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Abstract: The monster sporadic group is the automorphism group of a central charge
c = 24 vertex operator algebra (VOA) or meromorphic conformal field theory (CFT).
In addition to its c = 24 stress tensor T (z), this theory contains many other conformal
vectors of smaller central charge; for example, it admits 48 commuting c = 1

2 confor-
mal vectors whose sum is T (z). Such decompositions of the stress tensor allow one to
construct new CFTs from the monster CFT in a manner analogous to the Goddard-Kent-
Olive (GKO) coset method for affine Lie algebras. We use this procedure to produce
evidence for the existence of a number of CFTs with sporadic symmetry groups and
employ a variety of techniques, including Hecke operators, modular linear differential
equations, and Rademacher sums, to compute the characters of these CFTs. Our exam-
ples include (extensions of) nine of the sporadic groups appearing as subquotients of the
monster, as well as the simple groups 2E6(2) and F4(2) of Lie type. Many of these exam-
ples are naturally associated to McKay’s ̂E8 correspondence, and we use the structure
of Norton’s monstralizer pairs more generally to organize our presentation.
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1. Introduction and Summary

The classification of finite simple groups is a remarkable achievement of pure mathe-
matics which occupied the efforts of about 100 mathematicians for a significant part of
the 20th century. The main theorem states that every finite simple group is either

(a) a cyclic group of prime order,
(b) an alternating group of degree at least 5,
(c) a group of Lie type, or
(d) one of 26 exceptional groups, called the sporadic groups.

Of the sporadic groups, 20 of them are realized inside the largest one—themonster group
M—as subquotients1; more generally these 20, referred to byGriess as the happy family,
participate in a web of subquotients with one another, as depicted in Fig. 1. Decades after
their discovery, the reason for the existence of these sporadic groups remains a mystery.

To get one’s hands on a group, it can be fruitful to study it through the objects it
acts on by symmetries. Indeed, a concrete representation can reveal properties of the
group masked by its abstract presentation, and tie questions about the group to questions
about other structures in mathematics. Historically, the sporadic groups have often been
implicated as the automorphism groups of a wide variety of auxiliary structures. In
the case of the monster group, its existence was proven when Griess demonstrated
that it furnishes the symmetries of a 196884 dimensional commutative, non-associative
algebra B called the Griess algebra [2]. Witt realized the Mathieu group M24 as the

1 A subquotient is a quotient of a subgroup.
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Fig. 1. A diagram of the simple sporadic groups, based on data taken from the Atlas of Finite Groups [1]. An
arrow from H to G indicates that H is a subquotient of G. The groups G which are encircled by solid lines as
opposed to dashed lines are those for which a chiral algebra VG� with inner automorphism group G is known.
These chiral algebras embed into one another in the same way their associated groups do as subquotients

automorphism group of the Golay code [3]. The Thompson sporadic group Th [4] was
first constructed as the automorphism group of a 248 dimensional even unimodular
lattice in the Lie algebra of E8 [5]. And so on and so forth.

It is natural to seek a more unified description of the sporadic groups, perhaps as
the automorphisms of a single kind of structure, as opposed to many different kinds
of objects. Among the numerous insights it has offered, the program of moonshine has
improved this situation by implicatingmany of the sporadic groups as symmetries of con-
formal field theories (CFTs) or other CFT-inspired constructions. For example, Frenkel,
Lepowsky, and Meurman promoted the Griess algebra B to a meromorphic CFT/vertex
operator algebra (VOA) V �—the moonshine module—which is widely thought of as
the most natural representation of M [6]. In this picture, the operator algebra and stress
tensor of V � are preserved by the Monster, and B arises as an algebra defined on the sub-
space of dimension 2 operators; furthermore the connection to conformal field theory led
to a proof of the main genus zero conjecture of monstrous moonshine [7]. The Conway
group Co1 plays a similar role in a c = 12 superconformal field theory [8–10]. More
mysteriously, the Mathieu group M24 was shown by Eguchi, Ooguri, and Tachikawa
[11] to arise when one decomposes the elliptic genus of K3, which counts special super-
symmetric states in superconformal sigma models with K3 target, into characters of the
N = 4 superconformal algebra, though the precise sense in which the Mathieu group is
a symmetry in this context remains elusive in spite of detailed studies of Mathieu moon-
shine [12–14] including a proof of the main conjecture [15] and the extension to umbral
moonshine [16–18]. Even more mysteriously, it was conjectured in [19], and proven
in [20], that the Thompson group Th acts on an infinite-dimensional graded module
whose graded characters are modular forms of a particular kind, a tell-tale sign of the
existence of some kind of vertex algebraic structure, though no such structure has yet
been discovered. The O’Nan group, which is not a member of the happy family, also
has a moonshine relation to weight 3

2 modular forms [21], again suggesting a possible
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connection to vertex algebras. It thus seems not out of the question that vertex algebras
and associated physical structures may eventually provide a setting for a more uniform
understanding of the sporadic groups.

While these developments have been interesting in their own right, if one’s goal is to
understand the relationships between the sporadic groups, the constructions suffer from
the shortcoming that, while e.g. Th is a member of the happy family and thus appears
inside of the Monster, its corresponding module bears no obvious relation to V �. What
one would really like is to construct models for these groups that are designed around the
lattice of subgroups of M from the outset. A relevant group theoretic notion, explored
by Norton in [22], is the idea of a monstralizer pair: by definition, it consists of two
subgroups G and ˜G := CentM(G) which mutually centralize each other (c.f. Table 1
for a non-exhaustive list of examples). There are two reasons we might take this as our
starting point. First, the idea of a mutually centralizing pair is valid in any group, and
has historically lead to very fruitful and natural constructions in representation theory:
examples include Schur-Weyl duality [23] and the general theory of reductive dual pairs
[24], of which the Howe-theta correspondence [25] is a well-known application. Second,
most of the monster’s large perfect2 subgroups (or soluble extensions thereof) partici-
pate in a monstralizer pair, and so this structure reveals information about relationships
betweenmany sporadic groups in the happy family. A natural ambition then is to attempt
to give monstralizer pairs a new life in the richer setting of the monster CFT.

In retrospect, first steps in this direction were taken by Höhn and his collaborators
following the discovery of 48 mutually commuting Virasoro subalgebras with central
charge 1

2 inside the monster VOA [26]. Indeed, in his PhD thesis [27], Höhn built a
rational vertex operator algebra3 VB

� of central charge 231/2 which admits an action
of the baby monster sporadic group B by automorphisms, and which is realized as a
subVOA of V �. Later, Höhn, Lam, and Yamauchi [28] provided a similar construction
of a central charge 231/5 vertex operator algebra4 VF�

24 whose (inner) automorphism
group is the largest Fischer group Fi′24, and which also embeds into V �. We will see in
a moment that these two examples can be naturally interpreted as VOA uplifts of the
monstralizer pairs (Z2, 2.B) and (Z3, 3.Fi′24).

The idea behind the construction ofVB
� andVF�

24 is to decompose the stress tensor of
the moonshine module into a sum of commuting stress tensors of smaller central charge,
T (z) = t (z) + t̃(z), a process we will colloquially refer to as deconstruction. One can
then consider the VOA which remains once one has subtracted off the subVOA W of
V � associated with t (z); this leaves a subVOA ˜W of V � with t̃(z) as its stress tensor.
This idea is made precise by the notion of a commutant subalgebra or a coset model,
the study of which was first initiated in [29,30] in the context of affine Lie algebras.
The commutant ˜U := ComV � (U) of a subVOA U in V � is the set of all operators in
V � which have regular OPE with every operator in U . In terms of this construction, we
can define “the subVOA associated with t (z)” to mean the commutant of the Virasoro

2 A group is said to be perfect if it admits no non-trivial abelian quotients. In particular, any non-abelian
simple group is a perfect group.

3 In this paper, VB
� will always denote a Z-graded VOA. This differs slightly from Höhn’s 1

2Z-graded

vertex operator super algebra, which is constructed by taking a direct sum of VB
� and its unique irreducible

module of highest weight 3
2 .

4 The notation VF� was used in [28], though we use VF�24 in anticipation of our construction of similar

VOAs VF�23 and VF�22 associated with the other Fischer groups Fi23 and Fi22.
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algebra generated by t̃(z), i.e. W := ComV � (Vir(̃t)). The pair W , ˜W := ComV � (W)

are then each others’ commutants, and so form what is called a commutant pair.
To any such commutant pair, one can associate two commuting subgroups M(W),

M( ˜W) of the monster which we will refer to as the subgroups preserved by W , ˜W:
roughly speaking, M(W) is the subgroup of M which acts trivially on ˜W and its mod-
ules while preserving W and its modules, and similarly for M( ˜W). In the case that
the groups (M(W),M( ˜W)) furnish a monstralizer pair, we will refer to (W, ˜W) as a
monstralizing commutant pair, or M-com pair for short. The intuition behind this def-
inition is that, although there are a rather large number of ways to cut up the monster
CFT into commutant pairs, there are far fewer ways to cut it into monstralizing com-
mutant pairs, and our expectation is that such M-com pairs will in general play more
nicely with respect to the action of M on V � than will a generic commutant pair. Within
the framework we’ve laid out, the algebra VB

� arises when one carries out this proce-
dure for t (z) a conformal vector of central charge 1

2 in the moonshine module (so that
W is the chiral algebra of the Ising model), and corresponds to the monstralizer pair
(M(W),M( ˜W)) = (Z2, 2.B). The algebra VF�

24 corresponds to choosing t (z) to be the
stress tensor of a Z3 parafermion theory [31], and has (M(W),M( ˜W)) = (Z3, 3.Fi′24).
In light of these results, there is a natural question: can this idea be generalized to pro-
duce other M-com pairs and, in the process, other subVOAs of the moonshine module
which naturally realize sporadic or otherwise exceptional symmetry groups?One of our
main results is an answer to this question in the affirmative.

Main result 1. For each monstralizer pair (G, ˜G) occurring in Fig. 3, there is an associ-
ated pair of chiral algebras (WG ,W

˜G) inside V � which satisfy the following properties5:

(a) The tuple (WG ,W
˜G) is a monstralizing commutant pair.

(b) The subgroups preserved by WG and W
˜G are M(WG) = G and M(W

˜G) = ˜G.
(c) The inner automorphism group of WG is given by G/Z(G), where Z(G) is the

center of G. Therefore, the WG realize subquotients (rather than just subgroups) of
the monster as their inner automorphism groups. The same goes for theW

˜G .
(d) (A closed subalgebra of) the fusion algebra of bothWG andW

˜G admits an action of
Z(G) = Z(˜G) by automorphisms.

(e) The commutant ofWG in V � isW
˜G and vice versa, i.e. ˜WG =W

˜G and ˜W
˜G =WG .

(f) Whenever one monstralizer pair (H, ˜H) includes into another (G, ˜G) in the sense
that ˜H < ˜G and G < H , the associated chiral algebras mirror these inclusions, i.e.
W
˜H ↪→W

˜G and WG ↪→WH .

See Table 2 for further details on these chiral algebras.

In each of our examples, we take G to be either cyclic or dihedral, in which case theW
˜G

furnish chiral algebras with interesting symmetry groups, many of which belong to the
happy family (c.f. Table 2 for a summary of these results). The cases we consider for
which G = ZkX (where we use ZkX to denote a Zk subgroup of M which is generated
by any element in the kX conjugacy class) involve takingWZkX to be a Zk parafermion
subalgebra [32]. Such deconstructions yield—in addition to the algebras W

˜G = V �,

VB
�, and VF�

24 discussed previously, which correspond to G = Z1A, Z2A, and Z3A—a
new M-com uplift of the monstralizer pair (Z4A, 4.222.Co3). The remaining cases for
which G is a dihedral group are all new, and are organized through a striking connection

5 In particular, our examples are suggestive of the existence of a (unique) functor from the category of
monstralizer pairs to the category of monstralizing commutant pairs.
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Fig. 2. Dynkin diagram of̂E8, decorated by conjugacy classes of the monster sporadic group M. We propose
to further decorate each node by the inner automorphism group of the commutant of WDnX in V �

to McKay’s ̂E8 correspondence. In order to cleanly explain these results, we briefly
review this correspondence.

The monster has two conjugacy classes of involutions, which are commonly labeled
as 2A and 2B, and it is known that the product of any two elements taken from the 2A
conjugacy class must lie in one of 1A, 2A, 3A, 4A, 5A, 6A, 2B, 4B, or 3C (c.f. [33]).
It was suggested by McKay that these conjugacy classes can be naturally thought of as
nodes of the extended̂E8 Dynkin diagram, as in Fig. 2. Crucially for our purposes, any
two 2A involutions whose product resides in the nX conjugacy class generate a dihedral
subgroup6 DnX of M [34,35] which participates in a monstralizer pair. Now, one would
like to associate to DnX a subalgebra WDnX of V � which obeys the desired properties
that we have been discussing. In fact, such VOAs have already been constructed in
the math literature [34,36–38]: the starting point for these constructions is the fact that
elements of the 2A conjugacy class are in one-to-one correspondence with central charge
1
2 conformal vectors in the moonshine module [33,39]. It is natural then to consider the
subVOA WDnX which is generated by two central charge 1

2 conformal vectors whose
associated involutions have product lying in the nX conjugacy class. Each such algebra
specifies a deconstruction of the stress tensor of the monster—i.e. a decomposition
T (z) = t (z) + t̃(z)—and we may consider “subtracting off” WDnX and studying the
remaining chiral algebra with stress tensor t̃(z), i.e. the commutant ofWDnX , which we
denote by ˜WDnX . As an extension of McKay’s correspondence, we propose that it is
natural to view the algebras ˜WDnX as being in correspondence with the nodes of thêE8
Dynkin diagram.

The commutants ˜WDnX beautifully recover chiral algebras whose symmetry groups
are either closely related to sporadic groups or are otherwise exceptional. We find that
the cases nX = 1A, 3A, 5A, 6A, and 3C define chiral algebras which we call VB

�,
VF�

23, VHN
�, VF�

22, and VT
� with (inner) automorphism groups7 B, Fi23, HN, Fi22, and

Th respectively; each of these groups is precisely a simple sporadic group in the happy
family. Moreover, this collection of VOAs reflects the relationships between groups in
the happy family in the sense that, for H and G taken from the list

M, B, Fi′24, Fi23, Fi22, Th, HN, (1.1)

whenever H is a subquotient ofG, thenVH� is a subalgebra ofVG�. These chiral algebras
therefore furnish an intriguing mirroring of the group theory of the happy family within
the theory of vertex operator algebras, by relating the structure of subquotients in M to
deconstructions of the stress tensor of V �. The remaining cases nX = 2A, 4A, 2B, and

6 We use the convention that Dn is the symmetry group of a regular n-gon, i.e. |Dn | = 2n.
7 A few of these algebras inherit an extra order 2 outer automorphism from the monster.
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4B recover chiral algebras8 with inner automorphism groups 2E6(2), 222.McL, 222.Co2,
and F4(2) respectively.

We also initiate a study of the representation theory of these models. On general
grounds, sinceWG and ˜WG =W

˜G are commutant pairs in the moonshine module, one
has a Schur-Weyl like decomposition of the form [40,41]

V � ∼=
⊕

α

WG(α)⊗W
˜G(α) (1.2)

where theWG(α) (respectivelyW
˜G(α)) are mutually inequivalent irreducible modules

ofWG (respectivelyW
˜G). Such a decomposition furnishes a one-to-one pairing between

a subset of irreducible modules ofWG and a subset of irreducible modules ofW
˜G , and

so we henceforth refer to theW
˜G -moduleW

˜G(α) as the representation dual toWG(α)

in V �, and its graded dimension

χ̃α(τ ) := χW
˜G (α)(τ ) = TrW

˜G (α)q
˜l0− c̃t

24 , (1.3)

as a dual character, where t̃(z) = ∑

n
˜lnz−n−2 is the stress tensor of W

˜G of central
charge c̃t . To provide evidence for our claims, we construct these dual characters for all
of the W

˜G and demonstrate that they exhibit the kind of connection to representation
theory expected in moonshine: namely, a decomposition of the coefficients of the χ̃α(τ )

into dimensions of irreducible representations of the proposed symmetry group ˜G which
is consistent with how V � decomposes by restriction into representations of ˜G. These
dual characters always transform with a unitary and symmetric modular S-matrix so
that it is possible in each of our examples to define a full, modular invariant CFT with
partition function

Z
˜G(τ, τ̄ ) =

∑

α

χW
˜G (α)(τ )χW

˜G (α)(τ ). (1.4)

At the level of characters, the decomposition of V � in (1.2) presents a highly con-
strained modular bootstrap problem. We recruit three main technical tools to solve it for
the characters of the modules W

˜G(α):

Main result 2. For each monstralizer pair (G, ˜G) occurring in Fig. 3, the characters
χW

˜G (α)(τ ) can be expressed as at least one of the following:

(a) a Rademacher sum,
(b) the solution to a modular linear differential equation (MLDE), or
(c) the image of χWG (α)(τ ) under the action of a Hecke operator.

See Table 2 for further details.

Rademacher sums andMLDEs are familiar techniques in the analysis of chiral algebras;
however, one relatively new element of our analysis is that, for some choices of G, we
are able to obtain the χ̃α(τ ) as the image of the irreducible characters of WG ,

χα(τ) := TrWG (α)q
l0− ct

24 , (1.5)

8 Although the 4A and 2B cases involve the McLaughlin group and Conway’s second group, both of which

belong to the happy family, we hesitate to give them the names VMcL� and VCo�2 in case it is possible
in the future to define chiral algebras with McL and Co2 symmetry on the nose, as opposed to our current
constructions which realize extensions of these groups.
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under the action of a suitable Hecke operator [42]. The simplest application of this tech-
nology is to the baby monster algebra VB

�, whose characters arise as a Hecke image of
the characters of the Ising model. Our constructions thus showcase an intriguing appli-
cation of Hecke operators, as well as an interpretation of Hecke related RCFTs, which
we believe will hold in some generality: namely, that chiral algebras whose characters
are related by Hecke operators arise, in favorable circumstances, as commutant pairs
embedded inside a larger meromorphic CFT.

This paper is organized as follows. In Sect. 2.1, we review some basic notions related
to chiral algebras/VOAs, and establish notations. InSect. 2.2we exposit, in generality and
in a few familiar examples, the technique of “deconstructing” the stress tensor of a chiral
algebra and using such a deconstruction to obtain new chiral algebras as commutants. In
Sects. 2.3.1 and 2.3.2, we review two technical tools which we will use to study the dual
characters of our models: modular linear differential equations and Hecke operators.
We then move on to applying these techniques in Sect. 3, which contains our main
results. After reviewing the constructions of the monster, baby monster, and Fischer
VOAs, we use them in Sects. 3.1–3.3 to obtain new chiral algebras from the procedure
of deconstruction. We propose directions for future research in Sect. 4.

2. Review of Techniques

2.1. VOA/chiral algebra basics. In order to make this paper readable for both physicists
and mathematicians, we begin with a brief, informal review of chiral algebras (also
known as vertex operator algebras), and establish a few notations/conventions. For more
thorough treatments of these subjects, see any of the following references [43–45].

2.1.1. Relationship to conformal field theory The most familiar starting point for physi-
cists is a two-dimensional (Euclidean) quantum field theory that is invariant under the
group SL2(C) of global conformal transformations. The Green’s functions of such a the-
ory can be analytically continued from functions on R

2 to functions on a larger domain
inC

2, so it is natural to work with complex coordinates (z, z̄), thought of as independent
variables, and only equate z̄ with the complex conjugate of z at the end of the problem.
The complexification sl(2)⊕sl(2) of the Lie algebra of SL2(C) is then the natural object
to consider; its generators are

L−1 = −∂z, L0 = −z∂z, L1 = −z2∂z

L̄−1 = −∂z̄, L̄0 = −z̄∂z̄, L̄1 = −z̄2∂z̄ .
(2.1)

The holomorphic and anti-holomorphic generators commute with each other, and each
satisfy familiar relations,

[L1, L−1] = 2L0 [L0, L±1] = ∓L±
[L̄1, L̄−1] = 2L̄0 [L̄0, L̄±1] = ∓L̄±.

(2.2)

The Hilbert space transforms in a representation of this algebra (which we assume is a
direct sum of highest weight representations of sl(2)⊕ sl(2)), so it is natural to organize
states in the theory in terms of their eigenvalues (h, h̄) under (L0, L̄0).

Conformal field theories enjoy a one-to-one correspondence between their states and
their local operators,

ϕ(z) ↔ |ϕ〉 ≡ lim
z,z̄→0

ϕ(z, z̄)|	〉 (2.3)
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where |	〉 is the unique SL(2,C)-invariant vacuum. Equipped with this state-operator
correspondence, we will often drop the vertical line and angular bracket around |ϕ〉 and
think of ϕ as a state in the Hilbert space, safely distinguishing it from its corresponding
operator ϕ(z, z̄) by the suppression of its arguments (z, z̄).

The power of conformal symmetry in two dimensions is closely related to the power
of meromorphy in complex analysis. Indeed, consider any meromorphic operator in the
theory,

∂z̄ϕ(z, z̄) = 0. (2.4)

From the expressions for the anti-holomorphic generators, it is evident that suchoperators
arise from stateswith h̄ = 0. Locality then ensures that h is either integral or half-integral,
so that the corresponding space of states admits a natural grading, V =⊕h∈ 1

2Z
Vh . We

will mainly focus on the case where V is Z-graded. The operator product algebra closes
on such operators, so the set of meromorphic operators forms a consistent truncation of
the full operator algebra. We will use the following notation for this operator product
expansion (OPE) between meromorphic operators,

ϕ(z)ϕ′(w) ∼
∑

0<n≤h+h′
(ϕϕ′)n(w)

(z − w)n
(2.5)

where the symbol ∼ indicates that we have only retained the singular terms on the
right-hand side. This structure is what is known to physicists as a chiral algebra, and to
mathematicians as a vertex operator algebra. From now on, we reserve the symbol V
(resp. V) for the holomorphic (resp. anti-holomorphic) chiral algebra of a CFT.

To see the utility of these meromorphic operators, note that standard contour integral
arguments imply that the modes

ϕn ≡
∮

dz

2π i
zn+h−1ϕ(z)

(

ϕ(z) =
∑

n∈Z
ϕnz

−n−h

)

(2.6)

do not depend on the precise choice of contour encircling the origin. In radial quanti-
zation, in which the “time” slices are concentric circles about the origin, these ϕn can
therefore be thought of as conserved charges of sorts. We see that the presence of even a
single meromorphic operator ensures the existence of an infinite-dimensional symmetry
algebra. This large symmetry is a useful jumping-off point for analyzing the full CFT,
particularly when the CFT is rational, which by definition means that the Hilbert space
decomposes into a direct sum of finitely many representations of V ⊗ V .

The chiral algebra of a two-dimensional local CFT is never empty. Indeed, from
conservation and tracelessness of the stress tensor, one can prove that

T (z) ≡ Tzz(z, z̄) =
∑

n∈Z
Lnz

−n−2 (2.7)

is a meromorphic dimension 2 operator, and similarly for T (z̄) ≡ Tz̄z̄(z, z̄). The T T
OPE is constrained by conformal symmetry to take the form

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
. (2.8)
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This OPE is equivalent by standard arguments to the commutation relations of the Vira-
soro algebra,

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (2.9)

We recognize the closed subalgebra furnished by L0, L±1 as the same sl(2) described
earlier arising from global conformal invariance. The chiral algebra generated by the
stress tensor should be thought of as an enhancement of this global conformal algebra
to a larger symmetry algebra which implements local conformal transformations. In
a generic CFT, this Virasoro algebra makes up all of V; in special circumstances, in
particular for most rational CFTs, additional operators populate the chiral algebra. We
will mainly work with such special theories.

2.1.2. Modules and characters As we mentioned earlier, the Hilbert space of a CFT
decomposes into a direct sum of representations of V ⊗ V ,

H =
⊕

α,α

	α,αV(α)⊗ V(α) (2.10)

where the sum over α (resp. α) is a sum over the irreducible representations of V
(resp. V), and the 	α,α are non-negative integer coefficients with 	0,0 = 1 which
give the multiplicities of each representation. We will also find it helpful in this paper to
decompose V and its irreducible modules with respect to representations of some known
subalgebra9 W , e.g.

V =
⊕

α

V(α) (2.11)

where V(α) is the subspace of V generated by all irreducible W-modules isomorphic to
W(α). For example, W might be the Virasoro subalgebra of a larger chiral algebra V .
In the other direction, we may be interested in extendingW to a larger chiral algebra V
by taking a direct sum of W-modules.

The basic data of a module M is the assignment of an operator ϕM (z) acting on M
to each ϕ ∈ V , which is subject to standard axioms (see e.g. §2 of [46]). We will use
the notation V(±) for the subalgebras spanned by modes ϕn with ±n > 0, and V(0) the
Lie subalgebra spanned by the zero modes ϕ0. In this paper, we will work with heighest
weight modules M . These are modules built on top of a highest weight vector space Mh
which carries a representation of V(0) with L0 acting as h1, and which is annihilated by
positive modes,

U (V(+))Mh = 0 (2.12)

whereU (g) is the universal enveloping algebra of a Lie algebra g. We somewhat loosely
refer to states in Mh as V-primaries and any state in U (V(−))Mh as a descendant. We
will always assume that L0 acts semi-simply, and that M =⊕q∈Z+h Mq is graded by
the eigenvalues of L0. The chiral algebra V itself is always a module, and we refer to it
as the vacuum module.

9 A subVOAW need not have the same stress tensor as V . In the case that it does, we say thatW is a full
subVOA.
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One can consider the OPEs between primaries10,

ϕ(α)(z)ϕ(β)(w) =
∑

γ

Cγ
αβ(z − w)−hα−hβ+hγ [ϕ(γ )(w) + · · · ] (2.13)

where the ellipsis represent universal contributions from descendants, and hα indicates
the eigenvalue of the action of L0 on the highest weight subspace of V(α). The full
operator algebra is in general very complicated, and so it is often useful to pass to
coarser information. For example, the fusion coefficientsN γ

αβ are defined as the number

of distinct channels along which ϕ(α) and ϕ(β) can fuse into ϕ(γ ). In particular, each
non-zero N γ

αβ thus has to be a positive integer. Note that N γ
αβ 
= 0 if and only if ϕ(γ )

and its descendants appear in the ϕ(α)ϕ(β) OPE. These fusion coefficients serve as the
structure constants of an auxiliary fusion algebra one can associate to V , which admits
as a distinguished basis the irreducible modules of V , and whose product is defined as

V(α)× V(β) =
∑

γ

N γ
αβV(γ ). (2.14)

There exists an intricate relation between the fusion algebra and the modular transfor-
mation properties of characters of V , which are complex-valued functions on the upper
half-plane H = {τ ∈ C | Im(τ ) > 0} defined as

χα(τ) = TrV(α)q
L0− c

24 (q = e2π iτ ). (2.15)

On general grounds [47,48], in an RCFT, such characters transform in a finite-
dimensional representation of the modular group SL2(Z),

χα(− 1
τ
) =

∑

β

Sαβχβ(τ) χα(τ + 1) = e2π i(hα−
c
24 )χα(τ ) (2.16)

where hα is the eigenvalue of L0 on the subspace of highest weight states of V(α).
One can compute the fusion coefficients N γ

αβ from the above S-matrix via the Verlinde
formula [49],

N γ
αβ =

∑

δ

SαδSβδ(S−1)δγ
S0δ

, (2.17)

where the index 0 labels the identity. Equation (2.17) reflects the fact that the fusion
matrices (Nα)

γ
β = N γ

αβ can be diagonalized simultaneously with diagonal matrices
Dα ,

(Dα)
δ
δ = Sαδ

S0δ
. (2.18)

In later sections, we will often construct chiral algebras W as extensions of tensor
products of theories whose irreducible modules are known, including minimal mod-
els, parafermion theories, and lattice VOAs. In lieu of a more detailed analysis of the

10 Technically there is a vector space of highest weight states, so e.g. ϕ(α) should be thought of as carrying
an extra index which we are suppressing.
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representation theory of such extensions, we offer a strategy for discovering their char-
acters, which is based on the constraint that they should transform into one another under
modular transformations.

Let U (i) for i = 1, . . . , r be chiral algebras whose modules we write as U (i)(αi ), and
whose characters χ

(i)
αi (τ ) transform under a modular S-matrix S(i). We want to search

for an extension of U (1) ⊗ · · · ⊗ U (r) of the form

W =
⊕

α1,...,αr

M0,(α1,...,αr )U (1)(α1)⊗ · · · ⊗ U (r)(αr ) (2.19)

whose irreducible modules, on general grounds, can be expressed as

W(α) =
⊕

α1,...,αr

Mα,(α1,...,αr )U (1)(α1)⊗ · · · ⊗ U (r)(αr ) (2.20)

where Mα,(α1,...,αr ) are non-negative integers. Now, the characters of U (1) ⊗ · · · ⊗ U (r)

are

χ(α1,...,αr )(τ ) := χ(1)
α1

(τ ) · · ·χ(r)
αr

(τ ) (2.21)

and transform under the S-matrix S = S(1) ⊗ · · · ⊗ S(r). In order for W(α) to furnish
the irreducible modules of a VOA, the vector-valued function

∑

α1,...,αr

Mα,(α1,...,αr )χ
(1)
α1

(τ ) · · ·χ(r)
αr

(τ ) = M · χ(τ) (2.22)

should transform covariantly under a modular S transformation. This means that there
should exist a matrix S ′ such that M · S = S ′ · M , in which case

M · χ (− 1
τ

) = M · S · χ(τ) = S ′ · M · χ(τ) (2.23)

so that S ′ is the modular S-matrix of the extended theory with characters M · χ(τ).
Similar comments apply to the T transformation. This procedure is the same as block
diagonalizing the SL2(Z) representation furnished by S and T , and in this language M
is the projection matrix onto one of the blocks. We will use this method in several places
in Sect. 3.

2.1.3. Symmetries There are several different notions of symmetry which arise in the
study of chiral algebras, and they differ slightly from what one would call a symmetry
in a full blown CFT, so we define these notions carefully. For more details, see e.g. [46].
An automorphism of a chiral algebra V is an invertible linear map X : V → V which

(a) preserves the vacuum, X |	〉 = |	〉,
(b) preserves the stress tensor, XT = T , and
(c) respects the state/operator correspondence,

(Xϕ)(z) = Xϕ(z)X−1 (2.24)

for every state ϕ ∈ V , where (Xϕ)(z) is the operator corresponding to the state Xϕ.
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Alternatively, we may replace (2.24) with the equivalent condition that

(Xϕ)n(Xφ) = X (ϕnφ) for all n ∈ Z and ϕ, φ ∈ V. (2.25)

It is useful to distinguish between inner and outer automorphisms of V . To define these
notions, note that if X is an automorphism ofV of finite order, andM is a module, we can
define another module X ◦M whose underlying vector space is by definition M , and for
which the state operatormapping isϕ �→ ϕX◦M (z) := (Xϕ)M (z). If X ◦M is isomorphic
to M for every module M of V , then we say that X is an inner automorphism, and outer
otherwise. The idea is that outer automorphisms will in general permute the different
irreducible modules amongst themselves, while the inner automorphisms preserve them.
We will use the notation Aut(V) for the automorphism group of V , and Inn(V) for its
subgroup of inner automorphisms.

We will often look for signatures of such symmetries in the characters of the chi-
ral algebra. For example, because automorphisms preserve the stress tensor, they will
also preserve the grading, and so each graded component Vh transforms in a finite-
dimensional representation ofAut(V). The graded components of its irreduciblemodules
V(α)h will transform in a finite-dimensional representation of the inner automorphism
group Inn(V), though in general they will transform projectively, i.e. up to a phase [46].
The projective representations of a finite group can be lifted to ordinary representations
of a covering group, and so we will often work with an extension of the inner automor-
phism group of the form H.Inn(V), for H suitably chosen. For example, although B is
the automorphism group of the baby monster VOA VB

�, its irreducible modules will in
general transform under the group 2.B. The characters of V reflect this representation
theory through the coefficients in their q-expansions: in particular, these coefficients
can be written as sums of dimensions of irreducible representations of H.Inn(V). All
of these observations will provide nontrivial checks on our proposed characters and
automorphism groups.

One can also consider a character which is twined by an automorphism X ,

χX,α(τ ) = TrV(α)Xq
L0− c

24 . (2.26)

On general grounds, this will coincide with a vector-valued modular form of higher
level [50,51], i.e. one that transforms covariantly with respect to the action of a discrete
subgroup �X of SL2(R) which includes at least a subgroup �0(n) ⊂ �X , where

�0(n) =
{(

a b
c d

)

∈ SL2(Z)

∣

∣

∣

∣

c ≡ 0 mod n

}

(2.27)

and with the value of n being closely related11 to the order of X .
One can also consider automorphisms of the fusion algebra of V . These are simply

invertible linear maps on the fusion algebra which preserve the fusion rules. Of special
interest to us will be “diagonal” automorphisms which take the form

W(α) �→ ζαW(α) (ζα ∈ C). (2.28)

Their main utility for us lies in the fact that, if W is a subalgebra of V , such mappings
can often12 be lifted to ordinary automorphisms of V . Indeed, using the decomposition

11 In fact, n is the order of X if X is non-anomalous; in general, n is some multiple of the order of X .
12 We are not aware of a general condition which determines when such a lifting goes through, but we are

confident that it does in all the cases that we invoke this structure.
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of V intoW-modules,

V =
⊕

α

V(α) (2.29)

we can define its lift τW to be the linear mapping V → V which acts on vectors in
the subspace V(α) as ϕ �→ ζαϕ. This map will often be a non-trivial automorphism of
V . Furthermore, for any automorphism X of V , the automorphism associated with the
subalgebra XW satisfies

τXW = XτW X−1. (2.30)

In particular, if X belongs to CentAut(V)(τW ) then τW = τXW .

2.1.4. Conformal vectors Generically, the chiral algebra of a CFT involves only the
Virasoro algebra, in which case, the only operator with dimension (2, 0) is the holo-
morphic stress tensor. However, in CFTs with an enhanced chiral algebra, there may
be additional dimension (2, 0) operators. When this happens, it is often possible to find
fields distinct from the stress tensor which nonetheless have the canonical T T OPE,
albeit for a different value of the central charge. The states corresponding to such oper-
ators are known as conformal vectors, and they will play an important role in the rest
of our paper. To characterize the conformal vectors of a theory, it is useful to define the
notion of a Griess algebra, to which we turn next.

The Griess algebra [52,53] of a VOA V is an algebraic structure on its space of
dimension 2 operators. Twopieces of data define it: a commutative product � : V2×V2 →
V2 and a bilinear form (·, ·) : V2 × V2 → R. They are commonly defined in the math
literature as

ϕ � ϕ′ = ϕ0ϕ
′

(ϕ, ϕ′) = 〈	|ϕ2|ϕ′〉 (2.31)

wherewe have used the notation ϕ = |ϕ〉 = ϕ(0)|	〉 to denote the state corresponding to
the operator ϕ(z). The Griess algebra is meant to encode information related to the OPEs
between dimension 2 operators. First, let us see that ϕ � ϕ′ is the state corresponding to
the operator which appears in the 1/(z − w)2 term of the ϕϕ′ OPE, i.e. that

ϕ � ϕ′ = (ϕϕ′)2. (2.32)

A quick calculation verifies that this is true,

(ϕϕ′)2 =
∮

dz

2π i
zϕ(z)ϕ′(0)|	〉 =

∑

n

∮

dz

2π i
z−n−1ϕnϕ′ = ϕ0ϕ

′ = ϕ � ϕ′. (2.33)

Similarly, the bilinear form encodes the coefficient of 1/(z − w)4 in the OPE,

(ϕϕ′)4(z) = (ϕ, ϕ′)1.
Indeed, the vacuum is the only dimension 0 operator so (ϕϕ′)4 ∝ 1, and the constant of
proportionality is fixed by the following calculation:

〈	|(ϕϕ′)4(0)|	〉 =
∮

dz

2π i
z3〈	|ϕ(z)ϕ′(0)|	〉

=
∑

n

∮

dz

2π i
z−n+1〈	|ϕn|ϕ′〉

= 〈	|ϕ2|ϕ′〉 = (ϕ, ϕ′).

(2.34)
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By the state-operator correspondence, the Griess algebra is then the same as the two
terms (ϕϕ′)4 and (ϕϕ′)2 in the OPE. As an example, observe that taking ϕ = ϕ′ = T to
be the stress tensor implies

(T, T ) = 〈	|L2|T 〉 = 〈	|L2L−2|	〉 = c

2
(2.35)

and similarly,

T � T = L0T = 2T (2.36)

which recovers the first two non-trivial terms in the T T OPE.
As the data of a chiral algebra necessarily involves the choice of a conformal vector,

they are the first place one should look if one is interested in locating subalgebras. We
comment that the collection of conformal vectors of a VOA V can be characterized using
the language of the Griess algebra. Indeed, it is straightforward to check that conformal
vectors t (z) of central charge ct give rise to idempotents of the Griess algebra, t

2 �
t
2 = t

2 ,
with (t, t) = ct

2 . If V does not have currents, (i.e. if V1 = 0, as is the case for the
moonshine module V �), then the converse is true as well [39]: every idempotent of the
Griess algebra gives rise to a stress tensor with central charge ct = 2(t, t).

2.1.5. Examples In this section, we summarize the salient features of several examples
of chiral algebras which will make appearances in the sequel.

