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Abstract—Network Function Virtualization (NFV) enables1

Network Operators (NOs) to efficiently respond to the increas-2

ing dynamicity of network services. Virtual Network Functions3

(VNFs) running on commercial off-the-shelf servers are easy to4

deploy, update, monitor, and manage. Such virtualized services5

are often deployed as Service Chains (SCs), which require in-6

sequence placement of computing and memory resources as well7

as routing of traffic flows. Due to the ongoing migration towards8

cloudification of networks, the concept of auto-scaling which9

originated in Cloud Computing, is now receiving attention from10

networks professionals too. Prior studies on auto-scaling use mea-11

sured load to dynamically react to traffic changes. Moreover, they12

often focus on only one of the resources (e.g., compute only, or13

network capacity only). In this study, we consider three differ-14

ent resource types: compute, memory, and network bandwidth.15

In prior studies, NO takes auto-scaling decisions, assuming ten-16

ants are always willing to auto-scale, and Quality of Service17

(QoS) requirements are homogeneous. Our study proposes a18

negotiation-game-based auto-scaling method where tenants and19

NO both engage in the auto-scaling decision, based on their20

willingness to participate, heterogeneous QoS requirements, and21

financial gain (e.g., cost savings). In addition, we propose a proac-22

tive Machine Learning (ML) based prediction method to perform23

SC auto-scaling in dynamic traffic scenario. Numerical examples24

show that our proposed SC auto-scaling methods powered by25

ML present a win-win situation for both NO and tenants (in26

terms of cost savings).27

Index Terms—Auto-scaling, service chains, virtual network28

functions, machine learning, negotiation game, cost savings, QoS,29

resource disaggregation, edge datacenters.30
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I. INTRODUCTION 31

NETWORK functions, such as those implemented in 32

firewall, switch, router, Customer Premises Equipment 33

(CPE), etc. have been traditionally deployed on proprietary 34

hardware equipment, referred to as “middleboxes”. This 35

has made equipment upgrade, deployment of new features, 36

and maintenance complex and time consuming for Network 37

Operators (NO). Recent migration towards Network Function 38

Virtualization promises faster service deployment and flexi- 39

ble management [1]. Virtual Network Functions (VNFs) allow 40

us to use Commercial-Off-The-Shelf (COTS) hardware to 41

replace costly vendor hardware. VNFs can be hosted as vir- 42

tual machine (VM) instances inside cloud datacenters (DCs), 43

or in edge datacenter (Edge-DCs) locations such as smaller 44

metro datacenters (Metro-DCs), telecom Central Office Re- 45

architected as a Datacenter (CORD) [2], etc. 46

Network functions are often placed in an ordered sequence 47

to process traffic flows resulting in Service Chains (SCs) 48

[3]–[6]. A Service Chain involves a set of specific Network 49

Functions (NFs) to be traversed, and a certain amount of 50

network bandwidth to route the traffic through them. Fig. 1 51

shows two example service chains (SC1 and SC2) in a geo- 52

distributed DC/Edge-DC scenario. SC1 illustrates a service 53

chain which traverses nodes 6, 3, 2, and 1, where three network 54

functions are hosted (VMs NF1 and NF2 at node 6, and NF3 55

at node 2). In addition to the computing and memory resources 56

located at nodes, the NO allocates necessary network band- 57

width capacity (N) to maintain Quality of Service (QoS) as 58

per the tenant’s request. Similarly, traffic flow for SC2 tra- 59

verses nodes 10, 14, 13, and 12, with NF1 at node 10 and 60

NF3 at node 13. 61

Often a SC is placed according to a tenant’s request. 62

Traditionally, a tenant leases enough resources from the NO 63

to support the tenant’s peak load. For a static allocation of 64

resources, after the NO finalizes the initial placement of a SC 65

with resources required by the tenant, the allocated (comput- 66

ing, memory, and bandwidth) resources remain unchanged for 67

the rest of the SC’s lifetime [6]. But, in practice, the traffic 68

demand flowing through the SCs (for the respective tenant) 69

can vary over time, leading to a dynamic resource-allocation 70

scenario. This idea of auto-scaling (i.e., varying the number 71

of allocated resources automatically based on load) originated 72

in cloud computing [7]. 73

Cloud service providers implement auto-scaling capability 74

for computational resources, so a tenant pays leasing cost only 75
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Fig. 1. Example deployment of service chains.

