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Abstract: The monster sporadic group is the automorphism group of a central charge
¢ = 24 vertex operator algebra (VOA) or meromorphic conformal field theory (CFT).
In addition to its ¢ = 24 stress tensor 7'(z), this theory contains many other conformal
vectors of smaller central charge; for example, it admits 48 commuting ¢ = % confor-
mal vectors whose sum is 7 (z). Such decompositions of the stress tensor allow one to
construct new CFTs from the monster CFT in a manner analogous to the Goddard-Kent-
Olive (GKO) coset method for affine Lie algebras. We use this procedure to produce
evidence for the existence of a number of CFTs with sporadic symmetry groups and
employ a variety of techniques, including Hecke operators, modular linear differential
equations, and Rademacher sums, to compute the characters of these CFTs. Our exam-
ples include (extensions of) nine of the sporadic groups appearing as subquotients of the
monster, as well as the simple groups Eg (2) and F4(2) of Lie type. Many of these exam-
ples are naturally associated to McKay’s Eg correspondence, and we use the structure
of Norton’s monstralizer pairs more generally to organize our presentation.
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1. Introduction and Summary

The classification of finite simple groups is a remarkable achievement of pure mathe-
matics which occupied the efforts of about 100 mathematicians for a significant part of
the 20th century. The main theorem states that every finite simple group is either

(a) a cyclic group of prime order,

(b) an alternating group of degree at least 5,

(c) a group of Lie type, or

(d) one of 26 exceptional groups, called the sporadic groups.

Of the sporadic groups, 20 of them are realized inside the largest one—the monster group
M—as subquotients'; more generally these 20, referred to by Griess as the happy family,
participate in a web of subquotients with one another, as depicted in Fig. 1. Decades after
their discovery, the reason for the existence of these sporadic groups remains a mystery.

To get one’s hands on a group, it can be fruitful to study it through the objects it
acts on by symmetries. Indeed, a concrete representation can reveal properties of the
group masked by its abstract presentation, and tie questions about the group to questions
about other structures in mathematics. Historically, the sporadic groups have often been
implicated as the automorphism groups of a wide variety of auxiliary structures. In
the case of the monster group, its existence was proven when Griess demonstrated
that it furnishes the symmetries of a 196884 dimensional commutative, non-associative
algebra B called the Griess algebra [2]. Witt realized the Mathieu group M4 as the

LA subquotient is a quotient of a subgroup.
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Fig. 1. A diagram of the simple sporadic groups, based on data taken from the Atlas of Finite Groups [1]. An
arrow from H to G indicates that H is a subquotient of G. The groups G which are encircled by solid lines as
opposed to dashed lines are those for which a chiral algebra VG? with inner automorphism group G is known.
These chiral algebras embed into one another in the same way their associated groups do as subquotients

automorphism group of the Golay code [3]. The Thompson sporadic group Th [4] was
first constructed as the automorphism group of a 248 dimensional even unimodular
lattice in the Lie algebra of Eg [5]. And so on and so forth.

It is natural to seek a more unified description of the sporadic groups, perhaps as
the automorphisms of a single kind of structure, as opposed to many different kinds
of objects. Among the numerous insights it has offered, the program of moonshine has
improved this situation by implicating many of the sporadic groups as symmetries of con-
formal field theories (CFTs) or other CFT-inspired constructions. For example, Frenkel,
Lepowsky, and Meurman promoted the Griess algebra B to a meromorphic CFT/vertex
operator algebra (VOA) V%—the moonshine module—which is widely thought of as
the most natural representation of M [6]. In this picture, the operator algebra and stress
tensor of V! are preserved by the Monster, and 13 arises as an algebra defined on the sub-
space of dimension 2 operators; furthermore the connection to conformal field theory led
to a proof of the main genus zero conjecture of monstrous moonshine [7]. The Conway
group Cop plays a similar role in a ¢ = 12 superconformal field theory [8—10]. More
mysteriously, the Mathieu group Mp4 was shown by Eguchi, Ooguri, and Tachikawa
[11] to arise when one decomposes the elliptic genus of K3, which counts special super-
symmetric states in superconformal sigma models with K3 target, into characters of the
N = 4 superconformal algebra, though the precise sense in which the Mathieu group is
a symmetry in this context remains elusive in spite of detailed studies of Mathieu moon-
shine [12-14] including a proof of the main conjecture [15] and the extension to umbral
moonshine [16-18]. Even more mysteriously, it was conjectured in [19], and proven
in [20], that the Thompson group Th acts on an infinite-dimensional graded module
whose graded characters are modular forms of a particular kind, a tell-tale sign of the
existence of some kind of vertex algebraic structure, though no such structure has yet
been discovered. The O’Nan group, which is not a member of the happy family, also
has a moonshine relation to weight % modular forms [21], again suggesting a possible
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connection to vertex algebras. It thus seems not out of the question that vertex algebras
and associated physical structures may eventually provide a setting for a more uniform
understanding of the sporadic groups.