Minimal models The minimal models are a special class of two-dimensional conformal
field theories: those for which the Hilbert space decomposes into a finite direct sum
of modules of the Virasoro algebra. Such theories only occur for values of the central
charge labeled by a pair of coprime integers p′ > p ≥ 2. In terms of these integers, the
central charge and the conformal dimensions of the primary operators in the theory are
given by

cp,p′ = 1− 6
(p − p′)2

pp′
, h p,p′

r,s = (p′s − pr)2 − (p′ − p)2

4pp′
, (2.37)

where 1 ≤ r < p′, 1 ≤ s < p, and sp′ < rp.
For these values of c, we will define L(c, 0) to be the VOA at central charge c after

one has taken the quotient by all null vectors. Its highest weight modules are denoted
L(c, h), when h is as in equation (2.37). The characters of these highest weight modules
are given by

χ
p,p′
r,s (τ ) := TrL(cp,p′ ,h

p,p′
r,s )

qL0−
cp,p′
24 = K p,p′

r,s (q)− K p,p′
r,−s (q),

K p,p′
r,s (q) = 1

η(q)

∑

n∈Z
q

(2pp′n+pr−p′s)2
4pp′ .

(2.38)

The characters (2.38) form a vector-valuedmodular form and under the S-transformation
they transform as

χ
p,p′
r,s (− 1

τ
) =

∑

ρ,σ

mmS p,p′
rs;ρσ χ

p,p′
ρ,σ (τ ). (2.39)
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where

mmS p,p′
rs;ρσ = 2

√

2

pp′
(−1)1+sρ+rσ sin

(

π
p

p′
rρ

)

sin

(

π
p′

p
sσ

)

. (2.40)

Of interest to us will be the unitary minimal models. Unitary requires in particular
that no representation appearing in the decomposition of the Hilbert space feature states
with negative norm; a necessary condition for the absence of negative norm states is that
the highest weight states should have non-negative dimension. Examination of equation

(2.37) shows that minr,s h
p,p′
r,s < 0 unless |p − p′| = 1. It turns out that this primary

must be included in the full theory in order to ensure modular invariance of the CFT,
which implies that the CFT at central charge cp,p′ is non-unitary if |p − p′| 
= 1. We
therefore parametrize the unitary minimal models by a single integer m = 2, 3, . . . by
taking p = m, p′ = m + 1. We will often replace p, p′ with m in the notation when we

are working with the unitary theories, e.g. h(m)
r,s := h p,p′

r,s , cm := cp,p′ , and so on.
These models admit Z2 automorphisms of their fusion algebras. For the unitary

models, these take the form

L(cm, h(m)
r,s ) �→

{

(−1)r+1L(cm, h(m)
r,s ) if m is even

(−1)s+1L(cm, h(m)
r,s ) if m is odd.

(2.41)

Moreover, these automorphisms are always “liftable” in the sense that, if V admits a
minimal model subalgebra W ∼= L(cm, 0), then the induced map τW of Sect. 2.1.3 is
guaranteed to be an automorphism of V [39].

A particularly important example of the above is when W ∼= L( 12 , 0), which corre-
sponds to the Ising model. Then, the fusion algebra automorphism takes the form

L( 12 , 0) �→ L( 12 , 0)

L( 12 ,
1
2 ) �→ L( 12 ,

1
2 )

L( 12 ,
1
16 ) �→ −L( 12 ,

1
16 )

(2.42)

Its corresponding lift τW is referred to as aMiyamoto involution [39]. When the decom-
position of V does not have any L( 12 ,

1
16 ) modules appearing,

V = V(0) ⊕ V( 12 )
, (2.43)

then τW is trivial, but it is still possible to define another involution σW on V which acts
trivially on the subspace V(0) and sends ϕ �→ −ϕ when ϕ belongs to V( 12 )

. The stress

tensor of such an L( 12 , 0) subalgebra is referred to as being of “σ -type” in V .
A lesser known fact is that the chiral algebra L(cm, 0) can be extended to a larger

(potentially super) chiral algebra by taking a direct sum with one of its irreducible
modules [54]. Indeed, h(m)

1,m+1 = maxr,s h
(m)
r,s is either integral or half-integral depending

on whether m ≡ 1, 2 mod 4 or m ≡ 0, 3 mod 4, and L(cm, 0)⊕ L(cm, h(m)
1,m+1) carries

the structure of a chiral algebra in the first case and a super chiral algebra in the second
case. We will make use of these simple-current13 extensions in later sections.

13 A simple-current is an operator J such that the OPE of J with any primary contains only a single term,
which is itself a primary.
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Parafermion theories Minimal model CFTs have only Z2 or Z3 fusion algebra auto-
morphisms so it will be useful to have rational CFTs with larger automorphism groups
available in studying deconstruction of the monster CFT. A well studied example are
the parafermion CFTs whose Hilbert space decomposes into a finite direct sum of mod-
ules of its chiral algebra. Here, we briefly review the properties of two-dimensional Zk
parafermion chiral algebras [55], following the conventions of [56].

The central charge of the Zk parafermion theory is

ck = 2(k − 1)

k + 2
(2.44)

and takes the values c = 1
2 ,

4
5 , 1,

8
7 ,

5
4 , . . . for k = 2, 3, 4, 5, 6, . . . . There are k(k+1)

2
independent primary fields with conformal dimensions

h(k)
�,m = �(� + 2)

4(k + 2)
− m2

4k
(2.45)

where the independent primary fields φ�,m can be labeled by pairs of integers (�,m) in
the set

{(�,m) | 0 ≤ � ≤ k, −� + 2 ≤ m ≤ �, �− m ∈ 2Z}. (2.46)

The operator φk,k is the identity operator with dimension 0. We use the notation
P(k, [�,m]) for the associated highest weight module, and use the abbreviated nota-
tion P(k) = P(k, [k, k]) for the chiral algebra itself. Its characters are given by

ψ
(k)
�,m(τ ) = TrP(k,[�,m])qL0− ck

24

= 1

η(τ)2

{(
∑

i, j≤0
−
∑

i, j<0

)

(−1)i q (�+1+(i+2 j)(k+2))2

4(k+2) − (m+ik)2
4k

−
(
∑

i≤0, j>0

−
∑

i<0, j≤0

)

(−1)i q (�+1−(i+2 j)(k+2))2

4(k+2) − (m+ik)2
4k

}

(2.47)

where η is the Dedekind-eta function, given by

η(τ) = q
1
24

∞
∏

n=1
(1− qn). (2.48)

Their behavior under modular transformations is governed by the following modular
S-matrix,

pfS(k)
�m;�′m′ = 2√

k(k + 2)
e2π i

mm′
2k sin

(

π
(� + 1)(�′ + 1)

k + 2

)

(2.49)

These theories enjoy a Zk symmetry of their fusion algebra; the generator acts on the
highest weight module P(k, [�,m]) according to

P(k, [�,m]) �→ e2π i
m
k P(k, [�,m]) . (2.50)

In later sections, we will locate parafermionic subalgebras of the moonshine module,
and lift (a quotient of) this Zk symmetry to an automorphism in the monster group.

In some cases, we are able to extend the parafermion chiral algebras by taking direct
sums with their modules with integral highest weight, analogously to the simple cur-
rent extensions of the previous section. We content ourselves with demonstrating these
extensions as needed.
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Lattice VOAs Rational toroidal compactifications of bosonic string theory are described
by a d-dimensional torus T d = R

d/L with L an even positive definite lattice. The
holomorphic part of the corresponding CFT has the structure of a lattice VOA. Lattice
VOAs are described in detail in many places including [53,57,58] so we will be very
brief. The simplest example of lattice VOAs are the c = 1 examples based on the lattice
L = √

2NZ. For every λ ∈ L there is a state |λ〉 and a set of oscillators an , n ∈ Z

obeying

[am, an] = mδm,−n (2.51)

with a†n = a−n . The state |λ〉 obeys an|λ〉 = 0 for n > 0 and a0|λ〉 = λ|λ〉. Physical
states are constructed by acting with the creation oscillators a−n with n > 0 on the
states |λ〉. Vertex operators Vλ(z) that create the states |λ〉 are given by normal ordered
exponentials

Vλ(z) =: eiλX (z) : (2.52)

up to cocycle factors which are discussed in the literature. These vertex operators have
conformal weight λ2/2. The vacuum state is |0〉 and the conformal state (i.e. the state
corresponding to the stress tensor) is

ψVir = 1

2
a−1a−1|0〉 . (2.53)

When N = 1 (which corresponds in the physics picture to a circle compactification
at a radius which maps to itself under T-duality), the states a−1|0〉, | ± √

2〉 all
correspond to vertex operators of conformal weight one and these form the basis of the
Segal-Frenkel-Kac construction of affine A1 at level one.

The rank one case has a generalization to lattice VOAs based on an even positive
definite lattice L and with central charge c = rank(L). The inequivalent simple modules
of a lattice VOA can be labeled by elements of the discriminant group L∗/L where L∗
is the dual lattice. The characters of these modules are given by

χλ∗(τ ) = θλ∗(τ )

η(τ )d
(λ∗ ∈ L∗/L) (2.54)

where η is the Dedekind eta function in equation (2.48), and the theta function is given
by

θλ∗(τ ) =
∑

λ∈L+λ∗
qλ2/2 . (2.55)

The S-matrix of this theory can be deduced from the multiplier system of the η function,

η(− 1
τ
) = √−iτη(τ) (2.56)

as well as the fact that the theta functions transform into one another according to the
Weil representation,

θλ∗(− 1
τ
) = i rank(L)√

L∗/L|
∑

γ ∗∈L∗/L
e−2π i(λ∗,γ ∗)θγ ∗(τ ) (2.57)
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where (·, ·) : L∗ × L∗ → R is the inner-product defined on the dual lattice.
When L is the root lattice of a simply laced ADE Lie algebra, the lattice VOA has

the corresponding affine ADE symmetry. In what follows we will make use of the lattice
VOA

√
2R where R is the root lattice of a simple laced Lie algebra. These lattice VOAs

have dimension two operators dual to the states |√2p〉 with p ∈ R and p2 = 2 which
play a crucial role in deconstructing VOAs into VOAs with smaller central charge.

In addition to the lattice VOA VL , one can also consider the charge conjugation
orbifold V+

L , defined as the θ -invariant subspace of VL , where θ is the automorphism
induced by the canonical lattice involution v �→ −v. For a physicist, V+

L would appear
as the chiral algebra of the usual modular-invariant Z2 orbifold of a sigma model with
target T d = R

d/L [59]. In the rank 1 case, the charge conjugation orbifolds are all of the
form V+√

2NZ
with N a positive integer. The discriminant group of the associated lattice

has representatives

( 1√
2N

Z)/(
√
2NZ) ∼= {0, 1√

2N
, 2√

2N
, . . . , 2N−1√

2N
} (2.58)

and, in terms of the characters χ k√
2N

(τ ) of V√2NZ
, and the generalized theta functions

�α,β(τ ) = 1

η(τ)

∑

m∈Z
q(m+ α

4 )
2
e2π im

β
2 , (2.59)

the characters of V+√
2NZ

are given by [59,60]

h = 0 : ξ
(N )
1 (τ ) = 1

2

(

χ0(τ ) +�0,1(τ )
)

h = 1 : ξ
(N )
j (τ ) = 1

2

(

χ0(τ )−�0,1(τ )
)

h = N

4
: ξ

(N )
N ,i (τ ) =

1

2
χ√ N

2

(τ ) (i = 1, 2)

h = k2

4N
: ξ

(N )
k (τ ) = χ k√

2N
(τ ) (k = 1, . . . , N − 1)

h = 1

16
: ξ

(N )
σ,i (τ ) = 1

2

(

�1,0(τ ) +�1,1(τ )
)

(i = 1, 2)

h = 9

16
: ξ

(N )
τ,i (τ ) = 1

2

(

�1,0(τ )−�1,1(τ )
)

(i = 1, 2)

(2.60)

where we have borrowed from the notation of §7.b of [59]. In the case of a general even,
d-dimensional lattice L [6,61], the characters are given by

ξ
(L)
1 (τ ) = 1

2

(

χ0(τ ) +�0,1(τ )
d
)

ξ
(L)
j (τ ) = 1

2

(

χ0(τ )−�0,1(τ )
d
)

ξ
(L)
λ∗,i (τ ) =

1

2
χλ∗(τ ) (i = 1, 2, and λ∗ ∈ L∗/L such that 2λ∗ = 0)

ξ
(L)
λ∗ (τ ) = χλ∗(τ ) (λ∗ ∈ (L∗/L)/ ∼ such that 2λ∗ 
= 0)
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ξ
(L)
σ,i (τ ) =

|L/R| 12
2

(

�1,0(τ )
d +�1,1(τ )

d
)

(i = 1, . . . , |R/2L|)

ξ
(L)
τ,i (τ ) =

|L/R| 12
2

(

�1,0(τ )
d +�1,1(τ )

d
)

(i = 1, . . . , |R/2L|) (2.61)

where R = {λ ∈ L | (λ, L) ⊂ 2Z} and ∼ denotes the equivalence relation which
identifies λ∗ with −λ∗ (i.e. ξ (L)

λ∗ and ξ
(L)
−λ∗ are not regarded as inequivalent characters).

2.2. Deconstruction generalities. It is often useful to build up a complicated theory out
of simpler building blocks. An example of this is Gepner’s description [62] of sigma
models with Calabi-Yau target at special points in their moduli space as a suitable
(orbifold of a) tensor product of superconformal minimal models. In the other direction,
one might begin with a known theory, and discover an alternative way of looking at it
in terms of more tractable constituents. For example, after the original construction of
the moonshine module by Frenkel, Lepowsky, and Meurman [53] as a Z2 asymmetric
orbifold of the Leech lattice VOA, it was discovered that V � admits an L( 12 , 0)

⊗48

subalgebra [63] with respect to which its fields can be alternatively organized; this
construction is similar in spirit to the decomposition of a theory into representations of
its current algebra (an affine Kac-Moody algebra), a procedure which is unavailable in
the case of V � due to its lack of dimension 1 operators. Onemay even find new structures
entirely in their efforts to “deconstruct” a theory into its pieces, as we will indeed find
to be true for us in Sect. 3. In this subsection, we will outline a somewhat systematic
procedure for discovering such deconstructions, and provide several examples.

Stress tensor decompositions In order for a chiral algebra to admit a tensor product
subalgebra, it should be at least possible to write its stress tensor with central charge c
as the sum of two commuting conformal vectors whose central charges add to c. So we
will begin our analysis at the level of the stress tensor. Consider first the case where there
is a single Virasoro primary field ϕ(z) of dimension 2. We then have two dimension 2
fields—the stress tensor T (z) and ϕ(z)—with the following OPEs,

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w

T (z)ϕ(w) ∼ 2ϕ(w)

(z − w)2
+

∂ϕ(w)

z − w

ϕ(z)ϕ(w) ∼ 1

(z − w)4
+
4T (w)/c + bϕ(w)

(z − w)2
+

∂
(

4T (w)/c + bϕ(w)
)

/2

z − w
.

(2.62)

In the above, the second line follows from the fact that ϕ is primary and has dimension
2. In the third line, the first term involves a choice of normalization of ϕ, the vanishing
of the 1/(z −w)3 term follows from Bose symmetry, and the other two terms involve a
single undetermined coefficient b and have a form dictated by associativity of the OPE.

It is now natural to try to construct a conformal vector as a linear combination of
T (z) and ϕ(z), that is to consider

t (z) = αT (z) + βϕ(z) (2.63)
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and to solve for the constants α, β by demanding that t (z) have the OPE of a stress
tensor,

t (z)t (w) ∼ ct/2

(z − w)4
+

2t (w)

(z − w)2
+ · · · (2.64)

for some ct . Using the OPEs of the two dimension 2 fields, we compute

t (z)t (w) ∼ 1

(z − w)4

(

α2c/2 + β2
)

+
1

(z − w)2

(

2α2T (w) + β2(4T (w)/c + bϕ(w)) + 4αβ∂ϕ(w)
)

+ · · ·
(2.65)

Equating these two expressions, we get the quadratic equations

2α = 2α2 +
4

c
β2

2β = bβ2 + 4αβ
(2.66)

and

ct = α2c + 2β2. (2.67)

Provided that b 
= 0, one finds two solutions c± for ct with

c± = c

2

(

1±
(

1 +
32

b2c

)− 1
2
)

, (2.68)

and two solutions for α and β,

α± = 1

2

(

1±
(

1 +
32

b2c

)− 1
2
)

, β± = ∓2

b

(

1 +
32

b2c

)− 1
2

. (2.69)

When b = 0, we have α = 1
2 and β = ∓ 1

2

√

c
2 . One can check that the OPE between t (+)

and t (−) is regular, and further that c+ + c− = c. Thus, the stress tensor of any theory
with two dimension 2 operators can always be deconstructed into a sum of commuting
conformal vectors for two chiral algebras with smaller central charge,

T (z) = t (+)(z) + t (−)(z), (2.70)

a fact which we will put to use in later sections. If c > 1 but c± < 1, then we can
organize the Virasoro primaries of the original theory into a finite set of primary fields
with respect to t (+) and t (−).

Example 2.1 (Bosonization). Take the starting CFT to be that of a free boson on a circle
of radius R with c = 1. Such a theory arises in many places in physics. For example,
it describes the continuum limit of the 2-dimensional statistical mechanical XY model
at low temperatures. One may also take the bosonic field X (z, z̄) as the coordinate of a
string propagating on a circle S1 with periodicity X ∼ X + 2πR; such a model arises as
part of a fuller world-sheet string theory whenever spacetime is compactified on a circle.
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To describe the theory, we split the bosonic field into a left-moving and right-moving
part,

X (z, z̄) = XL(z) + XR(z̄). (2.71)

The holomorphic stress tensor is

T = −1

2
: ∂XL∂XL : (2.72)

where : O(z) : indicates that O(z) should be normal-ordered. There is a corresponding
anti-holomorphic stress tensor T defined analogously. The primary fields include vertex
operators of the form

Vn,m(z, z̄) =: eipL XL (z)+i pR XR(z̄) : (2.73)

where

(pL , pR) =
( m

2R
+ nR,

m

2R
− nR

)

. (2.74)

They have conformal dimensions (h, h̄) = (
p2L
2 ,

p2R
2 ) with respect to T, T .

Now, if R2 is irrational, then it is easy to see from inspection of equation (2.74)
that there are no holomorphic operators besides the identity and ∂XL ; in this case, the
chiral algebra is an enhancement of the Virasoro algebra known as an affine U(1) current
algebra (with ∂XL playing the role of the current). However, if R2 is rational, then the
holomorphic chiral algebra enhances further to a VOA known in the math literature as a
rank 1 lattice VOA (c.f. Sect. 2.1.5). To get operators with conformal dimension (2, 0),
we can go to R = 1 where we have the purely holomorphic operator

ϕ(z) = 1√
2

(

: e2i XL (z) : + : e−2i XL (z) :
)

. (2.75)

The OPE of ϕ with itself trivially gives b = 0 and so one finds

c± = 1

2
(2.76)

and that

t (±) = 1

2

(

−1

2
: ∂XL∂XL : ± 1√

2
ϕ

)

(2.77)

are commuting conformal vectors with central charge 1
2 , and so give a subalgebra of

the chiral algebra which is isomorphic to two copies of the Ising VOA. Thus, we have
deconstructed the stress tensor of this c = 1 model into a sum of conformal vectors
with central charge 1

2 . This is closely related to a particular form of bosonization in two
dimensions: in particular, it is one piece of the equivalence between the Z2 orbifold of
the R = 1 compact boson and two decoupled Ising CFTs [64].
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This analysis can be extended to theories which have an arbitrary number n2 of
dimension 2 primary fields ϕi . The OPE takes the general form

ϕi (z)ϕ j (w) ∼ δi j

(z − w)4
+
ai jβψβ(w)

(z − w)3
+
bi jkφk(w) + · · ·

(z − w)2
+
ci jρχρ(w) + · · ·

z − w
(2.78)

where repeated indices are summed, ψβ are the set of dimension 1 operators, and χρ

the set of dimension 3 primary operators of the CFT. The ellipsis indicate contributions
from descendants. This now looks rather hopeless, but in fact if one looks at the OPE of

t = α0T +
n2
∑

i=1
αiϕi (2.79)

with itself, the coefficients ai jβ and ci jρ cancel out and the equations that have to be
solved to deconstruct the stress tensor involve only the bi jk ,

α0 = α2
0 +

2

c

n2
∑

i=1
α2
i (2.80)

αi = 2α0αi +
1

2

n2
∑

j,k=1
α jαkb

i jk . (2.81)

The decoupling ofai jβ and ci jρ should be expected fromour earlier claims that conformal
vectors can be characterized in terms of the Griess algebra. Indeed, the Griess algebra
involves only the data of the 1/(z−w)4 and 1/(z−w)2 terms of the OPE, and so doesn’t
witness the coefficients ai jβ and ci jρ ; the bi jk can be thought of as its structure constants.

Assuming there’s a solution t with central charge ct , it is known [58] that if (T t)3 = 0
then t̃ = T − t is also a conformal vector with central charge c − ct , and in particular
one can successfully deconstruct the stress tensor as T = t + t̃ . In a theory without
currents, (i.e. if V1 = 0, as is true for the moonshine module), we are guaranteed that
(T t)3 = 0, and so any conformal vectors in addition to the stress tensor will lead to a
deconstruction.

Example 2.2 (Toroidal CFT). We can generalize the previous example by considering
chiral algebraswhich arise in theworld sheetCFTswhich describe strings propagating on
certain special tori [65].Wewill see that the stress tensor can be iteratively deconstructed
into multiple conformal vectors with smaller central charge.

As an example, consider the c = 2 theory of 2 free bosons X(z, z̄) =
(X1(z, z̄), X2(z, z̄)) with stress tensor

T = −1

2
: ∂XL · ∂X L : (2.82)

We will work at a special point in the moduli space of such theories where the chiral
algebra consists of primaries of the form

Vp(z) =: ei p·X L (z) : (2.83)
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where p belongs to the (rescaled) root lattice
√
2�root(A2). Such operators have holo-

morphic dimension h = p2

2 , so we can obtain 3 operators with h = 2 by taking p1, p3
to be the positive simple roots of A2, p2 = p1 + p3, and defining

ϕi = 1√
2

(

: ei pi ·X L : + : e−i pi ·X L :
)

. (2.84)

Solving equation (2.80), one can show that there is a conformal vector t (
4
5 ) with central

charge 4
5 , given by

t (
4
5 )(z) = 2

5
T (z)−

√
2

5

∑

i

ϕi (z) (2.85)

which deconstructs the stress tensor as

T (z) = t (
4
5 )(z) + t (

6
5 )(z). (2.86)

One can then work in the subspace of dimension 2 operators which have regular OPE

with t (
4
5 ) (which includes t (

6
5 )), and again search for conformal vectors. If one does

this, it is possible to show that the central charge 6
5 conformal vector can be further

deconstructed as

t (
6
5 )(z) = t (

1
2 )(z) + t (

7
10 )(z) (2.87)

so that all together, the stress tensor of this toroidal CFT can be decomposed as the sum
of conformal vectors whose central charges agree with those of the first two non-trivial
minimal models and the Z3 parafermion theory,

T (z) = t (
1
2 )(z) + t (

7
10 )(z) + t (

4
5 )(z). (2.88)

This can be generalized, e.g. by working with the lattice VOA associated to√
2�root(AN−1) (which arises as the chiral algebra of a CFT whose target space is

an N − 1 dimensional torus at a special point in its moduli space). It was conjectured in
[65] and proved in [66] that the stress tensor of this c = N−1 CFT can be deconstructed
as

N − 1 = 2(N − 1)

N + 2
+

N+1
∑

m=3

(

1− 6

m(m + 1)

)

(2.89)

where the first term is the central charge of the ZN parafermion theory and the second
term is the sum of the central charges of the first N − 1 minimal models.

This construction can be generalized to the VOA associated to any simply laced root
system. If R is a simply laced root system with rank � and Coxeter number h, then it
was shown in [66] that the lattice VOA V√2�root(R)

contains a conformal vector ω̃ with

central charge cR = 2�/(h + 2), i.e. cR = 2�
�+3 if R = A�, cR = 1 if R = D�, cR = 6

7 if
R = E6, cR = 7

10 if R = E7, and cR = 1
2 if R = E8.
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Commutant subalgebras So far, we have only described the (not necessarily unique)
deconstruction of the stress tensor,

T (z) =
∑

i

t (i)(z) (2.90)

into commuting conformal vectors t (i) with c = ∑i ci . Of course, there is more to a
chiral algebra than its stress tensor. Equation (2.90) should be thought of as the first step
towards reaching a more refined statement of the form

V ⊃
⊗

i

V(i). (2.91)

Here, each V(i) is a chiral algebra whose stress tensor is t (i), so in particular, equation
(2.91) generally contains more information than equation (2.90).

Let us specialize for simplicity to the case where we have deconstructed the stress
tensor into just two commuting conformal vectors, T = t (1) + t (2), though it is straight-
forward to generalize. There is a well-known construction which is useful for describing
V(1) and V(2), known as the commutant: if W is a subalgebra of V , the commutant of
W in V , which we will denote ˜W := ComV (W), is defined as the set of operators in
V which have regular OPE with every operator in W . If t (z) = ∑n∈Z lnz−n−2 is the
stress tensor of W , then the corresponding space of states consists of those of V which
are vacua with respect to t ,

ComV (W) = {ϕ ∈ V | l−1ϕ = 0}. (2.92)

This description makes it clear that the commutant ofW in V depends only on the stress
tensor of W ,

ComV (W) = ComV (Vir(t)) (2.93)

where Vir(t) is the Virasoro subalgebra of V generated by t . Now, if (T t)3 = 0, then
˜W = ComV (W) has the structure of a chiral algebra with t̃ = T − t as its stress tensor
[58]. It follows that the maximal subalgebras which can appear in equation (2.91) are
simply commutant subalgebras,

V(1) = ComV (Vir(t (2))), V(2) = ComV (Vir(t (1))). (2.94)

These subalgebras are further each others’ commutants, i.e. ComV (V(1)) = V(2) and
V(1) = ComV (V(2)), and so we refer to (V(1),V(2)) as a commutant pair. Our main
strategy for building chiral algebras with large, exceptional symmetry groups will be to
take V = V �, locate known, simple subalgebras W (whose stress tensor we denote by
t), and consider their commutants ˜W . Since V � has no currents, (T t)3 = 0 is trivially
satisfied by dimensional analysis, and so ˜W is guaranteed to carry the structure of a
chiral algebra/VOA.

We will also occasionally perform iterated deconstructions, as in the toroidal CFT
example. For example, we will often find chains of subalgebras of the form

V = U (0) ⊃ U (1) ⊃ · · · ⊃ U (n) ⊃ U (n+1) = 0. (2.95)
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where each U (i) is the result of deconstructing t (i) off of U (i−1), i.e.

U (0) ⊃ Vir(t (1))⊗ U (1) U (1) = ComU (0) (Vir(t (1)))

⊃ Vir(t (1))⊗ Vir(t (2))⊗ U (2) U (2) = ComU (1) (Vir(t (2)))

...

⊃ Vir(t (1))⊗ · · · ⊗ Vir(t (n−1))⊗ U (n) U (n) = ComU (n−1) (Vir(t (n)))

(2.96)

Of course, since the commutant depends only on the stress tensor, one can alternatively
describe the U (i) as

U (i) = ComV

⎛

⎝Vir

⎛

⎝

i
∑

j=1
t ( j)

⎞

⎠

⎞

⎠ . (2.97)

Symmetries in deconstruction Having control over the properties ofW will allow us to
infer various properties of its commutant ˜W . For example, we will frequently make use
of the homomorphism

�t : StabAut(V)(t) = {X ∈ Aut(V) | Xt = t} → Aut(ComV (Vir(t))) = Aut( ˜W)

X �→ X |
˜W

(2.98)

to infer symmetries of ˜W. The reason this map is well-defined is that any X which
stabilizes t will preserve ˜W = ComV (Vir(t)),

l−1(Xϕ) = (Xt)−1(Xϕ) = X (l−1ϕ) = 0 (2.99)

where we have used the definition of an automorphism in (2.25). The map �t makes
it clear why the procedure of deconstruction is well-suited for probing the structure of
subquotients of Aut(V) as opposed to just subgroups: it is because StabAut(V)(t) is a
subgroup ofAut(V), and its image under�t inAut( ˜W) by the first isomorphism theorem
is simply StabAut(V)(t)/ker(�t ). It is this fact which underlies the reason why we are
able to obtain precisely simple sporadic groups, as opposed to extensions of them. For
example, as we will see in Sect. 3.1.2, it is B which is the automorphism group of the
baby monster VOA and not 2.B, even though 2.B is a subgroup of M, and not B.

We will also be interested in the automorphisms of V which preserve the decom-
position of V into representations of W ⊗ ˜W . Let us assume for simplicity that V is
a meromorphic CFT, i.e. that it has exactly one irreducible module and its partition
function Z(τ ) is modular invariant, though it is not difficult to generalize. The fact that
(W, ˜W) furnish a commutant pair inside V implies (under suitable assumptions, which
hold for V = V �) that there is a decomposition of the form [41]

V ∼=
⊕

α

W(α)⊗ ˜W(α) (2.100)

where the W(α) (resp. ˜W(α)) are mutually inequivalent irreducibles modules of W
(resp. ˜W). Thus, the realization of a commutant pair (W, ˜W) inside of V establishes a
bijective pairing between a subset of irreduciblemodules ofW and a subset of irreducible
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modules of ˜W in a manner similar to Schur-Weyl duality, and relates14 their fusion
categories [67] (e.g. W and ˜W will have conjugate modular S-matrices, as we will see
in the next subsection). We will say that an automorphism X of V preservesW if it can
be realized in the form

X =
∑

α

Xα ⊗ 1 (2.101)

such that Xα : W(α) → W(α). We denote the collection of such automorphisms
Aut(V|W), or M(W) in the case that V = V �; the analogous notions go through when
W is replaced with ˜W . It is not hard to see that Aut(V|W) commutes with Aut(V| ˜W),
so that they are contained in each others’ centralizers. In the case that they are equal
to each others’ centralizers, we call the groups (G, ˜G) := (Aut(V|W),Aut(V| ˜W)) a
centralizer pair, and (W, ˜W) a centralizing commutant pair; in the case that V = V �,
we call such a pair a monstralizing commutant pair, or M-com pair for short. Although
we will only work in the monster CFT, we suspect that the notion of a centralizing
commutant pair is a natural one in any CFT, as it furnishes decompositions of V which
play well with respect to the action of its automorphism group.

The centers of a centralizer pair must agree, Z(G) = Z(˜G) = G ∩ ˜G, as must their
normalizers, NAut(V)(G) = NAut(V)(˜G) =: N . The onlyway the centers can be the same
is if e.g. the Xα in equation (2.101) are each proportional to the identity, Xα = ζα1.
Thus, we learn that G ∩ ˜G acts by diagonal fusion algebra automorphisms, as in (2.28),
on both the modules of W and the modules of ˜W , as one might expect from the fact
that their fusion categories are related. We can further define H := N/〈G, ˜G〉, which
will be a subgroup of the outer automorphism groups of both G and ˜G. In general, we
will report the data of a centralizer pair as [G ◦ ˜G].H , or [G × ˜G].H in the case that
the centers of G and ˜G are trivial, where G ◦ ˜G denotes the central product of G with
˜G, which will be a subgroup of Aut(V). In all our examples, we will find that the outer
automorphisms which ˜W inherits from Aut(V) come from the group H .

How does the group e.g. ˜G compare with Aut( ˜W)? It simultaneously includes too
much and too little. In general, it includes too much because it contains fusion algebra
automorphisms coming from its center which act trivially on the vacuummodule, and so
we must quotient by these to reach what we would properly call the inner automorphism
group. It also contains too little because itmisses out on outer automorphisms. Therefore,
we have the expectation that

Inn( ˜W) ∼ ˜G/Z(˜G), Aut( ˜W) ∼ (˜G/Z(˜G)).H ′ (2.102)

with H ′ a subgroup of H . The group ˜G is closely related to the projective representation
theory of Inn( ˜W) because any projective representation of Inn( ˜W) that is realized on
the modules ˜W(α) can be lifted to an honest representation of ˜G. In all of our monster
examples, we find that ˜G is a (usually trivial) quotient of the Schur cover of Inn( ˜W).

Characters Finally,we comment thatwe are also able to put constraints on the characters
and modular S and T matrices of ˜W from our knowledge of the analogous data for W
and V . Passing to characters, the decomposition (2.100) becomes

Z(τ ) =
∑

α

χα(τ)χ̃α(τ ) (2.103)

14 Their fusion categories are “braid-reversed equivalent”
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which can be satisfied if

ST
˜S = 1, T T

˜T = 1 (2.104)

with S (˜S) the modular S-matrix ofW ( ˜W) and similarly for T (˜T ). Because the S and
T matrices of a rational CFT are always symmetric and unitary, we in fact have that

˜S = S∗, ˜T = T ∗. (2.105)

In the moonshine module V = V �, which has no currents, the simplest and most natural
ansatz for the conformal dimension˜hα of the highest weight subspace of ˜W(α)which is
consistent with ˜T = T ∗ is˜hα = 2− hα when α 
= 0 (i.e. for the non-vacuum modules)
and˜h0 = 0. We will make this assumption throughout.

These considerations set up a bootstrap problem of sorts which can be explicitly
solved in all the cases we consider in this paper, owing to the relative sparsity of modular
forms. Threemethodswill come to our aid, each producing identical results: Rademacher
sums, modular linear differential equations, and Hecke operators. We turn to their treat-
ment next.

2.3. Character methods.

2.3.1. Modular linear differential equations The characters of a VOA often satisfy
a modular linear differential equation (MLDE), a fact which has been successfully
exploited in many contexts, see e.g. [68–72]. In the present setting, our knowledge of
the conformal dimensions˜hα of the highest weight subspaces of the modules ˜W(α) is
in many cases sufficient to uniquely determine an MLDE satisfied by the corresponding
characters χ̃α(τ ). We briefly provide some details on the theory of such equations.

Let E4(τ ) and E6(τ ) be the weight four and six Eisenstein series respectively, and
E2(τ ) the quasi-modular Eisenstein series of weight 2. The Ramanujan-Serre derivative
Dk = d

dτ − 1
6 iπkE2 maps modular forms of weight k to modular forms of weight k + 2

and we can iterate this to define a differential operator

Dn = D2n−2D2n−4 · · ·D2D0 (2.106)

that acts on weight zero modular functions to produce a weakly holomorphic modular
form of weight 2n. A general nth order modular linear differential equation has the form
[68]

(

Dn +
n−1
∑

k=0
φkDk

)

f = 0, (2.107)

where the φk(τ ) are modular forms of weight 2(n − k).
If f1(τ ), f2(τ ), . . . , fn(τ ) are the n linearly independent solutions of (2.106) then

we can express the coefficient functions φk(τ ) as

φk = (−1)n−kWk/W (2.108)
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where as usual the Wronskians are given by

Wk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2 · · · fn
D f1 D f2 · · · D fn
...

...
...

Dk−1 f1 Dk−1 f2 · · · Dk−1 fn
Dk+1 f1 Dk+1 f2 · · · Dk+1 fn

...
...

...

Dn f1 Dn f2 · · · Dn fn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.109)

and we set W = Wn . It is useful to classify solutions to MLDEs by the value of the
integer

� = 3 ordi (W ) + 2 ordω(W ) + 6
′
∑

p∈F
ordp(W ) (2.110)

where i = √−1 and ω = e2π i/3 are the orbifold points of the fundamental domain F
of the modular group PSL2(Z). For an MLDE of order n, the Wronskian W has weight
n(n− 1); if the leading behavior of the solutions fi at the cusp at infinity takes the form
fi � qαi , then it follow from the Riemann-Roch theorem that

� = n(n − 1)

2
− 6

∑

i

αi . (2.111)

The solutions fi (τ ) can be found using the Frobenius method and take the form

fi (τ ) = qαi

∞
∑

n=0
ci,nq

n (2.112)

with q = e2π iτ . The proof that solutions fi (τ ) of an nth order MLDE transform as a
vector-valued modular form for SL2(Z) follows from results on the monodromy prop-
erties of solutions to complex linear differential equations and the fact that the only
singularities of the MLDE occur at the cusp at infinity and at the orbifold points τ = i ,
e2π i/3 of the fundamental domain of PSL2(Z). Note that the function 1728/j (τ ) maps
the cusp and orbifold points to (0, 1,∞) so one is essentially studying solutions on
P1(C)− {0, 1,∞}. For details see the discussion in [73].

Inwhat follows,we provideMLDEs for the characters of CFTswith exceptional sym-
metry in Sects. 3.1.2, 3.1.3, 3.2.2, 3.2.3, 3.2.9, 3.2.5, and 3.2.8, where we use MLDEs
with (n, �) values given by (3, 0), (4, 0), (4, 0), (6, 0), (5, 0), (6, 3), and (6, 3) respec-
tively.

2.3.2. Hecke operators One of the tools that we use in later sections to construct the dual
characters of commutant chiral algebras is that of Hecke images of RCFT characters,
developed in [42]. Although not universally applicable, when it works, this technique is
particularly powerful since it constructs the dual characters analytically, and determines
their modular properties. The reasons behind the effectiveness of this technique are first
that the Hecke images have the same number of components as the characters of the
original RCFT, and this is a necessary ingredient by virtue of the decomposition in
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equation (2.100). Second, the modular representation of the Hecke image is precisely
determined in a way that makes it easy to search for bilinears in the characters and their
Hecke images that give the modular J (τ ) function, as is also required. This is explained
in more detail below.