for the resources used (via pay-per-use payment methods).76

However, auto-scaling in cloud computing and auto-scaling77

SCs have some key differences: i) Cloud computing load vs.78

network traffic load: In cloud computing, workload mostly79

consists of computation tasks serving applications and users.80

On the other hand, SC workload consists of network traffic81

that requires to be served by network functions (NFs) (e.g.,82

Firewalls, etc.). Due to the different types of workload (e.g.,83

cloud VM hosting ‘Pokemon Go’ application server vs. service84

chain VM hosting ‘Firewall VNF’), methods and results from85

cloud-computing domain are not directly applicable to SCs.86

Hence, we need to study novel auto-scaling methods which use87

network traffic load data (to learn from the network-specific88

load characteristics) and obtain new results demonstrating89

the impact of SC auto-scaling (instead of assuming that90

SC auto-scaling will have the same impact as cloud auto-91

scaling on cost, etc.) ii) Cloud QoS requirements vs. SC92

QoS requirements: Cloud services served by DC operators and93

service chains deployed by NOs usually have different QoS94

requirements. SC auto-scaling methods have to consider these95

different QoS requirements and deploy resources accordingly.96

Indeed, our proposed negotiation-game-based approach studies97

the impact of different levels of QoS sensitivity from tenants,98

and investigates its impact on cost savings, resource utilization,99

etc., which is a major novelty of this study. iii) Cloud resources100

vs. SC resources: In cloud computing studies, mostly virtual101

machines (VMs) (consuming compute and memory resources)102

are of focus. Hence, the cloud computing auto-scaling meth-103

ods do not consider network bandwidth as a resource to be104

auto-scaled. On the other hand, for service chains, network105

bandwidth is critical, in addition to computing and memory106

resources consumed by NFs. Hence, novel SC auto-scaling107

methods [21]–[24] are being proposed to jointly auto-scale108

network and cloud resources.109

Auto-scaling of SCs brings the economic benefit of pay-per-110

use for NO and tenants. The tenant pays lower leasing cost111

(due to lower resource usage) when the traffic load is low and112

higher leasing cost (due to higher resource usage) when the113

traffic load is higher. Tenants can reduce their leasing cost114

significantly by leasing network services from the NO which115

offers auto-scaled services. On the other hand, NO can attract116

more tenants by offering economic benefits of auto-scaling.117

NO can use the freed resources to serve SCs experiencing 118

higher load and can even serve additional SCs (and additional 119

tenants). 120

During the auto-scaling process, there can be a small dura- 121

tion of time, when the resources allocated to the tenant is 122

not sufficient for the traffic load, leading to degraded service, 123

negatively impacting QoS. Now, some tenants could tolerate 124

a short duration of QoS degradation (e.g., video streaming). 125

These tenants may be willing to auto-scale even when the 126

economic gain is relatively low. But some other tenants could 127

be very sensitive to QoS degradation (e.g., bank, stockbrokers, 128

etc.) These tenants might participate in auto-scaling only when 129

the economic gain is high. 130

Prior studies on SC have mostly focused on static and 131

dynamic methods for SC resource placement [3], [6], [20], 132

[22]. A few recent studies [21]–[24] have proposed heuris- 133

tic algorithms to auto-scale SCs using prediction methods 134

such as auto-regression [23]. However, these studies consider 135

NO-driven auto-scaling, i.e., the NO allocates/de-allocates 136

resources from SCs by assuming that tenants are always will- 137

ing to release resources (or to accept additional resources), 138

without considering the tenants’ willingness to cooperate in 139

the auto-scaling process, QoS sensitivity, etc. 140

In practice, some tenants may have more QoS-sensitive SCs 141

(e.g., a bank requiring connectivity for financial operations) 142

than others (e.g., a video content provider). Hence, depending 143

on the services supported over the chain, the tenant may have 144

preferences (e.g., willingness or unwillingness) to participate 145

in auto-scaling. From an economic point of view, in this study, 146

we assume that tenant’s decision will also depend on how 147

much refund it will gain by giving back resources to the NO. 148

In NO-driven auto-scaling method, the NO pays full refund 149

of the tenant’s leasing cost. But considering the fundamental 150

economics, NO will be interested to pay less refund. Hence, 151

NO’s goal is to maximize the amount of re-collected free 152

resources while paying minimum refund. To the best of our 153

knowledge, our study is the first to explore a negotiation- 154

game-based SC auto-scaling where tenants and NOs jointly 155

participate in the auto-scaling decision based on their 156

benefits. 157

Prior studies on auto-scaling (applied to SCs, or more gen- 158

erally, to cloud systems) have used reactive threshold-based 159

approaches as well as proactive prediction methods (based 160

on auto-regression, moving average, etc.) In this study, we 161

enhance our previous ML prediction model in [8] and inves- 162

tigate an improved proactive Machine Learning (ML) based 163

prediction methods (with different input, output, and feature 164

set than those in [8]) to predict traffic demand for a given 165

interval, ahead of time. We use the data collected from a pri- 166

vate ISP to compare the performance of our proposed ML 167

prediction method with the prediction methods proposed in 168

prior studies. 169

We observe that each network function uses different num- 170

ber of computing and memory resources [20], depending 171

on the traffic it is serving. But, in prior studies, these two 172

resources are considered together as a single VM unit. In 173

addition, many works ([18]–[19]) do not consider auto-scaling 174

of network bandwidth at all. Hence, our proposed method 175
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models the problem with computing, memory, and network176

bandwidth as separate, dis-aggregated, and scalable resources.177

Significant contributions of our study on the auto-scaling178

method are as follows:179

1) To the best of our knowledge, we propose the180

first SC-negotiation-game-based auto-scaling method181

(Negotiated Resource Auto-Scaling for Service Chains182

(NRASC) algorithm) that allows the NO and tenants183

to engage in negotiation, based on QoS sensitivity and184

financial gain.185

2) We propose another heuristic algorithm (Operator-driven186

Auto-Scaling for Service Chains (ORASC)) which187

allows us to compare the effectiveness of NRASC and188

the impact of our proposed prediction methods.189

3) Our study explores various ML-based prediction meth-190

ods including Deep Neural Networks (DNN) and Long191

Short-Term Memory (LSTM).192

4) Our study compares our proposed method with three193

prior works: dynamic-threshold-based approach derived194

from cloud auto-scaling (DT) [10], a recent SC195

auto-scaling study (AR) [23], and an artificial-neural-196

network-based method [35]. Results demonstrate higher197

gain from our proposed methods.198

5) We propose a SC resource model that considers disag-199

gregation of resources (compute, memory, bandwidth,200

etc.).201

The rest of this study is organized as follows. Section II202

reviews prior work on auto-scaling for cloud computing,203

VNFs, and SCs. Section III provides a formal problem state-204

ment for SC auto-scaling. Section IV describes the proposed205

ML-based prediction methods and two auto-scaling algo-206

rithms. Section V discusses the performance of ML-based207

prediction and shows numerical results on the auto-scaling208

algorithms. Section VI concludes the study.209

II. BACKGROUND AND RELATED WORK210

A. Auto-Scaling for Cloud Services211

Prior studies on auto-scaling for cloud computing can be212

classified in two groups: threshold-based vs. prediction-based213

(time series analysis, auto-regression, etc.) Threshold-based214

approaches have been used by DC owners [7] for scaling215

computing resources. Static-threshold-based approaches [9],216

[10], [11] use predefined upper and lower thresholds for217

scaling, which is not practical in a dynamic demand sce-218

nario. Improvements have been proposed using dynamic-219

threshold-based approaches [12], [13], [14]. As for prediction-220

based approaches, prior studies have used Auto-Regression221

(AR) [15], Moving Average (MA) [16], and Auto-Regressive222

Moving Average (ARMA) [17] to predict future workload for223

cloud virtual machine auto-scaling.224

We have studied the proposed methods in cloud comput-225

ing, adopted their threshold-based approach (DT), modified it226

for auto-scaling SCs, and we compare it with our proposed227

method in results section, to reflect the improvement over228

the state-of-the-art. In addition, a recent study [23] proposes229

a dynamic SC scaling method using auto-regression (AR),230

another method used in cloud auto-scaling. In results section,231

we compare our method with both DT and AR, and present 232

improvements achieved by our proposed method. 233

B. Auto-Scaling for Service Chains 234

Prior studies on SC focus mostly on static and dynamic 235

deployment of service chains. Reference [4], [6], [20] dis- 236

cuss the SC placement problem and propose mathematical 237

optimization solutions for SC placement. Recent studies have 238

started exploring SC auto-scaling. Reference [23] proposes 239

a dynamic scaling method for a specific usecase: mobile 240

core networks and IP Multimedia Subsystems (IMSs). The 241

method uses auto regression (AR) as a prediction mecha- 242

nism (we will compare it to our proposed ML method). 243

Reference [24] proposed dynamic placement of VNF SCs 244

across geo-distributed DCs. It converts the offline deploy- 245

ment problem into Online Regularization-Based Fractional 246

Algorithm (ORFA). 247

Reference [25] proposes a heuristic VNF migration algo- 248

rithm to reduce migration time and VNF embedding cost 249

for SCs. The study focuses mostly on the migration deci- 250

sion algorithm, not on auto-scaling. Reference [26] proposes 251

a heuristic algorithm for end-to-end latency-aware dynamic 252

SC auto-scaling. Authors do not use any prediction method, 253

assuming the workload is known from a Wikipedia trace data. 254

To summarize, references [23]–[26] do not distinguish 255

among the SC resources (compute, network, storage, etc.), use 256

traditional prediction methods (AR, ARMA, etc.), and do not 257

consider tenant’s participation in the auto-scaling decision. 258

As discussed, prior studies only consider NO-driven auto- 259

scaling methods. To the best of our knowledge, our study is 260

the first to explore the negotiation-game-based auto-scaling 261

where tenants and NO decide on the auto-scaling based on 262

their benefits (more in Section V). Another novelty of our work 263

is the integration of ML-based prediction for auto-scaling. 264

In addition, our method is aware of disaggregated view of 265

computing, memory, and bandwidth resources (instead of con- 266

sidering VMs as resource unit). Such disaggregation [27] has 267

been explored in network resource literature. Using vertical 268

scaling (adding/removing resources to/from a VM), disaggre- 269

gation allows granular auto-scaling of resources. 270

III. PROBLEM DESCRIPTION 271

Our objective is to develop auto-scaling methods which 272

use the predicted values from machine learning classifier (see 273

Fig. 2.a) to dynamically scale the SCs. 274

Fig. 2.a shows the overall flow of the auto-scaling process. 275

The “Prediction” module learns from historic data and uses 276

recent measurement data to predict the traffic demand during 277

the next interval. Then, the “Scaling algorithm” makes neces- 278

sary resource allocation/de-allocation based on the prediction. 279

The first step is to design a method to predict the amount 280

of required resources in the next interval (ϕ). Section IV 281

presents an enhanced version of the ML classifier proposed 282

in [8]. Section V presents the SC auto-scaling algorithms. 283

First, we propose NO-driven auto-scaling method, ORASC 284

algorithm, which takes the output from prediction method 285

and handles the complex SC resource management steps 286
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Fig. 2. Auto-Scaling overview: (a) high-level view of auto-scaling decision
life cycle; (b) example steps for prediction decisions.