While these developments have been interesting in their own right, if one’s goal is to
understand the relationships between the sporadic groups, the constructions suffer from
the shortcoming that, while e.g. Th is a member of the happy family and thus appears
inside of the Monster, its corresponding module bears no obvious relation to V7. What
one would really like is to construct models for these groups that are designed around the
lattice of subgroups of M from the outset. A relevant group theoretic notion, explored
by Norton in [22], is the idea of a monstralizer pair: by definition, it consists of two
subgroups G and G := Centp(G) which mutually centralize each other (c.f. Table 1
for a non-exhaustive list of examples). There are two reasons we might take this as our
starting point. First, the idea of a mutually centralizing pair is valid in any group, and
has historically lead to very fruitful and natural constructions in representation theory:
examples include Schur-Weyl duality [23] and the general theory of reductive dual pairs
[24], of which the Howe-theta correspondence [25] is a well-known application. Second,
most of the monster’s large perfect” subgroups (or soluble extensions thereof) partici-
pate in a monstralizer pair, and so this structure reveals information about relationships
between many sporadic groups in the happy family. A natural ambition then is to attempt
to give monstralizer pairs a new life in the richer setting of the monster CFT.

In retrospect, first steps in this direction were taken by Hohn and his collaborators
following the discovery of 48 mutually commuting Virasoro subalgebras with central
charge % inside the monster VOA [26]. Indeed, in his PhD thesis [27], H6hn built a
rational vertex operator algebra’> VB of central charge 23!/> which admits an action
of the baby monster sporadic group B by automorphisms, and which is realized as a
subVOA of V. Later, Hohn, Lam, and Yamauchi [28] provided a similar construction
of a central charge 23'/s vertex operator algebra* VPg4 whose (inner) automorphism
group is the largest Fischer group Fi,,, and which also embeds into V. We will see in
a moment that these two examples can be naturally interpreted as VOA uplifts of the
monstralizer pairs (Zz, 2.B) and (Z3, 3.Fi,,).

The idea behind the construction of VB’ and VFg 4 18 to decompose the stress tensor of
the moonshine module into a sum of commuting stress tensors of smaller central charge,
T(z) = t(z) +1(z), a process we will colloquially refer to as deconstruction. One can
then consider the VOA which remains once one has subtracted off the subVOA W of
V1 associated with 7(z); this leaves a subVOA W of V! with 7(z) as its stress tensor.
This idea is made precise by the notion of a commutant subalgebra or a coset model,
the study of which was first initiated in [29,30] in the context of affine Lie algebras.
The commutant I/ := Comy:(U) of a subVOA U in V% is the set of all operators in
V% which have regular OPE with every operator in /. In terms of this construction, we
can define “the subVOA associated with 7(z)” to mean the commutant of the Virasoro

2A group is said to be perfect if it admits no non-trivial abelian quotients. In particular, any non-abelian
simple group is a perfect group.

3 In this paper, VB! will always denote a Z-graded VOA. This differs slightly from Hohn’s %Z—graded
vertex operator super algebra, which is constructed by taking a direct sum of VB and its unique irreducible
module of highest weight %

4 The notation VF? was used in [28], though we use VFg4 in anticipation of our construction of similar

VOAs VFg3 and VFg2 associated with the other Fischer groups Fiy3 and Fip).
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algebra generated by 7(z), i.e. W := Comvu(Vir('f)). The pair W, W = Comy: (W)
are then each others” commutants, and so form what is called a commutant pair.

To any such commutant pair, one can associate two commuting subgroups M(WV),
M(WV) of the monster which we will refer to as the subgroups preserved by VW, W:
roughly speaking, M(WV) is the subgroup of M which acts trivially on V¥ and its mod-
ules while preserving ¥/ and its modules, and similarly for M(JV). In the case that
the groups (M(W), M((W)) furnish a monstralizer pair, we will refer to WV, W) as a
monstralizing commutant pair, or Ml-com pair for short. The intuition behind this def-
inition is that, although there are a rather large number of ways to cut up the monster
CFT into commutant pairs, there are far fewer ways to cut it into monstralizing com-
mutant pairs, and our expectation is that such M-com pairs will in general play more
nicely with respect to the action of M on V? than will a generic commutant pair. Within
the framework we’ve laid out, the algebra VIB" arises when one carries out this proce-
dure for #(z) a conformal vector of central charge % in the moonshine module (so that
W is the chiral algebra of the Ising model), and corresponds to the monstralizer pair
MW), M(W)) = (Z3, 2.B). The algebra VPg4 corresponds to choosing 7 (z) to be the
stress tensor of a Z3 parafermion theory [31], and has (M(W), M(VT/)) = (Z3, 3.Fiy,).
In light of these results, there is a natural question: can this idea be generalized to pro-
duce other M-com pairs and, in the process, other subVOAs of the moonshine module
which naturally realize sporadic or otherwise exceptional symmetry groups? One of our
main results is an answer to this question in the affirmative.

Main result 1. For each monstralizer pair (G, CN}) occurring in Fig. 3, there is an associ-
ated pair of chiral algebras (W¢, We) inside V% which satisfy the following properties:

(a) The tuple Weg, Wg) is a monstralizing commutant pair.

(b) The subgroups preserved by Wg and Wg are M(Wg) = G and M(Wg) = G.

(c) The inner automorphism group of Wg is given by G/Z(G), where Z(G) is the
center of G. Therefore, the W realize subquotients (rather than just subgroups) of
the monster as their inner automorphism groups. The same goes for the Wg.