This section has a brief summary of the results in [42] that are relevant to our discus-
sion. The irreducible characters χα(τ), α = 0, 1, . . . , n−1, of a rational conformal field
theory (RCFT), whose chiral algebra we denote W , are weakly holomorphic functions
which transform under SL2(Z) according to an n-dimensional unitary representation

ρ : SL2(Z) → GLn(C). (2.113)

More explicitly, the characters obey

χα

(

aτ + b

cτ + d

)

=
∑

β

ραβ

(

a b
c d

)

χβ(τ) (2.114)

Each of the components χα is separately a weakly holomorphic modular function for
the principal congruence subgroup

�(N ) =
{(

a b
c d

)

∈ SL2(Z)

∣

∣

∣

∣

a, d ≡ 1 mod N and b, c ≡ 0 mod N

}

(2.115)

where N is the smallest integer such that ρ(T )N is the identity. Here T is the modular
transformation taking τ to τ + 1. For each integer q with (q, N ) = 1, one can define
a Hecke operator Tq such that the Hecke images of the RCFT characters (Tqχ)α are
also individually weakly holomorphic modular functions for �(N ). Moreover, Tqχ

transforms as a vector-valued modular function according to a representation ρ(q) of the
modular group which is defined on the generators S, T as

ρ(q)(T ) = ρ(T q̄), ρ(q)(S) = ρ(σq S) (2.116)

where q̄ is the multiplicative inverse of q in the group (Z/NZ)× and σq is the preimage

of
(

q̄ 0
0 q

)

under the natural map SL2(Z) → SL2(Z/NZ). A short computation using

results of [74] gives the explicit formula

ρ(σq) = ρ(T q̄ S−1T q ST q̄ S) . (2.117)

The Hecke operators can be described abstractly in terms of a double coset construction,
but for practical computations the most useful definition is in terms of the coefficients
of the Fourier expansion of the characters: if

χα(τ) =
∑

n

bα(n)q
n
N (q = e2π iτ ) (2.118)

is the Fourier expansion of the character of the irreducible moduleW(α), and p is prime,
then the Fourier expansions of the components of the Hecke image are given by

χ(p)
α (τ ) =

∑

α

b(p)α (n)q
n
N (2.119)
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where

b(p)α (n) =
{

pbα(pn) p � n
pbα(pn) +

∑

β ραβ(σp)bβ(
n
p ) p|n. (2.120)

If (q, N ) = 1 but q is not prime, then the Hecke operator Tq can be computed in terms
of Hecke operators Tp with p prime using the formulae

Tmn = TmTn (2.121)

for m, n relatively prime and

Tpm+1 = TpTpm − pσp ◦ Tpm−1 (2.122)

for p prime.
These Hecke operators are well suited for solving the bootstrap problem presented

at the end of Sect. 2.2. Indeed, it is shown in [42] that if χ is a vector of characters
of an RCFT with conductor N transforming in the representation ρ of SL2(Z), and
χ(q) = Tqχ is the vector of their Hecke images under Tq , then the bilinear

χ(q)(τ )T · G� · χ(τ) (2.123)

is modular invariant provided that

q̄ + �2 = 0 mod N . (2.124)

Here q̄ is the inverse of q mod N and

G� = ρ(T �S−1T �̄ST �S) . (2.125)

The goal is to locate a linear combination M = ∑

a�G� with non-negative, integer
entries such that

χ(q)(τ )T · M · χ(τ) = Z(τ ) (2.126)

whereZ is the modular-invariant partition function of the meromorphic CFT V in which
W ⊗ ˜W is realized as a subalgebra. If one is successful, then one could conjecturally
identify the components of MT · Tqχ with the dual characters of the modules ˜W(α)

which arise in the decomposition (2.100), i.e.

χ̃ (τ ) ∼ MT · (Tqχ)(τ) (2.127)

since these functions would then satisfy equation (2.103). Because the most singular
exponent of Tqχ is q times the most singular exponent of χ , such a construction can
only go through15 if c̃t = qct for q an integer coprime to the conductor N of the
characters ofW , where ct (c̃t ) is the central charge of W ( ˜W).

If we specialize to the case that V = V � is the moonshine module, then the partition
function

Z(τ ) = J (τ ) = q−1 + 0 + 196884q + · · · (2.128)

15 At least for the Hecke operators considered in this paper, though they may generalize.
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is the modular invariant J -function. In all the examples we consider, for which ct + c̃t =
24 (with 24 the central charge of V �), this bilinear must yield a function of the form
aJ + b, with a and b two numbers. Imposing the further physical restriction that the
chosen linear combination M have non-negative integral entries, and that the entry of
M which pairs the components of χ and Tqχ with the most singular exponents be 1,
forces the bilinear to yield J + b with b an integer. It is then usually straightforward to
determine whether or not there is physical M for which b = 0.

2.3.3. Rademacher sums Our last technique for computing the dual characters χ̃α(τ )

is the theory of Rademacher sums. The method originally goes back to Poincaré [75],
followed by key insights from Rademacher [76,77], and has since been the subject of
extensive study and application by both mathematicians and physicists [78–88] (c.f. [89]
for a review).

The philosophy behind this approach is that meromorphic vector-valued modular
forms typically belong to vector spaces of small dimension, and are therefore determined
by only their first few Fourier coefficients along with some information about how they
transform under the modular group. In some cases, it is more or less sufficient to specify
only the poles, and in such cases Rademacher summation furnishes formulae for the rest
of the q-expansion in terms of the singular terms. In this sense, Rademacher sums are
the spiritual successor of the Cardy formula [90]: they determine the entire spectrum of
the CFT in terms of finitely many light states, as opposed to only the leading asymptotics
of the density of high energy states.

At a technical level, the method of Rademacher summation is the specialization of a
very general idea to the theory of automorphic forms: the starting point is the idea that
one can obtain an object which is invariant under the action of a group G by summing
together the G-images of a seed object (or the G/H -images of the seed object if it is
already invariant with respect to a subgroup H of G),

“Osymmetric ≡
∑

g∈G/H

g ·Oseed.
′′ (2.129)

Theprocedure applied to vector-valuedmodular functions ofweight 0 takes the following
as its input:

1. A representation ρ of SL2(Z) which specifies how the symmetric target function
transforms. In the case of the characters of an RCFT, ρ is determined by the modular
matrices S and T .

2. A list P = {cα(μ)} of the singular terms in the q-expansion of the target modular
function, which can be determined from the central charge c and the conformal
dimensions hα of the highest weight subspaces of the modules W(α).

In terms of this data, the seed object is simply the vector-valued function whose α-th
component consists of the singular terms in the α-th component of the target function,

∑

μ<0

cα(μ)qμ. (2.130)

Notice that this seed function already transforms correctly with respect to the translation
subgroup �∞ = {±T r | r ∈ Z} of SL2(Z), and we therefore should only sum together
its images under �∞\SL2(Z), as opposed to all of SL2(Z). Generalizing slightly the
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constructions in [89] to the vector-valued case, the Rademacher sum16 which thenmakes
equation (2.129) precise is

RP
SL2(Z),ρ,α(τ ) =

∑

β

∑

μ<0

cβ(μ)
∑

γ∈�∞\SL2(Z)
e2π iμγ τ r [μ](γ, τ )ρ(γ )−1βα (2.131)

where

r [μ](γ, τ ) = e−2π iμ(γ τ−γ∞)
∑

n≥0

[2π iμ(γ τ − γ∞)]n+1
�(n + 2)

,

(

γ∞ ≡ lim
τ→i∞ γ τ

)

(2.132)

is a regularization term which is needed in order for the sum to converge. A somewhat
involved computation of the Fourier expansion of this Rademacher sum,

RP
SL2(Z),ρ,α(τ ) =

∑

ν∈hα− c
24 +Z≥0

cα(ν)q
ν (2.133)

yields the following exact expressions17 for the Fourier coefficients,

cα(ν) =
∑

β

∑

μ<0

cβ(μ)

∞
∑

c=1

∑

0≤a<c
(a,c)=1

e2π iμ
a
c e2π iν

d
c ρ
(

a ∗
c ∗
)∗
βα

√

−μ

ν

2π

c
I1

(

4π

c

√−μν

)

(2.134)

whenever ν > 0, and

cα(0) = −4π2
∑

β

∑

μ<0

cβ(μ)

∞
∑

c=1

∑

0≤a<c
(a,c)=1

μ
e2π iμ

a
c

c2
ρ
(

a ∗
c ∗
)∗
βα

. (2.135)

In the above, Iα(z) is the modified Bessel function of the first kind,

Iα(z) =
∑

n≥0

1

�(n + α + 1)n!
( z

2

)2n+α
(2.136)

and
(

a ∗
c ∗
)

is any element of SL2(Z)whose first column is given by
(

a
c
)

. So defined, these
Rademacher sums are expected in suitable circumstances (modulo exceptions, which we
will mention in a moment) to transform as

RP
SL2(Z),ρ (γ τ) = ρ(γ )RP

SL2(Z),ρ(τ ) (γ ∈ SL2(Z)). (2.137)

In general, however, therewill be obstructions to this procedure recovering the characters
of the CFT under consideration. For example, there may be more than one modular
function with the desired transformation properties and polar terms, in which case the
Rademacher sum is not guaranteed to recover the characters of interest. A more serious

16 Convergence of this sum has not been proven in general, however we conjecture that in all the cases we
consider in this paper, the sum dooes in fact converge.
17 Similar formulae appear in [91] for weight 1

2 vector-valued modular forms transforming in the Weil
representation.
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issue is that this Rademacher sum may converge to a mock modular form rather than a
genuine one, inwhich case equation (2.137)will not hold. The fact that this problem does
not arise for the twined characters of the moonshine module (a.k.a. McKay-Thompson
series) is equivalent [80] to the fact that each transforms under a genus zero subgroup
� of SL2(R) (c.f. Sect. 3.1.1 for the definition of genus zero). This genus zero property
(alternatively, the Rademacher summability property) of monstrous moonshine is one of
its defining features. Therefore, in addition to its practical utility, our description of the
characters of the RCFTs we consider as Rademacher sums can be thought of as the first
steps towards investigating whether an analogous genus zero property holds for them as
well.

3. Monster deconstructions

We now come to our main results. Namely, we construct several examples of com-
muting subalgebras (WG,W

˜G) of V � attached to monstralizer pairs [G ◦ ˜G].H (c.f.
Table 1 for an explanation of the notation) which satisfy the following properties.

(a) The subgroups preserved by WG and W
˜G are M(WG) = G and M(W

˜G) = ˜G.
(b) The inner automorphism group of WG is given by G/Z(G), where Z(G) is the

center of G. Therefore, the WG realize subquotients (rather than just subgroups) of
the monster as their inner automorphism groups. The same goes for the W

˜G .
(c) The subalgebra of the full fusion algebra ofWG (resp.W

˜G ) which is spanned by the
modules WG(α) (resp. W

˜G(α)) appearing in the decomposition (2.100) admits an
action of Z(G) = Z(˜G) by diagonal fusion algebra automorphisms.

(d) The full automorphism group of WG is given by (at least) [G/Z(G)].H ′ for some
subgroup H ′ of H . The same goes for the W

˜G .
(e) The commutant ofWG in V � isW

˜G and vice versa, i.e. ˜WG =W
˜G and ˜W

˜G =WG .
(f) Whenever one monstralizer pair (H, ˜H) includes into another (G, ˜G) in the sense

that ˜H ↪→ ˜G and G ↪→ H , the associated chiral algebras mirror these inclusions,
i.e.W

˜H ↪→W
˜G and WG ↪→WH .

We will begin by reviewing how known models fit into this framework. In Sect. 3.1,
we recall various relevant properties of the moonshine module V �, the baby monster
VOA VB

�, and the Fischer VOA VF�
24, and argue that they participate in M-com pairs

with G := M(WG) a cyclic group. Since the latter two models can be obtained from
the first via deconstruction, i.e. as commutant subalgebras, they provide an opporunity
to exposit the techniques we will be using throughout in the simplest settings. We also
describe the relationships of these three theories to the extended Dynkin diagrams of̂E8,
̂E7, and̂E6 respectively; in particular, we will describe how the nodes of these diagrams
are naturally decorated by conjugacy classes of M, B, and Fi24, and how this leads to
distinguished subalgebrasWDnX ⊂ V �,WB(mY) ⊂ VB

�, andWF(rZ) ⊂ VF�
24. We then

give our first new example of anM-com pair coming from a parafermion deconstruction,
which is associated to the monstralizer (G, ˜G) = (Z4A, 4.222.Co3).

In Sect. 3.2, we studyM-coms associated tomonstralizer pairs (G, ˜G)withG = DnX
a dihedral group; it will turn out that the VOAs which uplift these dihedral groups are
precisely the chiral algebras coming fromMcKay’̂E8 correspondencementioned earlier,
WG =WDnX . We compute the symmetry groups and dual characters of the commutants
of the algebras WDnX in the moonshine module,

˜WDnX := ComV � (WDnX). (3.1)
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Table 1. A table taken from [22] of allmonstralizer pairs for |g| ≥ 11,where |g| is the order of the largest prime
which divides ˜G. The notation [G ◦˜G].H indicates thatG = CentM(˜G) and ˜G = CentM(G). The centers and
normalizers of such pairs agree, Z(G) = Z(˜G) and N = NM(G) = NM(˜G), and we define H = N/〈G, ˜G〉
which is a subgroup of the outer automorphism groups of both G and ˜G. The group [G ◦ ˜G].H appears as a
subgroup of M, where G ◦ ˜G indicates the central product of G with ˜G (and which is abbreviated to G × ˜G
when Z(G) = Z(˜G) = {1}). The notation ZnX denotes a cyclic group which is generated by any element in
the nX conjugacy class. The notation DnX denotes a dihedral group which is generated by two 2A involutions
whose product lies in the nX conjugacy class. A � next to an entry indicates that it is an example for which
WG andW

˜G are known. See [1] for further details on notation

|g| [G ◦ ˜G].H |g| [G ◦ ˜G].H
71 � Z1A ×M 11 [M12 × L2(11)].2
47 � Z2A ◦ 2.B S6.2×M11
31 � D3C × Th [L2(11)×M12].2
29 � [Z3A ◦ 3.Fi′24].2 [(2× S5) ◦ 2.M22].2
23 S4 × 211.M23 [32.2.A4 × 35.L2(11)].2

[A4 × 211.M24].2 [42.2.S3 × 210L2(11)].2
D8 ◦ 21+22.M23 [42.S3 × 210.M11].2

� D3A × Fi23 [32.Q8 × 35.M11].S3
[22 ◦ 22+11+22.M24].S3 [(A4 × S3)× U5(2)].2

� [D2B ◦ 21+23.Co2].2 [A5 × A12].2
� [Z4A ◦ 4.222.Co3].2 [42.3× 210.M12.2].D8

Z2B ◦ 21+24.Co1 [(2× S4) ◦ 211.M22].2
19 [A5 ×U3(8).31].2 [(2× S4) ◦ 2.M12].2

� [D5A × HN].2 [(2× 5.4) ◦ 2.HS].2
� [D2A ◦ 22.2E6(2)].S3 [(21+4 ◦ 21+20.L2(11)].(2× S3)

17 [L2(7)× S4(4).2].2 [8.22 ◦ 2.210.M11].2
S4 × S8(2) [31+2 ◦ 31+10.L2(11)].D8
[7 : 3× He].2 [(22 × S3) ◦ 22.U6(2)].S3
[A4 × O−

10(2)].2 [(3× S3)× 36.M11].2
� [D4B ◦ 2.F4(2)].2 [(2× D8) ◦ 22.210.M12].(22 � 2)

13 [13.6× L3(3)].2 [(2× D8) ◦ 21+21.M22].22
[2.A4 ◦ (2×U3(4)).2].2 [4.22 ◦ 4.220.M11].22
[Q8 ◦ 2.212.U3(4).2].S3 [8.2 ◦ 2.210.M12].22
[Z6B ◦ 6.Suz].2 [32 ◦ 32+5+10.M11].2.S4
[Z4D ◦ 4.212.G2(4).2].2 [32 ◦ 31+11.U5(2)].(2× S3)
[Z3B ◦ 31+12.2.Suz].2 [23 ◦ 23.220.U6(2)].S4
32.2.S4 × L3(3).2 [23 ◦ 23+20+10.M22].S4
[31+2.22 × G2(3)].2 [23 ◦ 23.220.M12.2].S4
[32.D8 × L4(3).22].2 [(2× 4) ◦ (2× 4).220.HS].D8
[2.S4 ◦ (2× 2F4(2)′)].2 [(2× 4) ◦ (2× 4).220.2.M12].D8
[(S3 × S3)× O7(3)].2 [Q8 ◦ 21+22.35.M11].S3
S4 × 3D4(2).3 � [D4A ◦ 21+22.McL].2
[32.2× D4(3)].S4 S3 × 36.2.M12

� [D6A ◦ (2.Fi22)].2

and in many cases find that their symmetry groups are closely related to sporadic simple
groups in the happy family, i.e. sporadic groups which arise as subquotients of the
monster. We will also check in many cases that the VOAs embed into one another as
subalgebras in the same way their corresponding preserved symmetry groups do as
subgroups. We summarize these results in Table 2 and Fig. 3. See the appendices for
additional data.

We are able to compute the dual characters of every theory W
˜G considered in this

paper using at least one of three complementary approaches. First, every model con-
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Fig. 3. The subset of monstralizer pairs (G, ˜G) whose associated M-com pairs (WG ,W
˜G ) are treated in this

paper. A red line from a pair (H, ˜H) up to (G, ˜G) indicates that ˜H is a subgroup of ˜G and G is a subgroup of
H . The associated chiral algebras mirror these inclusions, W

˜H ↪→W
˜G andWG ↪→WH

sidered in Sects. 3.1 and 3.2 has characters which arise from Rademacher summation,
though we will typically only mention this explicitly when the other two methods are
ineffective. Second, we will also find that the characters of the W

˜G can be obtained as
Hecke images of the irreducible characters of WG whenever c̃t = qct for some integer
q, a phenomenon we suspect might provide a useful tool for analyzing commutant sub-
algebras in more general settings. Finally, in many cases, we are able to exhibit the dual
characters as solutions to a suitable MLDE.Whenever more than one method works, we
find that they produce identical predictions for the characters, which provides further
evidence in support of our conjectures. A nice property that these character-theoretic
considerations reveal is that the highest weight spaces of the W

˜G(α) always transform
under irreducible (projective) representations18 of the inner automorphism group.

In Sect. 3.3, we offer partial results which support the hope that one can derive other
M-com pairs, beyond the ones we’ve studied, which realize chiral algebras with sporadic
symmetry. We conclude in Sect. 3.4 by arguing that many of the algebras which were
derived as deconstructions of the monster VOA with respect to the WDnX algebras are
the same as deconstructions of VB

� and VF�
24 with respect to the algebras WB(mY) and

WF(rZ) coming from McKay’ŝE7 and̂E6 correspondences.

3.1. Cyclicmonstralizers fromparafermion theories. Webegin by reviewing the proper-
ties of the chiral algebras V �, VB

�, and VF�
24 which are most relevant for our subsequent

analysis, and explain how thesemodels correspond tomonstralizers withG = Z1A,Z2A,
and Z3A. We then show that these constructions can be straightforwardly generalized to
produce a new M-com pair with G = Z4A.

3.1.1. (Z1A,M): The monster and̂E8 Themainmodel wewill deconstruct is the moon-
shine module V �. This chiral algebra was first obtained [6,53] as a Z2 asymmetric orb-
ifold of the lattice VOA associated to the Leech lattice, the unique even, unimodular
lattice without any vectors of square-length equal to 2. Its automorphism group is the
monster, and it trivially constitutes a degenerate M-com pair withWZ1A the trivial CFT.

18 We are not aware of any theorem that requires the highest weight subspaces of irreducible modules of
a (suitably nice) VOA to transform as irreducible representations of the inner automorphism group, and we
suspect that this niceness is related to the fact that (G, ˜G) form a monstralizer pair.
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The vacuum module is its unique, irreducible module, and its associated character is
famously given up to a constant by the j-invariant,

TrV �qL0−1 = J (τ ) = j (τ )− 744 = q−1 + 196884q + 21493760q2 + · · · . (3.2)

Because it has monster symmetry, we can consider characters [92] which are twined by
the action of M, known as McKay-Thompson series,

Jg(τ ) = TrV �gqL0−1 (g ∈ M). (3.3)

These functions are invariant under the actionof special discrete subgroups�g ofSL2(R),

Jg(
aτ+b
cτ+d ) = Jg(τ )

(

a b
c d

) ∈ �g (3.4)

which have the property that �g\Ĥ ∼= Ĉ, where Ĥ = H ∪ Q ∪ {i∞} is the upper
half-plane extended by its cusps, and Ĉ = C ∪ {i∞} is the Riemann sphere. Such
discrete subgroups of SL2(R) are referred to as genus zero, and Jg can be described as
the unique generator of the field of modular functions for �g whose q-expansion starts
as q−1 + O(q); equivalently, and more constructively, all of these McKay-Thompson
series can be obtained as Rademacher sums [80]. We will refer to conjugacy classes of
the monster group using the Atlas notation [1]. We will also go back and forth between
labeling McKay-Thompson series by group elements versus conjugacy classes, e.g. we
allow ourselves to write J2A in place of Jg whenever g is taken from the 2A conjugacy
class of M.

The monster group has an intriguing connection to the extended̂E8 Dynkin diagram.
This is brought about by considering products of elements taken from the 2A conjugacy
class. It is known that any pair of 2A involutions t1 and t2 combine to give an element
of either the 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, or 3C conjugacy class, and generates a
corresponding dihedral group DnX = 〈t1, t2〉 which participates in a monstralizer pair
(c.f. Table 1). These conjugacy classes can be thought of as corresponding to the nodes
of thêE8 diagram as follows. If α1, α2, . . . , α8 are the simple roots of E8 and α0 is the
negative of the maximal root, then there are integers ci known as Coxeter labels which
satisfy

8
∑

i=0
ciαi = 0 (3.5)

and take the values 1, 2, 3, 4, 5, 6, 4, 2, and 3 for i = 0, 1, . . . , 8. It was noted by
McKay [93] and elaborated on by Glauberman-Norton [94] that the values of the ci
are precisely the orders of elements in the conjugacy classes appearing in the products
of 2A elements. It is natural to try to find signatures of this correspondence in the
context of the moonshine module. In doing so, we will see that one is naturally led to
a collection of subalgebras WDnX—one for each conjugacy class nX arising in thêE8

correspondence—with respect to which one may deconstruct V �.
To explain how these subVOAsWDnX are defined, we note that the Griess algebra of

V � has an interesting structure [33,39]. The 2A involutions in the monster group M are
in one-to-one correspondence with conformal vectors of the moonshine module with
central charge equal to 1

2 . Equivalently, they are in bijection with idempotents of the
Griess algebra 1

2 t with (t, t) = 1
4 . In one direction, the correspondence is easy to see:
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each conformal vector of central charge 1
2 generates a subalgebra W ∼= L( 12 , 0) of V

�,
and it turns out that its Miyamoto involution τW always belongs to the 2A class. In light
of thêE8 correspondence, it is natural to define the algebraWDnX to be the VOAwhich is
generated by any two conformal vectors e(z), f (z) of central charge 1

2 whose associated
Miyamoto involutions have product τeτ f residing in the nX conjugacy class of M. It
turns out that this algebra depends up to isomorphism only on the conjugacy class nX,
and so our labeling is consistent. The Miyamoto involutions τe and τ f always act by
either fusion algebra automorphisms or inner automorphisms, and generate a dihedral
subgroup DnX of M. In fact, the group preserved by WDnX (c.f. Sect. 2.2) is precisely
M(WDnX) = DnX.

Our main body of examples will arise by considering the commutants of theWDnX in
V �; we will see that their automorphism groups are often related to sporadic or otherwise
exceptional groups.

The WDnX algebras as subalgebras of V√2E8
The abstract description of the algebras

WDnX above is not explicit, and the connection to E8 is indirect. However, following
[38], we now sketch a more concrete description of the WDnX by realizing them as
subalgebras of the lattice VOA associated to

√
2�root(E8).

To describe these subalgebras of V√2E8
, let i = 0, 1, . . . , 8 label the nodes of the

extended E8 Dynkin diagram and let ci be the Coxeter label of each node. We associate
these nodes with the conjugacy classes 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, 3C in this order
(see also Fig. 2). Now consider the root lattice L(i) associated to the Dynkin diagram
produced by removing the node i in̂E8. Then ci is the index of L(i) in�root(E8), and in
fact�root(E8)/L(i) ∼= Zci . The lattices L(i)will in general have several indecomposable

components R(i)
1 , . . . , R(i)

k . For each indecomposable component R(i)
� of L(i), it is

possible [66] to write the conformal vector ω(i)
� of V√

2R(i)
�

as the sum of two commuting

conformal vectors of smaller central charge, ω(i)
� = ω̃

(i)
� + s(i)� (c.f. [38] for the precise

definitions, and Sect. 2.2 for an example), where ω̃
(i)
� has central charge 2n/(n + 3) if

R(i)
� = An , central charge 1 if R

(i)
� = Dn , and central charge 6

7 ,
7
10 ,

1
2 if R(i)

� = E6, E7,
E8 respectively.

With these definitions in place, [38] define the subVOAU (i) of the
√
2E8 lattice VOA

to be the simultaneous commutant of all the s(i)� for � = 1, 2, . . . , k, which will have

ω̃
(i)
1 + · · · + ω̃

(i)
k as its stress tensor. For i = 0, 1, · · · , 8, the U (i) are then chiral algebras

with central charges 1/2, 6/5, 58/35, 2, 16/7, 51/20, 19/10, 1, and 16/11 respectively which can be
associated to each node of the extended E8 diagram. For example, deleting the node
i = 5 leaves the Dynkin diagram of A5⊕ A2⊕ A1, and the central charge of the sum of
the conformal vectors ω̃(5)

1 + ω̃
(5)
2 + ω̃

(5)
3 is 5

4 +
4
5 +

1
2 = 51

20 . Furthermore, the VOAs have
dihedral groups associated to them which they inherit from the canonical Z2 symmetry
enjoyed by any lattice VOA and the Zci symmetry which is induced from the Abelian
group

√
2E8/

√
2L(i). These U (i) so defined can then be identified (conjecturally in

some cases, provably in others) with the algebrasWDnX .
We end this section by briefly describing a connection to work of Sakuma. In [34],

Sakuma considers subalgebrasBe, f of the Griess algebra of an arbitrary VOA V without
dimension 1 operators that are generated by a pair of c = 1

2 conformal vectors e, f .
His main theorem is a classification of the possible algebras which can arise in this
way: he finds 9 possible algebras Be, f whose structure depends only on the order of
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the product of Miyamoto involutions τeτ f and the inner product 〈e, f 〉. The resulting
algebras Be, f coincide precisely with the Griess algebras of the U (i) constructed in [38];
in other words, the monster CFT V � realizes all the possible Sakuma algebras. There is
some evidence that the VOA generated by Be, f will always be isomorphic to one of the
U (i), regardless of what VOA V one is working inside. See [95] for a recent discussion.

3.1.2. (Z2A, 2.B): The baby monster and̂E7 The simplest example of monster decon-
struction was first studied in [27,96,97], and is obtained by taking WZ2A

∼= L( 12 , 0) to
be the chiral algebra of the Ising model. As we will see in a moment, the commutant
˜WZ2A , with central charge c̃t = 24 − 1

2 = 231/2, enjoys an action by the baby monster
sporadic simple group B. Just as the moonshine module is denoted V � because it fur-
nishes the “most natural” representation ofM, the chiral algebra ˜WZ2A provides themost
natural representation of the baby monster, and so is typically denoted VB

� in the math
literature19; we abide by this convention here. We will show that the pair (WZ2A ,VB

�)

naturally furnishes a VOA uplift of the monstralizer pair Z2A ◦ 2.B.
It is instructive to sketch the reason that the baby monster acts on VB

�. Let us call t
the central charge 1

2 stress tensor ofWZ2A . It is known that the Miyamoto involution τt
associated toWZ2A always belongs to the 2A conjugacy class of M. Moreover, one can
show that, for any g in the monster, the Miyamoto involutions of t and gt are conjugate,
τgt = gτt g−1 (c.f. equation (2.30)). Therefore, if we take g to live in CentM(τt ) ∼=
CentM(2A) ∼= 2.B, then the Miyamoto involutions associated to t and gt are actually
the same, τgt = τt . Because there is a bijection between elements of the 2A conjugacy
class of the monster and conformal vectors of central charge 1

2 , it follows that in fact
t = gt , and so 2.B stabilizes t . Indeed, this is made evident if one decomposes the weight
2 subspace V �

2 in terms of irreducible representations of 2.B. From the well-known fact

that V �
2 = 1 ⊕ 196883 as a monster representation, a character theoretic calculation

shows that

V �
2

∣

∣

∣

2.B
∼= 1⊕ 1⊕ 4371⊕ 96255⊕ 96256 (3.6)

as a 2.B representation. The two-dimensional trivial subspace is spanned by t and t̃ , the
stress tensors ofWZ2A and VB

� respectively.
From the map �t in (2.98) which relates the stabilizer of t to automorphisms of

its commutant, it follows that the image of 2.B under �t acts via automorphisms on
VB

�. The central order 2 element in 2.B is simply the Miyamoto involution τt , and the
decomposition

V � = L( 12 , 0)⊗ VB
�(0)⊕ L( 12 ,

1
2 )⊗ VB

�(1)⊕ L( 12 ,
1
16 )⊗ VB

�(2) (3.7)

makes it clear that τt can be thought of as a diagonal fusion algebra automorphism of
VB

�, and in particular acts trivially on VB
�(0). However, the rest of 2.B/〈τt 〉 ∼= B must

act non-trivially onVB
�(0), because the babymonster is a simple group. This establishes

that B ⊂ Aut(VB
�); it was later proved [96] that the baby monster is actually the entire

automorphism group of VB
�. Putting all these observations together, one sees that the

Ising chiral algebra and the baby monster VOA furnish an M-com pair corresponding

19 In e.g. [27], the notation VB
� is actually used to denote the vertex operator superalgebra obtained by

taking a direct sum of ˜WZ2A with its irreducible module of highest weight 3
2 . This VOSA has automorphism

group Z2 × B, where the extra Z2 is generated by (−1)F .
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Fig. 4. Dynkin diagram of ̂E7, decorated by conjugacy classes of the baby monster sporadic group B. We
propose to further decorate each node by the inner automorphism group of the commutant ofWB(nX) in VB

�

(c.f. Sect. 3.4). The cases 2B and 4B do not appear to coincide with any of the constructions considered in
Sect. 3.2, and we leave their study to future work

to G ◦ ˜G = Z2A ◦ 2.B, and that the various symmetry groups agree with those which
can be read off from this monstralizer,

M(WZ2A) = G = Z2A M(VB
�) = ˜G = 2.B

Inn(WZ2A) = G/Z(G) = {1} Inn(VB
�) = ˜G/Z(˜G) = B

Fus(WZ2A) = Z(G) = Z2 Fus(VB
�) = Z(˜G) = Z2 (3.8)

It will be useful for us to note that the baby monster VOA enjoys a structure on its
Griess algebrawhich is analogous to the relationship between central charge 1

2 conformal
vectors inV � and 2A involutions inM [98].Namely, there is a one-to-one correspondence
between 2A involutions inB and central charge 7

10 conformal vectors inVB
� of “σ -type”.

A central charge 7
10 conformal vector is said to be of σ -type in a VOA V if decomposing

V with respect to the W = L( 7
10 , 0) subalgebra that the conformal vector generates

features no modules of highest weight h = 7
16 or h = 3

80 ; alternatively, in the notation
of (2.11), we would say that it is of σ -type if V( 7

16 )
= 0 and V( 3

80 )
= 0. In this case, the

automorphism τW of V defined by lifting the Z2 automorphism in (2.42) of the fusion
algebra ofW = L( 7

10 , 0) is trivial, but one can define another automoprhism σW which
acts as

σW (ϕ) =
{

ϕ, ϕ ∈ V(0) ⊕ V( 35 )

−ϕ, ϕ ∈ V( 32 )
⊕ V( 1

10 )

. (3.9)

In the case that V is taken to be VB
�, this map is a one-to-one correspondence between

central charge 7
10 conformal vectors of σ -type and elements of the 2A conjugacy class

of B.
The 2A involutions of the babymonster enjoy a relationship to the Dynkin diagram of

̂E7, analogous to the one enjoyed between 2A involutions in the monster and the Dynkin
diagram of ̂E8. Namely, the product of any pair of 2A involutions in B always lies in
either 1A, 2B, 3A, 4B or 2C, and it was proposed that these conjugacy classes naturally
decorate the nodes of̂E7, as in Fig. 4. The correspondence between nodes of̂E7 and these
5 conjugacy classes is not one-to-one, but only becausêE7 has a diagram automorphism,
and so the conjugacy classes which decorate nodes related by this automorphism should
be the same. In [98], the authors constructed subVOAsWB(nX) ofVB

� for each conjugacy
class nXarising in theMcKay-correspondence. These subVOAs have the property20 that

20 Unlike in the case of the ̂E8 correspondence, these VOAs are not always generated by their two central
charge 7

10 conformal vectors.
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they contain two central charge 7
10 conformal vectors whose associated σ -involutions

have product lying in the nX class. As in the case of thêE8 correspondence, these VOAs
come naturally from the lattice VOA based on

√
2�root(E7), and this helps further

justify the relationship between B and̂E7. We will also discuss the commutants of these
WB(nX) algebras in VB

� in Sect. 3.4; in most cases, we will find that they coincide with
commutants of WmY algebras in V �.

We now study the characters of the baby monster VOA. The decomposition (3.7) at
the level of characters reads

J (τ ) = χ0(τ )χVB�(0)(τ ) + χ1(τ )χVB�(1)(τ ) + χ2(τ )χVB�(2)(τ ) (3.10)

with χ0(τ ), χ1(τ ), and χ2(τ ) the characters of Ising modules L( 12 , 0), L( 12 ,
1
2 ), and

L( 12 ,
1
16 ) respectively, and

χVB�(0)(τ ) = q−
47
48 (1 + 96256q2 + 9646891q3 + 366845011q4 + · · · ),

χVB�(1)(τ ) = q
25
48 (4371 + 1143745q + 64680601q2 + 1829005611q3 + · · · ),

χVB�(2)(τ ) = q
23
24 (96256 + 10602496q + 420831232q2 + 9685952512q3 + · · · ),

(3.11)

the characters of VB
�. The χVB�(α)(τ ) have been known since VB

� was first constructed.
Later it was pointed out that they are solutions to the following MLDE [99,100],

[

D3 +
2315π2

576
E4(τ )D − i

27025π3

6912
E6(τ )

]

χVB�(α)(τ ) = 0. (3.12)

Even more recently, it was pointed out in [42] that they can be described as Hecke
images of Ising characters. To understand which Hecke operator can relate these two
sets of characters note that Tp scales the power of the polar term of the vacuum character
it acts on by p, so in order for Tpχ to stand a chance of coinciding with the characters
of an RCFT with central charge 47

2 , we must have p = 47. With this choice, one can
indeed show that

χVB�(α)(τ ) = (T47χ)α(τ ). (3.13)

We refer to loc. cit. for additional details behind this computation. We will see that this
observation generalizes to a number of other examples.

We conclude by noting that the characters χVB�(α)(τ ) can also be recovered from
Rademacher summation, using equations (2.134) and (2.135). We have checked this
numerically for the first few terms in the q-expansion by taking the sum over c from 1
to 900 and checking that the resulting numbers round to the coefficients in (3.11).

3.1.3. (Z3A, 3.Fi′24): The largest Fischer group and ̂E6 Another example of monster
deconstruction can be obtained by taking WZ3A

∼= L( 45 , 0) ⊕ L( 45 , 3) to be the chiral
algebra of the 3-state Potts model. We will argue that this algebra and its commutant
correspond to the monstralizer pair

[G ◦ ˜G].H = [Z3A ◦ 3.Fi′24].2 (3.14)
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Fig. 5. Dynkin diagram of ̂E6, decorated by conjugacy classes of the Fischer group Fi24. We propose to

further decorate each node by the inner automorphism group of the commutant ofWF(nX) in VF
�
24 (c.f. Sect.

3.4). The case 3A does not appear to coincide with any of the constructions considered in Sect. 3.2, and we
leave its study to future work

To see this, note that the chiral algebra of the 3-state Potts model is the same as the Z3
parafermion theory, WZ3A

∼= P(3), and thus enjoys a Z3 automorphism of its fusion
algebra which turns out can be lifted to an automorphism τ of V � belonging to the 3A
conjugacy class of M. The theory also has an outer automorphism which acts as +1 on
L( 45 , 0) and−1 onL( 45 , 3). These observations are consistent with the symmetry groups
for WZ3A that one would read off from the monstralizer,

M(WZ3A) = G = Z3A,

Inn(WZ3A) = G/Z(G) = {1},
Aut(WZ3A) = (G/Z(G)).H = Z2

Fus(WZ3A) = Z(G) = Z3.

(3.15)

Now, it was argued in [28] that the commutant ˜WZ3A admits an action of NM(〈τ 〉)/〈τ 〉 ∼=
Fi24 via automorphisms21, and hence was labeled VF� there, though we will use the
notation VF�

24 to distinguish it from the chiral algebras we associate to the other Fischer
groups, Fi23 and Fi22. The sporadic simple group Fi′24 is a subgroup of Fi24 with index

2, and we will be able to see, once we have expressions for the characters of VF�
24, that it

is the inner automorphism group. Thus, the monstralizer also reproduces the symmetry
groups of VF�

24,

M(VF�
24) = ˜G = 3.Fi′24

Inn(VF�
24) = ˜G/Z(˜G) = Fi′24

Aut(VF�
24) = (˜G/Z(˜G)).H = Fi24

Fus(VF�
24) = Z(˜G) = Z3.

(3.16)

As in the case of M and B, the Fischer group enjoys a relationship to the Dynkin
diagram of ̂E6. The product of any two involutions in the 2C conjugacy class of Fi24
always lie in one of 1A, 2A or 3A, and it is natural to label the nodes of̂E6 with these
conjugacy classes, as in Fig. 5. Again, the correspondence between nodes and conjugacy
classes is not one-to-one, but only up to the two non-trivial diagram automorphisms.

