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Abstract

Optical multi-domain transport networks are often controlled by a hierarchical distributed architecture of controllers. Optimal
placement of these controllers is very important for efficient management and control. Traditional SDN controller placement
methods focus mostly on controller placement in datacenter networks. But the problem of virtualized controller placement
for multi-domain transport networks needs to be solved in the context of geographically distributed heterogeneous multi-
domain networks. In this context, edge datacenters have enabled network operators to place virtualized controller instances
closer to users, besides providing more candidate locations for controller placement. In this study, we propose a dynamic
controller placement method for optical transport networks that considers the heterogeneity of optical controllers, resource
limitations at edge hosting locations, and latency requirements. We also propose a machine-learning framework that helps
the controller placement algorithm with proactive prediction (instead of traditional reactive threshold-based approach).
Simulation studies, considering practical scenarios and temporal variation of load, show significant cost savings compared
to traditional placement approaches.

Keywords Optical transport network - Optical network controller - Cost savings - Network virtualization - Edge
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Existing proposals for controller placement [1] have focused
mostly on packet-switched Software-Defined Networks
(SDNs) and they often ignore the complexity, heterogene-
ity, and vendor specificity of a transport-network control
plane. Current technical solutions for transport-network con-
trol planes (e.g., Transport SDN, T-SDN) are designed for
Partha Bhaumik circuit-switched optical layer and SONET/SDH/OTN layer.
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T-SDN supports multilayer, multi-vendor, circuit-oriented
Pulak Chowdhury networks that are different from packet-based SDN-con-
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trolled networks [2]. In our study, we consider a “hetero-
geneous optical transport networks”, i.e., optical networks
where the devices are heterogeneous (e.g., from different
vendors, implementing different technologies flexi-gird vs.
fixed-grid, etc.). Hence, to control such a network, we need
a heterogeneous set of ‘optical network controllers’, with
different vendor-specific or technology-specific capabili-
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comprising of such heterogeneous (often vendor-specific)
Optical Network (ON) Controllers (ONCs).

Our study considers that T-SDN controllers can be
deployed as virtualized controller instances (as in [4]). Vir-
tualized controller placement has many benefits. First, man-
ually deploying ONC:s in traditional ‘hardware boxes’ can
take several days, compared to few minutes in case of virtu-
alized instances (hosted on virtual machines (VMs), docker
containers, etc.). Such virtual instances are hosted in cloud
datecenters (DCs) or in computing nodes at edge datacenters
(Edge-DCs) (such as Network Function Virtualization Infra-
structure Points of Presence (NFVI-PoPs), metro datacent-
ers (DCs), or Central Offices Re-architected as Datacenters
(CORD:s), etc.). Second, virtualized controllers can be easily
recovered from failures or disasters using the backed-up/
replicated virtual copy of the controllers. These instances
can be easily moved from one location to another and can be
redeployed [5] without significant downtime. Third, opera-
tional cost savings for network operators and leasing cost
savings for network leasers are other important motivations
toward virtualization.

Prior studies exploring static [6, 7], and dynamic [8] con-
troller placement problems mostly focused on packet-based
SDN controllers and DC networks [9]. But, as we discuss
in Sect. 2, methods proposed in SDN and DC scenarios are
often not applicable and not optimal for heterogeneous opti-
cal transport networks.

To the best of our knowledge, our study is the first to pro-
pose dynamic placement of controllers for heterogeneous,
multi-domain transport networks comprising heterogeneous
ONCs, considering the complexity due to virtual instances
hosted jointly on DCs and Edge-DCs (e.g., NFVi-PoPs).
We explore the technical details of the dynamic controller
placement problem (e.g., latency requirements, resource lim-
itations at Edge-DCs, controller capacity limitations, etc.),
propose the Virtualized Controller Deployment Algorithm
(VCDA), and report illustrative results.

In addition, we observe that the reactive threshold-based
approach used, e.g., in our work in [10] and others’ [8], do
not benefit from knowledge of historical traffic patterns and
data. Hence, we propose a machine learning (ML) based
method that leverages knowledge of historical data and can
be used to forecast the required number of controllers dur-
ing next time interval. As we will elaborate in this study, the
ML method for controller placement problem is not trivial,
especially due to complexity in modeling domain-specific
controller traffic and in devising a conversion from controller
traffic to required number of controller.