(d) (A closed subalgebra of) the fusion algebra of both W¢ and We admits an action of
Z(G) = Z((~}) by automorphisms. N _

(e) The commutant of Wg in V" is W and vice versa, i.e. Wg = Wg and Wg = Wg.

(f) Whenever one monstralizer pair (H, H ) includes into another (G, 5) in the sense

that H < G and G < H, the associated chiral algebras mirror these inclusions, i.e.
Wy — Wg and Wg < Wy.

See Table 2 for further details on these chiral algebras.

In each of our examples, we take G to be either cyclic or dihedral, in which case the Wg
furnish chiral algebras with interesting symmetry groups, many of which belong to the
happy family (c.f. Table 2 for a summary of these results). The cases we consider for
which G = Zix (where we use Zyx to denote a Z; subgroup of M which is generated
by any element in the kX conjugacy class) involve taking W7, to be a Z parafermion
subalgebra [32]. Such deconstructions yield—in addition to the algebras Wg = V¥,

VB, and VP§4 discussed previously, which correspond to G = Za, Zoa, and Zzp—a

new M-com uplift of the monstralizer pair (Z4a, 4.222 Co3). The remaining cases for
which G is a dihedral group are all new, and are organized through a striking connection

5Tn particular, our examples are suggestive of the existence of a (unique) functor from the category of
monstralizer pairs to the category of monstralizing commutant pairs.



J.-B. Bae, J. A. Harvey, K. Lee, S. Lee, B. C. Rayhaun

Th
3C

1A 2A 3A 4A 5A 6A 4B 2B
B ?E¢(2) Fiss 2?2.McL HN Figs  Fy4(2) 2%2.Co,

Fig. 2. Dynkin diagram of EE, decorated by conjugacy classes of the monster sporadic group M. We propose
to further decorate each node by the inner automorphism group of the commutant of Wp, . in Vi

to McKay’s /EE correspondence. In order to cleanly explain these results, we briefly
review this correspondence.

The monster has two conjugacy classes of involutions, which are commonly labeled
as 2A and 2B, and it is known that the product of any two elements taken from the 2A
conjugacy class must lie in one of 1A, 2A, 3A, 4A, 5A, 6A, 2B, 4B, or 3C (c.f. [33]).
It was suggested by McKay that these conjugacy classes can be naturally thought of as
nodes of the extended Eg Dynkin diagram, as in Fig. 2. Crucially for our purposes, any
two 2A involutions whose product resides in the nX conjugacy class generate a dihedral
subgroup® D, x of M [34,35] which participates in a monstralizer pair. Now, one would
like to associate to D,x a subalgebra Wp, . of V¥ which obeys the desired properties
that we have been discussing. In fact, such VOAs have already been constructed in
the math literature [34,36-38]: the starting point for these constructions is the fact that
elements of the 2A conjugacy class are in one-to-one correspondence with central charge
% conformal vectors in the moonshine module [33,39]. It is natural then to consider the

subVOA Wp, which is generated by two central charge % conformal vectors whose
associated involutions have product lying in the nX conjugacy class. Each such algebra
specifies a deconstruction of the stress tensor of the monster—i.e. a decomposition
T(z) = t(z) + 1(z)—and we may consider “subtracting off” Whp,x and studying the
remaining chiral algebra with stress tensor 7(z), i.e. the commutant of Wp,, , which we
denote by V~VD,,X. As an extension of McKay’s correspondence, we propose that it is
natural to view the algebras Wan as being in correspondence with the nodes of the Eg
Dynkin diagram. N

The commutants Wp,, beautifully recover chiral algebras whose symmetry groups
are either closely related to sporadic groups or are otherwise exceptional. We find that
the cases nX = 1A, 3A, 5A, 6A, and 3C define chiral algebras which we call VB,
VFg3, VHN?, Vng, and VT* with (inner) automorphism groups’ B, Fi>3, HN, Fip,, and
Th respectively; each of these groups is precisely a simple sporadic group in the happy
family. Moreover, this collection of VOAs reflects the relationships between groups in
the happy family in the sense that, for H and G taken from the list

M, B, Fi,,, Fi»s, Fi», Th, HN, (1.1)
24

whenever H is a subquotient of G, then VH’ is a subalgebra of VG’. These chiral algebras
therefore furnish an intriguing mirroring of the group theory of the happy family within
the theory of vertex operator algebras, by relating the structure of subquotients in M to
deconstructions of the stress tensor of V. The remaining cases nX = 2A, 4A, 2B, and

6 We use the convention that Dy, is the symmetry group of a regular n-gon, i.e. |D,| = 2n.
7 A few of these algebras inherit an extra order 2 outer automorphism from the monster.
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4B recover chiral algebras® with inner automorphism groups % E¢(2), 2°2.McL, 2%

and F4(2) respectively.

