekly and monthly variations.

B. Experimental Setup for Auto-Scaling of Service Chains
(ORASC and NRASC)

Our study considers that service-chain requests arrive
from different tenants, and NO allocates necessary resources.
During the SC’s life time, resource requirement varies and
the auto-scaling algorithms allocate/de-allocate resources as
necessary. For rest of the results, we use QPML as the ML
algorithm. We use the NSFNet topology from Fig. 1 with DCs
at nodes 2, 6, 7, and 13. Each link has 400 Gbps capacity.
We consider each DC with 1000 racks capacity. We con-
sider rest of the nodes as Edge-DCs with 5 racks capacity.
In our study, each rack has 2 hypervisors and 4 servers with 8
core CPU each. We consider 2 GB memory for each core of
CPU. We also consider the following: 1 CPU core leasing cost
Le = 0.002 dollar per hour [44], 1 GB memory leasing cost
Lp; = 0.001 dollar per hour [44], 1 Gbps bandwidth leasing
cost Ly = 0.0972 dollar per hour [45].

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

9

0

9

1

912

91

w

914

91

o

91

o

917

91

©

91

©

92

o

92

922

923

92:

=

92!

@

926

3

92

92i

®

929

930

93

932

93

@

934

93!

@

93

>

937

93

@©

TABLE VIII
SERVICE CHAIN TYPES AND PERCENTAGE IN SIMULATION

Service chain Traffic (%) VNF chain
Web Service 20 NAT-FW-TM-WOC-IDPS
VOIP 10 NAT-FW-TM-FW-NAT
Video Streaming 60 NAT-FW-TM-VOC-IDPS
Online Gaming 10 NAT-FW-VOC-WOC-IDPS
TABLE IX

CONVERSION TO COMPUTE (CPU) RESOURCES (f1(.))

Bandwidth requirement (Gbps)
VNE I {23]4]5]6]7 8 9 10
NAT 1|1 | 1|1]|1]2]2 2 2 2
FwW 1|1 2]2]|4]4]8 8 16 | 16
TS 112|448 |8| 8| 12] 12|16
woCc |1 |1 |1 |1]2]2]|2 2 2 4
IDPS | 1 |1 |2 |2 |4 |48 8 16 | 16
VOC |2 |2 |4 |4 |8|8| 8| 12] 12|16
TABLE X

CONVERSION TO MEMORY (GB) RESOURCES (f2(.))

Bandwidth requirement (Gbps)
WE T 12731475617 8910
NAT |1 |1 [1]1 1 1 1 1 2 2
FW 21214141 8 8 16 | 16 | 32 | 32
TS 1 {24141 8 8 8 8 16 | 16
WOC |1 |1 [1]|1 2 2 2 2 2 4
IDPS |2 | 2|4 |4] 8 8 16 | 16 | 32 | 32
VOC |4 |4 |8 |8 | 16|16 | 32 | 32| 64| 64

We consider 4 types of SCs with 6 types of NFs: Network
Address Translator (NAT), Firewall (FW), Traffic Shaper (TS),
WAN Optimization Controller (WOC), Intrusion Detection,
and Prevention System (IDPS), Video Optimization Controller
(VOC). Table VIII lists the SCs along with NF chaining
requirements [20], [21]. For example, Web services require
chaining of the following NFs, in this order: NAT, FW, TS,
WOC, and IDPS. We also consider 4 difference types of
services: Web services (search, etc.), Voice Over IP (VOIP)
(audio), Video Streaming, and Online Gaming, with represen-
tative percentage in traffic.

Table IX shows conversion from network bandwidth
requirement to compute (CPU) resource requirement, gener-
ated by extrapolating information from prior studies [20] and
industry data [46].

Table X shows conversion from network bandwidth require-
ment to memory resource requirement inspired by prior
studies [20] and industry data [46].