Significant contributions of our study in the controller
placement problem are as follows:

1. To the best of our knowledge, our study is the first to
propose dynamic placement of controllers for hetero-

geneous, multi-domain transport networks comprising
heterogeneous ONCs.

2. We propose a ML framework that identifies the key
parameters, and models the conversion of traffic data to
control traffic for the controller placement problem.

3. We demonstrate that dynamic load-aware controller
placement (powered by the proposed ML framework)
can achieve significant accuracy, and enables relevant
cost savings and QoS improvement.

This study is organized as follows. Section 2 reviews prior
work on controller placement problems. Section 3 discusses
the control-plane architecture. Section 4 provides a formal
problem statement and describes the proposed solution
method, including the ML framework and cost models. Sec-
tion 5 discusses numerical results on accuracy of the ML
framework, on cost savings and QoS improvement. Section 6
concludes the study.

2 Background and related work

The controller placement problem is known to be NP-hard
[1]. In the context of SDN controllers, both static [6, 7],
and dynamic [8] placement problems have been explored.
But most studies on SDN Controller Placement Problems
(CPPs), e.g., [6, 7, 11], consider placement of only control-
ler ‘middle-boxes’, not virtualized instances. Reference [12]
considers recovery of SDN controllers in a disaster scenario.
These early studies do not consider the additional complexi-
ties due to virtualization, delay constraints, hosting location
constraints, etc.

Recent studies [8, 9] on Elastic Control Placement (ECP)
for SDN controllers discuss threshold-based methods to
dynamically resize the ECPs. Reference [8] focuses on DC
networks managed through homogeneous SDN control-
lers, to minimize control-plane resizing delay. Reference
[8] focuses on the ‘switch-to-controller’ mapping, ensuring
that each switch (forwarding plane) is connected to at least
one controller (control plane). Incoming traffic-flow requests
originated inside a domain will be served by the same con-
troller; and controller capacity limit is preserved. When a
new traffic-flow request arrives, the ‘switch’ depends on the
controller for routing and path-computation decisions.

Recently, control plane architectures [13, 14] in T-SDN
have been proposed to accommodate multiple heterogene-
ous network domains and associated domain-specific ON
controllers. However, the design of T-SDN control plane
architecture is still evolving and is an active research area
[2, 14]. Ref. [4] was among the first to propose a virtualized
control-plane architecture for transport networks, but not
from a placement perspective.
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References [8, 9] consider DC placement (of controller
instances), which is practical for a DC network scenario.
But, for a transport network with distributed heterogene-
ous domains, we also consider joint deployment in DCs and
Edge-DCs. This introduces new constraints such as host
location capacity, and inter-domain and intra-domain com-
munication delays (which [8, 9] do not consider). To the best
of our knowledge, none of the prior studies on controller
placement explores impact of proactive prediction of num-
ber of controllers using machine learning or other methods.

3 Control plane architecture

Figure 1 shows an example of a hierarchical control plane for
heterogeneous transport networks. Domain-specific control-
lers are connected with ‘parent controller(s)’, which are con-
nected to the ‘application plane’ (e.g., Transport Network
Orchestrator (TNO), Operations Support Systems (OSS),
etc.).

‘Domain Controllers’ (ONC:s in the figure) are responsi-
ble for the communication between ‘control plane’ and ‘data
plane’. Different autonomous domains, depending on the
underlying ONC, use specific type of controllers and proto-
cols to control the ‘data plane’ switches. Figure 1 shows two
types of domains, i.e., Fixed-grid and Flex-grid domains.
This example architecture can be extended to support more
variations of domain controllers and associated technolo-
gies. In this study, we consider two levels of hierarchy and
assume that the parent controller location is already deter-
mined. Hence, our proposed method focuses solely on the
placement of domain controllers.