We also initiate a study of the representation theory of these models. On general
grounds, since Wg and Wg = W are commutant pairs in the moonshine module, one
has a Schur-Wey] like decomposition of the form [40,41]

.Coo,

VE= P Wo (@) @ Wi (@) (1.2)

where the Wg (o) (respectively We () are mutually inequivalent irreducible modules
of Wg (respectively We). Such a decomposition furnishes a one-to-one pairing between
a subset of irreducible modules of WWg and a subset of irreducible modules of Wg, and
so we henceforth refer to the Wg-module We (@) as the representation dual to Wg ()

in V7, and its graded dimension

(D) = Ws @) (1) = Tryys @)q "%, (1.3)

as a dual character, where 1(z) = )., I,z is the stress tensor of We of central
charge c;. To provide evidence for our claims, we construct these dual characters for all
of the Wg and demonstrate that they exhibit the kind of connection to representation
theory expected in moonshine: namely, a decomposition of the coefficients of the x¢ ()
into dimensions of irreducible representations of the proposed symmetry group G which
is consistent with how V' decomposes by restriction into representations of G. These
dual characters always transform with a unitary and symmetric modular S-matrix so
that it is possible in each of our examples to define a full, modular invariant CFT with
partition function

Z5(T. 1) =D X @ W@ (7). (1.4)

o

At the level of characters, the decomposition of V% in (1.2) presents a highly con-
strained modular bootstrap problem. We recruit three main technical tools to solve it for
the characters of the modules Weg («):

Main result 2. For each monstralizer pair (G, 5) occurring in Fig. 3, the characters
XWg () (T) can be expressed as at least one of the following:

(a) a Rademacher sum,
(b) the solution to a modular linear differential equation (MLDE), or
(c) the image of xyy, () (7) under the action of a Hecke operator.

See Table 2 for further details.

Rademacher sums and MLDE:s are familiar techniques in the analysis of chiral algebras;
however, one relatively new element of our analysis is that, for some choices of G, we
are able to obtain the ¥, (7) as the image of the irreducible characters of W,

Xa(T) 1= Trwcm)qlf”i, (1.5)

8 Although the 4A and 2B cases involve the McLaughlin group and Conway’s second group, both of which

belong to the happy family, we hesitate to give them the names VMcL? and VCog in case it is possible
in the future to define chiral algebras with McL and Cop symmetry on the nose, as opposed to our current
constructions which realize extensions of these groups.
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under the action of a suitable Hecke operator [42]. The simplest application of this tech-
nology is to the baby monster algebra VB?, whose characters arise as a Hecke image of
the characters of the Ising model. Our constructions thus showcase an intriguing appli-
cation of Hecke operators, as well as an interpretation of Hecke related RCFTs, which
we believe will hold in some generality: namely, that chiral algebras whose characters
are related by Hecke operators arise, in favorable circumstances, as commutant pairs
embedded inside a larger meromorphic CFT.

This paper is organized as follows. In Sect. 2.1, we review some basic notions related
to chiral algebras/VOAs, and establish notations. In Sect. 2.2 we exposit, in generality and
in a few familiar examples, the technique of “deconstructing” the stress tensor of a chiral
algebra and using such a deconstruction to obtain new chiral algebras as commutants. In
Sects. 2.3.1 and 2.3.2, we review two technical tools which we will use to study the dual
characters of our models: modular linear differential equations and Hecke operators.
We then move on to applying these techniques in Sect. 3, which contains our main
results. After reviewing the constructions of the monster, baby monster, and Fischer
VOAs, we use them in Sects. 3.1-3.3 to obtain new chiral algebras from the procedure
of deconstruction. We propose directions for future research in Sect. 4.

2. Review of Techniques

2.1. VOA/chiral algebra basics. In order to make this paper readable for both physicists
and mathematicians, we begin with a brief, informal review of chiral algebras (also
known as vertex operator algebras), and establish a few notations/conventions. For more
thorough treatments of these subjects, see any of the following references [43—-45].

2.1.1. Relationship to conformal field theory The most familiar starting point for physi-
cists is a two-dimensional (Euclidean) quantum field theory that is invariant under the
group SLy (C) of global conformal transformations. The Green’s functions of such a the-
ory can be analytically continued from functions on R? to functions on a larger domain
in C2, so it is natural to work with complex coordinates (z, Z), thought of as independent
variables, and only equate z with the complex conjugate of z at the end of the problem.
The complexification s[(2) @s[(2) of the Lie algebra of SL,(C) is then the natural object

to consider; its generators are
L_1=-0,, Lo=—z0,, Li= —Zzaz
_ _ _ _ 5 2.1
L_1=-0;, Lo=—z0;, Li=—-770;.

The holomorphic and anti-holomorphic generators commute with each other, and each
satisfy familiar relations,

[Li,L1]=2Ly [Lo,L+1]=FLx

. _ R _ (2.2)
[Li,L4]=2Ly [Lo,L+1]=FLx.

The Hilbert space transforms in a representation of this algebra (which we assume is a
direct sum of highest weight representations of 5[(2) € s[(2)), so it is natural to organize
states in the theory in terms of their eigenvalues (4, i) under (Lg, Lo).

Conformal field theories enjoy a one-to-one correspondence between their states and
their local operators,

¢(2) < lp) = lim ¢(z, 2)[K2) (2.3)
z,2—0
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where |Q2) is the unique SL(2, C)-invariant vacuum. Equipped with this state-operator
correspondence, we will often drop the vertical line and angular bracket around |¢) and
think of ¢ as a state in the Hilbert space, safely distinguishing it from its corresponding
operator ¢(z, z) by the suppression of its arguments (z, 7).