We can again uplift this correspondence fromone betweenFi24 and̂E6 to one between
VF�

24 and ̂E6, following [28]. The idea is similar to that of the previous section: the

21 We use the notation NG (S) = {g ∈ G | gS = Sg} to denote the normalizer of the set S in G.
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“derived” conformal vectors of central charge 6
7 in VF�

24 are in one-to-one correspon-
dence with involutions of Fi24 in the 2C class (see loc. cit. for the precise definition of
what “derived” means). Indeed, it is known that the decomposition of VF�

24 with respect
to the U := L( 67 , 0) subalgebra generated by a derived central charge 6

7 conformal
vector,

VF� =
⊕

h∈�
VF�

(h) (3.17)

features only the modules L( 67 , h) for h ∈ � = {0, 5
7 ,

22
7 , 5, 12

7 , 1
7 }, and so we say that

the conformal vector is of σ -type. These modules fuse among themselves, and admit a
Z2 automorphism σ of their fusion algebra, which can be lifted to an automorphisms
σU of VF� which acts as

σU (ϕ) =
{

ϕ ϕ ∈ VF�

(h) for h = 0, 5
7 ,

22
7

−ϕ ϕ ∈ VF�

(h) for h = 5, 12
7 , 1

7

(3.18)

and always lies in the 2C class. In light of thêE6 correspondence, it is natural to seek
subVOAsWF(nx) of VF

�
24 with the property that they contain two derived central charge

6
7 conformal vectors whose associated σ -involutions have product lying in nX, as was
done for V � and VB

�. These are constructed explicitly in loc. cit., again coming naturally
from subVOAs of the lattice VOA associated to

√
2�root(E6). We will consider decon-

structing VF�
24 with respect to suchWF(nX) subVOAs in Sect. 3.4, and we will find that

in most cases they coincide with VOAs we had already constructed as commutants of
WmY in V �.

We now study the dual characters of VF�
24 in V �. One way to obtain them is as the

solutions of the MLDE
[

D4 +
907π2

225
E4(τ )D2 − i

4289π3

675
E6(τ )D − 175769π4

50625
E2
4(τ )

]

χVF�(α)(τ ) = 0.

(3.19)

However, it is interesting to note that, as in the case of VB
�, they can also be obtained

as Hecke images of the characters ψ(3)
�,m ofWZ3A = P(3). First, note that the conductor

of the Z3 parafermion theory is N = 30, as one can determine from inspection of the
central charge 4

5 and conformal dimensions of its primary fields: 1
15 ,

2
5 ,

1
15 ,

2
3 ,

2
3 , 0.

We will label these primaries with pairs (�,m) = (1, 1), (2, 0), (2, 2), (3,−1), (3, 1),
(3, 3) respectively; when we write down matrices, the basis will be in the order we have
just written. Note that primaries with dimensions 2

3 and 1
15 appear twice because these

operators transform non-trivially under the Z3 symmetry, and so one has the operator
and its complex conjugate with the same character. For reference, the first few terms in
the q-expansions of the characters of P(3) are given below,

ψ
(3)
1,1(τ ) = q

1
30 (1 + 2q + 2q2 + 4q3 + 5q4 + 8q5 + 11q6 + 16q7 + · · · ),

ψ
(3)
2,0(τ ) = q

11
30 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6 + 14q7 + · · · ),

ψ
(3)
3,−1(τ ) = q

19
30 (1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + 10q7 + · · · ),

ψ
(3)
3,3(τ ) = q−

1
30 (1 + q2 + 2q3 + 3q4 + 4q5 + 7q6 + 8q7 + · · · ),

ψ
(3)
2,2(τ ) = ψ

(3)
1,1(τ ), ψ

(3)
3,1(τ ) = ψ

(3)
3,−1(τ ).

(3.20)
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Calling ρ the SL2(Z) representation generated by the modular S and T-matrices of the
Z3 parafermion theory (c.f. equations (2.45) and (2.49)), the charge conjugation matrix
is given by

C = ρ(S) · ρ(S) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (3.21)

It exchanges the (1, 1), (2, 2) and (3,−1), (3, 1) components, consistent with these
being characters of conjugate pairs of primary operators. A straightforward calculation
also shows that

ρ(σ29) = C. (3.22)

These are all the ingredients necessary to define the relevant Hecke operator. Now, if we
label the dual modules of VF�

24 according to how they appear in the decomposition of
V �,

V � ∼=
⊕

(�,m)

P(3, [�,m])⊗ VF�
24(�,m) (3.23)

then we claim that their corresponding characters can be realized as

χVF�
24(�,m)

(τ ) = (T29ψ
(3))�,m(τ ). (3.24)

This leads to the following q-expansions,

χVF�24(1,1)
(τ ) = q

29
30 (64584 + 6789393q + 261202536q2

+ 5863550310q3 + 92704262184q4 + 1139097001086q5 + · · · ),
χVF�

24(2,0)
(τ ) = q

19
30 (8671 + 1675504q + 83293626q2

+ 2175548448q3 + 38129457201q4 + 505531399264q5 + · · · ),
χVF�

24(2,2)
(τ ) = q

29
30 (64584 + 6789393q + 261202536q2

+ 5863550310q3 + 92704262184q4 + 1139097001086q5 + · · · ),
χVF�

24(3,−1)(τ ) = q
11
30 (783 + 306936q + 19648602q2

+ 589705488q3 + 11326437954q4 + 160445964456q5 + · · · ),
χVF�24(3,1)

(τ ) = q
11
30 (783 + 306936q + 19648602q2

+ 589705488q3 + 11326437954q4 + 160445964456q5 + · · · ),
χVF�24(3,3)

(τ ) = q−
29
30 (1 + 57478q2 + 5477520q3

+ 201424111q4 + 4397752560q5 + 68202269658q6 + · · · ).
(3.25)
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The inner automorphism group in general acts projectively on the non-vacuummodules;
the projective representations of Fi′24 correspond to the honest representations of ˜G =
3.Fi′24 in the same way that projective representations of SO(3) correspond to honest
representations of SU(2), so we work with this latter triple cover22 when analyzing the
characters; note that this is consistent with our claims that any projective representation
of Inn(W

˜G) which is realized on the dual modules W
˜G(α) can be lifted to an honest

representation of ˜G. Indeed, one can immediately see that the highest weights transform
under irreducible representations of 3.Fi′24 of dimension 783, 8671, and 64584.Other low
order coefficients also have decompositions into irreducible representations: 57478 =
57477+ 1, 1675504 = 1666833+ 8671, and so on. These identifications are determined
by how V � decomposes by restriction into representations of 3.Fi′24.

Consistent with (3.23), these dual characters pair diagonally with the characters of
the Z3 parafermion model to yield the partition function of V �,

∑

(�,m)

ψ
(3)
�,m(τ )χVF�

24(�,m)
(τ ) = q−1 + 196884q + 21493760q2 + · · · . (3.26)

One can also verify at the level of characters that theZ3 automorphism of the fusion alge-
bra ofP(3) lifts to an automorphism of V � in the 3A conjugacy class ofM. Indeed, under
this Z3, the characters transform as ψ(3)

�,m → e2π i
m
3 ψ

(3)
�,m , and one can straightforwardly

compute that

∑

(�,m)

e2π i
m
3 ψ

(3)
�,m(τ )χVF�

24(�,m)
(τ ) = q−1 + 783q + 8672q2 + 65367q3 + 371520q4 + · · ·

(3.27)

which agrees with the q-expansion of J3A, the McKay-Thompson series associated to
any element belonging to the 3A conjugacy class of M.

The above is consistent with the more general analysis of bilinears in [42]. We can
construct bilinears from G� with

29 + �2 = 0 mod 30 (3.28)

which is solved by � = 1, 11, 19, 29. Explicit computation shows that G1 is the identity
matrix giving a diagonal modular invariant. Since G19 = −G1, � = 19 does not lead to
an independent solution. Finally, G11 = −G29 and

G29 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (3.29)

This differs from G1 by the exchange of the first and third characters and the fourth and
fifth characters. But since these characters are identical (there are two characters with
the same conformal dimension but which transform differently under Z3) this does not
give a new modular invariant: there is essentially a single modular invariant bilinear.

22 This also justifies the consideration of the group 3.Fi′24 in [99].
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3.1.4. (Z4A, 4.222.Co3): The third Conway group As we have mentioned in previous
sections, the stress tensor of the moonshine module V � can be written as a sum of
48 conformal vectors of central charge 1

2 . This implies that it admits an L( 12 , 0)
⊗48

subalgebra, which gives it the structure of a framed VOA [63]. This subalgebra furnishes
an alternative description of the moonshine module; indeed, on general grounds, it can
be decomposed as [38]

V � ∼=
⊕

h1,...,h48

ch1,...,h48L( 12 , h1)⊗ · · · ⊗ L( 12 , h48), (3.30)

where each hi runs over the set {0, 1
2 ,

1
16 }. Parts of this structure are passed on to the

baby monster VOA. Indeed, in light of the decomposition (3.7), one has that

VB
�(α) =

⊕

h1,...,h47

ch1,...,h47,nαL( 12 , h1)⊗ · · · ⊗ L( 12 , h47), (3.31)

where n0 = 0, n1 = 1
2 , and n2 = 1

16 . The babymonster symmetry ultimately arises from
the fact that 2.B centralizes the lift of the Z2 automorphism of the fusion algebra of any
of the Ising factors (c.f. Sect. 2.1.3). It is natural to wonder whether there are analogs of
this kind of structure with the Ising model replaced by some other chiral algebra.

In fact, in [101], it was shown that the moonshine module admits as a subalgebra a
tensor product of 24 copies of the charge conjugation orbifold V+√

2kZ
(c.f. Sect. 2.1.5

for the definition of V+
L ) for each k ≥ 2; the special case k = 3 coincides with the Z4

parafermion theory, V+√
6Z
∼= P(4). It is possible to construct such a subalgebra because

one can always find 24 orthogonal vectors in the Leech lattice of norm-squared 2k;
these generate 24 commuting V+√

2kZ
subalgebras of V+

�Leech
, and the latter is in turn a

subalgebra of V � by virtue of the original FLM construction [6] of the monster CFT as
a Z2 orbifold of V�Leech .

Furthermore, the moonshine module was decomposed with respect to these subalge-
bras, and so in particular one can write

V � ∼=
⊕

(�1,m1),...,(�24,m24)

c(�1,m1),...,(�24,m24)P(4, [�1,m1])⊗ · · · ⊗ P(4, [�24,m24])

(3.32)

for known multiplicities c(�1,m1),...,(�24,m24). It is then natural to mimick the construction
of the baby monster, but with the role of the Ising model L( 12 , 0) being played by P(4).
We will see that doing so produces an M-com pair corresponding to the monstralizer
[G ◦ ˜G].H = [Z4A ◦ 4.222.Co3].2. To carry out this construction, one should choose
one of the P(4) factors (or alternatively, specify one of the one-dimensional sublattices
L ∼= √

6Z of �Leech) and identify it with the algebra WZ4A . We may then define, in
analogy with equation (3.31), the modules

˜WZ4A(�,m) :=
⊕

(�1,m1),...,(�23,m23)

c(�1,m1),...,(�23,m23),(�,m)P(4, [�1,m1])⊗ · · · ⊗ P(4, [�23,m23])

(3.33)
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which leads to a decomposition of the form

V � ∼=
⊕

(�,m)

P(4, [�,m])⊗ ˜WZ4A(�,m) (3.34)

As we will see momentarily, ˜WZ4A := ˜WZ4A(4, 4) is the commutant of the chosen P(4)
subalgebra of V �. The other components ˜WZ4A(�,m) will be irreducible modules of
˜WZ4A .

Another perspective on ˜WZ4A is that it is theZ2 orbifoldV+
˜L
of the c = 23 lattice VOA

attached to the orthogonal complement ˜L := L⊥ of any of the L ∼= √
6Z sublattices of

�Leech described earlier. We will compute the characters using this explicit description.
To proceed, we extract the generators of ˜L from the data files provided with [102]
and compute the theta function of ˜L using Magma [103]. The discriminant group is
˜L∗/˜L ∼= Z6 := 〈λ∗〉 and, using the notation ˜�k(τ ) := θ

˜L+kλ∗(τ ), we find that the
components have q-expansions given by

˜�0(τ ) = 1 + 75900q2 + 52923000q3 + 108706050q4 + · · ·
˜�1(τ ) = q

23
12 (48600 + 3934656q + · · · )

˜�2(τ ) = q
5
3 (11178 + 1536975q + · · · )

˜�3(τ ) = q
5
4 (552 + 257600q + · · · )

˜�4(τ ) = ˜�2(τ ), ˜�5(τ ) = ˜�1(τ ).

(3.35)

We can then use the expressions for the characters of charge conjugation orbifolds given
in equation (2.61) to obtain that

ξ
(˜L)
1 (τ ) = 1

2

(

˜�0(τ )

η(τ )23
+�0,1(τ )

23
)

ξ
(˜L)
j (τ ) = 1

2

(

˜�0(τ )

η(τ )23
−�0,1(τ )

23
)

ξ
(˜L)
3λ∗,i (τ ) =

1

2

˜�3(τ )

η(τ )23
(i = 1, 2)

ξ
(˜L)
kλ∗ (τ ) =

˜�k(τ )

η(τ )23
(k = 1, 2)

ξ
(˜L)
σ,i (τ ) = 210

(

�1,0(τ )
23 +�1,1(τ )

23
)

(i = 1, 2)

ξ
(˜L)
τ,i (τ ) = 210

(

�1,0(τ )
23 +�1,1(τ )

23
)

(i = 1, 2).

(3.36)

We will see in a moment that the q-expansions of these same characters are reproduced
by the method of Hecke operators.

Now, it is known [104] that the Conway group Co3 is the stabilizer of the rank one
lattice L , and we will now argue that an extension of Co3 acts naturally on the orbifold
VOA associated to its orthogonal complement. To see this, note that the generator of the
Z4 automorphism of the fusion algebra of the level 4 parafermion theory can be lifted to
an automorphism σ of V �, which a character-theoretic calculation reveals belongs to the
4A conjugacy class. One thus expects that at least a 222.Co3 ∼= CentM(σ )/〈σ 〉 symmetry
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group acts by inner automorphisms on ˜WZ4A , where we have quotiented by 〈σ 〉 because
it acts trivially on ˜WZ4A . We further conjecture that ˜WZ4A inherits an additional order
2 outer automorphism from the monster, so that the full automorphism group is given
by Aut( ˜WZ4A)

∼= 222.Co3.2 in accordance with the prediction from the monstralizer.
However, without access to the character table of 222.Co3.2, it is difficult to conduct
explicit checks of this expectation. In total,

M(WZ4A) = G = Z4A M( ˜WZ4A) = ˜G = 4.222.Co3

Inn(WZ4A) = G/Z(G) = {1} Inn( ˜WZ4A) = ˜G/Z(˜G) = 222.Co3

Aut(WZ4A) = (G/Z(G)).H = Z2 Aut( ˜WZ4A) = (˜G/Z(˜G)).H = 222.Co3.2

Fus(WZ4A) = Z(G) = Z4 Fus( ˜WZ4A) = Z(˜G) = Z4. (3.37)

We will now show that the characters of the ˜WZ4A(�,m) can be computed via Hecke
operators. Let us order the characters of P(4) as

χ0 = ψ
(4)
4,4, χ1 = ψ

(4)
1,1, χ2 = ψ

(4)
3,3, χ3 = ψ

(4)
2,2, χ4 = ψ

(4)
2,0,

χ5 = ψ
(4)
3,−1, χ6 = ψ

(4)
3,1, χ7 = ψ

(4)
4,−2, χ8 = ψ

(4)
4,2, χ9 = ψ

(4)
4,0,

(3.38)

with highest weights 0, 1
16 ,

1
16 ,

1
12 ,

1
3 ,

9
16 ,

9
16 ,

3
4 ,

3
4 , and 1 respectively. The conductor of

these characters is N = 48, and the central charge of ˜WZ4A is related to the central charge
of P(4) as c̃t = 23 = 23ct . Since (23, 48) = 1, one might guess that the components of
T23χ can be identified with the graded-dimensions of the ˜WZ4A(�,m). This will indeed
turn out to be the case. Using the modular S-matrix of the parafermion theories, one can
compute the q-expansions of their Hecke images,

(T23χ)0(τ ) = q−
23
24 (1 + 38226q2 + 3519529q3 + 126577280q4 + · · · ),

(T23χ)1(τ ) = q
23
48 (2048 + 565248q + 31700992q2 + · · · ),

(T23χ)3(τ ) = q
23
24 (48600 + 5052456q + 192216888q2 + · · · ),

(T23χ)4(τ ) = q
17
24 (11178 + 1794069q + 82286847q2 + · · · ),

(T23χ)5(τ ) = q
47
48 (47104 + 4757504q + 178382848q2 + · · · ),

(T23χ)7(τ ) = q
7
24 (276 + 135148q + 9192824q2 + 283316852q3 + · · · ),

(T23χ)9(τ ) = q
1
24 (23 + 37973q + 3521323q2 + 126567896q3 + · · · ),

(T23χ)2(τ ) = (T23χ)1(τ ), (T23χ)6(τ ) = (T23χ)5(τ ), (T23χ)8(τ ) = (T23χ)7(τ ).

(3.39)

If these functions are to be consistently identified with the characters of ˜WZ4A , it should
be possible to bilinearly pair themwith theχα to produce the J function. Tofind candidate
matricesG�which implement this bilinear pairing (c.f. Sect. 2.3.2),we solve the equation

23 + �2 = 0 mod 24. (3.40)

One can find solutions for � = 1, 5, 19, 23.23 It turns out that only two of them are
independent, namely G1 = G5 and G19 = G23. Furthermore, one can check that G1

23 The integers � = 7, 11, 13, 17 also satisfy 23 + �2 = 0 mod 24. However, G7, G11, G13, and G17 have
negative entries and so we do not consider them.
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is the identity matrix. On the other hand, G19 is the matrix which is zero in each entry,
except for the entries (0, 0), (2, 1), (1, 2), (3, 3), (4, 4), (5, 6), (6, 5), (7, 8), (8, 7), and
(9, 9) where it is 1. Because χ2(τ ) = χ1(τ ), χ6(τ ) = χ5(τ ), and χ8(τ ) = χ7(τ ), G1
and G19 act identically on χ . This motivates the identification χ̃α(τ ) = (T23χ)α(τ )

which one can check leads to the bilinear relation

J (τ ) =
∑

α

χα(τ)χ̃α(τ ) (3.41)

consistent with the decomposition in (3.33). As an independent check on this result, one
can easily see that, to low orders in the q-expansion, the functions obtained by Hecke
operators agree with the characters presented in (3.36) from the description of ˜WZ4A as
a charge conjugation orbifold. Explicitly,

(T23χ)0 = ξ
(˜L)
1 , (T23χ)1 = ξ

(˜L)
σ,1 , (T23χ)2 = ξ

(˜L)
σ,2 ,

(T23χ)3 = ξ
(˜L)
λ∗ , (T23χ)4 = ξ

(˜L)
2λ∗ ,

(T23χ)5 = ξ
(˜L)
τ,1 , (T23χ)6 = ξ

(˜L)
τ,2 , (T23χ)7 = ξ

(˜L)
3λ∗,1,

(T23χ)8 = ξ
(˜L)
3λ∗,2, (T23χ)9 = ξ

(˜L)
j .

(3.42)

As a final consistency check, wemay also confirm our earlier claim that the generator
of the fusion algebra automorphism of P(4) lifts to an element of M in the 4A class.
From the transformation rules in equation (2.50), the Z4 twined characters are

χω,0 = ψ
(4)
4,4, χω,1 = iψ(4)

1,1, χω,2 = −iψ(4)
3,3, χω,3 = −ψ

(4)
2,2, χω,4 = ψ

(4)
2,0,

χω,5 = −iψ(4)
3,−1, χω,6 = iψ(4)

3,1, χω,7 = −ψ
(4)
4,−2, χω,8 = −ψ

(4)
4,2, χω,9 = ψ

(4)
4,0,

(3.43)

and one can check to low orders in the q-expansion that

J4A(τ ) = 1

q
+ 276q + 2048q2 + 11202q3 + 49152q4 + 184024q5 + · · ·

=
∑

α

χ̃α(τ )χω,α(τ ).
(3.44)

In summary, reverting back to the natural basis for parafermion characters indexed
by pairs (�,m), we have argued that we can identify the graded dimensions

Tr
˜WZ4A (�,m)q

˜l0− 23
24 for (�,m) = (4, 4), (3,−1), (3, 1), (2, 2), (2, 0), (1, 1), (3, 3),

(4,−2), (4, 2), (4, 0) with the functions χ̃α for α = 0, . . . , 9 respectively.

3.2. Dihedral monstralizers from McKay’s ̂E8 correspondence. We now turn to mon-
strous deconstructions which arise from McKay’s correspondence. In each subsection,
we take as our known subVOA WDnX , the chiral algebra generated by two conformal
vectors e(z) and f (z) of central charge 1

2 whose associatedMiyamoto involutions τe and
τ f have product lying in the nX conjugacy class, where nX is either 1A, 2A, 3A, 4A,
5A, 6A, 2B, 4B, or 3C. These algebras have been studied extensively in e.g. [34,36–38],
and we rely heavily on their results. In each case, we study the commutant subalgebra
˜WDnX , and in particular establish its symmetries and its dual characters in V �. In each
case, it will be clear from our character theoretic decomposition of V � that WDnX and
˜WDnX are each others’ commutants.
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Symmetries Before treating each example in detail,we provide the sketch of an argument
that

M( ˜WDnX) = ˜G, Inn( ˜WDnX) = ˜G/Z(˜G), Fus( ˜WDnX) = Z(˜G), (3.45)

where ˜G := CentM(DnX). It is essentially a recapitulation of the arguments given inSect.
3.1.2 for the baby monster. The starting point is the fact that the subgroup of M which is
preserved byWDnX isM(WDnX) = DnX.We thenwould like to argue that the centralizer
of this group acts trivially on WDnX . To see this, we note that the dihedral group is
generated by the Miyamoto involutions of e and f , i.e. G := DnX = 〈τe, τ f 〉, and so
˜G := CentM(DnX) = CentM(τe) ∩ CentM(τ f ). Because any X in CentM(τe) ∼= 2.B
stabilizes e by the arguments presented in Sect. 3.1.2, and similarly for f , any X which
lies in the intersectionCentM(τe)∩CentM(τ f )will stabilize both e and f simultaneously.
SinceWDnX is generated by e and f by definition, it follows thatWDnX is stabilized by
˜G, and thus ˜G can at most act by diagonal fusion algebra automorphisms. It follows that
M( ˜WDnX) = ˜G.

Because (G, ˜G) furnish a monstralizer pair, their centers agree and must act by
diagonal fusion algebra automorphisms, as discussed in Sect. 2.2. Taking the quotient
by this center thus leaves the inner automorphism group. This completes the justification
of (3.45).

Griess algebras In the following subsections, we will provide constructions of vector-
valued modular forms which we tentatively identify with the characters of the VOAs
˜WDnX . One piece of evidence which supports these assignments is the fact that they
solve the bootstrap problem presented in equation (2.103). Another piece of evidence
is that the Griess algebras that they lead to satisfy a consistency check which we now
describe.

The putative characters, along with the decomposition of V � by restriction into rep-
resentations of DnX ◦CentM(DnX) = DnX ◦ ˜DnX, uniquely determines a Inn( ˜WDnX)

∼=
˜DnX/Z(˜DnX) representation RnX such that the Griess algebra of ˜WDnX decomposes as
( ˜WDnX)2

∼= 1⊕ RnX; explicitly, these are

(Inn( ˜WnX), RnX) = (B, 96255), (2E6(2), 48620), (Fi23, 30888), (Th, 30875),
(HN, 8910⊕ 9405), (Fi22, 3080⊕ 13650), (F4(2), 1377⊕ 22932).

(3.46)

Here, irreducible representations are labeled by their dimensions which in each case
uniquely specifies the representation, and we have omitted examples where we do not
have access to the character tables or are unsure of the characters. In the monster VOA,
the existence of an M-invariant inner product and M-invariant algebra on the dimension
two operators V �

2
∼= 1⊕ 196883 relies on the group theoretical fact that the symmetric

square of the 196883-dimensional irreducible representation contains both the trivial and
the 196883-dimensional representation itself as subrepresentations [105]. Consistency
of the characters and groups we have proposed requires that a similar statement should
be true in all our examples, namely it should be the case that Sym2(RnX) contains both
the trivial representation as well as RnX, thus allowing an Inn( ˜WDnX)-invariant inner
product and algebra. We have used GAP software to check that this is indeed the case
in each of the examples listed above.

Let us now look more closely at each example.
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3.2.1. (D1A, 2.B): Baby monster Two involutions combine to produce the identity ele-
ment if and only if they are the same involution. Since 2A involutions are in one-to-one
correspondence with conformal vectors of central charge 1

2 , this implies thatWD1A is a
degenerate case of the WDnX construction in which the VOA is generated by just one
Ising conformal vector, i.e.WD1A

∼= L( 12 , 0). The commutant ofWD1A in V � is nothing
but the baby monster VOA VB

�, which was already considered in detail in Sect. 3.1.2.

3.2.2. (D2A, 22.2E6(2)): Steinberg group We now consider the subVOA WD2A gener-
ated by two central charge 1

2 conformal vectors whose associated Miyamoto involutions
combine to yield an element of the 2A conjugacy class of M. This central charge ct = 6

5
VOA admits an L( 12 , 0)⊗L( 7

10 , 0) subalgebra, in terms of which its 8 irreducible mod-
ules decompose as (c.f. Theorem 5.2 of [106])

WD2A(0) ∼= [0, 0] ⊕ [ 12 , 3
2 ],

WD2A(1) ∼= [0, 3
5 ] ⊕ [ 12 , 1

10 ],
WD2A(2) ∼= [ 1

16 ,
7
16 ] ∼=WD2A(3),

WD2A(4) ∼= [ 12 , 0] ⊕ [0, 3
2 ],

WD2A(5) ∼= [ 1
16 ,

3
80 ] ∼=WD2A(6),

WD2A(7) ∼= [ 12 , 3
5 ] ⊕ [0, 1

10 ],

(3.47)

where [h1, h2] := L( 12 , h1) ⊗ L( 7
10 , h2). In particular, this gives a prescription for

writing its characters χα(τ) as sums of products of Ising and tricritical Ising characters,

χ0 = χ
(3)
1,1χ

(4)
1,1 + χ

(3)
2,1χ

(4)
1,4, χ1 = χ

(3)
1,1χ

(4)
1,3 + χ

(3)
2,1χ

(4)
1,2,

χ2 = χ
(3)
1,1χ

(4)
1,4 + χ

(3)
2,1χ

(4)
1,1, χ3 = χ4 = χ

(3)
1,2χ

(4)
2,1,

χ5 = χ
(3)
1,1χ

(4)
1,2 + χ

(3)
2,1χ

(4)
1,3, χ6 = χ7 = χ

(3)
1,2χ

(4)
2,2 .

(3.48)

The resulting modular S-matrix is given by

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α− α+ α− α− α− α+ α+ α+
α+ −α− α+ α+ α+ −α− −α− −α−
α− α+ α− −α− −α− α+ −α+ −α+
α− α+ −α− α− −α− −α+ α+ −α+
α− α+ −α− −α− α− −α+ −α+ α+
α+ −α− α+ −α+ −α+ −α− α− α−
α+ −α− −α+ α+ −α+ α− −α− α−
α+ −α− −α+ −α+ α+ α− α− −α−

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.49)

where α± = 1
2

√

5±√5
10 , and T -matrix read

T = diag
(

e−
π i
10 , e−

9π i
10 , e

9π i
10 , e

9π i
10 , e

9π i
10 , e

π i
10 , e

π i
10 , e

π i
10

)

. (3.50)

Now, we would like to study the commutant ˜WD2A . We comment that, in addition to
the general argument given at the beginning of Sect. 3.2, one can alternatively get a handle
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on its symmetry group by realizing it as a commutant subalgebra of the baby monster
VOA. To do this, we note that ˜WD2A can be obtained via an iterated deconstruction,

V � ⊃ L( 12 , 0)⊗ VB
�

⊃ L( 12 , 0)⊗ L( 7
10 , 0)⊗ ˜WD2A

(3.51)

and so in particular, ˜WD2A embeds into VB
�. In fact, we can define it as

˜WD2A = ComVB� (L( 7
10 , 0)) (3.52)

where the L( 7
10 , 0) subalgebra is chosen so that its stress tensor is of σ -type in VB

� (c.f.
Sect. 3.1.2). One can therefore define an involutionσ as in equation (3.9)which lies in the
2A conjugacy class of B. Using arguments similar to the ones we used in the case of the
baby monster, we know that CentB(σ ) ∼= CentB(2A) ∼= 2.2E6(2).2 [107] stabilizes the
stress tensor of the L( 7

10 , 0) subalgebra. Indeed, the Griess algebra of the baby monster

VOA is VB
�
2
∼= 1⊕96255 as a representation of B, and a character-theoretic calculation

shows that this decomposes into 2.2E6(2).2 representations24 as

VB
�
2

∣

∣

∣

2.2E6(2).2
∼= 1(1) ⊕ 1(1) ⊕ 1938(1) ⊕ 45696(1) ⊕ 48620(1) (3.53)

where 1(1), 1938(1), 48620(1), and 45696(1) are the 1st, 3rd, 5th, and 192nd irreps of
2.2E6(2).2 in the order in which they are recorded in the Gap library [108]. The two-
dimensional invariant subspace is spanned by the stress tensor of theL( 7

10 , 0) subalgebra
aswell as its commutant inVB

�,which implies that the former is stabilizedby2.2E6(2).2.
As in the case of the baby monster VOA, the central order 2 element of 2.2E6(2).2
acts trivially on ˜WD2A ; this is the same as the statement that the map (2.98) has a Z2
kernel. Therefore, we must quotient by this Z2 to get (a subgroup of) the automorphism
group of ˜WD2A . This leads us to propose that 2E6(2).2 ⊂ Aut( ˜WD2A). We will see
momentarily that in fact some of these are outer automorphisms25, and in particular that
2E6(2) = Inn( ˜WD2A).

Let us try to find evidence for these claims in the dual characters of ˜WD2A in V �. We
will first describe these as the Hecke image of the characters ofWD2A . The central charge
c̃t of ˜WD2A is an integer multiple of the central charge ct ofWD2A , c̃t = 24− ct = 19ct ,
where ct = 6

5 . Moreover, the conductor of the χα is N = 20, so we may consider
applying the Hecke operator T19 to the characters χα ofWD2A , which can be computed
using the modular S matrix in (3.49). This yields the dual characters χ̃α of ˜WD2A in V �,
i.e.

χ̃α(τ ) = (T19χ)α(τ ). (3.54)

24 Whenever a group has multiple irreducible representations of dimension d, we use the notation d(i) to
denote the i th irrep of dimension d, according to how they are ordered in Gap.
25 The naive prediction from the monstralizer [D2A ◦ 22.2E6(2)].S3 is that the full automorphism group

should be 2E6(2).S3 as opposed to 2E6(2).2. However, if one decomposes the Griess algebra V �
2 into represen-

tations of 2E6(2).S3 one does not find any singlets besides the usual stress tensor, which indicates that a decon-
struction is not possible. This example is the reason why we say in general that Aut(W

˜G ) = (˜G/Z(˜G)).H ′
for H ′ a subgroup of the group H which appears in the monstralizer [G ◦ ˜G].H . It is the only example we
consider for which H ′ 
= H .
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Explicitly, the q-expansions of the Hecke images are

χ̃0(τ ) = q−
19
20

(

1 + 48621q2 + 4327402q3 + 152207784q4 + · · ·
)

,

χ̃1(τ ) = q
9
20

(

1938 + 556206q + 31485546q2 + 875268630q3 + · · ·
)

,

χ̃2(τ ) = q
11
20

(

2432 + 539904q + 27826944q2 + 734726656q3 + · · ·
)

,

χ̃5(τ ) = q
19
20

(

45696 + 4713216q + 177241728q2 + 3893072640q3 + · · ·
)

,

χ̃3(τ ) = χ̃4(τ ) = χ̃2(τ ), χ̃6(τ ) = χ̃7(τ ) = χ̃5(τ ).

(3.55)

Another way to obtain these characters is with a modular linear differential equation.
Evidently the three irreducible modules of ˜WD2A of highest weight 3

2 have identical
characters, and the same is true of the three modules with highest weight 19

10 . Therefore,
there are only 4 inequivalent characters, and we may therefore try to find the characters
of the commutant algebra with a fourth order modular linear differential equation. The
following MLDE has the dual characters as solutions,
[

D4 +
1729π2

450
E4(τ )D2 − 4159iπ3

675
E6(τ )D − 35739π4

10000
E2
4(τ )

]

χ̃α(τ ) = 0. (3.56)

As a consistency check we verify that these characters obey a bilinear relation with the
partition function of the moonshine module,

J (τ ) =
∑

α

χα(τ)χ̃α(τ ) (3.57)

which is consistent with the desired decomposition of the moonshine module in terms
of itsWD2A ⊗ ˜WD2A subalgebra,

V � ∼=
⊕

α

WD2A(α)⊗ ˜WD2A(α). (3.58)

Since ˜WD2A appears as a subalgebra ofVB
�, it should also be possible on general grounds

to decompose the modules/characters of the baby monster VOA into bilinears involving
the characters of L( 7

10 , 0) and
˜WD2A , and indeed one can check that

χVB�(0)(τ ) = χ
(4)
1,1(τ )χ̃0(τ ) + χ

(4)
1,3(τ )χ̃1(τ ) + χ

(4)
1,4(τ )χ̃4(τ ) + χ

(4)
1,2(τ )χ̃7(τ ),

χVB�(1)(τ ) = χ
(4)
1,4(τ )χ̃0(τ ) + χ

(4)
1,2(τ )χ̃1(τ ) + χ

(4)
1,1(τ )χ̃4(τ ) + χ

(4)
1,3(τ )χ̃7(τ ),

χVB�(2)(τ ) = χ
(4)
2,1(τ )(χ̃2(τ ) + χ̃3(τ )) + χ

(4)
2,2(τ )(χ̃5(τ ) + χ̃6(τ )),

(3.59)

which suggests that

VB
�(0) ∼= 〈0, 0〉 ⊕ 〈 35 , 1〉 ⊕ 〈 32 , 4〉 ⊕ 〈 1

10 , 7〉
VB

�(1) ∼= 〈 32 , 0〉 ⊕ 〈 1
10 , 1〉 ⊕ 〈0, 4〉 ⊕ 〈 35 , 7〉

VB
�(2) ∼= 〈 7

16 , 2〉 ⊕ 〈 7
16 , 3〉 ⊕ 〈 3

80 , 5〉 ⊕ 〈 3
80 , 6〉

(3.60)

where we have introduced the notation 〈h, α〉 := L( 7
10 , h)⊗ ˜WD2A(α).
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For concreteness, we illustrate how one can determine how the various coefficients of
the characters decompose into irreducible representations of the inner/full automorphism
groups. We will see in a moment that the modules ˜WD2A(α) for α = 0, 1, 4, 7 are acted
upon by the full automorphism group 2E6(2).2, while the modules ˜WD2A(α) for α = 2,
3, 5, 6 are in general permuted amongst each other by the outer automorphisms, and so
are only representations of the inner automorphism group 2E6(2). For uniformity, we
will actually work with the groups 22.2E6(2).2 and 22.2E6(2) as opposed to 2E6(2).2
and 2E6(2) because the latter pair are in general realized projectively on the modules of
˜WD2A , and all the projective representations of relevance to us are honest representations
of the covering groups 22.2E6(2).2 and 22.2E6(2). Similarly, wewill workwith the group
2.B as opposed to B.

Then, the only possibility that is consistent with the decomposition of VB
�
2 into

2.2E6(2).2 irreps26 (equation (3.53)), the decomposition ofVB
�(0) intoL( 7

10 , 0)⊗ ˜WD2A

modules (equation (3.60)), and the characters of the ˜WD2A(α) (equation (3.55)) is if

˜WD2A(0)2 ∼= 1(1) ⊕ 48620(1), ˜WD2A(1) 7
5

∼= 1938(1), ˜WD2A(7) 19
10

∼= 45696(1)
(3.61)

as 22.2E6(2).2 representations. Analogously, the fact that the 2.B representation

VB
�
3
∼= 1⊕ 96255⊕ 9550635 (3.62)

decomposes as

VB
�
3

∣

∣

∣

22.2E6(2).2
∼= 2 · 1(1) ⊕ 2 · 1938(1) ⊕ 48620(1) ⊕ 554268(1) ⊕ 1322685(1)

⊕ 2956096(1) ⊕ 2432(1) ⊕ 2 · 45696(1) ⊕ 4667520(1)
(3.63)

determines that

˜WD2A(0)3 ∼= 1(1) ⊕ 48620(1) ⊕ 1322685(1) ⊕ 2956096(1), ˜WD2A(4) 3
2

∼= 2432(1),

˜WD2A(1) 12
5

∼= 1938(1) ⊕ 554268(1), ˜WD2A(7) 29
10

∼= 45696(1) ⊕ 4667520(1).

(3.64)

One can continue this process to higher orders to obtain constraints on how the ˜WD2A (α)h
transform for α = 0, 1, 4, 7.