(such as allocating/de-allocating network capacity in links,287

adding/removing computing/memory units to VNFs, migration288

of virtual resource units, etc.) Then, we propose another auto-289

scaling algorithm based on negotiation game theory, NRASC290

algorithm, where tenants actively participate in the auto-291

scaling decision process. Our study envisions that, in future,292

the proposed method will be part of the automation, orchestra-293

tion, and management software of the NO (similar to AT&T’s294

ECOMP [28]).295

Hence, the problem can be formally defined as follows:296

given a network topology, capacity of links, a set of nodes297

hosting compute and memory resources and their capacity lim-298

its, a set of SCs where tenant traffic flows are already assigned299

to a SC (using SC placement methods), minimum and max-300

imum limits for each type of resources for each SC, historic301

measurement data to train ML algorithms, our method auto-302

scales SC resources, using the predicted resource requirement303

for the next interval. We assume that SCs do not share comput-304

ing/memory/network units among each other, and traffic flows305

from one SC do not use another SC. In our study, we con-306

sider QoS is maintained if the required number of resources307

are allocated for that time period. On the other hand, if less308

resources are allocated than required, we consider QoS is309

violated, resulting in degraded QoS and QoS penalty.310

The input parameters of the problem are as follows.311

• Network topology G(V, E): where V is set of network312

nodes with computing/memory hosting capability (DC or313

Edge-DC) and E is set of network links connecting the314

nodes in V.315

• e ε E: e is a link where et , eu , and (et − eu) represent 316

total, used, and available bandwidth (capacity) of link e, 317

respectively. 318

• v ε V: where v tc , v
u
c , and (v tc −vuc ) represent total, used, 319

and available capacity of the CPU resource hosting node 320

v, respectively. Also, v tm , vum , and (v tm − vum ) represent 321

total, used, and available capacity of the memory resource 322

hosting node v, respectively. 323

• SC: a set of service chains from different tenants (i.e., 324

SC = SC1,SC2, . . .). 325

• F: a set of traffic flows to be served by the SC (i.e., 326

F = F1,F2, . . .). 327

• NFl : Virtual Network Function with type NFl , indexed 328

by l, hosting location given as NF h
l , number of units 329

deployed given as NFχ
l . 330

• C: computing requirement in number of CPU cores. 331

• M: memory requirement in unit of GB. 332

• N: network capacity requirement (Gbps). 333

• SCq ε SC represents qth SC. SCq is defined by source 334

(SC s
q ), destination (SC

d
q ), assigned traffic flows (Fq⊆F ), 335

one or more VNFs ((NFl )) hosting different VNF types, 336

end-to-end network capacity requirement (N), route SC r
q 337

(traversing the VNFs) in which SCq is allocated N 338

capacity, VNF-specific compute (C) and memory (M) 339

requirements for each VNF, and sequence is which VNFs 340

are placed. 341

• Set of historic traffic load measurement data (H (SCq , t)): 342

indicates aggregated traffic (from the assigned traffic 343

flows Fq ) served by service chain SCq at time t. 344

• For each SC deployment SCq , upper and lower lim- 345

its for the required resources are defined. For each 346

C, M, and N of each NFl inside SCq , there is a minimum 347

number of allowed units (e.g., Cmin , Mmin , Nmin , 348

etc.) and a maximum number of allowed units (e.g., 349

Cmax , Mmax , Nmax , etc). 350

IV. PROPOSED ML CLASSIFIER 351

In machine learning, an instance is a set of features/values 352

representing a specific occurrence of the problem. For exam- 353

ple, in our study, one feature of the problem instance is time 354

of day. Another feature is value of the measured traffic load at 355

a time of the day. We associate each instance (set of features) 356

of the problem to a class, i.e., a classification decision. We 357

convert the auto-scaling problem to a classification problem 358

by training the classifier with a set of correctly-identified 359

instances, called training set. In training phase, ML classifier 360

learns a mapping between features and classes. After training 361

phase, a classifier can be tested using a set of instances, called 362

test set, which is not part of training set. 363

The Time vs. “Traffic demand” graph in Fig. 2.b is used to 364

explain the input and output of the ML classifier. Fig. 2.b 365

shows different timestamps (a, b, c, etc.) and auto-scaling 366

decisions (s(n−1), s(n), s(n+1), etc.), where s(n) indicates 367

the auto-scaling decision for the n-th interval. Let measured 368

network traffic load for given timestamp x be λ(x ), and 369

timestamp of auto-scaling step n be given by τ (n), where 370

τ(n)− τ(n − 1) = ϕ. 371
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A. Feature Selection (Input)372