In the considered control plane architecture, dedicated
ML modules are associated with each domain. In fact, each
domain can have separate load patterns, load types, and vari-
ation trend in load. To capture this knowledge, we propose
to use these distributed ML modules to power the control-
ler placement algorithm proposed in the next section. The
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Fig. 1 Control plane architecture for heterogeneous transport net-
works with ML module

Control plane

Data plane
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choice of per-domain ML is not trivial. In some scenarios,
one ML module is enough to predict network-wide results.
Then, in other cases, deploying ML modules in a more dis-
tributed fashion than per-domain level (e.g., per device level,
per city/population center level) can be useful. In our use-
case, ‘per-device ML module’ will be a overkill, as control
traffic from that domain will arrive to controllers (making
per-device control traffic intelligence redundant).

4 Problem statement and solution method
4.1 Problem statement

The dynamic ‘on-demand’ controller placement problem can
be defined as follows: Given a topology, a set of controller
hosting locations with limited capacity, arrival rate of traffic
flows, a set of heterogeneous network domains, controller
capacity, and constraints, deploy optimal number of control-
lers to satisfy all the domains, minimizing the leasing costs.

In order to decide on how many number of controllers
we need in a given time interval, in Ref. [10], we proposed
a traditional threshold-based approach (also explored in [8]
for datacenter network scenarios). In this study, we explore
if ML- assisted prediction can help to optimize the perfor-
mance of our proposed solution method. Hence, we propose
a new ML-based a prediction mechanism, demonstrating
its superior performance with respect to threshold-based
approaches.

4.2 Input parameters and variables

e G(V, E): Optical transport network topology where V is
set of domains and E is set of inter-domain links.

e M, Set of controllers serving domain v.

e §,: Set of switches in domain v serving traffic.

T,: Domain-specific controller types (flexi-grid or fixed-

grid).

;- Controller hosting location where H, C V.

: Total compute capacity at v.

: Used compute capacity at v.

: Total memory capacity at v.

: Used memory capacity at v.

: Service capacity limit (i.e., maximum number of new

routing requests served per second) for controller type 7.

T}: Compute resource requirement for controller type T,.

T’: Memory resource requirement for controller type 7.

A(v): Arrival rate of new traffic flows for a given domain

(v), where r, represents new request for flow routing (to

be processed by the controller). S, is the switch at which

the request has arrived, and M, gives the set of domain

controllers the data traffic switch (S,) is connected.

m
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o a: .Latency constraint (maximum allowed delay from Z M| % TZ < P H, ==v; YveV @
switch to controller). = &

In this study, switch stands for optical data plane switch, M1sTO <ol H VeV

where the new routing requests arrives. Then, the switch Z M| g =@ Hg =TV Ve 4)

depends on the domain controller for making the routing
decision for the new request [2]. If the domain controller is
placed far away from the switch, the decision making will
be delayed. Hence, we need a constraint («) to enforce that.

4.3 Constraints
We consider the following constraints:

1. Latency constraints Controllers must be placed within
the allowed latency limit, i.e., switch-to-controller and
controller-to-switch delay, including processing delay
must not exceed the allowed delay limit:

D(s, h) + Dp + D(h,s) < a;VseS,, VheV 1)

where function D(x, y) represents transmission, propa-
gation, and processing delay between points x and y, s
is switch where the flow originated, / is controller host-
ing location, and D, is processing delay at controller
instances M.

2. Controller-type constraint To reflect domain heterogene-
ity, we enforce the following controller-type constraints:

T, =M, VveV ()

where the constraint enforces that all controller
instances of v (M!) match required controller type T,.

3. Controller capacity constraints Deployed controllers

must have enough capacity to support domain switches:

D As) STV |M, |5 VveV

seS,

(3)
4. Controller host capacity limit Hosting location (v - )

must have both compute and memory capacity:

Fig.2 Proposed ML frame-
work: a ML module deployed I

geV

4.4 Cost models
4.4.1 Leasing cost for virtual controller instances

We consider that network operators lease capacity from DC
operators. Virtual instance leasing cost C,. can be stated as:

Ce= 2, (M, % @y + 7))  d) ©)
veV

where y,, is per-unit hardware cost for per unit time, y, is

per-unit software cost for per unit time, and d is duration

of operation.

4.4.2 QoS degradation penalty

The quality of service is negatively impacted when the con-
troller placement method fails to deploy enough number of
controller instances. We model this cost by converting the
duration (d,) in degraded QoS to a penalty cost:

C,= Y (IM,| %y, xd,) %

veV

where v, is the per unit-time penalty for degraded service.