On the other hand, if we attempt to restrict the 2.B representation VB
�(2) 31

16

∼= 96256

to a 22.2E6(2).2 representation, we find that it decomposes as

VB
�
31
16

∣

∣

∣

22.2E6(2).2
∼= 4864⊕ 91392. (3.65)

This seems to contradict the fact that equation (3.60) requires a decomposition of the
form 96256 = 2432+ 2432+ 45696+ 45696. This can be resolved by further restricting
to 22.2E6(2), in which case we find that the representations 4864 and 91392 split in half,

VB
�
31
16

∣

∣

∣

22.2E6(2)
∼= 2432(2) ⊕ 2432(3) ⊕ 45696(2) ⊕ 45696(3). (3.66)

26 Irreps of 2.2E6(2).2 are the same as irreps of 22.2E6(2).2 in which the central Z2 which is generated
by the 2A conjugacy class acts trivially. In the Gap ordering, the first 320 irreps of 22.2E6(2).2 map onto the
irreps of 2.2E6(2).2.
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The interpretation of this is that the extra involution in 22.2E6(2).2 is acting as an outer
automorphism which mixes ˜WD2A(2) ↔ ˜WD2A(3) and ˜WD2A(5) ↔ ˜WD2A(6), but the
22.2E6(2) subgroup preserves thesemodules and therefore acts by inner automorphisms,
namely as

˜WD2A(2) 3
2

∼= 2432(2), ˜WD2A(3) 3
2

∼= 2432(3),

˜WD2A(5) 19
10

∼= 45696(2), ˜WD2A(6) 19
10

∼= 45696(2).
(3.67)

Continuing in this manner to one order higher, it is straightforward to see that the
decomposition

VB
�
47
16

∣

∣

∣

22.2E6(2)
∼= 2 · 2432(2) ⊕ 2 · 2432(3) ⊕ 2 · 45696(2) ⊕ 2 · 45696(3)
⊕ 537472(2) ⊕ 537472(3) ⊕ 4667520(2) ⊕ 4667520(3).

(3.68)

implies that

˜WD2A(2) 5
2

∼= 2432(2) ⊕ 537472(2), ˜WD2A(3) 5
2

∼= 45696(3) ⊕ 4667520(3)

˜WD2A(5) 29
10

∼= 45696(2) ⊕ 4667520(2), ˜WD2A(6) 29
10

∼= 45696(3) ⊕ 4667520(3)
(3.69)

Todouble check these proposeddecompositions, one can check that the twined characters
they lead to can be combined bilinearly with the characters ofWD2A to yield monstrous
MT series (at least to low orders in the q-expansion),

Jg(τ ) =
∑

α

χα(τ)χ̃g,α(τ ) (g ∈ 22.2E6(2)) (3.70)

where here we are implicitly using the fact that 22.2E6(2) is a subgroup of M on the left
hand side of the equation.

3.2.3. (D3A,Fi23): Second largest Fischer group For our next example, we consider
the commutant of WD3A , the VOA generated by two Ising conformal vectors whose
Miyamoto involutions have product lying in the 3A conjugacy class of M. We will see
that the commutant ˜WD3A admits an action by the second largest Fischer group Fi23,
and for this reason we denote it with the symbol

VF�
23 = ComV � (WD3A). (3.71)

We will also realize VF�
23 as a commutant subalgebra of VF�

24, which will allow us to
leverage the relationship between the corresponding Fischer groups Fi23 and Fi24 and
get a complementary perspective on its symmetry groups to the one obtained from the
general argument at the beginning of Sect. 3.2.

The chiral algebra WD3A of central charge ct = 58
35 has been studied in [36–38],

where it was found that it contains a subalgebra of the form,

N ⊗ P(3) ∼= N ⊗ (L( 45 , 0)⊕ L( 45 , 3)
)

(3.72)
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whereN := L( 67 , 0)⊕L( 67 , 5). It has 6 irreduciblemoduleswhose heighestweights have
dimensions h = (0, 1

7 ,
5
7 ,

2
5 ,

19
35 ,

4
35 ). They decompose into N ⊗ P(3) representations

as (c.f. Theorem 4.9 of [37])

WD3A(0) ∼= P(3)⊗N (0)⊕ P(3, [0, 2])⊗N ( 43 )
+ ⊕ P(3, [3, 1])⊗N ( 43 )

−

WD3A(1) ∼= P(3)⊗N ( 17 )⊕ P(3, [0, 2])⊗N ( 1021 )
+ ⊕ P(3, [3, 1])⊗N ( 1021 )

−

WD3A(2) ∼= P(3)⊗N ( 57 )⊕ P(3, [0, 2])⊗N ( 1
21 )

+ ⊕ P(3, [3, 1])⊗N ( 1
21 )

−

WD3A(3) ∼= P(3, [2, 0])⊗N (0)⊕ P(3, [1, 1])⊗N ( 43 )
+ ⊕ P(3, [2, 2])⊗N ( 43 )

−

WD3A(4) ∼= P(3, [2, 0])⊗N ( 17 )⊕ P(3, [1, 1])⊗N ( 1021 )
+ ⊕ P(3, [2, 2])⊗N ( 1021 )

−

WD3A(5) ∼= P(3, [2, 0])⊗N ( 57 )⊕ P(3, [1, 1])⊗N ( 1
21 )

+ ⊕ P(3, [2, 2])⊗N ( 1
21 )

−
(3.73)

where the modules of N decompose into L( 67 , 0) representations as

N (0) ∼= L( 67 , 0)⊕ L( 67 , 5), N ( 17 )
∼= L( 67 ,

1
7 )⊕ L( 67 ,

22
7 ), N ( 57 )

∼= L( 67 ,
5
7 )⊕ L( 67 ,

12
7 )

N ( 43 )
± ∼= L( 67 ,

4
3 )
±, N ( 1

21 )
± ∼= L( 67 ,

1
21 )

±, N ( 1021 )
± ∼= L( 67 ,

10
21 )

±.

(3.74)

AlthoughN (h)+ andN (h)− are isomorphic asL( 67 , 0) representations, they are distinct
asN ∼= L( 67 , 0)⊕L( 67 , 5) representations. In particular,N− ∼= σ ◦N + (c.f. Sect. 2.1.3)
where σ is the order 2 automorphism ofN which acts trivially on L( 67 , 0) and as−1 on
L( 67 , 5). For convenience, we provide expressions for the characters of WD3A in terms
of minimal model characters,

χ0 =
(

χ
(5)
1,1 + χ

(5)
1,5

) (

χ
(6)
1,1 + χ

(6)
1,6

)

+ 2χ(5)
1,3χ

(6)
3,1,

χ1 =
(

χ
(5)
1,1 + χ

(5)
1,5

) (

χ
(6)
1,2 + χ

(6)
1,5

)

+ 2χ(5)
1,3χ

(6)
3,2,

χ2 =
(

χ
(5)
1,1 + χ

(5)
1,5

) (

χ
(6)
1,3 + χ

(6)
1,4

)

+ 2χ(5)
1,3χ

(6)
3,3,

χ3 =
(

χ
(5)
2,1 + χ

(5)
2,5

) (

χ
(6)
1,1 + χ

(6)
1,6

)

+ 2χ(5)
2,3χ

(6)
3,1,

χ4 =
(

χ
(5)
2,1 + χ

(5)
2,5

) (

χ
(6)
1,2 + χ

(6)
1,5

)

+ 2χ(5)
2,3χ

(6)
3,2,

χ5 =
(

χ
(5)
2,1 + χ

(5)
2,5

) (

χ
(6)
1,3 + χ

(6)
1,4

)

+ 2χ(5)
2,3χ

(6)
3,3 .

(3.75)

Now, the fact that WD3A (whose stress tensor we write as t) has an L( 45 , 0) ⊗ L( 67 , 0)
subalgebra means that there is a decomposition of the stress tensor of V � of the form

T (z) = t (z) + t̃(z) = t (
4
5 )(z) + t (

6
7 )(z) + t̃(z). (3.76)

We can apply an iterated deconstruction to this decomposition, as in (2.96). The

first iteration, ComV � (Vir(t (
4
5 ))) ∼= ComV � (L( 45 , 0) ⊕ L( 45 , 3)), was computed in

Sect. 3.1.3 and is simply VF�
24. The second iteration is then ComVF�

24
(Vir(t (

6
7 ))) ∼=

ComVF�
24
(L( 67 , 0)⊕ L( 67 , 5)). Using (2.97), this implies that

VF�
23
∼= ComV �

(

WD3A

) ∼= ComVF�
24

(

L( 67 , 0)⊕ L( 67 , 5)
)

. (3.77)
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In other words, we have realized VF�
23 as a commutant subalgebra of VF�

24. We will

argue for the symmetries of VF�
23 using this description. We start by noting that the

centralizer CentFi24(σU ) ∼= Z2 × Fi23 [109] stabilizes t (
6
7 ). To see this, note that the

Griess algebra (VF�
24)2

∼= 1⊕ 57477 decomposes into Z2 × Fi23 representations as

(VF�
24)2

∣

∣

∣

Z2×Fi23
∼= 1+ ⊕ 1+ ⊕ 782+ ⊕ 30888+ ⊕ 25806− (3.78)

where the +/− indicates how the Z2 acts. The two-dimensional trivial subspace is

spanned by t (
6
7 ) and t̃ , and so Z2 × Fi23 acts by automorphisms on VF�

23. However,
σU acts trivially, and so after taking the quotient by this Z2, we get that the true auto-
morphism group is simply Fi23 ⊂ Aut(VF�

23).

We move on to deriving the characters of VF�
23. From the known modular matrices

of minimal models, one can show that the characters χα transform under S and T as

χα(− 1
τ
) =

∑

β

Sαβχβ, χα(τ + 1) =
∑

β

Tαβχβ(τ). (3.79)

where the S-matrix is

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α−sinπ
7 α−cos3π14 α−cos π

14 α+sinπ
7 α+cos3π14 α+cos π

14
α−cos3π14 −α−cos π

14 α−sinπ
7 α+cos3π14 −α+cos π

14 α+sinπ
7

α−cos π
14 α−sinπ

7 −α−cos3π14 α+cos π
14 α+sinπ

7 −α+cos3π14
α+sinπ

7 α+cos3π14 α+cos π
14 −α−sinπ

7 −α−cos3π14 −α−cos π
14

α+cos3π14 −α+cos π
14 α+sinπ

7 −α−cos3π14 α−cos π
14 −α−sinπ

7
α+cos π

14 α+sinπ
7 −α+cos 3π14 −α−cos π

14 −α−sinπ
7 α−cos3π14 ,

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.80)

with α± =
√

2
35 (5±

√
5), and the T-matrix reads

T = diag
(

e−
29π i
210 , e

31π i
210 , e−

149π i
210 , e

139π i
210 , e

199π i
210 , e

19π i
210

)

. (3.81)

Labeling the dualmodules ofVF�
23 according to how they appear in the decomposition

of V � with respect to itsWD3A ⊗ VF�
23 subalgebra,

V � ∼=
⊕

α

WD3A(α)⊗ VF�
23(α) (3.82)

we claim that the characters χVF�
23(α)

(τ ) are solutions to the 6th-order MLDE,

[

D6 + μ1E4D4 + iμ2E6D3 + μ3E
2
4D2 + iμ4E4E6D + μ5E

3
4 + μ6E

2
6

]

χVF�
23(α)

= 0,

(3.83)

with

μ1 = 24679π2

6300
, μ2 = 2531831π3

231525
, μ3 = −4706513771π4

277830000
,

μ4 = −7514276039π5

486202500
, μ5 = 2236826255833π6

583443000000
, μ6 = 294432149791π6

107207651250
.

(3.84)
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Table 3. Decompositions of the graded components of the modules VF�23(α) into irreducible representations
of Fi23

α h VF�23(α)h
0 0 1

2 1⊕ 30888
3 1⊕ 30888⊕ 279565⊕ 2236520

1 13/7 25806
20/7 25806⊕ 274482⊕ 2322540

2 9/7 782
16/7 782⊕ 279565

3 8/5 5083
13/5 5083⊕ 812889

4 51/35 3588
86/35 3588⊕ 789360

5 66/35 60996
101/35 60996⊕ 1951872⊕ 3913910

The Fourier expansions of the six independent solutions to this equation are

χVF�
23(0)

(τ ) = q−
391
420

(

1 + 30889q2 + 2546974q3 + 85135558q4 + · · ·
)

,

χVF�
23(1)

(τ ) = q
389
420

(

25806 + 2622828q + 96358822q2 + 2067752532q3 + · · ·
)

,

χVF�
23(2)

(τ ) = q
149
420

(

782 + 280347q + 16687166q2 + 470844155q3 + · · ·
)

,

χVF�
23(3)

(τ ) = q
281
420

(

5083 + 817972q + 36460359q2 + 877212478q3 + · · ·
)

,

χVF�
23(4)

(τ ) = q
221
420

(

3588 + 792948q + 39982878q2 + 1031142072q3 + · · ·
)

,

χVF�
23(5)

(τ ) = q
401
420

(

60996 + 5926778q + 213547709q2 + 4527955950q3 + · · ·
)

.

(3.85)

As a consistency check, one can verify that, to low orders in the q-expansion, these
characters pair with the characters ofWD3A to yield the partition function of V �,

J (τ ) =
∑

α

χα(τ)χVF�
23(α)

(τ ). (3.86)

Furthermore, we see that the highest weight subspaces have dimensions which coincide
with irreducible representations of Fi23, and that higher order terms decompose naturally,
as described in Table 3. These decompositions can be derived by demanding consistency
with the restriction of the graded components V �

n to Fi23, in a manner analogous to the
previous section.

To summarize, the chiral algebra VF�
23 has central charge 2212/35 and Fi23 as (a

subgroup of) its automorphism group, all of which acts by inner automorphisms. It can
be embedded into VF�

24,

(

L( 67 , 0)⊕ L( 67 , 5)
)⊗ VF�

23 ⊂ VF�
24 (3.87)

or into the moonshine module as

WD3A ⊗ VF�
23 ⊂ V � (3.88)
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and so naturally fits into a chain of embeddings,

VF�
23 ↪→ VF�

24 ↪→ V �. (3.89)

The algebra WD3A also has a conformal vector of central charge 1
2 (c.f. Appendix A of

[38]), and so t̃(z) also fits into a decomposition of the stress tensor of V � of the form

T (z) = t (
1
2 )(z) + t (

81
70 )(z) + t̃(z). (3.90)

If one performs an iterated deconstruction with respect to this decomposition, it follows
that VF�

23 also embeds into the baby monster VOA VB
�. We will deconstruct this theory

one step further to obtain a chiral algebra with Fi22 symmetry in Sect. 3.2.6.

3.2.4. (D4A, 21+22.McL): McLaughlin group The 4A algebra WD4A is most readily
described as a charge conjugation orbifold (c.f. Sect. 2.1.5) V+

L , i.e. the subspace of a
lattice VOA which is fixed by its canonical involution θ . The central charge ct = 2
algebra WD4A corresponds [38] to the specific choice

L =
{

8
∑

i=1
aiεi

∣

∣

∣

∣

all ai ∈ Z or all ai ∈ 1
2 + Z with

3
∑

i=1
ai =

8
∑

i=4
ai = 0

}

(3.91)

where εi are any 8 vectors in R
8 with 〈εi , ε j 〉 = 2δi j ; it is generated by two vectors,

v1 = 1

2

⎛

⎝

3
∑

i=1
εi +

8
∑

j=4
ε j

⎞

⎠ , v2 = 1

2

⎛

⎝−
3
∑

i=1
εi +

8
∑

j=4
ε j

⎞

⎠ . (3.92)

This lattice can be realized as a sublattice of�Leech [102] and, following logic similar to
that used in Sect. 3.1.4, we claim that the commutant ˜WD4A can be described explicitly
as the canonical Z2 orbifold of the lattice VOA attached to the orthogonal complement
˜L := L⊥ of L in �Leech. This description makes it transparent that ˜WD4A ↪→ ˜WZ4A

in accordance with the fact that the associated monstralizers (D4A, 21+22.McL) and
(Z4A, 4.222.Co3) include into one another: indeed, this follows simply because the lattice
on which ˜WD4A is based is a sub-lattice of the one on which ˜WZ4A is based. We will
also use this description to perform an explicit check on the characters produced by the
Hecke method.

The Miyamoto involutions associated to the two Ising vectors which generateWD4A

can be lifted to automorphisms of WD4A and V � which generate a dihedral subgroup
D4A of the monster M. The centralizer of this subgroup is CentM(D4A) ∼= 21+22.McL
[22], and we conjecture that this example respects the symmetry properties which are
predicted from its associated monstralizer, i.e.

M( ˜WD4A) = 21+22.McL

Inn( ˜WD4A) = 222.McL

Aut( ˜WD4A) = 222.McL.2

Fus( ˜WD4A) = Z2

(3.93)
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Further evidence for these symmetry groups comes from the fact that the lattice L is
stabilized by a McL subgroup of Aut(�Leech) ∼= Co0, and so we expect V+

˜L
to admit an

action by some extension of McL by automorphisms.
As illustrated in Sect. 2.1.5, the characters of the modulesWD4A(α) can be expressed

in terms of the vector-valued theta function θL+λ∗(τ ) with λ∗ running over elements
of the discriminant group L∗/L . We can compute this information using the data files
published with [102] and functions implemented in Magma [103]. We find that the
discriminant group is given by L∗/L ∼= Z15 ∼= Z3 × Z5 and, using the notation
�a,b(τ ) := θL+aγ ∗3 +bγ ∗5 (τ ) with γ ∗3 = (v1 − v2)/3 and γ ∗5 = (v1 + v2)/5 generators of
the Z3 and Z5 respectively, we recover the q-expansions

�0,0(τ ) = 1 + 4q2 + 2q3 + 2q5 + 8q8 + 6q12 + 4q17 + 4q18 + · · · ,
�0,1(τ ) = q

1
5 (1 + 2q + 5q2 + 2q3 + 3q4 + · · · ),

�0,2(τ ) = q
4
5 (3 + q + 2q2 + 4q3 + 4q4 + q5 + · · · ),

�1,0(τ ) = q
1
3 (1 + 3q + 2q2 + 5q3 + 2q4 + · · · ),

�1,1(τ ) = q
2
15 (1 + q + 3q2 + q3 + 2q4 + 3q5 + · · · ),

�1,2(τ ) = q
8
15 (2 + q + 2q2 + q3 + 3q4 + · · · ),

�a,b(τ ) = �3−a,b(τ ) = �a,5−b(τ ) = �3−a,5−b(τ ).

(3.94)

The identifications on the last line follow from the fact that the dual lattice L∗ has a
Z2 × Z2 symmetry group which preserves L and induces the automorphisms (a, b) �→
(−a, b) and (a, b) �→ (a,−b) on the discriminant group L∗/L . Now, one can construct
the characters χα(τ) of the modulesWD4A(α) in terms of these theta functions as below,

χ0(τ ) := ξ
(L)
1 (τ ) = 1

2

(

�0,0(τ )

η(τ )2
+�0,1(τ )

2
)

,

χ1(τ ) := ξ
(L)
j (τ ) = 1

2

(

�0,0(τ )

η(τ )2
−�0,1(τ )

2
)

,

χ2(τ ) := ξ
(L)
γ ∗5

(τ ) = �0,1(τ )

η(τ )2
,

χ3(τ ) := ξ
(L)
2γ ∗5

(τ ) = �0,2(τ )

η(τ )2
, χ4(τ ) := ξ

(L)
γ ∗3

(τ ) = �1,0(τ )

η(τ )2
,

χ5(τ ) := ξ
(L)
γ ∗3 +γ ∗5

(τ ) = �1,1(τ )

η(τ )2
,

χ6(τ ) = ξ
(L)
γ ∗3 +4γ ∗5

(τ ) = �1,4(τ )

η(τ )2
,

χ7(τ ) := ξ
(L)
γ ∗3 +2γ ∗5

(τ ) = �1,2(τ )

η(τ )2
, χ8(τ ) := ξ

(L)
γ ∗3 +3γ ∗5

(τ ) = �1,3(τ )

η(τ )2
,

χ9(τ ) := ξ (L)
σ (τ ) = �1,0(τ )

2 +�1,1(τ )
2,

χ10(τ ) := ξ (L)
τ (τ ) = �1,0(τ )

2 −�1,1(τ )
2.

(3.95)

Here, η(τ) is the Dedekind η function and�α,β is a generalized theta function defined in
equation (2.59). We note that χ5 = χ6 and χ7 = χ8, which is a consequence of the fact
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that WD4A inherits a Z2 ∼= Aut(L)/Z2 outer automorphism from L which exchanges
these modules.

It is straightforward to see that the behavior of the characters (3.95) under modular
transformations is described by the S-matrix

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2
√
15

1
2
√
15

1√
15

1√
15

1√
15

1√
15

1√
15

1√
15

1√
15

1
2

1
2

1
2
√
15

1
2
√
15

1√
15

1√
15

1√
15

1√
15

1√
15

1√
15

1√
15

− 1
2 − 1

2
1√
15

1√
15

−α+ α− 2√
15

α− α− −α+ −α+ 0 0
1√
15

1√
15

α− −α+
2√
15

−α+ −α+ α− α− 0 0
1√
15

1√
15

2√
15

2√
15

− 1√
15
− 1√

15
− 1√

15
− 1√

15
− 1√

15
0 0

1√
15

1√
15

α− −α+ − 1√
15

β− β+ γ− −γ+ 0 0
1√
15

1√
15

α− −α+ − 1√
15

β+ β− −γ+ γ− 0 0
1√
15

1√
15

−α+ α− − 1√
15

γ− −γ+ β+ β− 0 0
1√
15

1√
15

−α+ α− − 1√
15

−γ+ γ− β− β+ 0 0
1
2 − 1

2 0 0 0 0 0 0 0 1
2 − 1

2
1
2 − 1

2 0 0 0 0 0 0 0 − 1
2

1
2

,

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.96)

whereα± =
√

3±√5
30 , β± = 1+

√
5±
√

30−6√5
4
√
15

, andγ± = 1
2

√

1
15

(

9 +
√
5±

√

30− 6
√
5
)

.

The T -matrix reads

T = diag
(

e−
iπ
6 , e−

iπ
6 , e

7iπ
30 , e−

17iπ
30 , e

iπ
2 , e

iπ
10 , e

iπ
10 , e

9iπ
10 , e

9iπ
10 , e

iπ
12 , e−

11iπ
12

)

. (3.97)

One can check that these matrices satisfy the relations of PSL2(Z), i.e. S2 = 1 and
(ST )3 = 1. Moreover, applying the Verlinde formula yields a consistent fusion algebra,
whose structure constants we present in appendix A (see also [110,111]).

As we said earlier, we expect that the commutant ˜WD4A is described by the Z2

orbifold V+
˜L
of the c = 22 lattice VOA associated with ˜L . To check this claim at the

level of characters, we start by computing the vector-valued theta function of ˜L , using a
similar notation ˜�a,b(τ ) := θ

˜L+aλ∗3+bλ∗5
(τ ) to the one used for the theta function of L ,

˜�0,0(τ ) = 1 + 44550q2 + 2525600q3 + 44995500q4 + 418427856q5 + · · ·
˜�0,1(τ ) = q

9
5 (15400 + 1269675q + 26908200q2 + 278446300q3 + · · · ),

˜�0,2(τ ) = q
6
5 (275 + 113400q + 4833675q2 + 73167600q3 + · · · ),

˜�1,0(τ ) = q
5
3 (7128 + 779625q + 18824400q2 + 210097800q3 + · · · ),

˜�1,1(τ ) = q
28
15 (22275 + 1603800q + 32053725q2 + 319334400q3 + · · · ),

˜�1,2(τ ) = q
22
15 (2025 + 356400q + 10758825q2 + 135432000q3 + · · · ),

˜�a,b(τ ) = ˜�3−a,b(τ ) = ˜�a,5−b(τ ) = ˜�3−a,5−b(τ ).

(3.98)
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One can then find the dual characters χ̃α(τ ) using these theta functions. Similarly to
equation (3.95), the dual characters χ̃α(τ ) are

χ̃0(τ ) := ξ
(˜L)
1 (τ ) = 1

2

(

˜�0,0(τ )

η(τ )22
+�0,1(τ )

22
)

,

χ̃1(τ ) := ξ
(˜L)
j (τ ) = 1

2

(

˜�0,0(τ )

η(τ )22
−�0,1(τ )

22
)

,

χ̃2(τ ) := ξ
(˜L)
λ∗5

(τ ) = ˜�0,1(τ )

η(τ )22
, χ̃3(τ ) := ξ

(˜L)
2λ∗5

(τ ) = ˜�0,2(τ )

η(τ )22
,

χ̃4(τ ) := ξ
(˜L)
λ∗3

(τ ) = ˜�1,0(τ )

η(τ )22
,

χ̃5(τ ) := ξ
(˜L)
λ∗3+λ∗5

(τ ) = ˜�1,1(τ )

η(τ )22
, χ̃6(τ ) = ξ

(˜L)
λ∗3+4λ∗5

(τ ) = ˜�1,4(τ )

η(τ )22
,

χ̃7(τ ) := ξ
(˜L)
λ∗3+2λ∗5

(τ ) = ˜�1,2(τ )

η(τ )22
, χ̃8(τ ) := ξ

(˜L)
λ∗3+3λ∗5

(τ ) = ˜�1,3(τ )

η(τ )22
,

χ̃9(τ ) := ξ (˜L)
σ (τ ) = 210(�1,0(τ )

22 +�1,1(τ )
22),

χ̃10(τ ) := ξ (˜L)
τ (τ ) = 210(�1,0(τ )

22 −�1,1(τ )
22).

(3.99)

With these conventions, the characters (3.95) and (3.99) diagonally pair to produce the
partition function of the monster CFT,

J (τ ) =
10
∑

α=0
χα(τ)χ̃α(τ ) (3.100)

which is consistent with a decomposition of the form

V � ∼=
⊕

α

WD4A(α)⊗ ˜WD4A(α). (3.101)

Wewould now like to argue that the characters of ˜WD4A can alternatively be computed
using Hecke operators. Let ct and c̃t be the central charges ofWD4A and ˜WD4A , respec-
tively. The fact that c̃t = 11ct suggests that we should apply the Hecke operator T11 to
the characters χ in equation (3.95). Doing so recovers27 the following q-expansions,

χ̃0(τ ) ≡ (T11χ)0(τ ) = q−
11
12 (1 + 22528q2 + 1753334q3 + 56418362q4 + · · · )

χ̃1(τ ) ≡ (T11χ)1(τ ) = q
1
12 (22 + 22297q + 1754896q2 + 56410563q3 + · · · )

χ̃2(τ ) ≡ (T11χ)3(τ ) = q
53
60 (15400 + 1608475q + 59076050q2 + · · · )

χ̃3(τ ) ≡ (T11χ)2(τ ) = q
17
60 (275 + 119450q + 7404100q2 + 211389200q3 + · · · )

χ̃4(τ ) ≡ (T11χ)4(τ ) = q
3
4 (7128 + 936441q + 37936350q2 + 856665315q3 + · · · )

27 In most examples, the bilinear which pairs χα with its Hecke images to produce the J -function can be
obtained as a linear combination of the matrices G� described in Sect. 2.3.2. This is one of the few instances
for which this is not true, i.e. the matrix which relates T11χ to χ̃ cannot be realized as a linear combination
of the matrices (G�)

T . This suggests that there are modular invariant ways to combine characters with their
Hecke images beyond the bilinears studied in [42], however we leave their study to future work.
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χ̃5(τ ) ≡ (T11χ)7(τ ) = q
19
20 (22275 + 2093850q + 73462950q2 + · · · )

χ̃6(τ ) ≡ (T11χ)8(τ ) = q
19
20 (22275 + 2093850q + 73462950q2 + · · · )

χ̃7(τ ) ≡ (T11χ)5(τ ) = q
11
20 (2025 + 400950q + 19156500q2 + 475259400q3 + · · · )

χ̃8(τ ) ≡ (T11χ)6(τ ) = q
11
20 (2025 + 400950q + 19156500q2 + 475259400q3 + · · · )

χ̃9(τ ) ≡ (T11χ)10(τ ) = q
23
24 (45056 + 4190208q + 146161664q2 + · · · )

χ̃10(τ ) ≡ (T10χ)9(τ ) = q
11
24 (2048 + 518144q + 26898432q2 + · · · ) (3.102)

These q-series perfectly agree with the expressions in (3.98).
Finally, we comment that V+

L admits a V+√
6Z
⊗ V+√

10Z
∼= P(4)⊗ V+√

10Z
subalgebra

which makes some of its symmetries more manifest. In particular, the characters χα

in equation (3.95) can be written in terms of ψ
(4)
�,m and the characters of V√10Z (c.f.

equation (2.60) with N = 5); this allows one to compute Z4 twined characters χω,α(τ )

by dressing ψ
(4)
�,m with the phase e

2π im
4 wherever it appears in the decomposition of χα .

It turns out that the twined characters χω,α(τ ) and χ̃α(τ ) combine bilinearly to produce
the 4A McKay-Thompson series J4A of V �,

10
∑

α=0
χ̃α(τ )χω,α(τ ) = q−1 + 276q + 2048q2 + 11202q3 + 49152q4 + 184024q5 + · · ·

(3.103)

in harmony with the fact thatWD4A preserves a dihedral groupM(WD4A) = D4A whose
order 4 elements live in the 4A conjugacy class of M.

3.2.5. (D5A,HN): Harada-Norton group In this section, we study the commutant of
WD5A , the subalgebra of V � generated by two conformal vectors e and f whose
Miyamoto involutions τe and τ f have product residing in the 5A conjugacy class [112].
We claim that the centralizer of this product, CentM(τeτ f ) ∼= Z5 × HN [92], stabilizes
the conformal vector of WD5A , and that the Z5 ∼= 〈τeτ f 〉 acts trivially on ˜WD5A so that
at least HN is the automorphism group. We therefore denote the commutant ˜WD5A by
VHN�. We will in fact argue momentarily that the slightly larger group HN.2 acts by
automorphisms, but that the extra Z2 is outer.

We will use two different descriptions of WD5A . In the first, we will characterize
WD5A in terms of its P(5) ⊗ P(5) subalgebra. The fusion algebra of P(5) ⊗ P(5)
has a Z5 × Z5 symmetry, and the generator of the diagonal Z5 lifts to τeτ f ; this is
one way to see why the Z5 acts trivially on VHN�. Another description is in terms
of a L( 12 , 0) ⊗ L( 2528 , 0) ⊗ L( 2528 , 0) subalgebra. This decomposes the stress tensor t

of WD5A as t = t (
1
2 ) + t (

25
14 ); performing an iterated deconstruction with respect to this

decompositionmakes it clear that theHarada-NortonVOAembeds into the babymonster
VOA,

V � ⊃ Vir(t (
1
2 ))⊗ VB

�

⊃ Vir(t (
1
2 ))⊗ Vir(t (

25
14 ))⊗ VHN�.

(3.104)



Conformal Field Theories with Sporadic Group Symmetry

and that it is in fact a commutant subalgebra of VB
�. We can therefore try to determine

what automorphisms VHN� inherits from B. The Griess algebra of the baby monster
VOA decomposes into HN irreps as

VB
�
2

∣

∣

∣

HN
∼= 1⊕ 1⊕ 1⊕ (non-trivial reps) (3.105)

while it decomposes into HN.2 (a maximal subgroup of B, [107]) irreps as

VB
�
2

∣

∣

∣

HN.2
∼= 1⊕ 1⊕ (non-trivial reps). (3.106)

This suggests that HN stabilizes t̃ and the two central charge 25
28 conformal vectors

individually, while HN.2 stabilizes t̃ and t (
25
14 ) but swaps the two central charge 25

28
conformal vectors. Under this assumption, HN.2 ⊂ Aut(VHN�). We will see that the
extra Z2 is outer once we have expressions for the characters.

The algebra WD5A has 9 irreducible modules, and they decompose into representa-
tions of its L( 12 , 0)⊗ L( 2528 , 0)⊗ L( 2528 , 0) subalgebra as (c.f. Theorem 3.19 of [38])

M(i, j) ∼= [0, h1,i , h1, j ] ⊕ [0, h3,i , h5, j ] ⊕ [0, h5,i , h3, j ] ⊕ [0, h7,i , h7, j ]
⊕ [ 12 , h1,i , h7, j ] ⊕ [ 12 , h3,i , h3, j ] ⊕ [ 12 , h5,i , h5, j ] ⊕ [ 12 , h7,i , h1, j ]
⊕ [ 1

16 , h2,i , h4, j ] ⊕ [ 1
16 , h4,i , h2, j ] ⊕ [ 1

16 , h6,i , h4, j ] ⊕ [ 1
16 , h4,i , h6, j ]

(3.107)

where hr,s = h(7)
r,s and i, j = 1, 3, 5. We will order these modules as

WD5A(0) := M(0, 0), WD5A(1) := M(1, 5), WD5A(2) := M(5, 1),

WD5A(3) := M(1, 3), WD5A(4) := M(3, 1), WD5A(5) := M(5, 5),

WD5A(6) := M(3, 5), WD5A(7) := M(5, 3), WD5A(8) := M(3, 3).

(3.108)

On the other hand, we can also express the characters in terms of products of P(5)
characters as below:

χ0 = ψ
(5)
5,5ψ

(5)
5,5 + ψ

(5)
5,−3ψ

(5)
5,−1 + ψ

(5)
5,3ψ

(5)
5,1 + ψ

(5)
5,−1ψ

(5)
5,3 + ψ

(5)
5,1ψ

(5)
5,−3,

χ1 = ψ
(5)
5,5ψ

(5)
4,0 + ψ

(5)
4,−2ψ

(5)
5,−1 + ψ

(5)
4,2ψ

(5)
5,1 + ψ

(5)
5,−3ψ

(5)
1,1 + ψ

(5)
5,3ψ

(5)
4,4,

χ1 = ψ
(5)
5,5ψ

(5)
4,0 + ψ

(5)
5,1ψ

(5)
4,−2 + ψ

(5)
5,−1ψ

(5)
4,2 + ψ

(5)
4,4ψ

(5)
5,−3 + ψ

(5)
1,1ψ

(5)
5,3,

χ3 = ψ
(5)
5,5ψ

(5)
2,0 + ψ

(5)
5,−1ψ

(5)
2,2 + ψ

(5)
5,1ψ

(5)
3,3 + ψ

(5)
5,−3ψ

(5)
3,−1 + ψ

(5)
5,3ψ

(5)
3,1,

χ4 = ψ
(5)
5,5ψ

(5)
2,0 + ψ

(5)
2,2ψ

(5)
5,1 + ψ

(5)
3,3ψ

(5)
5,−1 + ψ

(5)
3,1ψ

(5)
5,−3 + ψ

(5)
3,−1ψ

(5)
5,3,

χ5 = ψ
(5)
4,0ψ

(5)
4,0 + ψ

(5)
1,1ψ

(5)
4,−2 + ψ

(5)
4,4ψ

(5)
4,2 + ψ

(5)
4,2ψ

(5)
1,1 + ψ

(5)
4,−2ψ

(5)
4,4,

χ6 = ψ
(5)
2,0ψ

(5)
4,0 + ψ

(5)
4,−2ψ

(5)
3,−1 + ψ

(5)
4,2ψ

(5)
3,1 + ψ

(5)
2,2ψ

(5)
1,1 + ψ

(5)
3,3ψ

(5)
4,4,

χ7 = ψ
(5)
2,0ψ

(5)
4,0 + ψ

(5)
3,−1ψ

(5)
4,2 + ψ

(5)
3,1ψ

(5)
4,−2 + ψ

(5)
1,1ψ

(5)
3,3 + ψ

(5)
4,4ψ

(5)
2,2,

χ8 = ψ
(5)
2,0ψ

(5)
2,0 + ψ

(5)
2,2ψ

(5)
3,−1 + ψ

(5)
3,3ψ

(5)
3,1 + ψ

(5)
3,−1ψ

(5)
3,3 + ψ

(5)
3,1ψ

(5)
2,2.

(3.109)
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One can then show from the known modular matrices of the minimal models that the
characters of this theory transform according to

S = 4

7

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

s21 s1c2 s1c2 s1c1 s1c1 c22 c1c2 c1c2 c21
s1c2 −s1c1 c22 s21 c1c2 −c1c2 s1c2 −c21 s1c1
s1c2 c22 −s1c1 c1c2 s21 −c1c2 −c21 s1c2 s1c1
s1c1 s21 c1c2 −s1c2 c21 s1c2 −c22 s1c1 −c1c2
s1c1 c1c2 s21 c21 −s1c2 s1c2 s1c1 −c22 −c1c2
c22 −c1c2 −c1c2 s1c2 s1c2 c21 −s1c1 −s1c1 s21
c1c2 s1c2 −c21 −c22 s1c1 −s1c1 c1c2 s21 −s1c2
c1c2 −c21 s1c2 s1c1 −c22 −s1c1 s21 c1c2 −s1c2
c21 s1c1 s1c1 −c1c2 −c1c2 s21 −s1c2 −s1c2 c22

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.110)

and

T = diag
(

e−
4π i
21 , e−

10π i
21 , e−

10π i
21 , e

8π i
21 , e

8π i
21 , e−

16π i
21 , e

2π i
21 , e

2π i
21 , e

20π i
21

)

, (3.111)

where s1 = sin
(

π
7

)

, c1 = cos
(

π
14

)

and c2 = cos
( 3π
14

)

.
The nine characters in (3.109) obey the bilinear relation

J (τ ) =
∑

α

χα(τ)χVHN�(α)(τ ), (3.112)

where we claim that the dual characters of VHN� := ˜WD5A in V � are solutions to the
MLDE below,

[

E6(τ )D6 + μ1E4(τ )E6(τ )D4 + iμ2E
2
6(τ )D3 + μ3E

2
4(τ )E6(τ )D2

+ iμ4E4(τ )E
2
6(τ )D + μ5E

3
4(τ )E6(τ ) + μ6E

3
6(τ )

+ iμ7E
2
4(τ )D5 + iμ8E

3
4(τ )D3 + iμ9E

4
4(τ )D

]

χVHN�(α)(τ ) = 0,

μ1 = 241π2

63
, μ2 = −13891π3

1323
, μ3 = −215315π4

27783
, μ4 = −7902740π5

583443
,

μ5 = 0, μ6 = 181913600π6

85766121
, μ7 = π, μ8 = 241π3

63
, μ9 = −215315π5

27783
.