Feature selection is the first important step towards defin-373

ing the ML classifier. All our features are of numeric value.374

Referring to Fig. 2.a, we convert the traffic load measurements375

into the following features:376

• Timestamp of decision: τ (n)377

• Day of Month (DoM): for τ (n)378

• Day of Week (DoW): for τ (n)379

• Weekday or Weekend (W): for τ (n)380

• Hour of Day (HoD): for τ (n)381

• Minute of Hour (MoH): for τ (n)382

• Measured traffic at time τ(n): λ(τ(n))383

• Traffic change from τ (n–1) to τ(n): λ(τ(n)) −384

λ(τ(n − 1))385

• Measured traffic at time τ(n − 1): λ(τ(n − 1))386

• Traffic change from τ (n–2) to τ(n − 1): λ(τ(n − 1)) −387

λ(τ(n − 2))388

• Measured traffic at time τ(n − 2) : λ(τ(n − 2)) . . .389

• Traffic change from τ(n − 11) to τ(n − 10): λ(τ(n −390

10))− λ(τ(n − 11))391

• Measured traffic at time τ(n − 11) : λ(τ(n − 11))392

We consider measured traffic up to n–11, giving us total 27393

features, containing temporal information of measured traffic394

load and traffic load change from recent past. In Section VI,395

we explain how and why we choose these 27 features. Features396

1-6 capture the temporal properties in the data, and rest of the397

features capture measured loads and how loads change over398

time. We explain the impact of these features on ML classi-399

fier using attribute selection algorithms, Principal Component400

Analysis (PCA), etc., in Section VI.401

B. Class Definition (Output)402

Next step is to define the output of the ML classifier, i.e.,403

set of target classes that the classifier tries to predict. Note404

that, to provide a comprehensive prediction tool, we perform405

prediction of all resources (bandwidth, memory, and comput-406

ing). But, as a certain amount of traffic requires a certain407

and pre-calculable amount of computing and memory capac-408

ity (depending on NF type, traffic type, etc.), we decided to409

derive conversion function from network bandwidth require-410

ment to computing and memory requirement. Later, we present411

the conversion as functions; and, in Section VI, we show the412

numerical values that are used for conversion.413

In our study, class depicts bandwidth requirement in Gbps,414

which is an integer value between Nmin
k and Nmax

k . To gen-415

erate the labeled training set (instances with known class416

labels), we ensure that the scaling decision taken at step n417

allocates enough bandwidth to serve the traffic until the next418

decision-making step n + 1.419

To illustrate the trade-off between minimizing QoS viola-420

tion and maximizing cost reduction, we propose two different421

approaches to generate the class values:422

1) QoS Priority ML (QPML): In SC auto-scaling, there is423

a trade-off between QoS and cost reduction. We need to424

allocate more resources to guarantee QoS, but allocat-425

ing more resources reduces cost saving. QPML gives426

priority to QoS over cost saving. To guarantee QoS,427

TABLE I
EXAMPLE INSTANCES WITH KNOWN LABELS

auto-scaling decision at step n (present) considers traffic 428

changes until the next auto-scaling step n + 1. QPML 429

generates the class value as follows: 430

s(n) = max (λ(t)),∀tε{τ(n), . . . , τ(n + 1)} (1) 431

where t is timestamp with traffic data between steps n 432

and n + 1 (including τ (n) and τ (n + 1)). 433

2) Cost Priority ML (CPML): In some cases, network 434

owner/leaser may choose to ignore short-lived bursty 435

traffic between steps n and n + 1 to save cost by 436

avoiding over-provisioning of resources and accepting 437

short-lived degradation. CPML considers measured traf- 438

fic load only at step n (present) and at next auto-scaling 439

step n + 1 (future). CPML generates the class value as 440

follows: 441

s(n) = max (λ(τ(n)), λ(τ(n + 1))) (2) 442

where τ (n) is the time at which step i takes place and 443

τ (n + 1) is the time when step n + 1 occurs. 444

C. Data Generation 445

After defining the input and output of the classifier, the 446

next task is dataset generation. For training-set and test-set 447

generation, we assume that realistic traffic-load measurement 448

data H (SCq , t) is available for each of the SCs. Table I shows 449

an example of training instance for QPML and CPML for 450

scaling decision at steps n–1 and n (Fig. 2) where f,g,h,i, etc. 451

are time values. 452

D. Machine Learning Algorithms 453

Selecting the right ML algorithm is the next task towards 454

training the classifier. We explore different algorithms in the 455

ML suite WEKA [30], including decision-tree-based algo- 456

rithms (Random Tree, J48, REPTree, Random Forest), rule- 457

based algorithms (Decision Table), artificial neural networks 458

(ANN), and Bayesian-network-based algorithms (BayesNet). 459

A brief introduction to the algorithms is covered in [8]. 460

In our study, we also compare the accuracy of the machine 461

learning algorithms with Deep Neural Networks (DNN) and 462

Long Short-Term Memory (LSTM). DNN [34] is an artifi- 463

cial neural network (ANN) with multiple layers between the 464

input and output layers. DNN can extract complex relation- 465

ship between the input and the output. This has made DNN a 466

successful prediction method in many studies. 467

LSTM [33] is an artificial recurrent neural network (RNN) 468

architecture often used in the field of deep learning. We 469

have used ‘ADAM algorithm’, an adaptive learning rate 470

optimization algorithm. In contrast to DNN, LSTM has loops, 471
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allowing prediction of future events while remembering past472

events. Detail architecture and design of DNN and LSTM can473

be found in [34] and [33], respectively.474

E. Performance Evaluation475

A test dataset is used to evaluate the performance of the476

trained classifier. Given a trained classifier and a test set, the477

test outcome is divided into four groups: i) True Positive (TP):478

positive instances correctly classified; ii) False Positive (FP):479

negative samples incorrectly classified as positive; iii) True480

Negative (TN): negative samples correctly classified; iv) False481

Negative (FN): positive samples wrongly classified as negative.482

We consider three different performance metrics:483

(a) Precision (%): Precision corresponds to the fraction of484

predicted positives which are in fact positive. Precision485

is a strong indication of accuracy for the classifier.486

Precision is given by percentage of: TP/(TP + FP).487

(b) False Positive (%): FP is an important indicator of clas-488

sifier as lower FP indicates less classification mistakes.489

(c) ROC area: Receiver Operating Characteristic (ROC)490

curve is a graphical plot in which true positive rate491

(TP/((TP + FN)) is plotted as function of the false pos-492

itive rate (FP/(FP + TN)). ROC area is a robust metric493

for classifier performance.494

V. SC AUTO-SCALING METHODS495

In this section, we propose two SC auto-scaling meth-496

ods: (i) Operator-driven and (ii) Negotiation-game-driven. The497

Operator-driven SC scaling algorithm (ORASC) helps us498

to quantify and compare different prediction methods from499

the literature with our proposed machine learning approach500

(Figs. 7-9 in results). To mimic traditional SC scaling meth-501

ods, ORASC considers fixed level of QoS sensitivity and fixed502

refund. On the other hand, negotiation-game-driven SC scaling503

algorithm (NRASC) is our novel SC scaling method, which is504

the first to propose a solution for multiple levels of QoS sensi-505

tivity (for tenants) and negotiated refund (between tenants and506

NO). Later, we compare ORASC and NRASC to demonstrate507

the win-win scenario brought by NRASC (see Figs. 10-13 in508

results).509

Both methods utilize prediction methods to auto-scale SC510

resources. The methods consider Network Management and511

Orchestration (NMO) and Distributed Cloud Management512

(DCM) entities which control network and compute/memory513

resources, respectively. Also, prediction methods are re-trained514

after a certain interval to keep them up to date. Re-training515

threshold σ determines if prediction methods need to be516

re-trained.517

A. Operator-Driven SC Scaling Method (ORASC)518

In Operator-driven auto-scaling (Algorithm 1), NO uses519

predicted demand to allocate/de-allocate resources from SCs520

assuming that tenants are always willing to release resources521

(or to accept additional resources).522

Algorithm 1 uses the predicted bandwidth requirement523

(line 4) to determine the required number of computing (line 6)524

Algorithm 1 Operator-Driven Resource Auto-Scaling for
Service Chains (ORASC)
1: Initialize with given input parameters in Section III;
2: Train prediction methods (Section V) for each SCi using

input data H (SCq , t);
3: for each SCq in SC do
4: N p ← prediction method output for SCq ;
5: for each NFl served in SCq do
6: C p ← f 1(N p ,NFl ); � amount of computing

units
7: M p ← f 2(N p ,NFl ); � amount of memory units
8: ζ ← true;
9: RAM(C ,C p ,M ,M p ,N ,N p ,NFl ,SCq , ζ);

10: end for
11: end for
12: if σ is expired then
13: go to line 2;
14: else
15: Update σ;
16: go to line 3;
17: end if

and memory (line 7) resources for each NF, using bandwidth- 525

to-computing conversion function f1(.) and bandwidth-to- 526

memory conversion function f2(.), respectively. In line 9, 527

the algorithm calls function RAM(.) (i.e., Algorithm 2) with 528

appropriate parameters. RAM(.) scales up (lines 6-34) or down 529

(lines 36-42) the resources according to the demand change. 530

RAM(.) also handles scenarios such as not enough resources 531

at the DC/Edge-DC (lines 23-33), resource requirement did 532

not change (lines 3-4), and tenant demand has grown so much 533

that QoS can not be satisfied with the current SC resources; so, 534

NO needs to deploy an additional SC in a new route where we 535

have enough (computing, storage, and bandwidth) resources to 536

serve the tenant (lines 44-49). 537

Run-time complexity of ORASC is O(q*l), where q = num- 538

ber of SCs and l = average number of NFs in SCs. 539

B. Negotiation-Game-Driven SC Scaling Method (NRASC) 540

ORASC proposes the traditional way of auto-scaling chains 541

where the operator takes the auto-scaling decision based on 542

performance metrics, without consulting tenants’ preferences. 543

But, in practice, depending on the usecase of the service 544

chain, the tenant may have preferences (e.g., willingness or 545

unwillingness) to participate in auto-scaling. 546

From QoS point of view, tenant’s decision will depend on 547

the priority level of the service chain. For example, a bank 548

handling sensitive information might be more risk-averse than 549

a video-streaming service. Hence, a bank will be less will- 550

ing to auto-scale its SCs (keeping all free resources to itself), 551

compared to the video service provider. 552

From economic point of view, tenant’s decision will depend 553

on how much refund it will gain by giving back free resources 554

to NO. In ORASC, we assume the NO pays full refund to 555

tenants. But, in practice, NO will be interested to pay less 556

refund. Hence, NO’s goal is to maximize free resource collec- 557

tion while paying minimum refund. Also, tenants with higher 558
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Algorithm 2 Resource Allocation Method (RAM)
1: Input: C ,C p ,M ,M p ,NFl ,SCq , ζ;
2: � unchanged requirement
3: if C p == C & M p == M then
4: Load balance (DCM) traffic flows in Fq ;
5: � more resources required
6: else if C p > C & M p > M then
7: v ← NF h

l ;
8: δi ← C p − C ;
9: δj ← M p −M ;
10: δk ← N p − N ;
11: � enough resources at v
12: if (v tc − vuc ) > δi & (v tm − vum ) > δj then
13: if SC r

q does not have δk additional bandwidth then
14: Find new route SC r ′

q with N p bandwidth;
15: SC r

q ← SC r ′
q ;