C. Impact of Prediction Methods on ORASC

For this part of the results (Figs. 7-9), we consider 100
SC request arrivals per hour, and the simulation runs for
24 hours. For this part of the study, we consider operator-
driven auto-scaling (ORASC). To feed our ORASC algorithm,
we use three prediction methods proposed in this study: i)
DNN (with 95.1% accuracy), ii) LSTM: (with 95.7% accu-
racy), and iii) ML (Random Forest as the highest-performing
ML algorithm with 96.5% accuracy).

We compare our proposed methods with three prior
works: dynamic-threshold-based approach derived from cloud

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

60000

uCPU MEM NET QOs

50000

Resource Leasing Cost ($)
> 8 8 &
S 38 8 38
o o o o
26,638
28,630

OII a N

No-scaling DT AR DNN LST™M
Auto-scaling method

ML

Fig. 7. Resource leasing cost vs. auto-scaling prediction methods.
s 2 m Static AR DNN LST™M mML
855
52
[Zi
cE 1
85
8 Sos I l
5=
22 [| - -
o CPU MEM NET
Resource category
Fig. 8. ~Resource consumption compared in resource category and auto-

scaling prediction methods.

auto-scaling (DT) [10], a recent SC auto-scaling study
(AR) [23] that uses auto-regression as prediction method, and
an artificial-neural-network-based method (ANN) [35].

Fig. 7 shows leasing cost saving for tenants using ORASC
powered by different prediction methods. In addition to CPU,
memory, and bandwidth leasing cost, we also consider the
QoS penalty cost for tenants due to degraded service ($1 per
hour). The left-most column shows total leasing cost for “No-
scaling” method, where all leased resources are allocated all
the time (hence no QoS cost for tenants). Then, auto-scaling
using “Dynamic Threshold (DT)” based method saves $26,638
by auto-scaling the tenants’ free resources. “Auto-Regression
(AR)” based prediction method performs a little better than
DT method, due to better prediction. Our proposed Random
Forest algorithm (ML) yields lowest leasing cost (or savings
of $28,630) for the tenants. The other methods (DNN and
LSTM) outperforms the prior studies, and demonstrate cost
savings very close to ML. Fig. 6 also reports the QoS degra-
dation penalty incurred by under-provisioning of resources.
DNN, LSTM, and ML methods show lower penalty compared
to prior studies DT and AR.

Fig. 8 shows total resource consumption data breakdown
for Fig. 7, in CPU, memory, and network units. As expected,
DNN, LSTM, and ML perform better than prior study AR.

Fig. 9 compares impact of auto-scaling methods on different
SC types. Here, we use different level of QoS cost for different
SC types (e.g., Web = $3, VOIP = $2, Video = $1, and
Gaming = $2.5). As the results show, impact of more accurate
prediction (ML) is higher on the more QoS sensitive services.

D. Negotiation-Game-Based Auto-Scaling (NRASC)

For Figs. 10-12, we use the following set of values (uni-
formly) for tenants’ ‘Expected Refund’ Sg” :0.2,0.3, 04, 0.5,

939

940

942

943

944

945

946

947

948

949

9

a

0

951

952

9

@

3

954

955

956

957

959

960

9

=3

1

963

9

-3

4

965

966

967

969

970

97

972

97.

©

974

97!

o

97

>

97

3

97

e

97

©

980

98

982

983

984

98

o

98

o

98

%

98

@

98!

©

99

s}

99

992

99

@

994

99!

o

99

<

99

N

99i

@

99!

©

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

RAHMAN et al.: AUTO-SCALING NETWORK SERVICE CHAINS USING MACHINE LEARNING AND NEGOTIATION GAME 13

B CPUBMEM BNET QOS

P

%]

8

o

& 30000

2

& 20000

—

3 10000 I

o

5 0

< & X N
R

<O \4 O N N 4
N, Sl NS > & N
B 4@0 \$e? F 0‘g O\Q g o £ ({o & &
N V\o’ < N eo’ J RN rz,\(\ Q,@
oeg Q) S 0,b(° [CIEENC)
N4 O &

X\ Q8
SC type-auto-scaling method

Fig. 9. Different SC types: resource leasing cost vs. auto-scaling prediction
methods.