(3.113)

This suggests a diagonal decomposition of the moonshine module of the form

V � ∼=
⊕

α

WD5A(α)⊗ VHN�(α). (3.114)
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Table 4. Decompositions of the graded components of the modules VHN�(α) into irreducible representations
of HN

α h VHN�(α)h
0 0 1

2 1⊕ 8910⊕ 9405
1 8/7 133(1)

15/7 133(1) ⊕ 65835(1)
2 8/7 133(2)

15/7 133(2) ⊕ 65835(2)
3 12/7 8778(1)

19/7 8778(1) ⊕ 8910⊕ 267520⊕ 718200(1)
4 12/7 8778(2)

19/7 8778(2) ⊕ 8910⊕ 267520⊕ 718200(2)
5 9/7 760

16/7 760⊕ 16929⊕ 214016
6 13/7 35112(1)
7 13/7 35112(2)
8 10/7 3344

17/7 3344⊕ 270864⊕ 406296

The q-expansions of the characters of VHN� are given by

χVHN�(0)(τ ) = q−
19
21 (1 + 18316q2 + 1360096q3 + 42393826q4 + · · · ),

χVHN�(1)(τ ) = q
5
21 (133 + 65968q + 4172476q2 + 119360584q3 + · · · ),

χVHN�(2)(τ ) = q
5
21 (133 + 65968q + 4172476q2 + 119360584q3 + · · · ),

χVHN�(3)(τ ) = q
17
21 (8778 + 1003408q + 37866696q2 + · · · ),

χVHN�(4)(τ ) = q
17
21 (8778 + 1003408q + 37866696q2 + · · · ),

χVHN�(5)(τ ) = q
8
21 (760 + 231705q + 12595936q2 + 333082540q3 + · · · ),

χVHN�(6)(τ ) = q
20
21 (35112 + 3184818q + 108781232q2 + · · · ),

χVHN�(7)(τ ) = q
20
21 (35112 + 3184818q + 108781232q2 + · · · ),

χVHN�(8)(τ ) = q
11
21 (3344 + 680504q + 32364068q2 + 795272512q3 + · · · ).

(3.115)

The lowest-order coefficients of (3.115), 133, 760, 3344, 8778, and 35112, are indeed
dimensions of irreducible representations of theHarada-Norton groupHN.However, 133
is for example not the dimension of an irreducible representation of HN.2. This implies
that the extra involution in HN.2 mixes the modules of VHN� and is therefore an outer
automorphism. Higher order coefficients of the characters also have decompositions into
irreducible representations of HN, as in Table 4; one can check that they are consistent
with the decomposition of the graded components V �

n into irreducible representations
of HN.

To illustrate an example of a twined bilinear, one can verify our earlier claim that the
lift of the diagonal of the Z5 ×Z5 fusion algebra automorphism of P(5)×P(5) lifts to
an element in the 5A conjugacy class of M. Indeed, if we denote the generator of this
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diagonal Z5 by ω, then one can compute that the twined characters of WD5A are

χω,0(τ ) = q−
2
21 (1 + q2 + 2q3 + 3q4 + 4q5 + 6q6 + · · · ),

χω,1(τ ) = q
16
21 (1 + q + 2q2 + q3 + 3q4 + 3q5 + · · · ),

χω,2(τ ) = q
16
21 (1 + q + 2q2 + q3 + 3q4 + 3q5 + · · · ),

χω,3(τ ) = q
4
21 (2 + 2q + 3q2 + 5q3 + 8q4 + 13q5 + · · · ),

χω,4(τ ) = q
4
21 (2 + 2q + 3q2 + 5q3 + 8q4 + 13q5 + · · · ),

χω,5(τ ) = q
13
21 (−1− 2q − 3q2 − 5q3 − 8q4 − 11q5 + · · · ),

χω,6(τ ) = q
1
21 (−1− q − 2q2 − 3q3 − 5q4 − 7q5 + · · · ),

χω,7(τ ) = q
1
21 (−1− q − 2q2 − 3q3 − 5q4 − 7q5 + · · · ),

χω,8(τ ) = q
31
21 (1 + q + 3q2 + 3q3 + 6q4 + 8q5 + · · · ),

(3.116)

and one can show by direct calculation that

∑

α

χω,α(τ )χVHN�(α)(τ ) =
1

q
+ 134q + 760q2 + 3345q3 + 12256q4 + 39350q5 + · · ·

(3.117)

agrees with the Mckay-Thompson series of class 5A of the monster group to low orders
in its q-expansion. The inner automorphisms of VHN� will also lift to corresponding
automorphisms of M,

Jg(τ ) =
∑

α

χα(τ)χg,VHN�(α)(τ ), (g ∈ HN) (3.118)

where for Jg(τ ), we are implicitly using the fact HN is a subgroup of M. One can
construct a bilinear (3.118) for each of the 54 conjugacy classes in HN using Table 11.

To summarize, VHN� is a central charge 215/7 chiral algebra with HN as its inner
automorphism group, and HN.2 as its full automorphism group. It embeds into both the
moonshine module and the baby monster VOA,

VHN� ↪→ VB
� ↪→ V �. (3.119)

3.2.6. (D6A, 2.Fi22):Third largestFischer group Wenowstudy the commutant ofWD6A

[38,113], the algebra generated by two conformal vectors of central charge 1
2 whose

associated Miyamoto involutions have product residing in the 6A conjugacy class of M.
The commutant ˜W6A we will argue has an automorphism group which at least contains
Fi22.2, and so we denote it with the symbol VF�

22.
In addition to using the argument provided at the beginning of Sect. 3.2, one can

derive (part of) the symmetry group by realizing VF�
22 as a commutant subalgebra of

VF�
23 and using the fact that 2.Fi22 ∼= CentFi23(2A). The idea is that the stress tensor t

ofWD6A can be decomposed as

t (z) = t (
4
5 )(z) + t (

6
7 )(z) + t (

25
28 )(z). (3.120)
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If one iteratively deconstructs these conformal vectors as in (2.96), one gets

V � ⊃ Vir(t (
4
5 ))⊗ VF�

24

⊃ Vir(t (
4
5 ))⊗ Vir(t (

6
7 ))⊗ VF�

23

⊃ Vir(t (
4
5 ))⊗ Vir(t (

6
7 ))⊗ Vir(t (

25
28 ))⊗ VF�

22

(3.121)

so that L( 2528 , 0) ⊗ VF�
22 ⊂ VF�

23. The L( 2528 , 0) chiral algebra has a Z2 automorphism
of its fusion algebra which lifts to an element in the 2A conjugacy class of Fi23. The
centralizer of this element is 2.Fi22 and fixes t (

6
7 ), with the central Z2 acting trivially

on VF�
22. After taking the quotient by this Z2, one is left with Fi22. When we have the

q-expansions of the dual characters of VF�
22 in V �, we will see that this Fi22 is in fact

the inner automorphism group. We turn to this now.
AlthoughWD6A and its irreducible modules can be decomposed into representations

of itsL( 45 , 0)⊗L( 67 , 0)⊗L( 2528 , 0) subalgebra [113], we will instead describe it—using
the block-diagonalization method presented at the end of Sect. 2.1.2—in terms of a
P(2) ⊗ P(3) ⊗ P(6) subalgebra which makes some of its symmetries more manifest.
From the known modular S-matrices of the parafermion theories, one can check that
the modules specified by the 14 characters χα(τ) presented in equation (C.1) form a
consistent extension of P(2) ⊗ P(3) ⊗ P(6). As in previous subsections, our goal is
to find 14 functions to serve as candidates for the dual characters, i.e. 14 functions
χVF�

22(α)
(τ ) which satisfy

J (τ ) =
∑

α

χα(τ)χVF�
22(α)

(τ ). (3.122)

Unfortunately, neither MLDEs nor Hecke operators are effective at recovering these
functions: MLDEs are unwieldy because the required differential equation would be
high order, and the coefficient functions belong to very large dimensional vector spaces
of modular forms. On the other hand, the Hecke operator method does not work for this
example because c̃t/ct is not an integer. Nevertheless, we claim

28 that the functions can
be obtained from the Rademacher sum (c.f. Sect. 2.3.3) attached to the representation ρ

generated by the complex conjugates of the modular matrices presented in Appendix C

with singular part of the form RP
SL2(Z),ρ,α

(τ ) = δα,0q−
143
160 + O(q0). After some compu-

tation, we arrive at the following q-series for χVF�
22(α)

(τ ),

χVF�
22(0)

(τ ) = q−
143
160 (1 + 16731q2 + 1188616q3 + 35978085q4 + · · · ),

χVF�
22(1)

(τ ) = q
137
160 (10725 + 1097304q + 39095342q2 + 808423473q3 + · · · ),

χVF�
22(2)

(τ ) = q
57
160 (429 + 131560q + 7147074q2 + 187368324q3 + · · · ),

χVF�
22(3)

(τ ) = q
97
160 (1001 + 163449q + 7054047q2 + 163126535q3 + · · · ),

χVF�
22(4)

(τ ) = q
153
160 (30030 + 2625337q + 87378642q2 + 1733413968q3 + · · · ),

28 See Appendix C for an alternative derivation of these characters.
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χVF�
22(5)

(τ ) = q
73
160 (1430 + 333762q + 16444857q2 + 409283732q3 + · · · ),

χVF�
22(6)

(τ ) = q
33
160 (78 + 43758q + 2787213q2 + 79431495q3 + · · · ),

χVF�
22(7)

(τ ) = q
113
160 (3003 + 401478q + 15980965q2 + 352878240q3 + · · · ),

χVF�
22(8)

(τ ) = q
19
20 (13728 + 1212288q + 40511328q2 + 805723776q3 + · · · ),

χVF�
22(9)

(τ ) = q
19
20 (13728 + 1212288q + 40511328q2 + 805723776q3 + · · · ),

χVF�
22(10)

(τ ) = q
13
40 (352 + 123552q + 6918912q2 + 184499744q3 + · · · ),

χVF�
22(11)

(τ ) = q
37
40 (27456 + 2517216q + 85543392q2 + 1718827968q3 + · · · ),

χVF�
22(12)

(τ ) = q
11
20 (2080 + 384384q + 17407104q2 + 413523968q3 + · · · ),

χVF�
22(13)

(τ ) = q
11
20 (2080 + 384384q + 17407104q2 + 413523968q3 + · · · ). (3.123)

As a consistency check, we note that all the leading coefficients of the dual characters
χVF�

22(α)
are dimensions of irreducible representations of 2.Fi22, and that these functions

satisfy equation (3.122).
We end this section by analyzing twined characters and their associated bilinears.

The fact thatWD6A admits a P(2)⊗P(3)⊗P(6) subalgebra gives the false impression
that the theory has some kind of Z2×Z3×Z6 symmetry, in apparent contradiction with
the assertion that M(WD6A) = D6A. We will show, however, that a Z6 subgroup of this
group conspires to act trivially.

Twined characters are dressed by three phases ωmk
k where ωk ≡ e

2π i
k and k = 2, 3, 6.

Therefore, there are a priori 36 ways to twine the characters χα(τ) using the transfor-
mation rules from (2.50). We will denote twined characters as χ

α;ωm2
2 ,ω

m3
3 ,ω

m6
6

(τ ). For

instance, χα;1,1,ω2
6
(τ )means we dress the P(6) characters with their Z6 phase ω2

6 while
leaving the P(2) and P(3) characters unmodified. Combined with the dual characters
(3.123), each twined character generates a Mckay-Thompson series corresponding to a
certain conjugacy class in the monster. Table 5 reveals that the Z6 subgroup generated
by ω2;ω3;ω6 acts trivially, which reconciles the Miyamoto lifts of the fusion algebra
automorphisms of the parafermion theoriesP(2),P(3),P(6)with the observed dihedral
group M(WD6A) = D6A.

3.2.7. (D4B, 2.F4(2)):Chevalley group The chiral algebraW4B ismost easily described
as an extension of its L( 12 , 0)⊗L( 7

10 , 0)⊗L( 7
10 , 0) subalgebra [38], in terms of which

it and its irreducible modules decompose as

WD4B(0) ∼= [0, 0, 0] ⊕ [ 12 , 3
2 , 0] ⊕ [ 12 , 0, 3

2 ] ⊕ [0, 3
2 ,

3
2 ]

WD4B(1) ∼= [0, 0, 3
2 ] ⊕ [0, 3

2 , 0] ⊕ [ 12 , 0, 0] ⊕ [ 12 , 3
2 ,

3
2 ]

WD4B(2) ∼= [0, 0, 3
5 ] ⊕ [0, 3

2 ,
1
10 ] ⊕ [ 12 , 3

2 ,
3
5 ] ⊕ [ 12 , 0, 1

10 ]
WD4B(3) ∼= [0, 3

5 , 0] ⊕ [0, 1
10 ,

3
2 ] ⊕ [ 12 , 3

5 ,
3
2 ] ⊕ [ 12 , 1

10 , 0]
WD4B(4) ∼= [0, 3

5 ,
3
5 ] ⊕ [0, 1

10 ,
1
10 ] ⊕ [ 12 , 1

10 ,
3
5 ] ⊕ [ 12 , 3

5 ,
1
10 ]

WD4B(5) ∼= [0, 3
5 ,

1
10 ] ⊕ [0, 1

10 ,
3
5 ] ⊕ [ 12 , 1

10 ,
1
10 ] ⊕ [ 12 , 3

5 ,
3
5 ]
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Table 5. In this table, ωa
2 ;ωb

3;ωc
6 refers to the corresponding fusion algebra automorphism of the P(2) ⊗

P(3) ⊗ P(6) subalgebra. This lifts to an element of the monster, whose conjugacy class is determined by a
character theory calculation. This table shows that the Z6 group generated by ω2;ω3;ω6 acts trivially on V �

1;ω3; 1 1;ω2
3; 1 ω2; 1; 1 ω2;ω3; 1 ω2;ω2

3; 1
3A 3A 2A 6A 6A
1; 1;ω6 1; 1;ω2

6 1; 1;ω3
6 1; 1;ω4

6 1; 1;ω5
6

6A 3A 2A 3A 6A
ω2; 1;ω6 ω2; 1;ω2

6 ω2; 1;ω3
6 ω2; 1;ω4

6 ω2; 1;ω5
6

3A 6A 1A 6A 3A
1;ω3;ω6 1;ω3;ω2

6 1;ω3;ω3
6 1;ω3;ω4

6 1;ω3;ω5
6

2A 3A 6A 1A 6A
1;ω2

3;ω6 1;ω2
3;ω2

6 1;ω2
3;ω3

6 1;ω2
3;ω4

6 1;ω2
3;ω5

6
6A 1A 6A 3A 2A
ω2;ω3;ω6 ω2;ω3;ω2

6 ω2;ω3;ω3
6 ω2;ω3;ω4

6 ω2;ω3;ω5
6

1A 6A 3A 2A 3A
ω2;ω2

3;ω6 ω2;ω2
3;ω2

6 ω2;ω2
3;ω3

6 ω2;ω2
3;ω4

6 ω2;ω2
3;ω5

6
3A 2A 3A 6A 1A

WD4B(6) ∼= [0, 0, 1
10 ] ⊕ [0, 3

2 ,
3
5 ] ⊕ [ 12 , 3

2 ,
1
10 ] ⊕ [ 12 , 0, 3

5 ]
WD4B(7) ∼= [0, 1

10 , 0] ⊕ [0, 3
5 ,

3
2 ] ⊕ [ 12 , 3

5 , 0] ⊕ [ 12 , 1
10 ,

3
2 ]

WD4B(8) ∼= [ 1
16 ,

7
16 ,

7
16 ] ⊗ Q, WD4B(9) ∼= [ 1

16 ,
7
16 ,

3
80 ] ⊗ Q

WD4B(10) ∼= [ 1
16 ,

3
80 ,

7
16 ] ⊗ Q, WD4B(11) ∼= [ 1

16 ,
3
80 ,

3
80 ] ⊗ Q (3.124)

where [h1, h2, h3] := L( 12 , h1) ⊗ L( 7
10 , h2) ⊗ L( 7

10 , h3), and Q is the 2-dimensional
representation of the quaternion group of order 8. The resulting modular S matrix of this
theory is then

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

γ− γ− ξ ξ γ+ γ+ ξ ξ −ω σ σ λ

γ− γ− ξ ξ γ+ γ+ ξ ξ ω −σ −σ −λ

ξ ξ −γ− γ+ −ξ −ξ −γ− γ+ σ ω λ −σ

ξ ξ γ+ −γ− −ξ −ξ γ+ −γ− σ λ ω −σ

γ+ γ+ −ξ −ξ γ− γ− −ξ −ξ λ −σ −σ −ω

γ+ γ+ −ξ −ξ γ− γ− −ξ −ξ −λ σ σ ω

ξ ξ −γ− γ+ −ξ −ξ −γ− γ+ −σ −ω −λ σ

ξ ξ γ+ −γ− −ξ −ξ γ+ −γ− −σ −λ −ω σ

−ω ω σ σ λ −λ −σ −σ 0 0 0 0
σ −σ ω λ −σ σ −ω −λ 0 0 0 0
σ −σ λ ω −σ σ −λ −ω 0 0 0 0
λ −λ −σ −σ −ω ω σ σ 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.125)

where we have defined γ± = 1
20 (5 ±

√
5), ω =

√
5−5

10
√
2
, λ = 1

2

√

3
5 + 1√

5
, ξ = 1

2
√
5
, and

σ = 1√
10
. TheL( 12 , 0)⊗L( 7

10 , 0)⊗L( 7
10 , 0) subalgebra ofW4B defines a deconstruction

of the monster stress tensor as

T (z) = t (
1
2 )(z) + t

( 7
10 )

1 (z) + t
( 7
10 )

2 (z) + t̃(z). (3.126)

This decompositionmakes it clear that this chiral algebra can be obtained froman iterated
deconstruction whose intermediate steps involve the baby monster VOA and the VOA
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˜WD2A with 2E6(2).2 symmetry. Indeed,

V � ⊃ Vir(t (
1
2 ))⊗ VB

�

⊃ Vir(t (
1
2 ))⊗ Vir(t

( 7
10 )

1 )⊗ ˜WD2A

⊃ Vir(t (
1
2 ))⊗ Vir(t

( 7
10 )

1 )⊗ Vir(t
( 7
10 )

2 )⊗ ˜WD4B

(3.127)

so that in particular, ˜WD4B ↪→ ˜WD2A ↪→ VB
� ↪→ V �.

Themonstralizer [D4B◦2.F4(2)].2 predicts that the inner automorphismgroup should
be F4(2). One can see this from the embedding chain above as follows. The algebra ˜WD4B

arises from deconstructing a central charge 7
10 conformal vector t

( 7
10 )

2 off of ˜WD2A ,
and the Z2 fusion algebra automorphism of the L( 7

10 , 0) VOA it generates lifts to an
element of the 2D conjugacy class of 2E6(2).2 ⊂ Aut( ˜WD2A). We can thus consider

Cent2E6(2).2(2D) ∼= Z2 × F4(2), which will stabilize t
( 7
10 )

2 as well as the stress tensor of
˜WD4B , and after taking the quotient by the Z2 which acts trivially on ˜WD4B , we are left
with F4(2) acting by inner automorphisms on ˜WD4B . A character theoretic calculation
in the monster shows that the full automorphism group contains the slightly larger group
F4(2).2

Neither Hecke operators nor MLDEs are effective at recovering the dual characters
χ̃α(τ ), for the same reasons as in the previous section. We can nonetheless consider the
Rademacher sum attached to the SL2(Z) representation ρ generated by S∗ and T ∗ and
whose singular part takes the shape χ̃α(τ ) ≡ RP

SL2(Z),ρ,α
(τ ) = δα,0q−

221
240 + O(q0). If

we compute the q-expansion of this Rademacher sum to low orders, we find

χ̃0(τ ) = q− 221
240
(

1 + 24310q2 + 1923805q3 + 62596703q4 + 1240094427q5 + · · · ) ,
χ̃1(τ ) = q

139
240
(

1326 + 252603q + 11865711q2 + 292523335q3 + · · · ) ,
χ̃2(τ ) = q

23
48
(

1105 + 262990q + 13533325q2+350645230q3+6008564575q4 + · · · ) ,
χ̃3(τ ) = q

23
48
(

1105 + 262990q + 13533325q2+350645230q3+6008564575q4 + · · · ) ,
χ̃4(τ ) = q

211
240
(

21658 + 2303925q + 85629544q2 + 1841109010q3 + · · · ) ,
χ̃5(τ ) = q

91
240
(

833 + 270725q + 15330770q2 + 418641184q3 + 7423572325q4 + · · · ) ,
χ̃6(τ ) = q

47
48
(

23205 + 2114970q + 73396140q2 + 1513535075q3 + · · · ) ,
χ̃7(τ ) = q

47
48
(

23205 + 2114970q + 73396140q2 + 1513535075q3 + · · · ) ,
χ̃8(τ ) = q

17
120
(

52 + 46852q + 3452020q2 + 107984680q3 + 2088333312q4 + · · · ) ,
χ̃9(τ ) = q

13
24
(

2380 + 490620q + 23832640q2 + 598421980q3 + · · · ) ,
χ̃10(τ ) = q

13
24
(

2380 + 490620q + 23832640q2 + 598421980q3 + · · · ) ,
χ̃11(τ ) = q

113
120
(

43316 + 4176900q + 148652556q2 + 3113186336q3 · · · ) .
(3.128)

One can check that this set of characters pairs bilinearly with the characters χα(τ) of
WD4B ,which can be deduced from the decompositions in (3.124), to produce the partition
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function of V �,

J (τ ) =
∑

α

χα(τ)χ̃α(τ ) (3.129)

which is consistent with a diagonal decomposition of the moonshine module of the form

V � ∼=
⊕

α

WD4B(α)⊗ ˜WD4B(α). (3.130)

Furthermore, we observe for example that the leading coefficient of each component
is always the dimension of an irreducible representation of 2.F4(2) (i.e. a projective
irreducible representation of the predicted inner automorphism group, F4(2)). Further-
more, for each character which appears with multiplicity 2, twice the leading coefficient
coincides with the dimension of an irreducible representation of 2.F4(2).2, which is
consistent with our prediction that this theory inherits an order 2 outer automorphism
from the monster; this outer automorphism evidently exchanges pairs of modules that
come with the same character.

We conclude this section by describing the algebraWD4B in terms of anP(2)⊗P(8)
subalgebra, which makes some of its symmetries more manifest. We claim that the char-
acters which arise from (3.124) can be alternatively expressed in terms of parafermion
characters as

χ0 = ψ
(2)
2,2ψ

(8)
8,8 + ψ

(2)
2,2ψ

(8)
8,0 + ψ

(2)
2,0ψ

(8)
8,4 + ψ

(2)
2,0ψ

(8)
8,−4,

χ1 = ψ
(2)
2,0ψ

(8)
8,8 + ψ

(2)
2,2ψ

(8)
8,−4 + ψ

(2)
2,2ψ

(8)
8,4 + ψ

(2)
2,0ψ

(8)
8,0,

χ2 = ψ
(2)
2,2ψ

(8)
4,0 + ψ

(2)
2,0ψ

(8)
4,4, χ3 = ψ

(2)
2,2ψ

(8)
4,0 + ψ

(2)
2,0ψ

(8)
4,4,

χ4 = ψ
(2)
2,2ψ

(8)
2,0 + ψ

(2)
2,2ψ

(8)
6,0 + ψ

(2)
2,0ψ

(8)
6,4 + ψ

(2)
2,4ψ

(8)
6,−4,

χ5 = ψ
(2)
2,2ψ

(8)
6,4 + ψ

(2)
2,2ψ

(8)
6,−4 + ψ

(2)
2,0ψ

(8)
2,0 + ψ

(2)
2,0ψ

(8)
6,0,

χ6 = ψ
(2)
2,2ψ

(8)
4,4 + ψ

(2)
2,0ψ

(8)
4,0, χ7 = ψ

(2)
2,2ψ

(8)
4,4 + ψ

(2)
2,0ψ

(8)
4,0,

χ8 = ψ
(2)
1,1ψ

(8)
8,6 + ψ

(2)
1,1ψ

(8)
8,−6 + ψ

(2)
1,1ψ

(8)
8,2 + ψ

(2)
1,1ψ

(8)
8,−2,

χ9 = ψ
(2)
1,1ψ

(8)
4,2 + ψ

(2)
1,1ψ

(8)
4,−2, χ10 = ψ

(2)
1,1ψ

(8)
4,2 + ψ

(2)
1,1ψ

(8)
4,−2,

χ11 = ψ
(2)
1,1ψ

(8)
2,2 + ψ

(2)
1,1ψ

(8)
6,6 + ψ

(2)
1,1ψ

(8)
6,2 + ψ

(2)
1,1ψ

(8)
6,−2.

(3.131)

Indeed, from these expressions, one can check that fusion algebra automorphisms of
P(8) lift to Z4B in the monster.

3.2.8. (D2B, 2.21+22.Co2): Second Conway group We now consider the commutant of
WD2B . It turns out that if two 2A involutions have product residing in 2B, then their
corresponding conformal vectors of central charge 1

2 commute. This means that the
WD2B subalgebra is a decoupled pair of Ising models, WD2B

∼= L( 12 , 0) ⊗ L( 12 , 0), a
case which has already been considered in [99]. We are therefore brief and refer readers
to (loc. cit.) for additional details.

To compute the automorphisms that its commutant inherits from the monster, we
note that the group CentM(Z2×Z2) ∼= 2.21+22.Co2 stabilizes the stress tensor ofWD2B ,
and therefore its image under the map in equation (2.98) acts by automorphisms on
the commutant ˜WD2B . The Z2 × Z2 being centralized is the automorphism group of
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the fusion algebra of WD2B , and it is not difficult to see that it acts trivially on ˜WD2B .
Therefore, after taking the quotient29 by this group we are left with 222.Co2 as the inner
automorphism group of ˜WD2B . We conjecture that it inherits a further order 2 outer
automorphism from the monster so that Aut( ˜WD2B) = 222.Co2.2, consistent with the
monstralizer in which it participates.

We note also that this VOA embeds into the baby monster VOA. Indeed, it arises
from an iterated deconstruction of two Ising models,

V � ⊃ L( 12 , 0)⊗ VB
�

⊃ L( 12 , 0)⊗ L( 12 , 0)⊗ ˜WD2B

(3.132)

and so in particular, it can be described as the commutant of a particular Ising subalgebra
of VB

�. This means in particular that the characters of ˜WD2B can be bilinearly combined
with the characters of the Ising model to produce the characters of VB

�.
The VOA WD2B has 9 irreducible modules WD2B(α) for α = 0, 1, . . . , 8. One can

express their characters as

χ0(τ ) = χ
(3)
1,1(τ )χ

(3)
1,1(τ ), χ1(τ ) = χ

(3)
2,1(τ )χ

(3)
1,1(τ ), χ2(τ ) = χ

(3)
1,1(τ )χ

(3)
2,1(τ ),

χ3(τ ) = χ
(3)
1,2(τ )χ

(3)
1,1(τ ), χ4(τ ) = χ

(3)
1,1(τ )χ

(3)
1,2(τ ), χ5(τ ) = χ

(3)
1,2(τ )χ

(3)
1,2(τ ),

χ6(τ ) = χ
(3)
2,1(τ )χ

(3)
1,2(τ ), χ7(τ ) = χ

(3)
1,2(τ )χ

(3)
2,1(τ ), χ8(τ ) = χ

(3)
2,1(τ )χ

(3)
2,1(τ ).

(3.133)

Its commutant has 9 dualmodules, ˜WD2B(α) forα = 0, 1, . . . , 8.Themoonshinemodule
decomposes simply in terms of itsWD2B ⊗ ˜WD2B subalgebra as

V � ∼=
8
⊕

α=0
WD2B(α)⊗ ˜WD2B(α). (3.134)

In (loc. cit.), the characters χ̃α(τ ) of the 9 dual modules were obtained as solutions to
an MLDE,
[

D6 + μ1E4(τ )D4 + μ2E6(τ )D3 + μ3E
2
4(τ )D2 + μ4E4(τ )E6(τ )D + μ5E

3
4(τ )

+ μ6E
2
6(τ ) + μ7

E2
4(τ )

E6(τ )
D5 + μ8

E3
4(τ )

E6(τ )
D3 + μ9

E4
4(τ )

E6(τ )
D
]

χ̃α(τ ) = 0,

(3.135)

with the coefficients μi given by

μ1 = 2647π2

576
, μ2 = −i 84271π

3

6912
, μ3 = −598979π4

82944
, μ4 = i

10884545π5

995328
,

μ5 = 0, μ6 = 3555409π6

5971968
, μ7 = iπ, μ8 = i

2647π3

576
, μ9 = −i 598979π

5

82944
.

(3.136)

29 We use the fact that 21+22.Co2 has a Z2 normal subgroup which leaves 222.Co2 after taking the quotient
[114].
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Here we comment that they can alternatively be expressed as Hecke images of the
characters χα(τ) of WD2B . Specifically,

χ̃0(τ ) = (T23χ)0(τ ), χ̃1(τ ) = χ̃2(τ ) = (T23χ)1(τ ),

χ̃3(τ ) = χ̃4(τ ) = (T23χ)3(τ ), χ̃5(τ ) = (T23χ)5(τ ),

χ̃6(τ ) = χ̃7(τ ) = (T23χ)6(τ ), χ̃8(τ ) = (T23χ)8(τ ).

(3.137)

To construct modular invariant bilinears, one can consider the matrices G� with �2 +
23 = 0 mod 24. There are eight solutions � = 1, 5, 7, 11, 13, 17, 19, 23, and their
corresponding matrices are identical. We choose G5 whose entries are 0 except for the
entries

(0, 0), (1, 2), (2, 1), (3, 4), (4, 3), (5, 5), (6, 7), (7, 6), (8, 8), (3.138)

which are equal to 1. One can then show that the characters χ(τ) and their Hecke images
pair to produce J (τ ),

J (τ ) = (T23χ)T (τ ) · G5 · χ(τ) (3.139)

so that we identify χ̃ (τ ) = GT
5 · (T23χ)(τ).

Finally, we note that analogous remarks apply to this deconstruction as the ones
made in Sects. 3.1.4 and 3.2.4 about ˜WZ4A and ˜WD4A . In particular, because WD2B

∼=
L( 12 , 0) ⊗ L( 12 , 0)

∼= V+
L with L ∼= 2Z a rank one sublattice of �Leech generated by

a vector of norm-squared 4 [64], we may realize ˜WD2B as a Z2 orbifold V+
˜L
of the

c = 23 lattice VOA attached to its orthogonal complement ˜L := L⊥ in �Leech. From
this perspective, the fact that the inner automorphism group of ˜W2B is an extension of
Co2 is related to the fact that Co2 stabilizes L [104]. One can indeed check that the

q-expansions of the χ̃α agree with the characters ξ (˜L)
1 , ξ (˜L)

j , ξ (˜L)
σ,i , ξ

(˜L)
τ,i , ξ

(˜L)
λ∗ , ξ (˜L)

2λ∗,i where

i = 1, 2 and λ∗ is a generator of the discriminant group ˜L∗/˜L ∼= Z4. This description
also establishes that ˜WD2B contains ˜WD4A as a subalgebra: indeed, this follows from the
fact that ˜L contains the lattice (3.91) on which ˜WD4A is based.

3.2.9. (D3C,Th): Thompson group Finally, we consider two conformal vectors e and f
of central charge 1

2 whose associated involutions τe and τ f have product residing in the
3C conjugacy class. We will take our subalgebra of V � to be the VOA WD3C generated
by these two conformal vectors [112], and argue that its commutant ˜WD3C , as well as
its modules, enjoy an action by the Thompson sporadic group, Th. We therefore refer to
this chiral algebra as VT�.

First, we discuss some of the properties of WD3C . It admits several descriptions in
terms of simpler models. For example, it is known that its c = 16

11 stress tensor can be
deconstructed into two conformal vectors with central charges 1

2 and 21
22 ,

t (z) = t (
1
2 )(z) + t (

21
22 )(z). (3.140)

Therefore, WD3C admits a subalgebra of the form L( 12 , 0) ⊗ L( 2122 , 0), with respect to
which it decomposes as

WD3C
∼= [0, 0] ⊕ [0, 8] ⊕ [ 12 , 7

2 ] ⊕ [ 12 , 45
2 ] ⊕ [ 1

16 ,
31
16 ] ⊕ [ 1

16 ,
175
16 ] (3.141)
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where [h1, h2] := L( 12 , h1)⊗ L( 2122 , h2). Its irreducible modules are also known: there
are exactly five with highest weights (0, 2

11 ,
6
11 ,

1
11 ,

9
11 ), and the non-vacuum modules

decompose as

WD3C(1) ∼= [0, 13
11 ] ⊕ [0, 35

11 ] ⊕ [ 12 , 15
22 ] ⊕ [ 12 , 301

22 ] ⊕ [ 1
16 ,

21
176 ] ⊕ [ 1

16 ,
901
176 ],

WD3C(2) ∼= [0, 6
11 ] ⊕ [0, 50

11 ] ⊕ [ 12 , 1
22 ] ⊕ [ 12 , 155

22 ] ⊕ [ 1
16 ,

85
176 ] ⊕ [ 1

16 ,
261
176 ],

WD3C(3) ∼= [0, 1
11 ] ⊕ [0, 111

11 ] ⊕ [ 12 , 35
22 ] ⊕ [ 12 , 57

22 ] ⊕ [ 1
16 ,

5
176 ] ⊕ [ 1

16 ,
533
176 ],

WD3C(4) ∼= [0, 20
11 ] ⊕ [0, 196

11 ] ⊕ [ 12 , 7
22 ] ⊕ [ 12 , 117

22 ] ⊕ [ 1
16 ,

133
176 ] ⊕ [ 1

16 ,
1365
176 ].

(3.142)

Alternatively, there is a parafermionic description which makes some of its symmetries
more manifest. Indeed, WD3C is an extension of the level 9 parafermion theory P(9)
by its two irreducible modules with integral highest weight. Abbreviating 〈�,m〉 :=
P(9, [�,m]), we have

WD3C(0) ∼= 〈9, 9〉 ⊕ 〈9, 3〉 ⊕ 〈9,−3〉,
WD3C(1) = 〈2, 0〉 ⊕ 〈7, 3〉 ⊕ 〈7,−3〉,
WD3C(2) = 〈4, 0〉 ⊕ 〈5, 3〉 ⊕ 〈5,−3〉,
WD3C(3) = 〈6, 0〉 ⊕ 〈3, 3〉 ⊕ 〈3,−3〉,
WD3C(4) = 〈8, 0〉 ⊕ 〈8, 6〉 ⊕ 〈8,−6〉.

(3.143)

It follows that the characters,

χα(τ) = TrWD3C (α)q
L0− 2

33 (3.144)

can be expressed either as sums of products of minimal model characters, or sums of
parafermion characters. For example, in terms of parafermion characters, one has

χ0(τ ) = ψ
(9)
9,9(τ ) + ψ

(9)
9,3(τ ) + ψ

(9)
9,−3(τ ),

χ1(τ ) = ψ
(9)
2,0(τ ) + ψ

(9)
7,3(τ ) + ψ

(9)
7,−3(τ ),

χ2(τ ) = ψ
(9)
4,0(τ ) + ψ

(9)
5,3(τ ) + ψ

(9)
5,−3(τ ),

χ3(τ ) = ψ
(9)
6,0(τ ) + ψ

(9)
3,3(τ ) + ψ

(9)
3,−3(τ ),

χ4(τ ) = ψ
(9)
8,0(τ ) + ψ

(9)
8,6(τ ) + ψ

(9)
8,−6(τ ).

(3.145)

The five characters (3.145) transform under S and T as

χα(− 1
τ
) =

∑

β

Sαβχβ(τ), χα(τ + 1) =
∑

β

Tαβχβ(τ) (3.146)

where the S-matrix is S given by

S = 2√
11

⎛

⎜

⎜

⎜

⎜

⎝

sin π
11 cos 5π22 cos π

22 cos 3π22 sin 2π
11

cos 5π22 sin 2π
11 −cos3π22 −sin π

11 cos π
22

cos π
22 −cos3π22 cos 5π22 −sin 2π

11 sin π
11

cos 3π22 −sin π
11 −sin 2π

11 cos π
22 −cos5π22

sin2π
11 cos π

22 sin π
11 −cos5π22 −cos3π22

⎞

⎟

⎟

⎟

⎟

⎠

(3.147)
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and the T-matrix T reads

T = diag
(

e−
4π i
33 , e

8π i
33 , e

32π i
33 , e

2π i
33 , e

50π i
33

)

. (3.148)

Now, the parafermion theory enjoys a Z9 automorphism of its fusion algebra, which
acts on the characters as

ψ
(9)
�,m(τ ) → ζmψ

(9)
�,m(τ ) (3.149)

where ζ = e
2π i
9 . This symmetry can be lifted to an automorphism of WD3C , and even

further to an automorphism of V �. However, since the modules 〈�,m〉 of P(9) which
appear in the decomposition ofWD3C all havem ≡ 0 mod 3, only aZ3 acts non-trivially.
The generator ω of this Z3, thought of as an element of the monster group, lives in the
3C conjugacy class, and is equal to the product τeτ f ofMiyamoto involutions associated
to the two c = 1

2 conformal vectors e and f which generate WD3C .
Now, the centralizer of D3C in the monster is given by CentM(D3C) = Th. If we

decompose the dimension 2 subspace V �
2 with respect to the action of Th, we find that

V �
2

∣

∣

∣

Th
= 1⊕ 1⊕ 1⊕ 3 · 4123⊕ 30628⊕ 30875⊕ 2 · 61256. (3.150)

We claim that the 3-dimensional subspace on which Th acts trivially is spanned by

C(t (
1
2 ))⊕C(t (

21
22 ))⊕C(̃t)with t̃ the stress tensor of the commutant,VT�. This in particular

implies that Th is a subgroup of the stabilizer group of t = t (
1
2 ) + t (

11
12 ), and so from the

homomorphismStabAut(V �)(t) → Aut(ComV � (Vir(t))) = Aut(VT�) in equation (2.98),
VT� admits an action of the image of Th under this map by automorphisms. Because
Th is simple, it follows that the map restricted to Th has trivial kernel, and therefore all
of Th acts. Its simplicity also implies that Th acts by inner automorphisms, and so all
the modules of VT� will also be Th symmetric. Furthermore, because D3C × Th is a
maximal subgroup of M, and D3C acts trivially on VT�, it follows that VT� can inherit
no additional automorphisms from V �.