16: Re-route traffic through SC r
q ;

17: end if
18: Allocate δi additional Cs and δj additional Ms,
19: to NFl at location v;
20: Load balance (DCM) traffic flows in Fq ;
21: � not enough resources at v
22: else
23: v ′ ← DCM finds optimum location to host NFl ;
24: Allocate C p and M p at v ′ via DCM;
25: Migrate necessary data from NFl instance at v
26: to v ′ via DCM;
27: Turn on NFl instance at v

′ with allocated compute
28: and memory resources and migrated data;
29: Find new route SC r ′

q with N p bandwidth
30: through v ′;
31: SC r

q ← SC r ′
q ;

32: Re-route traffic through SC r
q ;

33: Release C & M at v via DCM;
34: end if
35: � remove extra resources
36: else if C p < C & M p < M & ζ == true then
37: v ← NF h

l ;
38: δi ← C − C p ;
39: δj ← M −M p ;
40: DCM finds optimum δiC s and δjM s to de-allocate
41: from NFl instance at v location;
42: Load balance traffic flows in Fq ;
43: � SC QoS upper limit
44: else if C p > Cmax then
45: Consult NMS, DCM, and placement algorithm to
46: create a new SCs, SC ′

q ;
47: Reroute and load balance flows from
48: Fq between SCq and SC ′

q ;
49: end if

QoS requirement will release free resources only if the NO559

is paying high refunds. Our proposed negotiation-game-based560

method allows the NO and its tenants to negotiate such that561

both can achieve a win-win equilibrium.562

Let the list of unused resources in service chain SCq for next563

interval σ be given by SCχ
q . Leasing cost paid by tenant for564

Fig. 3. Example negotiation between NO and tenants.

current unused (and available resources) in SCq is expressed 565

as SCL
q . NO’s ‘Offered Refund (OR)’ for a certain negotia- 566

tion round is expressed by R and ‘Refund Ratio’, α, is the 567

ratio between ‘Offered Refund’ and leasing cost of unused 568

resources, α = R/SCL
q . 569

Tenant’s ‘Expected Refund (ER)’ for service chain SCq is 570

expressed as SCα
q . SCα

q denotes that tenant is willing to par- 571

ticipate in auto-scaling (i.e., releasing its unused resources) if 572

α > SCα
q . 573

Fig. 3 explains the negotiation game between NO and ten- 574

ants with an example. At step 1, NO offers refund R to Tenant 575

1 (Expected Refund (ER) = 0.2). As refund R satisfies the 576

tenant’s expected refund level, the tenant agrees to auto-scale, 577

releasing 3 free resources. But, for Tenant 2 (ER = 0.5), refund 578

R is not enough, hence it rejects to participate in auto-scaling. 579

In the next round, NO increases the ‘Offered Refund, R’ 580

with Δ amount and re-starts negotiating. Now, R is suffi- 581

cient for Tenant 2, so it agrees to participate in auto-scaling. 582

These negotiation rounds keep going on until there are no free 583

resources or NO has reached maximum R (equilibrium). 584

Fig. 3 shows the example of the negotiation game show- 585

ing a few rounds of negotiation going on between the NO 586

and the tenants in runtime. However, the implementation in 587

NRASC (Algorithm 3) does not require physical communi- 588

cation between the tenants and NO. In NRASC algorithm, 589

the tenants’ parameters required for the negotiation rounds 590

are available at the beginning of the negotiation game. NO 591

executes the NRASC by looking into the parameters (e.g., 592

expected refund, etc.) already defined by the contracts with 593

the tenants. 594

Algorithm 3 uses similar negotiation steps in the context 595

of service chains. Lines 3-19 create a candidate list for auto- 596

scaling with SCs which have free resources. Line 21 starts 597

with an initial R and starts the negotiation with SCs from 598

the candidate list. If SC agrees (line 25) to auto-scale for the 599

given R, the algorithm calls RAM(.) functions for each NF 600

with appropriate parameters. After one round of negotiation, 601
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Algorithm 3 Negotiated Resource Auto-Scaling for Service
Chains (NRASC)
1: Initialize with given input parameters in Section III;
2: Train prediction methods (Section V) for each SCi using

input data H (SCq , t);
3: candidate_list ← empty
4: for each SCq in SC do
5: N

p
k ← prediction method output for SCq ;

6: for each NFl served in SCq do
7: C p ← f 1(N p ,NFl );
8: M p ← f 2(N p ,NFl );
9: end for
10: Calculate SCχ

q ;
11: if SCχ

q is not empty then � unused resources
12: candidate_list ← candidate_list ∪ SCq

13: else � may need additional resources
14: for each NFl served in SCq do
15: ζ ← false;
16: RAM(C ,C p ,M ,M p ,N ,N p ,NFl ,SCq , ζ);
17: end for
18: end if
19: end for
20: � Negotiation starts
21: Initialize R
22: while (unused resources available || NO has not reached

maximum R) do
23: for each SCq in candidate_list do
24: NO offers R to SCq Tenant;
25: if R/SCL

q ≥ SCα
q then

26: � Tenant agrees to release
27: ζ ← true
28: for each NFl served in SCq do
29: RAM(C ,C p ,M ,M p ,N ,N p ,NFl ,
30: SCq , ζ);
31: end for
32: end if
33: NO moves to next Tenant with same offer R;
34: end for
35: � Offer more refund in next round
36: R ← R +Δ
37: end while