0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. For maximum R, we use 1.0,
indicating that, at maximum, the NO is willing to pay the
original leasing cost as refund.

In this part of the study, we compare the impact of
prediction methods on ORASC and NRASC, to demon-
strate the benefits from negotiation. Our proposed highest-
performing method ‘ML’ is compared with prior study ‘AR’ by
using following three combinations: i) O-AR: ORASC algo-
rithm powered by auto-regression-based prediction, ii) O-ML:
ORASC powered by ML-based Random Forest algorithm.
iii) N-ML: NRASC powered by ML-based Random Forest
algorithm.

In Fig. 10, on the right two columns, ‘Operator’s cost sav-
ings’ shows the win for the NO. Compared to operator-driven
approach (O-ML), in negotiated approach (N-ML) NO pays
much less ($14,617), as refund. In Operator-driven approach
(O-ML), NO makes auto-scaling decision without considering
different QoS levels of tenants, hence offering full refund to all
the tenants. On the other hand, in negotiation-based approach
(N-ML), the NRASC algorithm is aware of the QoS levels of
the tenants. Hence, NO engages in a negotiation game with
the tenants, so that NO can pay the least amount of refund
(compared to full refund in O-ML). This results in lower cost
for N-ML in Fig. 10.

On left, for negotiated approach (N-ML), tenant pays less
leasing cost by gaining $23,641 from auto-scaling refund
(compared to no scaling). Some service chains have higher
‘Expected Refunds’ (e.g., ER = 1.1, 1.2) than the max-
imum ‘Offered Refund’, as a result. Without considering
QoS penalty, we observe that N-ML saves less money for
tenants than the Operator-driven approach (O-ML). But, con-
sidering higher QoS penalty (e.g., 100 per hour for ER =
1.1 and 1.2), O-ML will fail to capture the importance of
the sensitive service chains and auto-scale anyway, result-
ing in high QoS penalty. Hence, negotiated approach (N-ML)
increases the tenants’ happiness as well, by creating a win-win
situation.

Figs. 11 and 12 show insights for Fig. 10. Fig. 11 com-
pares released resources (unit-hour) by tenants (which leads
to refund and reduced leasing cost). As discussed before,
Operator-driven approach, powered by machine learning (O-
ML) and powered by auto-regression (O-AR), releases more
excess resources, compared to negotiation-based approach

60000
uCPU =Mem Net QoS
50000
40000 s
©
&]
2 30000 A
o ~
g 3
O 20000 <
v —
o . I .
0
(No-scaling O-ML N-ML [O-ML N-ML |
: e
[Tenant’s cost savings | [Operator’s cost savings |
Fig. 10. Win-Win for Operator and tenants: cost vs. auto-scaling methods.
1400000
) = O-AR = O-ML N-ML
8 1200000
S — 1000000
o
@ 3 800000
Q
« -7 600000
5 o i =
Q C
400000
® =2
R} 200000
EE 0 N |
CPU Mem Net
Resource category
Fig. 11. Resource consumption compared in resource category and auto-

scaling methods.

12
= E0O-ML =mN-ML
c ..
e
¢ =08
g
T 006
82
= 04
o
E o2
o
=z 0

CPU MEM Net
Resource category
Fig. 12. Refund cost for operator vs. auto-scaling methods.

powered by ML (N-ML). But excess released resources from 1o14
O-AR and O-ML come with excess QoS penalty, as shown in 1015
Fig. 10.

Fig. 12 shows normalized refund cost over different resource 1017
categories. We observe around 40% cost savings across all 1o1s
resource categories.

To further investigate the NO’s cost benefit (associated to 1o0
refund) due to negotiation (N-ML), Fig. 13 shows the impact 1021
of maximum offered refund in case of computing resources. At 1022
maximum offered refund = 0.5, to release 200,853 unit-hours 1023
of CPU resource, the NO pays for only 68,439 unit-hours 1o
equivalent refund, leading to payment of 34% of the original 102
cost (hence, the NO can keep 66% of the leasing cost to itself). 1026
At higher value for maximum offered refund (e.g., 0.9), NO 1027
pays 54% of the original cost (hence, the NO can only keep 1028
46% of the leasing cost to itself). We observe similar trends 1oz
for memory and network resources as well.