The power of conformal symmetry in two dimensions is closely related to the power
of meromorphy in complex analysis. Indeed, consider any meromorphic operator in the
theory,

9:¢0(z,7) = 0. (2.4)

From the expressions for the anti-holomorphic generators, itis evident that such operators

arise from states with 2z = 0. Locality then ensures that % is either integral or half-integral,

so that the corresponding space of states admits a natural grading, V = @, .1, Vi. We
2

will mainly focus on the case where V is Z-graded. The operator product algebra closes
on such operators, so the set of meromorphic operators forms a consistent truncation of
the full operator algebra. We will use the following notation for this operator product
expansion (OPE) between meromorphic operators,

) (pg )n(w)

_ n
O<n<h+h' (Z w)

()¢ (w) ~ 2.5)

where the symbol ~ indicates that we have only retained the singular terms on the
right-hand side. This structure is what is known to physicists as a chiral algebra, and to
mathematicians as a vertex operator algebra. From now on, we reserve the symbol V
(resp. V) for the holomorphic (resp. anti-holomorphic) chiral algebra of a CFT.

To see the utility of these meromorphic operators, note that standard contour integral
arguments imply that the modes

Az p- —n—
$n = y§ 771’ ") (¢(Z) = guz h) (2.6)

nez

do not depend on the precise choice of contour encircling the origin. In radial quanti-
zation, in which the “time” slices are concentric circles about the origin, these ¢, can
therefore be thought of as conserved charges of sorts. We see that the presence of even a
single meromorphic operator ensures the existence of an infinite-dimensional symmetry
algebra. This large symmetry is a useful jumping-off point for analyzing the full CFT,
particularly when the CFT is rational, which by definition means that the Hilbert space
decomposes into a direct sum of finitely many representations of V ® V.

The chiral algebra of a two-dimensional local CFT is never empty. Indeed, from
conservation and tracelessness of the stress tensor, one can prove that

T()=Te(z,2) =) Lz "7 2.7)

nez

is a meromorphic dimension 2 operator, and similarly for T () = T::(z,Z). The TT
OPE is constrained by conformal symmetry to take the form

¢/2 , 2Tw) T
C—w? GC—w? z-—w’

T ()T (w) ~ (2.8)
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This OPE is equivalent by standard arguments to the commutation relations of the Vira-
soro algebra,

Lons Ll = (m = m)Lyysn + T5m(m> = Do, 2.9)
We recognize the closed subalgebra furnished by Lo, L+ as the same s[(2) described
earlier arising from global conformal invariance. The chiral algebra generated by the
stress tensor should be thought of as an enhancement of this global conformal algebra
to a larger symmetry algebra which implements local conformal transformations. In
a generic CFT, this Virasoro algebra makes up all of V; in special circumstances, in
particular for most rational CFTs, additional operators populate the chiral algebra. We
will mainly work with such special theories.

2.1.2. Modules and characters As we mentioned earlier, the Hilbert space of a CFT
decomposes into a direct sum of representations of V ® V,

H=EP QWaV) V@ (2.10)

oo

where the sum over o« (resp. @) is a sum over the irreducible representations of V
(resp. V), and the Q, 7 are non-negative integer coefficients with Q¢ ¢ = 1 which
give the multiplicities of each representation. We will also find it helpful in this paper to
decompose V and its irreducible modules with respect to representations of some known
subalgebra’ W, e.g.

V=P Vi (2.11)

where V() is the subspace of V generated by all irreducible VV-modules isomorphic to
W(a). For example, V¥V might be the Virasoro subalgebra of a larger chiral algebra V.
In the other direction, we may be interested in extending WV to a larger chiral algebra V
by taking a direct sum of YJ/-modules.

The basic data of a module M is the assignment of an operator ¢js(z) acting on M
to each ¢ € V, which is subject to standard axioms (see e.g. §2 of [46]). We will use
the notation V) for the subalgebras spanned by modes ¢, with £n > 0, and V© the
Lie subalgebra spanned by the zero modes ¢y. In this paper, we will work with heighest
weight modules M. These are modules built on top of a highest weight vector space M},
which carries a representation of V() with Lg acting as /1, and which is annihilated by
positive modes,

UV)YM, =0 (2.12)

where U (g) is the universal enveloping algebra of a Lie algebra g. We somewhat loosely
refer to states in M, as V-primaries and any state in U (V7)) M, as a descendant. We
will always assume that L acts semi-simply, and that M = € gez+h Mg is graded by
the eigenvalues of L. The chiral algebra V itself is always a module, and we refer to it
as the vacuum module.