Now, Th is a maximal subgroup of B, and so it is natural to wonder whether VT� can
be obtained by deconstructing the baby monster VOA, VB

�. In fact, it is straightforward
to see that we can obtain VT� via an iterated deconstruction, in which we first strip off
the central charge 1

2 conformal vector to obtain VB
�, and then strip off the central charge

21
22 conformal vector to obtain VT�. This demonstrates that the Thompson VOA embeds
into the baby monster VOA, L( 2122 , 0)⊗ VT� ↪→ VB

�.
We will now produce evidence for this symmetry by considering the dual characters

χVT�(α)(τ ) of VT
� in V �. We claim that they are solutions to the fifth order differential

equation,

[

D5 + μ1E4(τ )D3 + μ2E6(τ )D2 + μ3E
2
4(τ )D + μ4E4(τ )E6(τ )

]

χVT�(α)(τ ) = 0,

μ1 = 413π2

99
, μ2 = −i 845π

3

99
, μ3 = −861871π4

107811
, μ4 = i

125198336π5

39135393
,

(3.151)
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Table 6. Decompositions of the graded components of the modules VT�(α) into irreducible representations
of Th

α h VT�(α)h
0 0 1

2 1⊕ 30875
3 1⊕ 30628⊕ 30875⊕ 2572752

1 20/11 30628
31/11 30628⊕ 30875⊕ 3376737

2 16/11 4123
27/11 4123⊕ 957125

3 21/11 61256
32/11 61256⊕ 957125⊕ 4936750

4 13/11 248
24/11 248⊕ 147250

whose q-expansions are given by

χVT�(0)(τ ) = q−
31
33 (1 + 30876q2 + 2634256q3 + 90061882q4 + 1855967520q5

+ 27409643240q6 + 317985320008q7 + 3064708854915q8 + · · · ),
χVT�(1)(τ ) = q

29
33 (30628 + 3438240q + 132944368q2 + 2954702008q3 + 45976123126q4

+ 554583175040q5 + 5510740058664q6 + 46939446922208q7 + · · · ),
χVT�(2)(τ ) = q

17
33 (4123 + 961248q + 49925748q2 + 1315392496q3 + 22953663126q4

+ 301143085728q5 + 3193490344856q6 + 28662439021248q7 + · · · ),
χVT�(3)(τ ) = q

32
33 (61256 + 5955131q + 216162752q2 + 4622827508q3 + 70051197488q4

+ 828481014062q5 + 8106388952544q6 + 68191291976248q7 + · · · ),
χVT�(4)(τ ) = q

8
33 (248 + 147498q + 10107488q2 + 308975512q3 + 5936748000q4

+ 83455971224q5 + 932866634976q6 + 8730997273664q7 + · · · ).
(3.152)

One can check that

J (τ ) =
∑

α

χα(τ)χVT�(α)(τ ) (3.153)

which suggests that the moonshine module decomposes as

V � ∼=
⊕

α

WD3C(α)⊗ VT�(α). (3.154)

The decompositions of the low-lying coefficients of the χVT�(α) into dimensions of
irreducible representations of Th are fixed by the bilinear relation equation (3.153)
and the known decompositions of the coefficients of J into dimensions of irreducible
representations of M. For instance, the first few leading coefficients of (3.152) are
decomposed as in Table 6.

As a consistency check, one can twine the characters ofWD3C by their D3C automor-
phism,

χg,α(τ ) = TrWD3C (α)gq
l0− 2

33 (g ∈ D3C) (3.155)
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and/or the characters of VT� by elements of Th using Table 6,

χVT�(α),h(τ ) = TrVT�(α)hq
˜l0− 31

33 (h ∈ Th) (3.156)

and observe that they satisfy e.g. (at least to low order in the q-expansion)

J3C(τ ) =
∑

α

χω,α(τ )χVT�(α)(τ ), Jh(τ ) =
∑

α

χα(τ)χVT�(α),h(τ ) (3.157)

where ω is one of the elements of order 3 in D3C, and more generally,

Jgh(τ ) =
∑

α

χg,α(τ )χVT�(α),h(τ ). (3.158)

In the above, we are thinking of gh ∈ D3C × Th ↪→ M. As an illustrative example, we
present the twined character for h taken from the 2A conjugacy class of Th, which can
be computed using the data in Table 6 and Tables 7, 8, 9, and 10 in appendix B.

χVT�(0),2A(τ ) = q−
31
33

(

1 + 156q2 − 1008q3 + · · ·
)

,

χVT�(1),2A(τ ) = q
29
33 (−92 + 672q + · · · ) , χVT�(2),2A(τ ) = q

17
33 (27− 288q + · · · ) ,

χVT�(3),2A(τ ) = q
32
33 (72− 453q + · · · ) , χVT�(4),2A(τ ) = q

8
33 (−8 + 42q + · · · ) .

(3.159)

It is straightforward to see that

∑

α

χα(τ)χVT�(α),2A(τ ) =
1

q
+ 276q − 2048q2 + · · · , (3.160)

where the right-hand side corresponds to the Mckay-Thompson series of the 2B class
in M. Generalized bilinear relations for arbitrary conjugacy classes of Z3 × Th can be
determined by how they fuse into conjugacy classes of the monster group. These fusion
rules can be computed with Gap [108], and we present this data in Table 12.

Moonshine for theThompson sporadic group has been studied in another context [19],
but to our knowledge, the chiral algebra VT� does not have any obvious relationship to
the automorphic forms which arise there.

3.3. Other monstralizers. It is worthwhile to ask whether or not there are M-com pairs
beyond the ones we’ve discussed. One immediate example arises by considering the
monstralizer pair G ◦ ˜G := Z2B ◦ 21+24.Co1 which is intimately related to the original
construction of V � by Frenkel, Lepowsky, and Meurman [6,8,53] as a Z2 orbifold of
the Leech lattice VOA. Calling � := �Leech, the orbifold construction implies that the
monster CFT can be decomposed as

V � = V+
� ⊕ V+

�(σ) (3.161)

where V+
�(σ), in physics language [52], is the space of Z2-invariant states in the twisted

sector of the orbifold. In this picture, the generator of Z2B is the automorphism which
acts as +1 on V+

� and as−1 on the twisted states in V+
�(σ). The group 21+24.Co1 is then

interpreted as the collection of automorphisms in the monster which maps untwisted
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states to untwisted states, and twisted states to twisted states, i.e. which does not mix
V+
� and V+

�(σ). In the language that we’ve been using in this paper, we would then
say that Aut(V+

�) = Inn(V+
�) ∼= 224.Co1 (which is related to the fact that 2.Co1 is

the automorphism group of the Leech lattice) and that the fusion algebra spanned by
{V+

λ ,V+
�(σ)} has aZ2 automorphism. This suggests definingW

˜G = V+
�, which will then

have most of the nice properties required of an M-com pair. However, this would force
us to define WG to be the trivial CFT, in which case (WG,W

˜G) are not each others’
commutants. This example is therefore a somewhat degenerate case of the M-com pairs
we have been considering.

Despite this shortcoming, the VOA V+
� does seem to respect the structure of

inclusions of monstralizer pairs. For example, the monstralizers (Z4A, 4.222.Co3),
(D4A, 21+22.McL), and (D2B, 2.21+22.Co2) all include into (Z2B, 21+24.Co1), and the
chiral algebras ˜WZ4A , ˜WD4A , ˜WD2B correspondingly each embed into V+

� because each
is a charge conjugation orbifold V+

˜L
with ˜L ⊂ �. One can see this explicitly at the level

of characters. The graded-dimensions of V+
� and V+

�(σ) are given by J+(τ ) and J−(τ )
respectively,

J+(τ ) = 1

2

(

��(τ)

η(τ)24
+�0,1(τ )

24
)

= 1

2

(

��(τ)

η(τ)24
+

η(τ)24

η(2τ)24

)

,

J−(τ ) = 211
(

�1,0(τ )
24 −�1,1(τ )

24
)

= 211
(

η(τ)24

η(τ/2)24
− η(2τ)24η(τ/2)24

η(τ)48

)

,

(3.162)

where��(τ) is the theta-function of the Leech lattice, which satisfies��(τ)/η(τ)24 =
J (τ ) + 24. These characters can be decomposed intoWZ4A ⊗ ˜WZ4A characters as

J+(τ ) =
∑

α=0,3,4,7,8,9
χα(τ)χ̃α(τ )

J−(τ ) =
∑

α=1,2,5,6
χα(τ)χ̃α(τ )

(3.163)

where χα(τ) and χ̃α(τ ) are given in equations (3.38) and (3.39). Into WD4A ⊗ ˜WD4A ,
they decompose as

J+(τ ) =
8
∑

α=0
χα(τ)χ̃α(τ ) (3.164)

J−(τ ) =
∑

α=9,10
χα(τ)χ̃α(τ ) (3.165)

where χα(τ) and χ̃α(τ ) are given in equations (3.95) and (3.98). Into WD2B ⊗ ˜WD2B

characters,

J+(τ ) =
∑

α=0,1,2,5,8
χα(τ)χ̃α(τ ),

J−(τ ) =
∑

α=3,4,6,7
χα(τ)χ̃α(τ ). (3.166)
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where χα(τ) and χ̃α(τ ) are given in equations (3.133) and (3.137).
It is more interesting to ask if the idea of M-com pairs has a chance at recovering

chiral algebras whose inner automorphism groups are precisely sporadic groups. For
example, there are at least three other monstralizers

[G ◦ ˜G].H = [7 : 3× He].2, [Z6B ◦ 6.Suz].2, [(2× 5 : 4) ◦ 2.HS].2 (3.167)

with the property that ˜G/Z(˜G) is exactly a sporadic group, so any monstralizing com-
mutant pair which uplifts these would give rise to chiral algebras one might justifiably
call VHe�, VSz�, and VHS�. Do such M-com pairs exist?

For concreteness, we will present an argument for the existence of VHe�, and then
make some comments about more general monstralizer pairs.

Claim. There exists a chiral algebraVHe� withHe.2 automorphism group (and conjec-
turally He inner automorphism group) which is a commutant subalgebra of both VF�

24
and V �. Thus, the VOA participates in an embedding chain

VHe� ↪→ VF�
24 ↪→ V � (3.168)

which mirrors the inclusions of the corresponding monstralizers,

He ↪→ 3.Fi′24 ↪→ M. (3.169)

The sketch of a proof is as follows. Our goal is to realize VHe� as a commutant
subalgebra of VF�

24, the Fischer VOA. In order to do this, we must find a decomposition

of the stress tensor T (z) of VF�
24 into a sum of two conformal vectors of smaller central

charge, T (z) = t (z) + t̃(z). To find a decomposition which respects the Held symmetry,
we decompose the Griess algebra of the Fischer VOA into He representations via a
character theoretic calculation,

(VF�
24)2

∣

∣

∣

He
∼= 1⊕ 1⊕ (non-trivial) (3.170)

which reveals a 2-dimensional subspace fixed byHe. The same is true if one decomposes
(VF�

24)2 with respect toHe.2. Thismeans that the subVOA (VF�
24)

He, consisting of states
fixed by He, has a 2-dimensional space of dimension 2 operators, i.e. a 2-dimensional
Griess algebra. On general grounds, it must be spanned by the stress tensor T (z) and a
single Virasoro primary. This was precisely the situation considered in Sect. 2.2, where
it was found that such a theory always admits a unique deconstruction of its stress tensor
T (z) = t (z) + t̃(z) into two commuting conformal vectors t and t̃ of smaller central
charge. By virtue of the map (2.98) and the fact that He is a simple group, it must act
entirely on either ComVF�

24
(Vir(t)) or ComVF�

24
(Vir(̃t)) as the only other possibility is

that it act by an abelian group of diagonal fusion algebra automorphisms; we assume
without loss of generality that it acts on the former and define

VHe� = ComVF�
24
(Vir(t)) (3.171)

which is a theory with at least He symmetry. Further, because He.2 is maximal in Fi24
[109], VHe� can inherit no more automorphisms from Fi24 than just He.2. We suspect
that it does inherit the full He.2 with the extra order two element acting as an outer
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automorphism, and that the theory VHe� and its commutant in V � furnish an M-com
pair corresponding to the monstralizer [7 : 3× He].2. � 

There are two important general takeaways from this argument. The first is that, if
an M-com uplift of a monstralizer [G ◦ ˜G].H exists, and if the Griess algebra of V �

decomposes into [G ◦ ˜G].H ′ representations with two singlets, i.e.

V �
2

∣

∣

∣[G◦˜G].H ′
∼= 1⊕ 1⊕ (non-trivial irreducibles) (3.172)

then the pair (WG ,W
˜G) is uniquely determined. This is the case, for example, for

[G ◦ ˜G].H = [Z6B ◦ 6.Suz].2 ∼= 6.Suz.2. The second takeaway is that, in the cases that
more than two singlets appear in the decomposition ofV �

2 with respect to themonstralizer,
one may be able to find an intermediate M-com pair (WK ,W

˜K ) with ˜G ↪→ ˜K and try
to realize the putative VOA W

˜G as a commutant subalgebra of W
˜K . We suspect that

such arguments could play a useful role in iteratively defining the full suite of M-com
pairs (WG ,W

˜G), albeit non-constructively.
Unfortunately, such arguments do not immediately reveal the central charge of e.g.

W7:3, which is necessary for a detailed understanding of VHe� = ˜W7:3, including the
computation of its dual characters. However, there are various properties we can expect.
First, one can read off from the monstralizer that Inn(W7:3) ∼= 7 : 3. Furthermore,
in order for VHe� to embed into the Fischer VOA VF�

24, W7:3 should contain a P(3)
subalgebra. Actually, since the Miyamoto lift of the Z3 fusion algebra automorphism
of this P(3) subalgebra will give rise to an order 3 element in 7 : 3, there should be 7
P(3) subalgebras which are permuted amongst each other by the generator of the Z7
normal subgroup. We leave a more detailed study of these issues to future work, and for
now provide a character theoretic calculation related to an algebra ˜U which may sit in
between VHe� and V �, i.e. VHe� ↪→ ˜U ↪→ V � (though we emphasize that ˜U does not
participate in an M-com pair).

Our starting point is the observation that the Held group appears in connection with
the centralizer/normalizer of the cyclic subgroup generated by any element from the 7A
conjugacy class of the monster,

CentM(7A) ∼= Z7 × He, NM(7A) ∼= (7 : 3× He).2 (3.173)

with (7 : 3 × He).2 a maximal subgroup of M. A natural way to try to realize order k
cyclic subgroups of the monster is by finding a P(k) parafermion subalgebra and lifting
the order k automorphism of its fusion algebra to an automorphism of V �. In this case,
we might try to locate a P(7) subalgebra of V �, and study its commutant.

Before proceeding,we should establish that such a subalgebra exists. First, it is known
(c.f. the discussion around equation (2.89)) that the latticeVOAbased on

√
2�root(Ak−1)

contains aP(k) subalgebra, which in fact survives inV+√
2�root(Ak−1)

as well [66]. Second,

it is also known that
√
2N is a sublattice of the Leech lattice �Leech for each Niemeier

lattice30 N . Furthermore, there is a Niemeier lattice N (A4
6) based on the root system

A4
6, which implies the chain of embeddings

P(7) ↪→ V+√
2�root(A6)

↪→ V+√
2N (A4

6)
↪→ V+

�Leech
↪→ V � (3.174)

30 The Niemeier lattices are the even, positive-definite, unimodular lattices of rank 24.
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where in the last step, we used the fact that V � is a Z2 orbifold of the lattice VOA based
on �Leech. This establishes the existence of a P(7) subalgebra; we call its commutant
˜U , which we expect admits an action of He. There will then be a decomposition

V � ∼=
⊕

(�,m)

P(7, [�,m])⊗ ˜U(�,m) (3.175)

with˜U(7, 7) ∼= ˜U , and the˜U(�,m) furnishing representations of˜U .Wewill give evidence
momentarily that the Z7 fusion algebra automorphism of P(7) lifts to an element of the
7A conjugacy class of M.

Once again, we employ Hecke operators to get our hands on the graded-dimensions
of the ˜U(�,m). The Z7 parafermion theory has 28 different primary fields. We order the
characters χα of the corresponding highest weight modules as

χ0 = ψ
(7)
7,7, χ1 = ψ

(7)
1,1, χ2 = ψ

(7)
6,6, χ3 = ψ

(7)
2,2, χ4 = ψ

(7)
5,5,

χ5 = ψ
(7)
3,3, χ6 = ψ

(7)
4,4, χ7 = ψ

(7)
2,0, χ8 = ψ

(7)
3,−1, χ9 = ψ

(7)
3,1,

χ10 = ψ
(7)
4,−2, χ11 = ψ

(7)
4,2, χ12 = ψ

(7)
5,−3, χ13 = ψ

(7)
5,3, χ14 = ψ

(7)
4,0,

χ15 = ψ
(7)
6,−4, χ16 = ψ

(7)
6,4, χ17 = ψ

(7)
7,−5, χ18 = ψ

(7)
7,5, χ19 = ψ

(7)
5,−1,

χ20 = ψ
(7)
5,1, χ21 = ψ

(7)
6,−2, χ22 = ψ

(7)
6,2, χ23 = ψ

(7)
6,0, χ24 = ψ

(7)
7,−3,

χ25 = ψ
(7)
7,3, χ26 = ψ

(7)
7,−1, χ27 = ψ

(7)
7,1, (3.176)

which have conformal weights

h = (0, 1
21 ,

1
21 ,

5
63 ,

5
63 ,

2
21 ,

2
21 ,

2
9 ,

8
21 ,

8
21 ,

11
21 ,

11
21 ,

41
63 ,

41
63 ,

2
3 ,

16
21 ,

16
21 ,

6
7 ,

6
7 ,

59
63 ,

59
63 ,

25
21 ,

25
21 ,

4
3 ,

10
7 , 10

7 , 12
7 , 12

7

)

.
(3.177)

The conductor is given by N = 126.
The central charge of P(7) is ct = 4

3 , and so the central charge c̃t of ˜U is c̃t =
24− ct = 17ct . Since (126, 17) = 1, we may consider applying the Hecke operator T17
to χ . Using the modular S matrix of the characters χ provided in equation (2.47), one
readily computes the q-expansions of their Hecke images,

(T17χ)0(τ ) = q−
17
18
(

1 + 15810q2 + 1375232q3 + 47653839q4 + · · · ) ,
(T17χ)1(τ ) = q

37
126
(

204 + 97563q + 6392374q2 + 191594522q3 + 3643081640q4 + · · · ) ,
(T17χ)3(τ ) = q

5
42
(

51 + 55284q + 4454595q2 + 148169790q3 + 3009822273q4 + · · · ) ,
(T17χ)5(τ ) = q

67
126
(

1955 + 448902q + 23218498q2 + 612398140q3 + · · · ) ,
(T17χ)7(τ ) = q

5
6
(

11679 + 1432080q + 57855030q2 + 1323345654q3 + · · · ) ,
(T17χ)8(τ ) = q

121
126
(

27234 + 2721020q + 100447832q2 + 2175623416q3 + · · · ) ,
(T17χ)10(τ ) = q

85
126
(

5084 + 836961q + 38286006q2 + 941558481q3 + · · · ) ,
(T17χ)12(τ ) = q

41
42
(

26112 + 2548623q + 93075204q2 + 2002645050q3 + · · · ) ,
(T17χ)14(τ ) = q

7
18
(

680 + 234226q + 13898520q2 + 395054092q3 + · · · ) ,
(T17χ)15(τ ) = q−

17
126
(

1 + 10404q + 1210230q2 + 47772074q3 + 1077610433q4 + · · · ) ,
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(T17χ)17(τ ) = q
43
126
(

153 + 65212q + 4054534q2 + 118328160q3 + · · · ) ,
(T17χ)19(τ ) = q

17
42
(

681 + 221646q + 12948390q2 + 364895820q3 + · · · ) ,
(T17χ)21(τ ) = q

127
126
(

22984 + 2144856q + 76669456q2 + 1628223858q3 + · · · ) ,
(T17χ)23(τ ) = q

13
18
(

4454 + 668848q + 29441076q2 + 708076656q3 + · · · ) ,
(T17χ)24(τ ) = q

25
126
(

51 + 32504q + 2381394q2 + 75441121q3 + · · · ) ,
(T17χ)26(τ ) = q

79
126
(

1275 + 236980q + 11269249q2 + 283574263q3 + · · · ) ,
and

(T17χ)2(τ ) = (T17χ)1(τ ), (T17χ)4(τ ) = (T17χ)3(τ ), (T17χ)6(τ ) = (T17χ)5(τ ),

(T17χ)9(τ ) = (T17χ)8(τ ), (T17χ)11(τ ) = (T17χ)10(τ ), (T17χ)13(τ ) = (T17χ)12(τ ),

(T17χ)16(τ ) = (T17χ)15(τ ), (T17χ)18(τ ) = (T17χ)17(τ ), (T17χ)22(τ ) = (T17χ)21(τ ),

(T17χ)25(τ ) = (T17χ)24(τ ), (T17χ)27(τ ) = (T17χ)26(τ ).

If we are to identify these functions with the graded dimensions of the ˜U(�,m), they
should fit into a bilinear with the characters χ which produces J (τ ). From the general
theory of such bilinears, we must solve the equation

89 + �2 = 0 mod 126. (3.178)

for �, and consider the matrices G� (c.f. Sect. 2.3.2). It is straightforward to see � = 17,
53, 73, 109 are the available solutions, and the corresponding matrices are identical up
to sign. Namely,

G17 = G109 = −G53 = −G73. (3.179)

So, without loss of generality, we can work with G17, which is 0 in each entry, except
for the entries

(0, 0), (1, 15), (2, 16), (3, 19), (4, 20), (5, 11), (6, 10), (7, 7), (8, 6), (9, 5),

(10, 9), (11, 8), (12, 4), (13, 3), (14, 14), (15, 22), (16, 21), (17, 26), (18, 27),

(19, 12), (20, 13), (21, 1), (22, 2), (23, 23), (24, 18), (25, 17), (26, 24), (27, 25),
(3.180)

in which it is 1. One can then show that this matrix furnishes a bilinear with the right
properties,

J (τ ) = (T17χ)T (τ ) · G17 · χ(τ). (3.181)

As a further check, we can show that the same bilinear is consistent with the Z7 sym-
metry of the parafermion theory lifting to an element of the 7A conjugacy class of
M. Indeed, if one defines the vector-valued function χω by making the replacements

ψ
(7)
�,m → e

2π im
7 ψ

(7)
�,m in the components of χ , then one finds by direct computation that,

to low orders in the q-expansion,

(T17χ)T (τ ) · G17 · χω(τ) = 1

q
+ 51q + 204q2 + 681q3 + 1956q4 + · · · , (3.182)
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which agrees with the Mckay-Thompson series of the 7A conjugacy class in M, J7A(τ ).

One can thus identify χ̃�,m(τ ) := Tr
˜U(�,m)q

˜l0− 17
18 with the component of GT

17 · (T17χ).
Finally, wemention that loworder terms in the q-expansion of the (T17χ)α(τ ) involve

coefficients that are consistent with decompositions into small numbers of irreducible
representation of the Held group. For example, 51, 153 and 680 are dimensions of Held
irreps, 204 = 153 + 51, 1955 = 1275 + 680 and so on.

3.4. Baby monster and Fischer deconstructions from McKay’s correspondence. In pre-
vious sections, we constructed several examples of VOAs as commutant subalgebras of
V �, one for each conjugacy class arising in McKay’ŝE8 correspondence. As described
in Sects. 3.1.2 and 3.1.3, the baby monster B and Fischer’s group Fi24 enjoy similar
relationships with the Dynkin diagrams of̂E7 and̂E6 respectively (c.f. Figs. 4 and 5),
and so we may consider repeating the same kind of analysis for VB

� and VF�
24. We we

will see that this naturally leads to centralizing commutant pairs in VB
� and VF�

24.

B-com pairs We start by studying the commutants of the chiral algebrasWB(nX) consid-
ered in [98], whose defining property is that they have two central charge 7

10 conformal
vectors whose associated σ -type Miyamoto involutions (c.f. equation (3.9)) have prod-
uct lying in the nX conjugacy class of B; we refer to (loc. cit.) for detailed descriptions
of these algebras. In this section, we will label the dihedral subgroup of B generated by
these σ -type Miyamoto involutions as DnX. We do not attempt to solve this problem
completely; we content ourselves here with observing that the cases31 ˜WB(2A), ˜WB(3A),

and ˜WB(2C) are identical to the algebras ˜WD2A , ˜WD3A
∼= VF�

23, and ˜WD4B respectively.
This will follow immediately from the fact that e.g. WB(2A) ⊂WD1A , and so on.
1A case: [D1A ◦ 2.2E6(2)].2

In analogy with the algebra WD1A considered in Sect. 3.2.1, the algebra WB(1A) by
definition has two conformal vectors e and f of central charge 7

10 and σ -type whose
associated Miyamoto involutions σe and σ f multiply to produce the identity element of
B. This implies that their involutions are actually the same, σe = σ f , and since elements
of the 2A conjugacy class of B are in one-to-one correspondence with central charge
7
10 conformal vectors of σ -type in VB

�, this means that e = f . Thus, we simply have
that WB(1A)

∼= L( 7
10 , 0); further, this algebra sits inside of the 2A case of McKay’ŝE8

correspondence, i.e.WB(1A) ⊂WD2A . The commutant of such a subalgebra of VB
� was

computed earlier (c.f. equation (3.52)), where it was shown to produce ˜WD2A , the chiral
algebra with 2E6(2).2 symmetry. We thus decorate the 1A node of˜E7 with this chiral
algebra.
2C case: [D2C ◦ 22.F4(2)].2

The 2C case can be described as a subalgebra of VB
� isomorphic to

WB(2C) ∼= L( 7
10 , 0)⊗ L( 7

10 , 0)⊕ L( 7
10 ,

3
2 )⊗ L( 7

10 ,
3
2 ) (3.183)

This is a subalgebra of WD4B . It follows from the iterated deconstruction in equation
(3.127) that the commutant of this algebra in VB

� is given by ˜WD4B , the chiral algebra
with F4(2).2 symmetry. We thus label the 2C node of̂E7 with this group.

31 The algebra e.g. ˜WB(1A) is defined to be the commutant ofWB(1A) in VB
�, while the algebra ˜WD2A is

defined to be the commutant ofWD2A in V �; we hope that this notation will not cause confusion.
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3A case: [D3A × Fi22].2
The 3A algebra WB(3A) is an extension of P(3) ⊗ P(6). Using the fact that WD6A

has a L( 12 , 0)⊗ P(3)⊗ P(6) subalgebra, if one performs an iterated deconstruction of
V � with respect to the decomposition

T (z) = t (
1
2 )(z) + t (

41
20 )(z) + t̃(z), (3.184)

where t (
41
20 ) is the stress ofP(3)⊗P(6), then it follows immediately that one can realize

˜W6A as the commutant ofWB(3A) in VB
�, i.e. ˜WB(3A)

∼= ˜W6A, the algebra with Fi22.2
symmetry. We thus label the 3A node of̂E7 with this group.

Fi24-com pairs We may repeat this analysis once more for the Fischer group, which
enjoys a relationship to the Dynkin diagram of ̂E6, as described in Sect. 3.1.3. We
briefly show that the commutants of WF(1A) and WF(2A) in VF�

24 are isomorphic to

VF�
23 and VF�

22 respectively. Again, we label the dihedral subgroup of VF�
24 generated

by the Miyamoto involutions as DnX.
1A case: D1A × Fi23

McKay’s ̂E6 correspondence concerns the “derived” conformal vectors of central
charge 6

7 in VF�
24. Thus, just as WD1A

∼= L( 12 , 0) and WB(1A)
∼= L( 7

10 , 0), we have
that32 WF(1A)

∼= L( 67 , 0)⊕ L( 67 , 5); further, WF(1A) sits inside WD3A . It follows from

the fact that WD3A
∼= VF�

23 admits a L( 45 , 0) ⊗ L( 67 , 0) subalgebra, and the iterated
deconstruction performed with respect to the resulting decomposition

T (z) = t (
4
5 )(z) + t (

6
7 )(z) + t̃(z) (3.185)

in e.g. (3.77) that ˜WF(1A)
∼= ˜WD3A

∼= VF�
23.

2A case: [D2A ◦ 22.Fi22].2
Finally, the 2A case admits a subalgebra of the form L( 67 , 0)⊗ L( 2528 , 0) ⊂ WF(2A)

and sits inside WD6A . It thus follows from the iterated deconstruction considered in
(3.121) that

˜WF(2A)
∼= ˜W6A ∼= VF�

22. (3.186)

4. Conclusions

In this paper, we have studied various chiral algebras that occur as commutant sub-
algebras of the monster CFT, and which have interesting, usually sporadic symmetry
groups. In many cases, we were able to obtain the characters of these theories as Hecke
images, as solutions to MLDEs, or both; in all cases, we were able to obtain them as
Rademacher series. Our results are naturally organized via a connection to monstralizer
pairs, a concept which we have extended to the chiral algebra setting by defining the
notion of a monstralizing commutant pair. Although the characters we have found were
not derived directly from the definition of the commutatant subalgebras, they pass a num-
ber of nontrivial consistency checks, and in particular are compatible with the existence
of a number of non-trivial Griess algebras with sporadic automorphism groups.

A number of open questions remain.

32 The appearance of the module L( 67 , 5) is related to the fact that the conformal vector is “derived.”



Conformal Field Theories with Sporadic Group Symmetry

1. Is it possible to find an M-com uplift of every pair of mutually centralizing groups in
the monster? Can one iteratively look for centralizing commutant pairs inside of the
chiral algebras so produced? Will this lead to candidate algebras VG� for every G in
the happy family, i.e. for each simple sporadic group G which arises as a subquotient
of M? What distinguishes such subalgebras?

2. What are the general properties of centralizing commutant pairs? Can they be put to
good use in more general settings besides the monster CFT?

3. Our use of Hecke operators to obtain the dual characters of ˜W in V � from the
characters of W required that the central charge of ˜W be an integer multiple of
the central charge ofW , c̃t = qct , and also that the conductor N of the characters of
W be coprime to this integer, (N , q) = 1. Is there a generalization of Hecke operators
which works in the more general case?

4. The baby monster VOA was studied recently in [115], where it was used to probe
the category of topological lines in V �. It was further anticipated in (loc. cit.) that
analogous decompositions of V � could also shed light on its topological lines. What,
if anything, do our deconstructions of V � reveal about the structure of defects in the
moonshine module?

5. Do the chiral algebras we constructed inherit any aspect of the genus zero property
from V �? What characterizes their McKay-Thompson series? Are they Rademacher
summable?

6. In recent work, [116] classified all N = 1 SVOAs whose even part is a simply
connected WZW algebra (other than E7,2, E2

7,1, and E8,2). The exceptional cases
in the classification have automorphism groups related to a chain of exceptional
subgroups of Co1 called the Suzuki chain; the SVOAs arise as subalgebras in the
Conway SVOA V f � [9,10] in a similar manner to how our chiral algebras arise in
V �. Namely, they arise by what one might call supersymmetric deconstruction. Do
our chiral algebras arise as exceptional entries in a classification of rational VOAs of
some kind?
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A. Fusion Rules for the ˜WDnX Algebras

In this appendix,we present the fusion rules for someof the theories discussed in themain
text. The structure constants N γ

αβ are computed using the S-matrix of each theory and
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the Verlinde formula, equation (2.17). It turns out that each theory hasN γ
αβ = 0 or 1 for

all α, β, γ . In the cases that we used the block-diagonalization method to determine the
characters of our models (c.f. Sect. 2.1.2), the consistency of the fusion rules provides a
non-trivial check on our results. Because fusion algebra is associative,N γ

αβ = 1 imposes

thatN γ
βα = 1. Below, we present all the non-vanishing fusion algebra coefficients of the

five theories in Sects. 3.2.2, 3.2.3, 3.2.9, 3.2.5 and 3.2.6.

List of non-vanishing N γ
αβ for ˜WD2A :.

N 0
00, N 1

01, N 2
02, N 3

03, N 4
04, N 5

05, N 6
06, N 7

07, N 0
11, N 1

11, N 5
12, N 6

13, N 7
14,

N 2
15, N 5

15, N 3
16, N 6

16, N 4
17, N 7

17, N 0
22, N 4

23, N 3
24, N 1

25, N 7
26, N 6

27, N 0
33,

N 2
34, N 7

35, N 1
36, N 5

37, N 0
44, N 6

45, N 5
46, N 1

47, N 0
55, N 1

55, N 4
56, N 7

56, N 3
57,

N 6
57, N 0

66, N 1
66, N 2

67, N 5
67, N 0

77, N 1
77.

(A.1)

List of non-vanishing N γ
αβ for VT�:.

N 0
00, N 1

01, N 2
02, N 3

03, N 4
04, N 0

11, N 1
11, N 2

11, N 1
12, N 2

12, N 3
12, N 2

13, N 3
13,

N 4
13, N 3

14, N 4
14, N 0

22, N 1
22, N 2

22, N 3
22, N 4

22, N 1
23, N 2

23, N 3
23, N 4

23, N 2
24,

N 3
24, N 0

33, N 1
33, N 2

33, N 3
33, N 1

34, N 2
34, N 0

44, N 1
44.

(A.2)

List of non-vanishing N γ
αβ for VHN�:.

N 0
00, N 1

01, N 2
02, N 3

03, N 4
04, N 5

05, N 6
06, N 7

07, N 8
08, N 0

11, N 3
11, N 5

12, N 1
13,

N 3
13, N 7

14, N 2
15, N 6

15, N 5
16, N 6

16, N 4
17, N 8

17, N 7
18, N 8

18, N 0
22, N 4

22, N 6
23,

N 2
24, N 4

24, N 1
25, N 7

25, N 3
26, N 8

26, N 5
27, N 7

27, N 6
28, N 8

28, N 0
33, N 1

33, N 3
33,

N 8
34, N 5

35, N 6
35, N 2

36, N 5
36, N 6

36, N 7
37, N 8

37, N 4
38, N 7

38, N 8
38, N 0

44, N 2
44,

N 4
44, N 5

45, N 7
45, N 6

46, N 8
46, N 1

47, N 5
47, N 7

47, N 3
48, N 6

48, N 8
48, N 0

55, N 3
55,

N 4
55, N 8

55, N 1
56, N 3

56, N 7
56, N 8

56, N 2
57, N 4

57, N 6
57, N 8

57, N 5
58, N 6

58, N 7
58,

N 8
58, N 0

66, N 1
66, N 3

66, N 4
66, N 7

66, N 8
66, N 5

67, N 6
67, N 7

67, N 8
67, N 2

68, N 4
68,

N 5
68, N 6

68, N 7
68, N 8

68, N 0
77, N 2

77, N 3
77, N 4

77, N 6
77, N 8

77, N 1
78, N 3

78, N 5
78,

N 6
78, N 7

78, N 8
78, N 0

88, N 1
88, N 2

88, N 3
88, N 4

88, N 5
88, N 6

88, N 7
88, N 8

88. (A.3)

List of non-vanishing N γ
αβ for VF�

23:.

N 0
00, N 1

01, N 2
02, N 3

03, N 4
04, N 5

05, N 0
11, N 2

11, N 1
12, N 2

12, N 4
13, N 3

14, N 5
14,

N 4
15, N 5

15, N 0
22, N 1

22, N 2
22, N 5

23, N 4
24, N 5

24, N 3
25, N 4

25, N 5
25, N 0

33, N 3
33,

N 1
34, N 4

34, N 2
35, N 5

35, N 0
44, N 2

44, N 3
44, N 5

44, N 1
45, N 2

45, N 4
45, N 5

45, N 0
55,

N 1
55, N 2

55, N 3
55, N 4

55, N 5
55.

(A.4)
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List of non-vanishing N γ
αβ for VF�

22:.