1016

1019

1030

- 600000
8 u CPU Refund
S 500000 CPU Refund Negotiated
5 5400000
[}
£ & 300000 i
Y 1
Q=2
B 5 200000 |
o = ‘ |
c 100000 I
2 0 '
05 06 07 08 09 1.1
Maximum compensation
Fig. 13. Impact of maximum refund offered on NO’s refund cost.

1031

1032

VII. CONCLUSION

Our study proposed two SC auto-scaling methods which

1033 benefit from ML prediction method. The ML classifier learns
1034 from historic data and shows promising accuracy (96.5%).
10ss [llustrative results explain different aspects of the proposed

1036
1037
1038
1039
1040 1N, g
1041
1042

1043

ML prediction model. Our proposed auto-scaling methods
consider practical SC usecase scenarios with a backbone
network and geo-distributed DCs/Edge-DCs. Numerical results
show that our proposed prediction method yields lower leas-

cost for network tenants compared to prior works. In

addition, negotiation-game-based auto-scaling method reduces
both tenant leasing cost and NO’s refund cost, while respecting
tenants’ willingness to participate in the auto-scaling process.

1044 Future studies should explore more detailed operational and
1045 leasing costs.

1046

1047 [1
1048
1049
1050
1051 [3
1052

1053

—

[2]

—

1054 [4]
1055
1056
1057
1058
1059
1060
1061 [6
1062

1063

1064

1065 [7
1066
1067
1068
1069
1070
1071
1072 [9]
1073
1074
1075
1076
1077
1078 [11]
1079

1080 [12]
1081

1082

[5]

=

—

[10]

REFERENCES

“Network functions virtualisation: Introductory white paper,” ETSI,
Sophia Antipolis, France, White Paper, 2012.

L. Peterson et al., “Central office re-architected as a data center,” IEEE
Commun. Mag., vol. 54, no. 10, pp. 96-101, Oct. 2016.

M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for
the placement of service function chains,” IEEE Trans. Netw. Service
Manag., vol. 13, no. 3, pp. 533-546, Sep. 2016.

P. Hong, K. Xue, and D. Li, “Resource aware routing for service func-
tion chains in SDN and NFV-enabled network,” IEEE Trans. Services
Comput., early access, Jun. 22, 2018, doi: 10.1109/TSC.2018.2849712.
J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in geo-
distributed cloud system,” /IEEE Trans. Parallel Distrib. Syst. vol. 30,
no. 10, pp. 2179-2192, Oct. 2019.

A. Gupta, M. F. Habib, U. Mandal, P. Chowdhury, M. Tornatore, and
B. Mukherjee, “On service-chaining strategies using virtual network
functions in operator networks,” Comput. Netw., vol. 133, pp. 1-16,
Mar. 2018.

Amazon Web Sevices—Auto-Scaling, Amazon, Seattle, WA, USA.
Accessed: May 15, 2018. [Online]. Available: https://aws.amazon.com/
autoscaling/

S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-scaling VNFs using machine learning to improve QoS and reduce
cost,” in Proc. IEEE Int. Conf. Commun., Kansas City, MO, USA,
May 2018, pp. 1-6.

K. Kanagala and K. C. Sekaran, “An approach for dynamic scaling
of resources in enterprise cloud,” in Proc. IEEE 5th Int. Conf. Cloud
Comput. Technol. Sci., Bristol, U.K., 2013, pp. 345-348.

M. M. Murthy, H. A. Sanjay, and J. Anand, “Threshold based auto
scaling of virtual machines in cloud environment,” in Proc. Int. Conf.
Netw. Parallel Comput., 2014, pp. 247-256.

C. Hung, Y. Hu, and K. Li, “Auto-scaling model for computing system,”
Int. J. Hybrid Inf. Technol., vol. 5, no. 2, pp. 181-186, Apr. 2012.