9 A subVOA W need not have the same stress tensor as V. In the case that it does, we say that W is a full
subVOA.
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One can consider the OPEs between primaries'?,

@ P (w) =" Clyz —w) e [ (w) + -] (2.13)
14

where the ellipsis represent universal contributions from descendants, and /4, indicates
the eigenvalue of the action of L¢ on the highest weight subspace of V(«). The full
operator algebra is in general very complicated, and so it is often useful to pass to
coarser information. For example, the fusion coefficients A O}; g are defined as the number

of distinct channels along which ¢® and ¢® can fuse into ). In particular, each
non-zero N ;’ﬂ thus has to be a positive integer. Note that N;/ﬁ # 0 if and only if ¢
and its descendants appear in the ¢®¢®) OPE. These fusion coefficients serve as the

structure constants of an auxiliary fusion algebra one can associate to V, which admits
as a distinguished basis the irreducible modules of ), and whose product is defined as

V() x V(B) = Y NIV(y). (2.14)
v

There exists an intricate relation between the fusion algebra and the modular transfor-
mation properties of characters of 1, which are complex-valued functions on the upper
half-plane H = {r € C | Im(r) > 0} defined as

X (D) = TrygD0 ™% (g = 7). (2.15)

On general grounds [47,48], in an RCFT, such characters transform in a finite-
dimensional representation of the modular group SL;(Z),

Xa(—1) =D " Supxp(t)  xa(r+1) =Py, (1) (2.16)
B

where h,, is the eigenvalue of Ly on the subspace of highest weight states of V(«).
One can compute the fusion coefficients N, 0’[/ B from the above S-matrix via the Verlinde
formula [49],

SusSps(S™1)s

Y _ adOBS 4

NIp=> R — (2.17)
$

where the index O labels the identity. Equation (2.17) reflects the fact that the fusion
matrices (Ny) ,3V = Ngﬂ can be diagonalized simultaneously with diagonal matrices
Dy,

S
(Do) = 2= (2.18)
08

In later sections, we will often construct chiral algebras V as extensions of tensor
products of theories whose irreducible modules are known, including minimal mod-
els, parafermion theories, and lattice VOAs. In lieu of a more detailed analysis of the

10 Technically there is a vector space of highest weight states, so e.g. (p("’) should be thought of as carrying
an extra index which we are suppressing.
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representation theory of such extensions, we offer a strategy for discovering their char-
acters, which is based on the constraint that they should transform into one another under
modular transformations.

Let!dD fori =1, ..., r be chiral algebras whose modules we write as U @ (), and
whose characters Xo(,i) (7) transform under a modular S-matrix S®. We want to search
for an extension of UV ® - - - @ U of the form

W= P MooV @) e U (@) (2.19)

Wa) = P MootV @)@ U (@) (2.20)
Al y..., 0
where My, (q,,....«,) are non-negative integers. Now, the characters of U DNe...uU"
are

X(@ronean) () i= X0 - x (1) (2.21)

and transform under the S-matrix S = SV ® - .- ® S™). In order for W(«) to furnish
the irreducible modules of a VOA, the vector-valued function

Y Moo x8) @) xP(0) = M - 1 (1) (2.22)

Ulyenny o

should transform covariantly under a modular S transformation. This means that there
should exist a matrix S’ such that M - S = &’ - M, in which case

M-x(-H)=M-S x)=8 M- x(x) (2.23)
so that &’ is the modular S-matrix of the extended theory with characters M - x (1).
Similar comments apply to the T transformation. This procedure is the same as block
diagonalizing the SL,(Z) representation furnished by S and 7, and in this language M
is the projection matrix onto one of the blocks. We will use this method in several places
in Sect. 3.

2.1.3. Symmetries There are several different notions of symmetry which arise in the
study of chiral algebras, and they differ slightly from what one would call a symmetry
in a full blown CFT, so we define these notions carefully. For more details, see e.g. [46].
An automorphism of a chiral algebra V is an invertible linear map X : VV — )V which

(a) preserves the vacuum, X|Q2) = |2),
(b) preserves the stress tensor, X7 = T, and
(c) respects the state/operator correspondence,

(X9)(2) = Xp() X! (2.24)

for every state ¢ € 1V, where (X¢)(z) is the operator corresponding to the state X ¢.
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Alternatively, we may replace (2.24) with the equivalent condition that
(X@)n(X¢p) = X(ppp) foralln € Zand ¢, p € V. (2.25)

It is useful to distinguish between inner and outer automorphisms of V. To define these
notions, note that if X is an automorphism of V of finite order, and M is a module, we can
define another module X o M whose underlying vector space is by definition M, and for
which the state operator mappingis ¢ — @xom (z) := (X@)p(2). If Xo M isisomorphic
to M for every module M of V, then we say that X is an inner automorphism, and outer
otherwise. The idea is that outer automorphisms will in general permute the different
irreducible modules amongst themselves, while the inner automorphisms preserve them.
We will use the notation Aut()) for the automorphism group of V, and Inn(}V) for its
subgroup of inner automorphisms.

We will often look for signatures of such symmetries in the characters of the chi-
ral algebra. For example, because automorphisms preserve the stress tensor, they will
also preserve the grading, and so each graded component V), transforms in a finite-
dimensional representation of Aut()’). The graded components of its irreducible modules
V(a), will transform in a finite-dimensional representation of the inner automorphism
group Inn(}), though in general they will transform projectively, i.e. up to a phase [46].
The projective representations of a finite group can be lifted to ordinary representations
of a covering group, and so we will often work with an extension of the inner automor-
phism group of the form H.Inn(V), for H suitably chosen. For example, although B is
the automorphism group of the baby monster VOA VB, its irreducible modules will in
general transform under the group 2.B. The characters of V reflect this representation
theory through the coefficients in their g-expansions: in particular, these coefficients
can be written as sums of dimensions of irreducible representations of H.Inn()). All
of these observations will provide nontrivial checks on our proposed characters and
automorphism groups.