4.5 Proposed machine learning framework
to forecast controller demand

Figure 2a shows the components inside the ‘ML module’
(in Fig. 1). A brief description of the components follows:

Output to be used
by Algorithm 1

per domain; and b key param-
eters used in designing the ML
module

4. Real-time ML Forecast

3. Train ML model

2. Preprocess training data ‘

Re-train

1. Data collection

(a) ML module

‘ Controller capacity ‘

‘ Each flow to no. of bits ‘

| Control traffic ratio in network traffic |

Population distribution ‘

‘ Control traffic to no. of controllers ‘

(b) Parameters for the framework
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e Data collection For each domain, data is collected from
network traffic. For this study, we use realistic traffic load
traces from [15]. This traffic load data (in bits) was col-
lected at every five-minute intervals over a 1.5-month
period from a private ISP and on a trans-Atlantic link.

e Preprocess training data In many cases the collected data
is not immediately applicable for training the ML model.
The data needs to go through certain steps to be ready as
training data. In this study, to make the data useful for
the controller placement problem, it has to go through
two major conversion: (1) domain-specific controller
traffic and (2) controller traffic to number of controller
conversion. We discuss these two procedures later in this
subsection.

e Train ML model In this study, we have used supervised
ML techniques to train the models. In supervised ML, we
can associate each instance (set of features) of the prob-
lem to a class. In our training model, we have used the
22 features defined in [16], which capture the variation
of traffic in collected data. As class (output) that associ-
ates with the features (input), we have used ‘number of
controllers’ for a given time interval. This means that we
train the ML model to learn from the mapping between
features/patterns inside the traffic data and how many
‘number of controllers’ can handle that traffic from future
time interval. Intuitively, ‘maximum traffic flow (Mbps)’
can be an option for class/output. But, traffic flow in
Mbps would require a very high number of classes, lead-
ing to poor performance. Hence, we use less granular
output (i.e., number of controllers), with less number of
classes, leading to good prediction performance.

® Real-time ML recommendation Finally, in this step, the
domain controllers can start receiving the predictions
made by the ML module (see Algorithm 1).

In order to keep the ML model updated, steps 1 to 3 are re-
executed in an interval (e.g., every 7 days) suitable for the
domain and the operator.

Figure 2b shows the key parameters used by this
framework:

e Domain-specific controller traffic generation ldeally, the
‘ML module’ will use control traffic data collected from
respective domain controller. But the datasets we have
access to consist of only network (data-plane) traffic data.
To mimic domain-specific control traffic, we converted
the dataset [15] using these two parameters: i) control
traffic in percentage (%) of network traffic and ii) popu-
lation distribution. It is not trivial to answer the ques-
tion: ‘what percentage of the network traffic is control
traffic?” Based on existing studies, we can estimate that,
depending on the network size, control traffic overhead
can be 1-10% [17]. Also, the population distribution var-
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ies from domain to domain, impacting the control traffic
generated. To incorporate this aspect in our study, we use
population density of four time zones in USA, to create
different sets of control traffic at respective domains. In
the results section, we report our findings on impacts of
these two parameters.

o Controller traffic to number of controller conversion
Conversion from controller traffic (I" in bps) to number
of controllers is not trivial. The controller traffic (meas-
ured or converted as we did) is in bits per second (bps)
unit. On the other hand, the controller capacity (T%) is
often reported in number of flows [11] (not in bps). In
order to know how many number of controller instances
are required to serve a certain bps traffic, we need these
two parameters: controller capacity in number of flows
and how many bits are typically communicated in each
flow request (b). Based on the controller communication
steps described in [4], we can identify the number of bits
used by each control flow (b). Hence, number of control-
lers (c) can be derived from the following equation:

c=1T/(T" *b) (8)

Once the ML framework is complete, we train different
modules using domain-specific set of data. Then, the ML
modules are ready to be used by Algorithm 1 (proposed in
next subsection).