T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
J. Grid Comput., vol. 12, no. 4, pp. 559-592, 2014.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data cen-
ters,” in Proc. 8th Int. Workshop Middleware Grids Clouds e-Sci., 2010,
pp. 1-6.

H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated control in
cloud computing: Challenges and opportunities,” in Proc. 1st Workshop
Autom. Control Datacenters Clouds, 2009, pp. 13-18.

A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource allocation for
shared data centers using online measurements,” in Proc. 11th Int. Conf.
Qual. Service, 2003, pp. 381-398.

H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan, “Online self-
reconfiguration with performance guarantee for energy-efficient large-
scale cloud computing data centers,” in Proc. IEEE Int. Conf. Service
Comput. Miami, FL, USA, 2010, pp. 514-521.

W. Fang, Z. Lu, J. Wu, and Z. Cao, “RPPS: A novel resource prediction
and provisioning scheme in cloud data center,” in Proc. IEEE 9th Int.
Conf. Service Comput., Honolulu, HI, USA, 2012, pp. 609-616.

H. Tang, D. Zhou, and D. Chen, “Dynamic network function instance
scaling based on traffic forecasting and VNF placement in operator data
centers,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 3, pp. 530-543,
Mar. 2019.

T. Phung-Duc, Y. Ren, J. C. Chen, and Z. W. Yu, “Design and analysis of
deadline and budget constrained autoscaling (DBCA) algorithm for 5G
mobile networks,” Sep. 2016. [Online]. Available: arXiv:1609.09368.
A. Gupta, B. Jaumard, M. Tornatore, and B. Mukherjee, “A scalable
approach for service chain mapping with multiple SC instances in
a wide-area network,” IEEE J. Sel. Areas Commun., vol. 36, no. 3,
pp. 529-541, Mar. 2018.

M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs
on service chain placement in network functions virtualization,” in
Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined Netw.
(NFV-SDN), San Francisco, CA, USA, 2015, pp. 191-197.

H. Moens and F. D. Turck, “Customizable function chains: Managing
service chain variability in hybrid NFV networks,” IEEE Trans. Netw.
Serv. Manag., vol. 13, no. 4, pp. 711-724, Dec. 2016.

J. Duan, C. Wu, F. Le, A. X. Liu, and Y. Peng, “Dynamic scaling of
virtualized, distributed service chains: A case study of IMS,” IEEE J.
Sel. Areas Commun., vol. 35, no. 11, pp. 2501-2511, Nov. 2017.

Y. Jia, C. Wu, Z. Li, F. Le, A. Liu, and Z. Li, “Online scaling of NFV ser-
vice chains across geo-distributed datacenters,” IEEE/ACM Trans. Netw.,
vol. 26, no. 2, pp. 699-710, Apr. 2018.

H. Yu, J. Yang, and C. Fung, “Elastic network service chain with
fine-grained vertical scaling,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Abu Dhabi, UAE, Dec. 2018, pp. 1-7.

A. N. Toosi, J. Son, Q. Chi, and R. Buyya, “ElasticSFC: Auto-scaling
techniques for elastic service function chaining in network functions
virtualization-based clouds,” J. Syst. Softw. vol. 152, no. 2, pp. 108-119,
2019.

S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker,
“Network support for resource disaggregation in next-generation dat-
acenters,” in Proc. 12th ACM Workshop Hot Topics Netw. (Hotnets),
Nov. 2013, pp. 1-7.

ECOMP (Enhanced Control, Orchestration, Management & Policy)
Architecture White Paper, AT&T Inc., Dallas, TX, USA. Accessed:
May 10, 2018. [Online]. Available: http://about.att.com/content/dam/
snrdocs/ecomp.pdf

S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine
learning: A review of classification techniques,” in Proc. Conf. Emerg.
Artif. Intell. Appl. Comput. Eng., 2007, pp. 3-24.