line 37 updates R. This process keeps going on until there are602

no free resources or NO has reached maximum R. Runtime603

complexity of NRASC is O(q*l + x*q*l), where q = number604

of SCs, l = average number of NFs in SCs, and x = average605

number of negotiation rounds.606

We are aware that, in special circumstances, tenants can be607

tempted to engage in collusion (e.g., share information with608

one another) to maximize their refund, leading to a broken609

negotiation process. We have explored existing mechanisms610

to avoid collusion between tenants, and we have identified a611

vast literature from both technical [36], [37] and legal [38]612

domains. SC scaling is much different than the traditional613

game theory problems where we have multiple bandits/outlaws614

who do not obey the law. The tenant and the NO are bound by615

the legal and technical contracts which limit the tenants abil- 616

ity to share sensitive information. Breaking the legal contracts 617

will lead to huge financial loss for the tenant compared to the 618

gain achieved by the collusion. Hence, we can safely illustrate 619

that NOs (or any other organization handling hundreds of com- 620

peting tenants over many years) have mechanism in place to 621

avoid collusion between tenants. Scope of our study is not suf- 622

ficient to discuss and cover all these mechanisms. However, 623

we assume that NO will consider using technical [36], [37] 624

and legal [38] mechanisms to protect the negotiation process 625

from collusion. 626

C. Leasing Cost Model 627

We propose this leasing cost model to show the cost savings 628

from the tenant’s point of view. Let us define: 629

Lt : Total leasing cost tenant pays for the service. 630

LC : Leasing cost per unit (CPU core) of compute resource 631

per hour. 632

LM : Leasing cost per unit (GB) of memory per second. 633

LN : Leasing cost per unit (Gbps) of bandwidth per hour. 634

LP : Penalty per hour due to degraded service (under- 635

provisioning). Revenue that tenant loses if the service does 636

not maintain QoS. 637

βq : Duration of service for SCq . 638

γq : Duration of degraded service for SCq . 639

Leasing cost for one VNF instance NFl : 640

NFL
l = (C ∗ LC +M ∗ LM + N ∗ LN ) ∗ βq (3) 641

During a SC’s life time, auto-scaling methods may introduce 642

QoS degradation due to under-provisioning of resources (e.g., 643

7 Gbps bandwidth is required, but the forecast was 6 Gbps). 644

Our study captures this degradation of service as a duration 645

of degraded QoS. We model the revenue penalty occurred by 646

this duration spent in degraded QoS using Eqn. (4). Leasing 647

cost for one SC SCq , including QoS degradation penalty, is: 648

SCL
q =

∑

l

(
NFL

l

)
+ LP ∗ γq . (4) 649

VI. ILLUSTRATIVE NUMERICAL EXAMPLES 650

This section provides performance analysis of the proposed 651

ML classifier for prediction and then presents results for 652

ORASC and NRASC. 653

A. ML Classifier Prediction Accuracy 654

1) Experimental Setup for ML Classifier: To generate “fea- 655

tures” and “classes” for training and testing of the ML 656

classifier, we use realistic traffic load traces from [35]. Traffic 657

load data (in bits) was collected at every five-minute intervals 658

over a 1.5-month period from a private ISP and on a trans- 659

Atlantic link [39]. Maximum traffic load in the data is 10 Gbps, 660

so we use 10 Gbps as maximum traffic processing at any SC 661

deployment (Nmax ), and minimum Nmin is considered as 662

1 Gbps. As traffic load traces are at every 5-minute interval, 663

we use a prediction interval (ϕ) = 10 minutes. However, our 664

methods are generic to work for other intervals (explained with 665

Table IV). 666
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TABLE II
PREDICTION ACCURACY OF THE PROPOSED CPML CLASSIFIER

TABLE III
PREDICTION ACCURACY OF THE PROPOSED QPML CLASSIFIER

ML settings used in WEKA [30] are as follows:667

• Random Forest: batch size = 100, number of iterations668

= 100.669

• Random Tree: batch size = 100, minimum variance670

proportion = 0.001.671

• J48: batch size = 100, confidence factor = 0.25.672

• REP Tree: batch size = 100, minimum variance propor-673

tion = 0.001.674

• Decision Table: batch size = 100, search method: best675

first (hill-climbing algorithm with backtracking).676

• Artificial Neural Networks (ANN): batch size = 100,677

learning rate = 0.3.678

• BayesNet: batch size = 100, search algorithm = K2 (hill-679

climbing algorithm).680

• DNN: batch size = 100, learning rate = 0.3.681

• LSTM: optimization algorithm: ADAM algorithm.682

2) Prediction Accuracy of Proposed ML Classifiers: Here,683

we consider the three performance metrics discussed in684

Section IV-E to explain the accuracy of the proposed meth-685

ods. In Table II, we compare the prediction accuracy of686

the CPML prediction method for different ML algorithms.687

For results in Tables II and III, we use 40 days of data688

(40*144 = 5760 instances) for training and two days of689

data (2*144 = 288 instances) for testing. We assume that690

the ML model is retrained with new data every two days691

(σ). First, Tables II and III shows that, among different ML692

algorithms used to train the classifier, “Random Forest” has693

higher precision for both QPML (95.5%) and CPML (96.5%)694

approaches. Difference in prediction accuracy is due to dif-695

ferent “class” generation results (from Eqn. (1)) than CPML696

(from Eqn. (2)). Note that, LSTM does not have the ROC Area697

(%) evaluation metric.698

False Positives are important metric for ML classifiers. If699

a ML classifier generates too many false positives, in most700

TABLE IV
IMPACT OF PREDICTION INTERVAL (ϕ) VARIATION ON PRECISION (%)

scenarios, the classifier will not be considered as a recom- 701

mended one. Tables II and III report False Positives (lower 702

is better) for QPML and CPML with different ML algo- 703

rithms. Again, “Random Forest” shows lowest FP with 1.2% 704

for QPML and 0.7% for CPML. 705

ROC Area is another important and robust metric for ML 706

prediction models. ROC Area considers the performance of 707

ML classifier in complete range of true positives and false 708

positives, and then reports overall performance of the classifier. 709

Tables II and III show ROC Area (%) for QPML and CPML 710

(higher is better). Again, Random Forest shows highest ROC 711

Area with 99.4% for QPML and 99.7% for CPML. 712

Decision-tree-based algorithms perform better for the 713

prediction accuracy compared to artificial-neural-network- 714

based and Bayesian-network-based algorithms. Among 715

decision-tree-based algorithms, “Random Forest” leads with 716

highest precision (96.5%), highest ROC Area (99.7%), and 717

lowest false positives (0.7%). Clearly, the pattern of the data 718

and feature set favor decision-tree-based algorithms to learn, 719

as the tree-based algorithm keeps all the intermediate tree 720

classifiers during the learning process. In addition, “Random 721

Forest” further improves the performance by averaging/voting 722

between several tree-classifier instances. However, ANN- 723

based model uses backpropagation by gradient descent to 724

set the weights of neurons’ connections. Such ANN-based 725

models suffer from a fixed learning issue, where the model 726

fails to learn new trends once the weights are fixed [41]. This 727

limitation causes lower performance for ANN, compared to 728

decision-tree-based method such as Random Forest. 729

Table IV shows the impact of prediction interval (ϕ). We 730

consider intervals of 5, 10, and 15 minutes for CPML. We 731

observe that, for prediction interval of 5 minutes, Random 732

Forest (95.3%), Random Tree (95.3%), and BayesNet (95.4%) 733

present high accuracy. For prediction interval of 15 minutes, 734

Random Forest (93.8%) performs with the highest accuracy. 735

On the other hand, as we move away from ϕ = 10 minutes 736

to ϕ = 15 minutes, the accuracy reduces slightly. Explanation 737

of this phenomenon is that, for longer ϕ, the prediction accu- 738

racy depends on more data points, limiting the performance of 739

ML model. But, it is safe to conclude that Random Forest is 740

performing steadily for all three prediction intervals. We have 741

explored similar results for QPML as well. Hence, for the rest 742

of the numerical evaluations, we use results from “Random 743

Forest”. 744

3) Learning Curve Analysis (Impact of ‘Number of 745

Features’ and ‘Training Dataset Size’ on Prediction 746

Accuracy): Figs. 4-5 provide learning curve of the proposed 747
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Fig. 4. Number of features vs. prediction accuracy in precision (%).

Fig. 5. Training data size vs. prediction accuracy in precision (%).