Figure 2 depends on the “control traffic” ratio in “net-
work data traffic”. Now, it is safe to consider that the optical
network operator will know this ratio in their networks and
will be able to use this parameter for our proposed method.
This ratio will vary depending on the network. Hence, for
this study, we explored the literature to gather some insights
into the range of this ratio, instead of an exact number. Our
search yielded in this study [17] which reports the ratio
can be 1-10%. We also did sensitivity analysis over this
range and ensured that the method performs well even after
changes in this parameter.

4.6 Algorithm

We propose a polynomial-time heuristic, called Virtualized
Controller Deployment Algorithm (VCDA), as a scalable
solution for a heterogeneous optical transport network (see
Algorithm 1). Since turning controllers on/off too often may
lead to instabilities, we introduce a decision epoch (e), i.e.,
a dynamic variable allowing network operators to tune the
decision frequency. We also use two management entities:
Network Management and Orchestration (NMO) and Dis-
tributed Cloud Management (DCM). NMO takes care of
load balancing and assignment of switches and traffic with
the controllers. DCM takes care of the cloud resource man-
agement for placement of controller instances.
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Our algorithm ensures that, for each domain, enough con-
trollers are deployed to serve current load, observing the
constraints. In a threshold-based approach, we use the cur-
rent threshold value to calculate required number of control-
lers for next epoch. In an ML-assisted approach, we consult
the ‘ML module’ which forecasts the number of controllers
we will require for next epoch e. At a given epoch, if the
controller capacity constraint holds, it means that we do not
need additional controller instances (line 5). But, if the con-
troller capacity constraint fails (line 9), the algorithm checks
if the current hosting location (%) has enough compute and
memory capacity to host the additional 6 controllers (line
13). If yes, we turn on additional controllers and load bal-
ance the switches and traffic flows (line 14—17). If host loca-
tion & does not have enough resources, the algorithm finds
the next optimal location to host all the instances (line 20)
following constraints as in Eqs. (1-5) and minimizing Eqs.
(6) and (7). In this step, we utilize the benefits of consolida-
tion in computing. Placing controllers from the same domain
closer to each other will reduce penalty cost (Eq. 7). We
consider live VM migration (line 18) to relocate the already-
running controller instances to the new location with least
interruption of services.

The algorithm turns off the extra controllers (line 25-29)
to save operational cost. In line 27, we keep at least one
controller instance running for each domain. Installation of a
new virtual machine hosting the controller instance may take
time in the range of 100 seconds [S]. However, it does not
mean that we do not have any controller capability during
the installation of novel VM instances, as we consider that at
least one instance of a domain controller is always present.
After each iteration, the algorithm waits for the epoch e to
expire.

The runtime complexity of VCDA depends on num-
ber of domains (IVl), maximum number of control-
lers (max(|M,|)), maximum number of switches in a
domain (max(|S,|)), and number of host locations (|H,|).
The run-time complexity of VCDA can be expressed as
O(|V| * max(IM,|) * max(|S,|) + |V| = |H,| * max(|M,|) * max(|S,|).

Algorithm 1 Virtualized Controller Deployment Algorithm (VCDA)

1: Input: G(V, E), A\(v), o, €;
2: for each domain v in V do
3: > Forecast/calculate required number of controllers
4: c « predicted by ML or calculated using threshold-based method;
5: if |[M,| == cthen
6: Consolidate and load balance traffic flows among the M, s using Eqns. (1-5);
7 > deploy more controllers
8: else if ¢ > |M,| then
9: h «— Hy;
10: 6—c — My;
11: > enough resources at h
12: if (xt —x¥) > 6% T & (w), —wi) > 6« TY then
13: Turn on additional é controllers (T3, type) at location h;
14: Load balance and re-route among the Mys using Eqns. (1-5);
15: > not enough resources at h
16: else
17: h « find optimum location to host ¢ using Eqns. (1-5);
18: Allocate ¢ controllers (T, type) at n via DCM;
19: Migrate all M, instances to n' via DCM;
20: Turn on § additional controller instances via DCM;
21: Load balance and re-route flows among the controller instances;
22: Turn off M, controllers at h via DCM;
23: end if
24: > remove extra resources
25: else if ¢ < |My| then
26: 6—c — My;
27: DCM finds optimum §é controllers to turn off;
28: Re-route and load balance among the M, using Eqns. (1-5);
29: Turn off § controllers;
30: end if
31: end for