E. Frank, M. A. Hall, and 1. H. Witten, The WEKA Workbench. Online
Appendix for Data Mining: Practical Machine Learning Tools and
Techniques, 4th ed. Burlington, MA, USA: Morgan Kaufmann, 2016.
S. Rahman, A. Gupta, M. Tornatore, and B. Mukherjee, “Dynamic work-
load migration over backbone network to minimize data center electricity
cost,” IEEE Trans. Green Commun. Netw., vol. 2, no. 2, pp. 570-597,
Jun. 2018.

Energy-Efficient Ethernet Architecture Task Force, 1EEE Standard
P802.3az. Accessed: May 15, 2018. [Online]. Available:
ieee802.org/3/az/public/index.html

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” J. Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11-26, Apr. 2017.

T. P. Oliveira, J. S. Barbar, and A. S. Soares, “Computer network traffic
prediction: A comparison between traditional and deep learning neural
networks,” Int. J. Big Data Intell., vol. 3, no. 1, pp. 28-37, 2016.

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

http://dx.doi.org/10.1109/TSC.2018.2849712

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

1194
1195
1196
1197

1198 |

1199

1200
1201 ¢

1202
1203
1204
1205
1206

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

RAHMAN et al.: AUTO-SCALING NETWORK SERVICE CHAINS USING MACHINE LEARNING AND NEGOTIATION GAME 15

[36] S. Kraus, “Automated negotiation and decision making in multiagent
environments,” in ECCAI Advanced Course on Artificial Intelligence.
Heidelberg, Germany: Springer, Jul. 2001.

J. Alwen, A. Shelat, and I. Visconti, “Collusion-free protocols in
the mediated model,” in Proc. Annu. Int. Cryptol. Conf., Heidelberg,
Germany, Aug. 2008, pp. 497-514.

J. Kattan and W. R. Vigdor, “Game theory and the analysis of collusion
in conspiracy and merger cases,” George Mason Law Rev., vol. 5, no. 3,
pp. 441-456, 1997.

Internet Traffic Data, DataMarket, Reykjavik, Iceland. Accessed:
May 15, 2018. [Online]. Available: https://datamarket.com
InfoGainAttributeEval, WEKA, Hamilton, New Zealand. Accessed:
May 15, 2018. [Online]. Available: http://weka.sourceforge.net/doc.
stable-3-8/weka/attributeSelection/InfoGainAttributeEval.html

The Problem With Backpropagation, Towards Data Science, San
Francisco, CA, USA. Accessed: Nov. 15, 2019. [Online]. Available:
https://towardsdatascience.com/the-problem-with-back-propagation-
13aa84aabd71

S. Lang, F. Bravo-Marquez, C. Beckham, M. Hall, and E. Frank,
“WekaDeeplearning4j: A deep learning package for Weka based on
deeplearning4j,” Knowl. Based Syst., vol. 178, pp. 48-50, Aug. 2019.
The Fall of RNN/LSTM, Towards Data Science, San Francisco,
CA, USA. Accessed: May 30, 2020. [Online]. Available:
https://towardsdatascience.com/the-fall-of-rnn-1stm-2d1594c74ce0
Google Cloud Pricing, Google, Mountain View, CA, USA. Accessed:
Nov. 1, 2019. [Online]. Available: https://cloud.google.com/compute/
pricing

Google Fiber Pricing, Google, Mountain View, CA, USA. Accessed:
Nov. 1, 2019. [Online]. Available: https:/fiber.google.com/cities/
kansascity/plans/

Cisco Integrated Services Virtual Router Data Sheet, Cisco, San Jose,
CA, USA. Accessed: Nov. 5, 2019. [Online]. Available: https://www.
cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-
network-functions-virtualization-nfv/datasheet-c78-736768.html

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Sabidur Rahman (Graduate Student Member,
IEEE) received the B.S. degree from the Bangladesh
University of Engineering and Technology in 2011,
and the M.S. degree in computer science from the
University of Texas at San Antonio in 2014. He
is currently pursuing the Ph.D. degree in com-
puter science with the University of California at
Davis. He also has research and development expe-
rience with AT&T Labs and Samsung Research and
Development. His research interests include com-
puter network virtualization, use of machine learning
and data analytics to solve network research problems, and cost-efficient
networking.