ML classifier. Learning-curve analysis presented here helps us748

to understand the following two important aspects of training749

a classifier: “How many features generate best results?” and750

“Does more data help or not?”751

Our study did not start with fixed 27 features. Instead of752

deciding the number of features upfront, we explored differ-753

ent number of features and compared their performances, to754

determine the best performing configuration. We started by755

considering a small number of features (8), observed the high-756

est accuracy with 15 features, and then increased up to a757

number (27), which clearly shows that the performance is not758

improving with more features. As shown in Fig. 4, 15 features759

have the highest accuracy, with accuracy going up starting760

from 8 features, and going down for 20 and 27 features. Hence,761

27 features were the number of features we needed to report762

this complete picture. For example, number of features “8”763

means we are using only the first eight features from Section764

IV-A. As shown in Fig. 4, accuracy of ML classifier increases765

with number of features. But, after number of features exceeds766

“15”, accuracy decreases. This means that, if we keep adding767

more features by moving away from the time of prediction, the768

additional features impact the accuracy negatively. Hence, we769

use 27 features only to decide the highest performing ‘number770

of features’. Once decided, for the rest of the results (shown771

in Tables II-VI and Figs. 5-13), we use 15 features.772

Fig. 5 shows impact of training dataset size on prediction773

accuracy (precision) of ML classifier. The general intuition774

is that, with more data, ML classifier should perform better.775

We observe that 7 days of training data has significant776

performance improvement over 2 days of training data. One777

TABLE V
IMPACT OF DIFFERENT FEATURES

explanation of this phenomenon is that 7 days of training data 778

offers insights from seasonal pattern and periodicity of the load 779

during the whole week (compared to 2 days). Then, 10 days of 780

training data improves the ML model further, but 20 days of 781

training data does not have much additional learning points. 782

Then, 40 days of training data introduces the monthly pattern 783

and improves the precision significantly more than 20 days. 784

For rest of the study, we consider 15 features and 40 days of 785

training data. 786

4) More Insights (Feature Ranks and Impact of Different 787

Features on Prediction Accuracy): Important questions regard- 788

ing ML classification are: “Can we identify the dominant 789

features from the feature list?” “Which features impact clas- 790

sification accuracy more?” “Can we explain how different 791

combination of features impact the accuracy?” Below, we 792

explore different methods to answer these questions. 793

First, we use attribute (feature) selection algorithm 794

InfoGainAttributeEval [40] from WEKA which evaluates the 795

importance of a feature by measuring the information gain 796

with respect to classification. After ranking the first 15 fea- 797

tures, features 7, 9, 11, 13, and 15 are ranked 1 through 5, in 798

that order. This observation gives two important insights: a) 799

“Measured loads” are most important features that contributed 800

to accurate classification; and b) “Measured loads” closer to 801

decision time have more significant impact on classification. 802

We have confirmed this observation using Principal 803

Component Analysis (PCA), a statistical procedure (often 804

used with feature-ranking methods) to find correlated fea- 805

tures and their impact on classification. In PCA, the first 806

principal component has the largest possible variance which 807

accounts for much of the variability in the data. Our PCA 808

reports a combination of features 7, 9, 11, 13, and 15 as 809

the first principal component, conveying similar takeaway as 810

InfoGainAttributeEval. Feature 2 (day of week), feature 1 (day 811

of month), and feature 3 (weekday or weekend) are ranked 812

6th, 7th and 8th, respectively. As expected, these three fea- 813

tures carry information related to the temporal variation of 814

load, so they are ranked highly in feature ranks. Rest of the 815

features are ranked in the following sequence: 14, 12, 6, 4, 8, 816

10, and 5. 817

Table V shows impact of different features on auto-scaling 818

decision accuracy. We compare the precision of the algorithms 819

with different combination of features such as “Measured 820

Load” (features 7, 9, 11, 13, and 15), DoM (Day of Month), 821

DoW (Day of week), W (Weekday or Weekend), HoD (Hour 822

of Day), etc. As discussed earlier, only “Measured load” fea- 823

ture set shows very high precision. Then, in second row, 824

“Measured Load” with rest of the temporal features improves 825

accuracy to 96.2%. Only temporal features (row 3) show 826
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TABLE VI
TRAINING AND TESTING TIMES OF ML CLASSIFIER

significant accuracy of 83%. One interesting observation is827

that, if we pick a single temporal feature with “Measured828

Load” features, performance degrades. This means tempo-829

ral features can help to improve decisions only when they830

work together to provide the complete seasonal variations and831

patterns.832

5) Training and Testing Time of ML Classifiers: Our study833

assumes that the ML classifier will run in real-time to pro-834

vide auto-scaling decisions. Also, the model will be retrained835

every two days with updated data. Hence, it is important to836

report the training (off-line model building) and testing (run-837

time decision making) times of the ML classifiers. Table VI838

shows training time (5760 instances, 40 days of data) and test-839

ing time (288 instances, two days of data) for different ML840

algorithms. WEKA reports times in seconds upto two dig-841

its after decimal point. This means the zeros reported in the842

table take milliseconds or less time to make 288 auto-scaling843

decisions, which is very promising for real-time deployment844

for our method. Also, training times are few seconds or less,845

which supports retraining the model every two days.846

To compare the algorithms, “MLP” (neural network) takes847

longest (16.69s) and “Random Tree” takes shortest (0.05s) to848

train the models. In run-time, we see many sub-millisecond849

algorithms such as “Decision Table”. On the contrary,850

“Random Forest” takes 0.02 seconds. This is an important851

decision-making point. For example, in a special case, if the852

NO is willing to accept slight loss of accuracy (Decision Table853

95.6% vs. Random Tree 96.5%) to obtain faster decisions,854

“Decision Table” can be a better choice than “Random Forest”.855

Such practical consideration related to ML-based solutions is856

a strong motivation for our study.857

6) DNN and LSTM Performance Analysis: For DNN and858

LSTM, we have used the same dataset, feature set, and training859

and testing data ratio as in the previous part of the study.860

As the number of hidden layers are a key parameter for the861

performance of the DNN, in Fig. 6 we report the accuracy862

of DNN model with respect to number of hidden layers. We863

observe that, with growing number of hidden layers, the accu-864

racy of prediction increases (up to 95.1% for CPML). With865

number of hidden layers = 15, for both CPML and QPML,866

DNN (95.1% and 92.4%, respectively) performs better than867

ANN (92.8% and 91.3%, respectively). However, from hidden868

layers = 20, the accuracy starts decreasing. This phenomenon869

can be explained by the fact that, as DNN starts adding more870

and more hidden layers, it starts overfitting, thus resulting in871

lower accuracy.872

We also observed the impact of prediction interval (ϕ) on873

prediction accuracy of DNN. Table VII reports the impact of874

Fig. 6. Number of hidden layers vs. prediction accuracy in precision (%)
for DNN.

TABLE VII
IMPACT OF PREDICTION INTERVAL (ϕ) VARIATION ON

ACCURACY OF DNN

three different decision intervals (ϕ): 5, 10, and 15 minutes. 875

Again, in all three interval scenarios, DNN outperforms ANN: 876

5 minutes (DNN 94.4% vs. ANN 94.2%), 10 minutes (DNN 877

95.1 vs. ANN 92.8%), and 15 minutes (DNN 91.6 vs. ANN 878

90.4%). 879

We have also explored LSTM-based prediction using the 880

same dataset. We have used Deeplearning4j [42] to implement 881

the LSTM method. The LSTM-based method shows a promis- 882

ing accuracy of 95.7%, which is higher than DNN (95.1%) 883

and closely comparable to the highest-performing ML algo- 884

rithm Random Forest (96.5%). The reason LSTM can not 885

outperform Random Forest can be explained from two aspects: 886

i) LSTM is more suitable for time series data prediction [33], 887

while, in our study, we have modeled the problem as a classifi- 888

cation problem; and ii) long-term information inside the LSTM 889

model can often get corrupted (discussed in detail in [43]), 890

and data of our study is dependent on both short-term daily 891

variations and long-term weekly and monthly variations. 892

B. Experimental Setup for Auto-Scaling of Service Chains 893

(ORASC and NRASC) 894

Our study considers that service-chain requests arrive 895

from different tenants, and NO allocates necessary resources. 896

During the SC’s life time, resource requirement varies and 897

the auto-scaling algorithms allocate/de-allocate resources as 898

necessary. For rest of the results, we use QPML as the ML 899

algorithm. We use the NSFNet topology from Fig. 1 with DCs 900

at nodes 2, 6, 7, and 13. Each link has 400 Gbps capacity. 901

We consider each DC with 1000 racks capacity. We con- 902

sider rest of the nodes as Edge-DCs with 5 racks capacity. 903

In our study, each rack has 2 hypervisors and 4 servers with 8 904

core CPU each. We consider 2 GB memory for each core of 905

CPU. We also consider the following: 1 CPU core leasing cost 906

LC = 0.002 dollar per hour [44], 1 GB memory leasing cost 907

LM = 0.001 dollar per hour [44], 1 Gbps bandwidth leasing 908

cost LN = 0.0972 dollar per hour [45]. 909
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TABLE VIII
SERVICE CHAIN TYPES AND PERCENTAGE IN SIMULATION

TABLE IX
CONVERSION TO COMPUTE (CPU) RESOURCES (f 1(.))

TABLE X
CONVERSION TO MEMORY (GB) RESOURCES (f 2(.))