32: if e is expired then
33: go to line 2;
34: end if
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Fig.3 Example optical network topology with controller host loca-
tions (DCs and Edge-DCs) and heterogeneous domains (color red and
black denote separate controller types)

5 Illustrative numerical examples

We present illustrative results on a US-wide topology (see
Fig. 3), with heterogeneous domains and Edge-DCs/DCs.
Each network domain requires domain-specific controller(s),
that are connected to other domains via backbone optical
links. We consider two DC locations (2 and 13) and three
Edge-DCs (5, 7, 10) to host controller instances. Capaci-
ties of DCs, racks, and servers vary significantly in practice.
For Edge-DCs, we assume total compute capacity () is 64
units and total memory capacity (@') is 256 GB. For DCs,
we consider 15000 compute and 30000 memory capacity
(to represent significantly large capacity). For illustrative
examples in this section, let @ = 15 ms, T = 2500 requests
per second [11], per-controller instance compute require-
ment (77) = 2 compute units [8], memory requirement (T
=4 GB, y,, = $0.01 per controller per hour, y, = $0.02 per
controller per hour and y, = $0.05 for every 10 minutes of
degraded service [16].

5.1 Accuracy of ML framework
In this part of the study, we report the performance of the

proposed ML framework for different scenarios. As the
ML algorithm, we use Random Forest (best-performing

Table 1 Accuracy of the proposed ML framework (1% control traffic)

Domain Precision (%) False positives ROC area (%)
(%)

Eastern 96.7 1.2 99.7

Central 96.8 1.0 99.8

Mountain 100.0 0.0 100.0

Pacific 97.8 14 99.9

@ Springer

Table2 Accuracy of the proposed ML prediction framework (2%
control traffic)

Domain Precision (%) False positives ROC area (%)
(%)

Eastern 88.7 1.5 99.4

Central 93.3 1.3 99.5

Mountain 99.2 1.2 99.9

Pacific 95.7 14 99.7

algorithm in [16]). We consider e = 10, i.e., VCDA algo-
rithm asks for ML forecast every 10 minutes, and we use
40 days of data (40 * 144 = 5760 instances), of which 50%
is training and rest 50% is used for testing. As the data was
collected every 5 minutes, we have 288 instances of data in
24 hours. Then, the prediction decision is taken every 10
minutes, leading to 144 instances in a day.

We consider 47% of US population is in Eastern, 29%
in Central, 7% in Mountain, and 17% in Pacific time zone
domains. Our study uses this data to generate domain-spe-
cific controller traffic (discussed in Sect. 4.5). We report the
ML accuracy for 1% control traffic (Table 1) and 2% control
traffic (Table 2).

In Tables 1 and 2, we present three different performance
metrics: (a) Precision (%) corresponds to the fraction of pre-
dicted positives which are in fact positive. Precision is given
by percentage of: TP/(TP + FP). (b) False Positive (FP)
(%) FP is an important indication of ML classifiers as lower
FP indicates less classification mistakes. (c) ROC area (%)
Receiver Operating Characteristic (ROC) curve is a graphi-
cal plot in which true positive rate (TP/((TP + FN)) is plot-
ted as function of the false-positive rate (FP/(FP + TN)).
Here, TP implies true positive, FN is false negative, and TN
is true negative. ROC area is a robust metric for ML classi-
fier performance evaluation. A higher ROC area value means
more robust ML prediction model.

Table 1 shows promising accuracy of our method. The
lowest Precision is achieved for Eastern (96.7%), going up
to 100.0% for Mountain. This can be explained with the
population ratio. As Eastern has 47% of total population,
it generates more dynamic traffic, resulting in lower fore-
casting accuracy. In comparison, Mountain with only 7%
of population, generates less dynamic traffic, resulting in
higher accuracy. This argument is further supported by
Table 2 where 2% control traffic (i.e., twice as much con-
trol traffic for all domains). This increase in control traffic
brings down the prediction accuracy to 88.7% (for Eastern).
Domains with lower population (producing less dynamic
traffic) show higher precision: Mountain (99.2%) and Pacific
(95.7%). Other performance metrics (false positives and
ROC area) show similar trends in accuracy. Specially, ROC
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Fig.4 Illustrative 24-hour vari- 8
ation of number of controllers
using machine learning (ML)
and threshold-based (TH)
approaches with 1% control
traffic
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area consistently stays over 99%, showing the robustness of
the proposed model.