Tanjila Ahmed (Graduate Student Member, IEEE)
received the B.S. degree in electrical electron-
ics and communication engineering from the
Military Institute of Science and Technology, Dhaka,
Bangladesh, in 2010, and the M.S. degree in elec-
trical engineering from the University of Texas at
San Antonio in 2015. She is currently pursuing the
Ph.D. degree in electrical and computer engineer-
ing with the University of California at Davis. She
worked as a research intern with AT&T labs and
a software engineer intern with Honeywell Inc., in
their respective Machine Learning Development Team. Her research interests
include datacenter networks, optical backbone network, and Internet-of-Things
networks.

Minh Huynh (Member, IEEE) received the B.S.
and Ph.D. degrees in computer science from the
University of California at Davis. He joined AT&T
Labs working on network performance analysis
and capacity planning in mobility networks and
software-defined networks. His current role with
Google, he is responsible for demand forecast
modeling for the datacenter networks.

Massimo Tornatore (Senior Member, IEEE) is cur-
rently an Associate Professor with the Department
of Electronics, Information, and Bioengineering,
Politecnico di Milano, Italy. He also holds an
appointment as an Adjunct Professor with the
University of California at Davis, Davis, CA,
USA, and as a Visiting Professor with the
University of Waterloo, Waterloo, ON, Canada. His
research interests include performance evaluation,
optimization and design of communication networks
(with an emphasis on the application of optical
networking technologies), cloud computing, and machine learning application
for network management. He has coauthored more than 300 peer-reviewed
conference and journal papers (with 17 Best Paper Awards), two books
and one patent, in the above areas. He is an Active Member of the
Technical Program Committee of various networking conferences, such as
INFOCOM, OFC, ICC, and GLOBECOM. He is a member of the edi-
torial board of IEEE COMMUNICATION SURVEYS & TUTORIALS, IEEE
COMMUNICATION LETTERS, Photonic Network Communications (Springer),
and Optical Switching and Networking (Elsevier).

Biswanath Mukherjee (Fellow, 1IEEE) received

Technology Kharagpur in 1980, and the Ph.D.
degree from the University of Washington, Seattle,
in 1987. He is a Distinguished Professor with the
University of California at Davis, where he was
Chairman of computer science from 1997 to 2000.

IPLocks, a Silicon Valley startup company (acquired
by Fortinet). He has supervised 77 Ph.D.’s to com-
pletion and currently mentors six advisees, mainly

1221
1222
1223
1224
1225
1226
1227
1228

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248

1249

the B.Tech. degree from the Indian Institute of 1250

1251
1252
1253
1254
1255

He served a 5-year term on Board of Directors of 1256

1257
1258
1259

Ph.D. students. He has authored the graduate-level textbook Optical WDM 1260

Networks (Springer, January 2006). He is a winner of the 2004 Distinguished
Graduate Mentoring Award and the 2009 College of Engineering Outstanding
Senior Faculty Award at UC Davis. He is a co-winner of the Optical
Networking Symposium Best Paper Awards at IEEE Globecom 2007, 2008,
and 2019. He has served on the Technical Advisory Board of several
startup companies, including Teknovus (acquired by Broadcom). He was
General Co-Chair of the IEEE/OSA Optical Fiber Communications (OFC)
Conference in 2011, the Technical Program Co-Chair of OFC’2009, and
the Technical Program Chair of the IEEE INFOCOM’96 conference. He is
an Editor of Optical Networks Book Series (Springer). He has served on
eight journal editorial boards, most notably IEEE/ACM TRANSACTIONS
ON NETWORKING and IEEE NETWORK. He has Guest Edited Special
Issues of the PROCEEDINGS OF THE IEEE, the IEEE/OSA JOURNAL OF
LIGHTWAVE TECHNOLOGY, the IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS, and IEEE COMMUNICATIONS.

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