We consider 4 types of SCs with 6 types of NFs: Network910

Address Translator (NAT), Firewall (FW), Traffic Shaper (TS),911

WAN Optimization Controller (WOC), Intrusion Detection,912

and Prevention System (IDPS), Video Optimization Controller913

(VOC). Table VIII lists the SCs along with NF chaining914

requirements [20], [21]. For example, Web services require915

chaining of the following NFs, in this order: NAT, FW, TS,916

WOC, and IDPS. We also consider 4 difference types of917

services: Web services (search, etc.), Voice Over IP (VOIP)918

(audio), Video Streaming, and Online Gaming, with represen-919

tative percentage in traffic.920

Table IX shows conversion from network bandwidth921

requirement to compute (CPU) resource requirement, gener-922

ated by extrapolating information from prior studies [20] and923

industry data [46].924

Table X shows conversion from network bandwidth require-925

ment to memory resource requirement inspired by prior926

studies [20] and industry data [46].927

C. Impact of Prediction Methods on ORASC928

For this part of the results (Figs. 7-9), we consider 100929

SC request arrivals per hour, and the simulation runs for930

24 hours. For this part of the study, we consider operator-931

driven auto-scaling (ORASC). To feed our ORASC algorithm,932

we use three prediction methods proposed in this study: i)933

DNN (with 95.1% accuracy), ii) LSTM: (with 95.7% accu-934

racy), and iii) ML (Random Forest as the highest-performing935

ML algorithm with 96.5% accuracy).936

We compare our proposed methods with three prior937

works: dynamic-threshold-based approach derived from cloud938

Fig. 7. Resource leasing cost vs. auto-scaling prediction methods.

Fig. 8. Resource consumption compared in resource category and auto-
scaling prediction methods.

auto-scaling (DT) [10], a recent SC auto-scaling study 939

(AR) [23] that uses auto-regression as prediction method, and 940

an artificial-neural-network-based method (ANN) [35]. 941

Fig. 7 shows leasing cost saving for tenants using ORASC 942

powered by different prediction methods. In addition to CPU, 943

memory, and bandwidth leasing cost, we also consider the 944

QoS penalty cost for tenants due to degraded service ($1 per 945

hour). The left-most column shows total leasing cost for “No- 946

scaling” method, where all leased resources are allocated all 947

the time (hence no QoS cost for tenants). Then, auto-scaling 948

using “Dynamic Threshold (DT)” based method saves $26,638 949

by auto-scaling the tenants’ free resources. “Auto-Regression 950

(AR)” based prediction method performs a little better than 951

DT method, due to better prediction. Our proposed Random 952

Forest algorithm (ML) yields lowest leasing cost (or savings 953

of $28,630) for the tenants. The other methods (DNN and 954

LSTM) outperforms the prior studies, and demonstrate cost 955

savings very close to ML. Fig. 6 also reports the QoS degra- 956

dation penalty incurred by under-provisioning of resources. 957

DNN, LSTM, and ML methods show lower penalty compared 958

to prior studies DT and AR. 959

Fig. 8 shows total resource consumption data breakdown 960

for Fig. 7, in CPU, memory, and network units. As expected, 961

DNN, LSTM, and ML perform better than prior study AR. 962

Fig. 9 compares impact of auto-scaling methods on different 963

SC types. Here, we use different level of QoS cost for different 964

SC types (e.g., Web = $3, VOIP = $2, Video = $1, and 965

Gaming = $2.5). As the results show, impact of more accurate 966

prediction (ML) is higher on the more QoS sensitive services. 967

D. Negotiation-Game-Based Auto-Scaling (NRASC) 968

For Figs. 10-12, we use the following set of values (uni- 969

formly) for tenants’ ‘Expected Refund’ Sα
q : 0.2, 0.3, 0.4, 0.5, 970
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Fig. 9. Different SC types: resource leasing cost vs. auto-scaling prediction
methods.

0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. For maximum R, we use 1.0,971

indicating that, at maximum, the NO is willing to pay the972

original leasing cost as refund.973

In this part of the study, we compare the impact of974

prediction methods on ORASC and NRASC, to demon-975

strate the benefits from negotiation. Our proposed highest-976

performing method ‘ML’ is compared with prior study ‘AR’ by977

using following three combinations: i) O-AR: ORASC algo-978

rithm powered by auto-regression-based prediction, ii) O-ML:979

ORASC powered by ML-based Random Forest algorithm.980

iii) N-ML: NRASC powered by ML-based Random Forest981

algorithm.982

In Fig. 10, on the right two columns, ‘Operator’s cost sav-983

ings’ shows the win for the NO. Compared to operator-driven984

approach (O-ML), in negotiated approach (N-ML) NO pays985

much less ($14,617), as refund. In Operator-driven approach986

(O-ML), NO makes auto-scaling decision without considering987

different QoS levels of tenants, hence offering full refund to all988

the tenants. On the other hand, in negotiation-based approach989

(N-ML), the NRASC algorithm is aware of the QoS levels of990

the tenants. Hence, NO engages in a negotiation game with991

the tenants, so that NO can pay the least amount of refund992

(compared to full refund in O-ML). This results in lower cost993

for N-ML in Fig. 10.994

On left, for negotiated approach (N-ML), tenant pays less995

leasing cost by gaining $23,641 from auto-scaling refund996

(compared to no scaling). Some service chains have higher997

‘Expected Refunds’ (e.g., ER = 1.1, 1.2) than the max-998

imum ‘Offered Refund’, as a result. Without considering999

QoS penalty, we observe that N-ML saves less money for1000

tenants than the Operator-driven approach (O-ML). But, con-1001

sidering higher QoS penalty (e.g., 100 per hour for ER =1002

1.1 and 1.2), O-ML will fail to capture the importance of1003

the sensitive service chains and auto-scale anyway, result-1004

ing in high QoS penalty. Hence, negotiated approach (N-ML)1005

increases the tenants’ happiness as well, by creating a win-win1006

situation.1007

Figs. 11 and 12 show insights for Fig. 10. Fig. 11 com-1008

pares released resources (unit-hour) by tenants (which leads1009

to refund and reduced leasing cost). As discussed before,1010

Operator-driven approach, powered by machine learning (O-1011

ML) and powered by auto-regression (O-AR), releases more1012

excess resources, compared to negotiation-based approach1013

Fig. 10. Win-Win for Operator and tenants: cost vs. auto-scaling methods.

Fig. 11. Resource consumption compared in resource category and auto-
scaling methods.

Fig. 12. Refund cost for operator vs. auto-scaling methods.

powered by ML (N-ML). But excess released resources from 1014

O-AR and O-ML come with excess QoS penalty, as shown in 1015

Fig. 10. 1016

Fig. 12 shows normalized refund cost over different resource 1017

categories. We observe around 40% cost savings across all 1018

resource categories. 1019

To further investigate the NO’s cost benefit (associated to 1020

refund) due to negotiation (N-ML), Fig. 13 shows the impact 1021

of maximum offered refund in case of computing resources. At 1022

maximum offered refund = 0.5, to release 200,853 unit-hours 1023

of CPU resource, the NO pays for only 68,439 unit-hours 1024

equivalent refund, leading to payment of 34% of the original 1025

cost (hence, the NO can keep 66% of the leasing cost to itself). 1026

At higher value for maximum offered refund (e.g., 0.9), NO 1027

pays 54% of the original cost (hence, the NO can only keep 1028

46% of the leasing cost to itself). We observe similar trends 1029

for memory and network resources as well. 1030
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Fig. 13. Impact of maximum refund offered on NO’s refund cost.

VII. CONCLUSION1031

Our study proposed two SC auto-scaling methods which1032

benefit from ML prediction method. The ML classifier learns1033

from historic data and shows promising accuracy (96.5%).1034

Illustrative results explain different aspects of the proposed1035

ML prediction model. Our proposed auto-scaling methods1036

consider practical SC usecase scenarios with a backbone1037

network and geo-distributed DCs/Edge-DCs. Numerical results1038

show that our proposed prediction method yields lower leas-1039

ing cost for network tenants compared to prior works. In1040

addition, negotiation-game-based auto-scaling method reduces1041

both tenant leasing cost and NO’s refund cost, while respecting1042

tenants’ willingness to participate in the auto-scaling process.1043

Future studies should explore more detailed operational and1044

leasing costs.1045
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