Figure 4a shows the controller variation over 24 hours
for the sample scenario of the Eastern domain. We com-
pare our ML method with threshold-based (TH) method [8].
We observe that ML method is faster to capture the future
changes than the TH method (orange line with crosses trails
the blue line). We also indicate the situations where TH
does not provide enough controllers to support QoS (yel-
low dashed circles). We also indicate situations where TH

1 WL

2 3 4 5 6 789 10 1 12 13 14 15 16 17 18 19 20 21 22 23

deploys more resources than required (using purple dashed
circles). Figure 4b shows the controller variation over 24
hours for Pacific domain. As discussed earlier, due to popu-
lation, the load variation is less, resulting in less variation
in number of controllers as well.

In Fig. 5a, we present 24-hour variation of controllers
for Eastern domain considering 2% control traffic. With
the increased traffic, we observe more variation and higher
number of controllers. Similarly in Fig. 5b, Pacific domain
experiences more traffic compared to Fig. 4b.
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Fig.8 ‘Center of gravity’ for controllers shifting as the day pro-
gresses (1% control traffic)

5.2 Impact on cost savings, electricity consumption,
and QoS

Figure 6 explores the sum of hardware cost and software
leasing cost (using Eq. 6) and QoS penalty cost (using Eq. 7)
for ML and TH approaches. We compare three methods:
(a) Static controller placement (realizing prior study [7] in
transport network scenario), (b) VCDA-TH (mimicking prior
study [8] in transport network scenario), and (c) VCDA-
ML (implementing VCDA powered by the ML framework).

@ Springer

VCDA-ML shows the highest cost savings (45.54%) com-
pared to the VCDA-TH approach (39.32%). In a large net-
work where cost is in millions of dollars, our proposed meth-
ods can help significantly.

We also consider electricity consumption (and related
cost) and report the results in Fig. 7. A large portion of
DC/Edge-DC and network operational costs come from
electricity cost. For controller power consumption, we
borrow electricity consumption model for servers from
Ref. [18]. We also consider four different virtualization
technologies (Xen, KVM, Docker, and LXC) and use prac-
tical power consumption values reported in Ref. [19]. We
observe that the ML-assisted method yields least electric-
ity consumption compared to VCDA-TH and Static place-
ment. We also observe that container-based technologies
(Docker and LXC) use lower electricity compared to Xen
and KVM.

5.3 Daily shift of ‘Center of Gravity’ of controllers

As the sun moves from East to West, due to dynamic con-
troller placement, we observe that the ‘center of gravity’ of
the controllers also shifts. Figure 8 shows this shifting phe-
nomena. In the early morning (6AM Eastern time), Eastern
domain has 2 controllers and the rest of the domains each
has one controller, i.e., the ‘center of gravity’ is clearly on
the Eastern domain. But, as the day progresses, more con-
trollers ‘light-up’ in Central and Pacific domains, shifting
the ‘center of gravity’ towards the middle of the country.
In the afternoon (3PM), the Eastern domain has 5 control-
lers, Central has 3, Mountain 1, and Pacific 3, shifting the
‘center’ to the Central domain. As Eastern (47%) popula-
tion ratio is very high compared to Mountain (7%) and
Pacific (17%), the ‘center’ does not move past the Central
domain. We observe similar trends for 2% control traffic
(with higher number of controllers).

6 Conclusion

Virtualized controller placement in multi-domain hetero-
geneous optical transport networks introduces new chal-
lenges for network management. Our proposed method for
controller placement considers transport-network-specific
properties and constraints such as heterogeneous control-
ler types, resource limitations at edge-hosting locations,
etc. In addition, ML-based prediction helps to improve the
performance of the proposed algorithm. Illustrative exam-
ples show that our proposed method saves cost and reduces
delays significantly, compared to traditional approaches.
Future studies should explore variation of compute/
memory requirements, variation of Edge-DC capacities,
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variation of Edge-DC and DC locations, different predic-
tion methods, and more detailed cost models.
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