N 0
00, N 1

01, N 2
02, N 3

03, N 4
04, N 5

05, N 6
06, N 7

07, N 8
08, N 9

09, N 10
0,10, N 11

0,11, N 12
0,12,

N 13
0,13, N 0

11, N 1
11, N 2

11, N 1
12, N 2

12, N 3
12, N 2

13, N 4
14, N 5

14, N 6
14, N 4

15, N 5
15,

N 7
15, N 4

16, N 5
17, N 9

18, N 10
18 , N 8

19, N 10
19 , N 8

1,10, N 9
1,10, N 10

1,10, N 11
1,11, N 12

1,11, N 13
1,11,

N 11
1,12, N 13

1,12, N 11
1,13, N 12

1,13, N 0
22, N 1

22, N 2
22, N 1

23, N 4
24, N 5

24, N 7
24, N 4

25, N 5
25,

N 6
25, N 5

26, N 4
27, N 8

28, N 10
28 , N 9

29, N 10
29 , N 8

2,10, N 9
2,10, N 10

2,10, N 11
2,11, N 12

2,11, N 13
2,11,

N 11
2,12, N 12

2,12, N 11
2,13, N 13

2,13, N 0
33, N 5

34, N 4
35, N 7

36, N 6
37, N 9

38, N 8
39, N 10

3,10, N 11
3,11,

N 13
3,12, N 12

3,13, N 0
44, N 1

44, N 2
44, N 4

44, N 5
44, N 7

44, N 1
45, N 2

45, N 3
45, N 4

45, N 5
45,

N 6
45, N 1

46, N 5
46, N 2

47, N 4
47, N 11

48 , N 13
48 , N 11

49 , N 12
49 , N 11

4,10, N 12
4,10, N 13

4,10, N 8
4,11,

N 9
4,11, N 10

4,11, N 11
4,11, N 12

4,11, N 13
4,11, N 9

4,12, N 10
4,12, N 11

4,12, N 12
4,12, N 8

4,13, N 10
4,13, N 11

4,13,

N 13
4,13, N 0

55, N 1
55, N 2

55, N 4
55, N 5

55, N 7
55, N 2

56, N 4
56, N 1

57, N 5
57, N 11

58 , N 12
58 , N 11

59 ,

N 13
59 , N 11

5,10, N 12
5,10, N 13

5,10, N 8
5,11, N 9

5,11, N 10
5,11, N 11

5,11, N 12
5,11, N 13

5,11, N 8
5,12, N 10

5,12,

N 11
5,12, N 13

5,12, N 9
5,13, N 10

5,13, N 11
5,13, N 12

5,13, N 0
66, N 7

66, N 3
67, N 6

67, N 12
68 , N 13

69 , N 11
6,10,

N 10
6,11, N 8

6,12, N 13
6,12, N 9

6,13, N 12
6,13, N 0

77, N 7
77, N 13

78 , N 12
79 , N 11

7,10, N 10
7,11, N 11

7,11,

N 9
7,12, N 12

7,12, N 8
7,13, N 13

7,13, N 0
88, N 2

88, N 1
89, N 3

89, N 1
8,10, N 2

8,10, N 4
8,11, N 5

8,11,

N 5
8,12, N 6

8,12, N 4
8,13, N 7

8,13, N 0
99, N 2

99, N 1
9,10, N 2

9,10, N 4
9,11, N 5

9,11, N 4
9,12, N 7

9,12,

N 5
9,13, N 6

9,13, N 0
10,10, N 1

10,10, N 2
10,10, N 3

10,10, N 4
10,11, N 5

10,11, N 6
10,11, N 7

10,11,

N 4
10,12, N 5

10,12, N 4
10,13, N 5

10,13, N 0
11,11, N 1

11,11, N 2
11,11, N 3

11,11, N 4
11,11, N 5

11,11,

N 6
11,11, N 7

11,11, N 1
11,12, N 2

11,12, N 4
11,12, N 5

11,12, N 1
11,13, N 2

11,13, N 4
11,13, N 5

11,13,

N 0
12,12, N 2

12,12, N 4
12,12, N 7

12,12, N 1
12,13, N 3

12,13, N 5
12,13, N 6

12,13, N 0
13,13, N 2

13,13,

N 4
13,13, N 7

13,13. (A.5)

List of non-vanishing N γ
αβ for ˜WD4A :.

N 0
00, N 1

01, N 2
02, N 3

03, N 4
04, N 5

05, N 6
06, N 7

07, N 8
08, N 9

09, N 10
0,10, N 0

11, N 2
12

N 3
13, N 4

14, N 5
15, N 6

16, N 7
17, N 8

18, N 10
19 , N 9

1,10, N 0
22, N 1

22, N 3
22, N 2

23, N 3
23,

N 7
24, N 8

24, N 6
25, N 8

25, N 5
26, N 7

26, N 4
27, N 6

27, N 4
28, N 5

28, N 9
29, N 10

29 , N 9
2,10,

N 10
2,10, N 0

33, N 1
33, N 2

33, N 5
34, N 6

34, N 4
35, N 7

35, N 4
36, N 8

36, N 5
37, N 8

37, N 6
38,

N 7
38, N 9

39, N 10
39 , N 9

3,10, N 10
3,10, N 0

44, N 1
44, N 4

44, N 3
45, N 6

45, N 3
46, N 5

46, N 2
47,

N 8
47, N 2

48, N 7
48, N 9

49, N 10
49 , N 9

4,10, N 10
4,10, N 0

55, N 1
55, N 8

55, N 2
56, N 4

56, N 3
57,

N 7
57, N 2

58, N 5
58, N 9

59, N 10
59 , N 9

5,10, N 10
5,10, N 0

66, N 1
66, N 7

66, N 2
67, N 6

67, N 3
68,

N 8
68, N 9

69, N 10
69 , N 9

6,10, N 10
6,10, N 0

77, N 1
77, N 5

77, N 4
78, N 4

78, N 9
79, N 10

79 , N 9
7,10,

N 10
7,10, N 0

88, N 1
88, N 6

88, N 9
89, N 10

89 , N 9
8,10, N 10

8,10, N 0
99, N 2

99, N 3
99, N 4

99, N 5
99,
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N 6
99, N 7

99, N 8
99, N 1

9,10, N 2
9,10, N 3

9,10, N 4
9,10, N 5

9,10, N 6
9,10, N 7

9,10, N 8
9,10,

N 0
10,10, N 2

10,10, N 3
10,10, N 4

10,10, N 5
10,10, N 6

10,10, N 7
10,10, N 8

10,10 (A.6)

List of non-vanishing N γ
αβ for ˜WD4B :.

N 0
00, N 1

01, N 2
02, N 3

03, N 4
04, N 5

05, N 6
06, N 7

07, N 8
08, N 9

09, N 10
0,10, N 11

0,11, N 0
11

N 6
12, N 7

13, N 5
14, N 4

15, N 2
16, N 3

17, N 8
18, N 9

19, N 10
1,10, N 11

1,11, N 0
22, N 2

22, N 4
23,

N 3
24, N 4

24, N 5
25, N 7

25, N 1
26, N 6

26, N 5
27, N 9

28, N 8
29, N 9

29, N 11
2,10, N 10

2,11, N 11
2,11,

N 0
33, N 3

33, N 2
34, N 4

34, N 5
35, N 6

35, N 5
36, N 1

37, N 7
37, N 10

38 , N 11
39 , N 8

3,10, N 10
3,10,

N 9
3,11, N 11

3,11, N 0
44, N 2

44, N 3
44, N 4

44, N 1
45, N 5

45, N 6
45, N 7

45, N 5
46, N 7

46, N 5
47,

N 6
47, N 11

48 , N 10
49 , N 11

49 , N 9
4,10, N 11

4,10, N 8
4,11, N 9

4,11, N 10
4,11, N 11

4,11, N 0
55, N 2

55, N 3
55,

N 4
55, N 3

56, N 4
56, N 2

57, N 4
57, N 11

58 , N 10
59 , N 11

59 , N 9
5,10, N 11

5,10, N 8
5,11, N 9

5,11, N 10
5,11,

N 11
5,11, N 0

66, N 2
66, N 4

67, N 9
68, N 8

69, N 9
69, N 11

6,10, N 10
6,11, N 11

6,11, N 0
77, N 3

77, N 10
78 ,

N 11
79 , N 8

7,10, N 10
7,10, N 9

7,11, N 11
7,11, N 0

88, N 1
88, N 2

89, N 6
89, N 3

8,10, N 7
8,10, N 4

8,11, N 5
8,11,

N 0
99, N 1

99, N 2
99, N 6

99, N 4
9,10, N 5

9,10, N 3
9,11, N 4

9,11, N 5
9,11, N 7

9,11, N 0
10,10,

N 1
10,10, N 3

10,10, N 7
10,10, N 2

10,11, N 4
10,11, N 5

10,11, N 6
10,11, N 0

11,11, N 1
11,11, N 2

11,11,

N 3
11,11, N 4

11,11, N 5
11,11, N 6

11,11, N 7
11,11

(A.7)

B. Group Theory Data

In this appendix we provide, for a few examples, the group theoretic data necessary for
analyzing twined bilinears.
Let us start with a somewhat general discussion of how characters ofW and ˜W , twined

by inner automorphisms, can be bilinearly combined to produce twined characters of
the VOA V in which they sit as commutant pairs. We assume for simplicity that V is
a meromorphic CFT with partition function Z , that Inn(W)× Inn( ˜W) ⊂ Aut(V), and
that the inner automorphism groups are realized honestly on the modules of W and
˜W which appear in the decomposition of V (as opposed to projectively). Under these
assumptions, there will be generalized bilinear relations of the form

Zgh(τ ) =
∑

α

χg,α(τ )χ̃h,α(τ ) (B.1)

which arise by taking the graded trace of both sides of the decomposition

V =
⊕

α

W(α)⊗ ˜W(α). (B.2)

Because the graded characters are class functions of the associated groups, one only
needs to know how the conjugacy classes of Inn(W)× Inn( ˜W) fuse into the conjugacy
classes of Aut(V). For illustrative purposes, we take V = V � and provide the necessary
data for the cases (W, ˜W) = (W5A,VHN�) and (WD3C ,VT

�) in Tables 11 and 12:
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namely, information about how conjugacy classes of HN ∼= Inn(VHN�) and Z3×Th ⊂
Inn(WD3C) × Inn(VT�) fuse into conjugacy classes of M. One can use this data to
conduct checks on our proposals regarding the implementation of the symmetry groups
in these two examples. For example, a prediction of Table 12 is that

J6F(τ ) =
∑

α

χω,α(τ )χ2A,VT�(α)(τ ) (B.3)

where χω,α are the characters ofWD3C twined by the generator of its Z3 automorphism,
χ2A,VT�(α) are the characters of VT

� twined by an element of the 2A conjugacy class of
Th, and J6F is the McKay-Thompson series of the 6A conjugacy class in M (c.f. Sect.
3.2.9 for more details). To compute χ2A,VT�(α) to low order in its q-expansion, one can
use the character table of Th, Tables 7, 8, 9 and 10, as well as the decompositions of the
graded-components VT�(α)h into Th representations, Table 6.

C. Alternative Derivation of the Characters of VF�
22

In this appendix, we give an alternative derivation of the characters of VF�
22. The basic

idea is that, although the Hecke method does not work out of the box, one can perform
intermediate deconstructions for which the Hecke method is effective. Although we
work purely at the level of modular forms, our steps are motivated by the following
algebraic manipulations.

1. We first decompose the moonshine module into (an extension of) one of itsL( 12 , 0)⊗
L( 45 , 0) ⊗ L( 7

10 , 0) subalgebras
33 and its commutant. Here, the Hecke method is

effective in producing the dual characters.
2. It is straightforward to infer from the previous step how the moonshine module

decomposes into justL( 12 , 0)⊗L( 45 , 0) and its commutant. From the fact thatP(2) ∼=
L( 12 , 0) and P(3) ∼= L( 45 , 0) ⊕ L( 45 , 3), we will be able to re-interpret this as a
decomposition of V � into a P(2)⊗ P(3) subalgebra and its commutant.

3. The previous step will give us a bilinear of the form J (τ ) = ∑i gi (τ )g̃i (τ ) which
we can set equal to the bilinear in equation (3.122) to extract expressions for the dual
characters χVF�

22(α)
(τ ).

We start by constructing the characters of an extension of P(2)⊗ P(3)⊗ P(6), using
the block-diagonalization method outlined in Sect. 2.1.2. We label the S-matrices of the
VOAs P(2), P(3), and P(6) as S(2),S(3), and S(6). One can show that the matrix of
the tensor product theory, S(2) ⊗ S(3) ⊗ S(6), can be block-diagonalized into a 14× 14
block and its complement. This suggests the existence of a unitary RCFT described by
14 characters which can be expressed in terms of parafermion characters as

χ0 = ψ
(2)
2,2ψ

(3)
3,3ψ

(6)
6,6 + ψ

(2)
2,2ψ

(3)
3,1ψ

(6)
6,−2 + ψ

(2)
2,2ψ

(3)
3,−1ψ

(6)
6,2

+ ψ
(2)
2,0ψ

(3)
3,3ψ

(6)
6,0 + ψ

(2)
2,0ψ

(3)
3,−1ψ

(6)
6,−4 + ψ

(2)
2,0ψ

(3)
3,1ψ

(6)
6,4,

χ1 = ψ
(2)
2,2ψ

(3)
3,3ψ

(6)
2,0 + ψ

(2)
2,2ψ

(3)
3,1ψ

(6)
4,−2 + ψ

(2)
2,2ψ

(3)
3,−1ψ

(6)
4,2

+ ψ
(2)
2,0ψ

(3)
3,3ψ

(6)
4,0 + ψ

(2)
2,0ψ

(3)
3,−1ψ

(6)
2,2 + ψ

(2)
2,0ψ

(3)
3,1ψ

(6)
4,4,

33 Such a subalgebra exists, as proven in [66].
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Table 11. The fusion of conjugacy classes in HN into conjugacy classes of M. The notation nX indicates a
conjugacy class of HN, andmY indicates a conjugacy class ofM, with both following the labeling conventions
of the Atlas of Finite Groups [1]. This data was computed using Gap [108]

nX 1A 2A 2B 3A 3B 4A 4B 4C 5A
mY 1A 2A 2B 3A 3B 4A 4B 4D 5A
nX 5B 5C 5D 5E 6A 6B 6C 7A 8A
mY 5B 5B 5B 5A 6A 6C 6B 7A 8C
nX 8B 9A 10A 10B 10C 10D 10E 10F 10G
mY 8B 9A 10C 10A 10E 10D 10D 10A 10B
nX 10H 11A 12A 12B 12C 14A 15A 15B 15C
mY 10B 11A 12C 12A 12F 14A 15A 15C 15C
nX 19A 19B 20A 20B 20C 20D 20E 21A 22A
mY 19A 19A 20C 20C 20B 20E 20E 21A 22A
nX 25A 25B 30A 30B 30C 35A 35B 40A 40B
mY 25A 25A 30B 30A 30A 35A 35A 40A 40A
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B

36
B

39
A

39
A

(ω
k
,
nX

)
(ω

,
1A

)
(ω

,
2A

)
(ω

,
3A

)
(ω

,
3B

)
(ω

,
3C

)
(ω

,
4A

)
(ω

,
4B

)
(ω

,
5A

)
(ω

,
6A

)
(ω

,
6B

)

m
Y

3C
6F

3C
3C

3C
12

D
12

J
15

D
6F

6F
(ω

k
,
nX

)
(ω

,
6C

)
(ω

,
7A

)
(ω

,
8A

)
(ω

,
8B

)
(ω

,
9A

)
(ω

,
9B

)
(ω

,
9C

)
(ω

,
10

A
)

(ω
,
12

A
)

m
Y

6F
21

C
24

E
24

J
9A

9A
9B

30
E

12
D

(ω
k
,
nX

)
(ω

,
12

B
)

(ω
,
12

C
)

(ω
,
12

D
)

(ω
,
13

A
)

(ω
,
14

A
)

(ω
,
15

A
)

(ω
,
15

B
)

(ω
,
18

A
)

(ω
,
18

B
)

(ω
,
19

A
)

m
Y

12
D

12
D

12
J

39
B

42
C

15
D

15
D

18
C

18
E

57
A

(ω
k
,
nX

)
(ω

,
20

A
)

(ω
,
21

A
)

(ω
,
24

A
)

(ω
,
24

B
)

(ω
,
24

C
)

(ω
,
24

D
)

(ω
,
27

A
)

(ω
,
27

B
)

(ω
,
27

C
)

m
Y

60
F

21
C

24
E

24
E

24
J

24
J

27
B

27
B

27
B

(ω
k
,
nX

)
(ω

,
28

A
)

(ω
,
30

A
)

(ω
,
30

B
)

(ω
,
31

A
)

(ω
,
31

B
)

(ω
,
36

A
)

(ω
,
36

B
)

(ω
,
36

C
)

(ω
,
39

A
)

(ω
,
39

B
)

m
Y

84
C

30
E

30
E

93
A
/
B

93
B
/
A

36
A

36
A

36
A

39
B

39
B

(ω
k
,
nX

)
(ω

2
,
1A

)
(ω

2
,
2A

)
(ω

2
,
3A

)
(ω

2
,
3B

)
(ω

2
,
3C

)
(ω

2
,
4A

)
(ω

2
,
4B

)
(ω

2
,
5A

)
(ω

2
,
6A

)
(ω

2
,
6B

)

m
Y

3C
6F

3C
3C

3C
12

D
12

J
15

D
6F

6F
(ω

k
,
nX

)
(ω

2
,
6C

)
(ω

2
,
7A

)
(ω

2
,
8A

)
(ω

2
,
8B

)
(ω

2
,
9A

)
(ω

2
,
9B

)
(ω

2
,
9C

)
(ω

2
,
10

A
)

(ω
2
,
12

A
)

m
Y

6F
21

C
24

E
24

J
9A

9A
9B

30
E

12
D

(ω
k
,
nX

)
(ω

2
,
12

B
)

(ω
2
,
12

C
)

(ω
2
,
12

D
)

(ω
2
,
13

A
)

(ω
2
,
14

A
)

(ω
2
,
15

A
)

(ω
2
,
15

B
)

(ω
2
,
18

A
)

(ω
2
,
18

B
)

(ω
2
,
19

A
)

m
Y

12
D

12
D

12
J

39
B

42
C

15
D

15
D

18
C

18
E

57
A

(ω
k
,
nX

)
(ω

2
,
20

A
)

(ω
2
,
21

A
)

(ω
2
,
24

A
)

(ω
2
,
24

B
)

(ω
2
,
24

C
)

(ω
2
,
24

D
)

(ω
2
,
27

A
)

(ω
2
,
27

B
)

(ω
2
,
27

C
)

m
Y

60
F

21
C

24
E

24
E

24
J

24
J

27
B

27
B

27
B

(ω
k
,
nX

)
(ω

2
,
28

A
)

(ω
2
,
30

A
)

(ω
2
,
30

B
)

(ω
2
,
31

A
)

(ω
2
,
31

B
)

(ω
2
,
36

A
)

(ω
2
,
36

B
)

(ω
2
,
36

C
)

(ω
2
,
39

A
)

(ω
2
,
39

B
)

m
Y

84
C

30
E

30
E

93
A
/
B

93
B
/
A

36
A

36
A

36
A

39
B

39
B
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The modular properties of the characters in (C.1) are governed by the S-matrix S

1

4

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√
2s1α α

2s1
α
2s1

√
2s1α

β
2s1

β
2s1

√
2s1β

√
2s1β α α

√
2α

√
2β β β

α
2s1

−√2s1α −√2s1α α
2s1

−√2s1β −√2s1β
β
2s1

β
2s1

−α −α
√
2α

√
2β −β −β

α
2s1

−√2s1α −√2s1α α
2s1

−√2s1β −√2s1β
β
2s1

β
2s1

α α −√2α −√2β β β√
2s1α α

2s1
α
2s1

√
2s1α

β
2s1

β
2s1

√
2s1β

√
2s1β −α −α −√2α −√2β −β −β

β
2s1

−√2s1β −√2s1β
β
2s1

√
2s1α

√
2s1α − α

2s1
− α

2s1
β β −√2β

√
2α −α −α

β
2s1

−√2s1β −√2s1β
β
2s1

√
2s1α

√
2s1α − α

2s1
− α

2s1
−β −β

√
2β −√2α α α√

2s1β
β
2s1

β
2s1

√
2s1β − α

2s1
− α

2s1
−√2s1α −√2s1α −β −β −√2β

√
2α α α√

2s1β
β
2s1

β
2s1

√
2s1β − α

2s1
− α

2s1
−√2s1α −√2s1α β β

√
2β −√2α −α −α

α −α α −α β −β −β β −√2α
√
2α 0 0

√
2β −√2β

α −α α −α β −β −β β
√
2α −√2α 0 0 −√2β

√
2β√

2α
√
2α −√2α −√2α −√2β

√
2β −√2β

√
2β 0 0 0 0 0 0√

2β
√
2β −√2β −√2β

√
2α −√2α

√
2α −√2α 0 0 0 0 0 0

β −β β −β −α α α −α
√
2β −√2β 0 0

√
2α −√2α

β −β β −β −α α α −α −√2β
√
2β 0 0 −√2α

√
2α

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where α =
√

1− 1√
5
, β =

√

1 + 1√
5
, and s1 = sin

(

π
8

)

. The T-matrix T reads

diag
(

e−
17iπ
80 , e

23iπ
80 , e−

57iπ
80 , e

63iπ
80 , e

7iπ
80 , e−

73iπ
80 , e−

33iπ
80 , e

47iπ
80 , e

iπ
10 , e

iπ
10 , e−

13iπ
20 , e

3iπ
20 , e

9iπ
10 , e

9iπ
10

)

.

One can check that these matrices furnish a representation of PSL2(Z), namely S2 = 1
and (S · T )3 = 1.
Our goal is tofind the characters dual to those in equation (C.1). The solutionwepresent,

although inspired by the idea of performing a series of intermediate deconstructions,
unfortunately features steps which do not quite have consistent VOA interpretations.
The contents of the remainder of this appendix should therefore be thought of strictly
as manipulations at the level of modular forms which produce the right answer for the
characters χVF�

22
(τ ), although we do believe it should be possible to improve upon our

results.
Step 1 We start off by constructing the fictitious characters34 of an extension U of
L( 12 , 0)⊗ L( 45 , 0)⊗ L( 7

10 , 0). This extension has 16 states of conformal weight

h =
(

0, 1,
1

2
,
1

2
,
1

6
,
7

6
,
2

3
,
2

3
,
2

5
,
1

15
,
1

10
,
23

30
,
3

5
,
19

15
,
9

10
,
17

30

)

, (C.2)

whose characters f j with conductor N = 60 can be written in terms of minimal model
characters as

f0 = χ
(3)
1,1χ

(4)
1,1χ

(5)
1,+ + χ

(3)
2,1χ

(4)
3,1χ

(5)
1,+, f1 = χ

(3)
2,1χ

(4)
1,2χ

(5)
2,+ + χ

(3)
1,1χ

(4)
1,3χ

(5)
2,+,

f2 = χ
(3)
1,1χ

(4)
1,2χ

(5)
2,+ + χ

(3)
2,1χ

(4)
1,3χ

(5)
2,+ + 2χ(3)

1,2χ
(4)
2,2χ

(5)
2,+,

f3 = χ
(3)
1,1χ

(4)
1,4χ

(5)
1,+ + χ

(3)
2,1χ

(4)
1,1χ

(5)
1,+ + 2χ(3)

1,2χ
(4)
2,1χ

(5)
1,+,

f4 = χ
(3)
1,1χ

(4)
1,2χ

(5)
2,3 + χ

(3)
2,1χ

(4)
1,3χ

(5)
2,3 + 2χ(3)

1,2χ
(4)
2,2χ

(5)
2,3,

f5 = χ
(3)
2,1χ

(4)
1,1χ

(5)
1,3 + χ

(3)
1,1χ

(4)
3,1χ

(5)
1,3 + 2χ(3)

1,2χ
(4)
2,1χ

(5)
1,3,

f6 = χ
(3)
1,1χ

(4)
1,1χ

(5)
1,3 + χ

(3)
2,1χ

(4)
3,1χ

(5)
1,3, f7 = χ

(3)
1,1χ

(4)
1,3χ

(5)
2,3 + χ

(3)
2,1χ

(4)
1,2χ

(5)
2,3,

f8 = χ
(3)
1,1χ

(4)
1,1χ

(5)
2,+ + χ

(3)
2,1χ

(4)
3,1χ

(5)
2,+, f9 = χ

(3)
1,1χ

(4)
1,1χ

(5)
2,3 + χ

(3)
2,1χ

(4)
3,1χ

(5)
2,3,

34 We use the term fictitious because these characters e.g. do not lead to consistent fusion rules, and the
bilinear they participate in, equation (C.5), has fractional coefficients αi .
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f10 = χ
(3)
1,1χ

(4)
1,2χ

(5)
1,+ + χ

(3)
2,1χ

(4)
1,3χ

(5)
1,+ + 2χ(3)

1,2χ
(4)
2,2χ

(5)
1,+,

f11 = χ
(3)
1,1χ

(4)
1,2χ

(5)
1,3 + χ

(3)
2,1χ

(4)
1,3χ

(5)
1,3 + 2χ(3)

1,2χ
(4)
2,2χ

(5)
1,3,

f12 = χ
(3)
1,1χ

(4)
1,3χ

(5)
1,+ + χ

(3)
2,1χ

(4)
(1,2)χ

(5)
1,+, f13 = χ

(3)
1,1χ

(4)
1,3χ

(5)
1,3 + χ

(3)
2,1χ

(4)
1,2χ

(5)
1,3,

f14 = χ
(3)
1,1χ

(4)
3,1χ

(5)
2,+ + χ

(3)
2,1χ

(4)
1,1χ

(5)
2,+ + 2χ(3)

1,2χ
(4)
2,1χ

(5)
2,+,

f15 = χ
(3)
1,1χ

(4)
3,1χ

(5)
2,3 + χ

(3)
2,1χ

(4)
1,1χ

(5)
2,3 + 2χ(3)

1,2χ
(4)
2,1χ

(5)
2,3, (C.3)

where χ
(5)
1,+ ≡ χ

(5)
1,1 + χ

(5)
1,5 and χ

(5)
2,+ ≡ χ

(5)
2,1 + χ

(5)
2,5.

The central charge of L( 12 , 0)⊗L( 7
10 , 0)⊗L( 45 , 0) is 2, and its commutant in V � has

central charge 22 = 2 · 11, so we have a chance at finding the dual characters as the
Hecke image of f under T11. We provide the q-expansions of the components of T11 f
below,

˜f0(τ ) ≡ T11 f0(τ ) = q−
11
12 (1 + 13959q2 + 1083742q3 + 34869263q4 + · · · ),

˜f1(τ ) ≡ T11 f1(τ ) = q
1
12 (22 + 36212q + 2838132q2 + 91279606q3 + · · · ),

˜f2(τ ) ≡ T11 f2(τ ) = q
7
12 (6072 + 1124640q + 52185936q2 + 1273841712q3 + · · · ),

˜f3(τ ) ≡ T11 f3(τ ) = q
7
12 (2376 + 429792q + 19934640q2 + 486569424q3 + · · · ),

˜f4(τ ) ≡ T11 f4(τ ) = q
11
12 (45048 + 4456584q + 159935952q2 + · · · ),

˜f5(τ ) ≡ T11 f5(τ ) = q
11
12 (17160 + 1702008q + 61089072q2 + · · · ),

˜f6(τ ) ≡ T11 f6(τ ) = q
5
12 (253 + 68321q + 3703205q2 + 98302325q3 + · · · ),

˜f7(τ ) ≡ T11 f7(τ ) = q
5
12 (638 + 179377q + 9692980q2 + 257372401q3 + · · · ),

˜f8(τ ) ≡ T11 f12(τ ) = q
41
60 (2387 + 355014q + 15143865q2 + · · · )

˜f9(τ ) ≡ T11 f13(τ ) = q
61
60 (15884 + 1357477q + 45571669q2 + · · · )

˜f10(τ ) ≡ T11 f14(τ ) = q
59
60 (39864 + 3578784q + 122770296q2 + · · · )

˜f11(τ ) ≡ T11 f15(τ ) = q
19
60 (528 + 209880q + 12540264q2 + 351454488q3 + · · · )

˜f12(τ ) ≡ T11 f8(τ ) = q
29
60 (638 + 149402q + 7586128q2 + 194589330q3 + · · · )

˜f13(τ ) ≡ T11 f9(τ ) = q−
11
60 (1 + 5258q + 615197q2 + 23698356q3 + · · · )

˜f14(τ ) ≡ T11 f10(τ ) = q
11
60 (168 + 110880q + 7675800q2 + 232188528q3 + · · · )

˜f15(τ ) ≡ T11 f11(τ ) = q
31
60 (2376 + 519816q + 25579224q2 + 645255336q3 + · · · ).

(C.4)

One can check that the Hecke images (C.4) satisfy the following bilinear,

J (τ ) =
15
∑

i=0
αi fi (τ )˜fi (τ ). (C.5)

where the αi take the values

αi = 1, 1,
1

3
,
1

3
,
2

3
,
2

3
, 2, 2, 1, 2,

1

3
,
2

3
, 1, 2,

1

3
,
2

3
, (C.6)
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for i = 0, 1, . . . , 15.
Step 2 Next, let us construct the fictitious characters35 of a particular extension of
L( 12 , 0)⊗ L( 45 , 0); its irreducible modules have highest weights

h =
(

0,
1

16
,
1

2
,
2

3
,
35

48
,
7

6
,
2

5
,
37

80
,
9

10
,
1

15
,
31

240
,
17

30

)

, (C.7)

and its characters can be written as

g0(τ ) = χ
(3)
1,1(τ )χ

(5)
1,+(τ ), g1(τ ) = χ

(3)
1,2(τ )χ

(5)
1,+(τ ), g2(τ ) = χ

(3)
1,3(τ )χ

(5)
1,+(τ ),

g3(τ ) = χ
(3)
1,1(τ )χ

(5)
1,3(τ ), g4(τ ) = χ

(3)
1,2(τ )χ

(5)
1,3(τ ), g5(τ ) = χ

(3)
1,3(τ )χ

(5)
1,3(τ ),

g6(τ ) = χ
(3)
1,1(τ )χ

(5)
2,+(τ ), g7(τ ) = χ

(3)
1,2(τ )χ

(5)
2,+(τ ), g8(τ ) = χ

(3)
1,3(τ )χ

(5)
2,+(τ ),

g9(τ ) = χ
(3)
1,1(τ )χ

(5)
2,3(τ ), g10(τ ) = χ

(3)
1,2(τ )χ

(5)
2,3(τ ), g11(τ ) = χ

(3)
1,3(τ )χ

(5)
2,3(τ ).

(C.8)

We would like to find the dual characters, which by assumption should satisfy a bilinear
of the form

J (τ ) =
∑

i

gi (τ )g̃i (τ ). (C.9)

By comparing (C.5) and (C.9), one can express g̃i (τ ) in terms of (C.4) and the characters
of L( 7

10 , 0). We find

g̃0(τ ) = 1

3
χ

(4)
1,4
˜f3(τ ) +

1

3
χ

(4)
1,2
˜f10(τ ) + χ

(4)
1,1
˜f0(τ ) + χ

(4)
1,3
˜f12(τ ),

g̃1(τ ) = 2

3
χ

(4)
2,1
˜f3(τ ) +

2

3
χ

(4)
2,2
˜f10(τ ), g̃4(τ ) = 4

3
χ

(4)
2,1
˜f5(τ ) +

4

3
χ

(4)
2,2
˜f11(τ ),

g̃2(τ ) = 1

3
χ

(4)
1,1
˜f3(τ ) +

1

3
χ

(4)
1,3
˜f10(τ ) + χ

(4)
3,1
˜f0(τ ) + χ

(4)
1,2
˜f12(τ ),

g̃3(τ ) = 1

3
χ

(4)
3,1
˜f5(τ ) +

2

3
χ

(4)
1,2
˜f11(τ ) + 2χ(4)

1,1
˜f6(τ ) + 2χ(4)

1,3
˜f13(τ ),

g̃5(τ ) = 2

3
χ

(4)
1,1
˜f5(τ ) +

2

3
χ

(4)
1,3
˜f11(τ ) + 2χ(4)

3,1
˜f6(τ ) + 2χ(4)

1,2
˜f13(τ ),

g̃6(τ ) = 1

3
χ

(4)
1,2
˜f2(τ ) +

1

3
χ

(4)
3,1
˜f14(τ ) + χ

(4)
1,3
˜f1(τ ) + χ

(4)
1,1
˜f8(τ ),

g̃7(τ ) = 2

3
χ

(4)
2,2
˜f2(τ ) +

2

3
χ

(4)
2,1
˜f14(τ ), g̃10(τ ) = 4

3
χ

(4)
2,2
˜f4(τ ) +

4

3
χ

(4)
2,1
˜f15(τ ),

g̃8(τ ) = 1

3
χ

(4)
1,3
˜f2(τ ) +

1

3
χ

(4)
1,1
˜f14(τ ) + χ

(4)
1,2
˜f1(τ ) + χ

(4)
3,1
˜f8(τ ),

g̃9(τ ) = 2

3
χ

(4)
1,2
˜f4(τ ) +

2

3
χ

(4)
3,1
˜f15(τ ) + 2χ(4)

1,3
˜f7(τ ) + 2χ(4)

1,1
˜f9(τ ),

g̃11(τ ) = 2

3
χ

(4)
1,3
˜f4(τ ) +

2

3
χ

(4)
1,1
˜f15(τ ) + 2χ(4)

1,2
˜f7(τ ) + 2χ(4)

3,1
˜f9(τ ).

(C.10)

35 C.f. the previous footnote.
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Step 3 Note that the parafermion theories P(2) and P(3) are the same as L( 12 , 0) and
L( 45 , 0)⊕L( 45 , 3), respectively.Thus,we can replace the characters of theZ2 parafermion

theory ψ
(2)
�,m with the characters χ(3)

r,s in equation (C.1). The relation between Ising and
P(2) characters is

ψ
(2)
2,2 = χ

(3)
1,1, ψ

(2)
2,0 = χ

(3)
2,1, ψ

(2)
1,1 = χ

(3)
2,2. (C.11)

Similarly, we can substitute χ
(5)
r,s for the characters of the Z3 parafermion theory ψ

(3)
�,m

as

ψ
(3)
3,3 = χ

(5)
1,1 + χ

(5)
1,5, ψ

(3)
1,1 + ψ

(3)
2,2 = 2χ(5)

2,3,

ψ
(3)
2,0 = χ

(5)
2,1 + χ

(5)
2,5, ψ

(3)
3,1 + ψ

(3)
3,−1 = 2χ(5)

1,3 .
(C.12)

The next step is to find the relations among the characters g̃i (τ ) and χVF�
22(α)

by com-

paring equations (C.9) and (3.122). Setting them to be equal, we get a relation of the
form

g̃0 = ψ
(6)
2,0χ̃1 + ψ

(6)
4,0χ̃2 + ψ

(6)
6,0χ̃3 + ψ

(6)
6,6χ̃0,

g̃1 = ψ
(6)
3,3χ̃8 + ψ

(6)
3,3χ̃9 + ψ

(6)
5,−3χ̃10 + ψ

(6)
5,3χ̃10,

g̃2 = ψ
(6)
2,0χ̃2 + ψ

(6)
4,0χ̃1 + ψ

(6)
6,0χ̃0 + ψ

(6)
6,6χ̃3,

g̃3 = ψ
(6)
2,2χ̃2 + ψ

(6)
4,−2χ̃1 + ψ

(6)
4,2χ̃1 + ψ

(6)
4,4χ̃2 + ψ

(6)
6,−4χ̃3 + ψ

(6)
6,−2χ̃0 + ψ

(6)
6,2χ̃0 + ψ

(6)
6,4χ̃3,

g̃4 = ψ
(6)
1,1χ̃10 + ψ

(6)
3,−1χ̃8 + ψ

(6)
3,−1χ̃9 + ψ

(6)
3,1χ̃8 + ψ

(6)
3,1χ̃9 + ψ

(6)
5,−1χ̃10 + ψ

(6)
5,1χ̃10 + ψ

(6)
5,5χ̃10,

g̃5 = ψ
(6)
2,2χ̃1 + ψ

(6)
4,−2χ̃2 + ψ

(6)
4,2χ̃2 + ψ

(6)
4,4χ̃1 + ψ

(6)
6,−4χ̃0 + ψ

(6)
6,−2χ̃3 + ψ

(6)
6,2χ̃3 + ψ

(6)
6,4χ̃0,

g̃6 = ψ
(6)
2,0χ̃5 + ψ

(6)
4,0χ̃4 + ψ

(6)
6,0χ̃6 + ψ

(6)
6,6χ̃7,

g̃7 = ψ
(6)
3,3χ̃12 + ψ

(6)
3,3χ̃13 + ψ

(6)
5,−3χ̃11 + ψ

(6)
5,3χ̃11,

g̃8 = ψ
(6)
2,0χ̃4 + ψ

(6)
4,0χ̃5 + ψ

(6)
6,0χ̃7 + ψ

(6)
6,6χ̃6,

g̃9 = ψ
(6)
2,2χ̃4 + ψ

(6)
4,−2χ̃5 + ψ

(6)
4,2χ̃5 + ψ

(6)
4,4χ̃4 + ψ

(6)
6,−4χ̃6 + ψ

(6)
6,−2χ̃7 + ψ

(6)
6,2χ̃7 + ψ

(6)
6,4χ̃6,

g̃10 = ψ
(6)
1,1χ̃11 + ψ

(6)
3,−1χ̃12 + ψ

(6)
3,−1χ̃13 + ψ

(6)
3,1χ̃12 + ψ

(6)
3,1χ̃13 + ψ

(6)
5,−1χ̃11 + ψ

(6)
5,1χ̃11 + ψ

(6)
5,5χ̃11,

g̃11 = ψ
(6)
2,2χ̃5 + ψ

(6)
4,−2χ̃4 + ψ

(6)
4,2χ̃4 + ψ

(6)
4,4χ̃5 + ψ

(6)
6,−4χ̃7 + ψ

(6)
6,−2χ̃6 + ψ

(6)
6,2χ̃6 + ψ

(6)
6,4χ̃7. (C.13)

Here, χ̃α(τ ) is short notation for χVF�
22(α)

(τ ). Using the expressions for the g̃i (τ )

in equation (C.10), one can find the q-expansions of χVF�
22(α)

(τ ). Here, we assumed

χ̃8(τ ) = χ̃9(τ ) and χ̃12(τ ) = χ̃13(τ ), because χ8(τ ) = χ9(τ ) and χ12(τ ) = χ13(τ ).
With these extra conditions, (C.13) recovers the q-expansions (3.123).
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