One can also consider a character which is twined by an automorphism X,

Xx.a(T) = Tryg XgLo 2. (2.26)

On general grounds, this will coincide with a vector-valued modular form of higher
level [50,51], i.e. one that transforms covariantly with respect to the action of a discrete
subgroup I'y of SL,(R) which includes at least a subgroup I'g(n) C I'y, where

Fo(n) = {(‘C’ 2) e SLy(2)

¢ = 0 mod n} 2.27)

and with the value of n being closely related!! to the order of X.

One can also consider automorphisms of the fusion algebra of V. These are simply
invertible linear maps on the fusion algebra which preserve the fusion rules. Of special
interest to us will be “diagonal” automorphisms which take the form

W(a) — Lo W(x) Ly € C). (2.28)

Their main utility for us lies in the fact that, if W is a subalgebra of V), such mappings
can often'? be lifted to ordinary automorphisms of V. Indeed, using the decomposition

L fact, n is the order of X if X is non-anomalous; in general, n is some multiple of the order of X.

12 We are not aware of a general condition which determines when such a lifting goes through, but we are
confident that it does in all the cases that we invoke this structure.
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of V into VW-modules,
V=P Ve (2.29)

we can define its lift 7yy to be the linear mapping V — V which acts on vectors in
the subspace V() as ¢ > . This map will often be a non-trivial automorphism of
V. Furthermore, for any automorphism X of ), the automorphism associated with the
subalgebra XV satisfies

xw = Xty XL (2.30)
In particular, if X belongs to Centayy)(Tyy) then Ty = Tx.

2.1.4. Conformal vectors Generically, the chiral algebra of a CFT involves only the
Virasoro algebra, in which case, the only operator with dimension (2, 0) is the holo-
morphic stress tensor. However, in CFTs with an enhanced chiral algebra, there may
be additional dimension (2, 0) operators. When this happens, it is often possible to find
fields distinct from the stress tensor which nonetheless have the canonical 77T OPE,
albeit for a different value of the central charge. The states corresponding to such oper-
ators are known as conformal vectors, and they will play an important role in the rest
of our paper. To characterize the conformal vectors of a theory, it is useful to define the
notion of a Griess algebra, to which we turn next.

The Griess algebra [52,53] of a VOA V is an algebraic structure on its space of
dimension 2 operators. Two pieces of data define it: a commutative product x : Vo x )V, —
V; and a bilinear form (-, -) : V» x V, — R. They are commonly defined in the math
literature as

@ *¢' = oy’
(¢, ¢") = (Qe2l¢")

where we have used the notation ¢ = |p) = ¢(0)|2) to denote the state corresponding to
the operator ¢(z). The Griess algebra is meant to encode information related to the OPEs
between dimension 2 operators. First, let us see that ¢ x ¢’ is the state corresponding to
the operator which appears in the 1/(z — w)? term of the ¢’ OPE, i.e. that

(2.31)

px¢ = (pg). (2.32)

A quick calculation verifies that this is true,
dz dz _,_
(p9)2 = f 5 W@V OI2) =3 f ST =g0p' =0 xg’ (233)
i - i

Similarly, the bilinear form encodes the coefficient of 1/(z — w)4 in the OPE,

(p9"a(z) = (¢, ¢")1.

Indeed, the vacuum is the only dimension O operator so (¢¢')4 o 1, and the constant of
proportionality is fixed by the following calculation:

d
(Q(pg)4(0)]2) = ?{ ﬁf(QIsD(Z)(ﬂ/(O)IQ)

d
= Z?g 2_Z'Z_"+1<Q|¢nl<p’) (2.34)
. Tl

= (Qle2l¢’) = (¢, ¢).
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By the state-operator correspondence, the Griess algebra is then the same as the two
terms (¢”)4 and (p¢’); in the OPE. As an example, observe that taking ¢ = ¢’ = T to
be the stress tensor implies

(T.T) = (QL2|T) = (QIL2L »|2) = % (2.35)

and similarly,
T*xT=LoT =2T (2.36)

which recovers the first two non-trivial terms in the 77T OPE.

As the data of a chiral algebra necessarily involves the choice of a conformal vector,
they are the first place one should look if one is interested in locating subalgebras. We
comment that the collection of conformal vectors of a VOA V can be characterized using
the language of the Griess algebra. Indeed, it is straightforward to check that conformal
vectors 7 (z) of central charge ¢, give rise to idempotents of the Griess algebra, %*% = %,
with (r,1) = %’ If V does not have currents, (i.e. if V; = 0, as is the case for the

moonshine module V%), then the converse is true as well [39]: every idempotent of the
Griess algebra gives rise to a stress tensor with central charge ¢, = 2(¢, t).

2.1.5. Examples In this section, we summarize the salient features of several examples
of chiral algebras which will make appearances in the sequel.

Minimal models The minimal models are a special class of two-dimensional conformal
field theories: those for which the Hilbert space decomposes into a finite direct sum
of modules of the Virasoro algebra. Such theories only occur for values of the central
charge labeled by a pair of coprime integers p’ > p > 2. In terms of these integers, the
central charge and the conformal dimensions of the primary operators in the theory are
given by

N2 , lo 2 _(n —_ »)2
Cpy =1 _elP 1/?) Y. (p's — pr) /(p p) ’

, (2.37)
pp 4pp

where | <r < p’, 1 <s < p,andsp’ < rp.

For these values of ¢, we will define L(c, 0) to be the VOA at central charge c after
one has taken the quotient by all null vectors. Its highest weight modules are denoted
L(c, h), when h is as in equation (2.37). The characters of these highest weight modules
are given by

Xl (o) = Trﬁ c ,hf.ypf)q“‘* = k" (@) - KT (@),
(2.38)

@pp'ntpr—p's)?

K/ (@) = (q) doa

nez

The characters (2.38) form a vector-valued modular form and under the S-transformation
they transform as

x5 (=) mes DA @), (2.39)
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2 /
mmsr IZM =2 —/(—1)1+Sp+”’sin (n £/r,o> sin (n p—sa) . (2.40)
pp p p

Of interest to us will be the unitary minimal models. Unitary requires in particular
that no representation appearing in the decomposition of the Hilbert space feature states
with negative norm; a necessary condition for the absence of negative norm states is that
the highest weight states should have non-negative dimension. Examination of equation

where

(2.37) shows that min, ¢ hf P " < 0 unless |p — p’| = 1. It turns out that this primary
must be included in the full theory in order to ensure modular invariance of the CFT,
which implies that the CFT at central charge ¢, , is non-unitary if [p — p’| # 1. We

therefore parametrize the unitary minimal models by a single integer m = 2, 3, ... by
taking p = m, p’ = m + 1. We will often replace p, p’ with m in the notation when we
are working with the unitary theories, e.g. h(m) = hff' , Cm = Cp,r, and s0 on.

These models admit Z, automorphisms of their fusion algebras. For the unitary
models, these take the form

(=)™ Lcpm, K if m is even

L(Cps (m)
em: hr.s') = (=) Lcpm, h) if m is odd.

(2.41)

Moreover, these automorphisms are always “liftable” in the sense that, if ) admits a
minimal model subalgebra W = L(c,,, 0), then the induced map )y of Sect. 2.1.3 is
guaranteed to be an automorphism of V [39].

A particularly important example of the above is when W = L( %, 0), which corre-
sponds to the Ising model. Then, the fusion algebra automorphism takes the form

L(5,0) > L(3,0)
LG D LG D (2.42)
L(3. 16) = —L(3. 16)

Its corresponding lift 7y is referred to as a Miyamoto involution [39]. When the decom-
position of V does not have any L:(%, %) modules appearing,

V=V & V(%), (2.43)

then tyy is trivial, but it is still possible to define another involution o}y on ) which acts
trivially on the subspace V() and sends ¢ — —¢ when ¢ belongs to V( 1. The stress

tensor of such an L(%, 0) subalgebra is referred to as being of “o-type” in V.
A lesser known fact is that the chiral algebra L(c,,, 0) can be extended to a larger
(potentially super) chiral algebra by taking a direct sum with one of its irreducible

modules [54]. Indeed, hgm”)l 4 = Mmax; g h£ s 1s either integral or half-integral depending

on whether m = 1,2 mod 4 orm = 0,3 mod 4, and L(c,,, 0) ® L(cp, h(m)H) carries
the structure of a chiral algebra in the first case and a super chiral algebra in the second
case. We will make use of these simple-current!? extensions in later sections.

13 A simple-current is an operator J such that the OPE of J with any primary contains only a single term,
which is itself a primary.
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Parafermion theories Minimal model CFTs have only Z, or Z3 fusion algebra auto-
morphisms so it will be useful to have rational CFTs with larger automorphism groups
available in studying deconstruction of the monster CFT. A well studied example are
the parafermion CFTs whose Hilbert space decomposes into a finite direct sum of mod-
ules of its chiral algebra. Here, we briefly review the properties of two-dimensional Z
parafermion chiral algebras [55], following the conventions of [56].

The central charge of the Z; parafermion theory is

20k — 1)

T 2.44
k k+2 ( )
and takes the values ¢ = 7, % 1,8, %, fork =2,3,4,5,6,.... There are *&r1

independent primary ﬁelds with conformal dimensions
S _ L2 m*
Em T 4k +2) 4k

where the independent primary fields ¢; ,, can be labeled by pairs of integers (¢, m) in
the set

(2.45)

{m) |0<tl <k, —£+2<m<{, L—me?2Z}. (2.46)

The operator ¢ ; is the identity operator with dimension 0. We use the notation
P(k, [£, m]) for the associated highest weight module, and use the abbreviated nota-
tion P(k) = P(k, [k, k]) for the chiral algebra itself. Its characters are given by

X _a
K”()(T) TTP(k em)q 0%

[< Z Z )( 1 ; (1442 (k)% (m+ik)?
q I(k+2) ax
77(r)2

ij<0  ij<0 (2.47)

; (C+1—(i+2))(k+2)2  (m+ik)?
_( 2 : _ § : )(_1) q I(k+2) 3 }

i<0,j>0 i<0,;<0

where 7 is the Dedekind-eta function, given by

o
1
n@) =q% [[(—q". (2.48)
n=1
Their behavior under modular transformations is governed by the following modular
S-matrix,

2 D+ 1)
PfS(k) — = ity R — 2.49
oem = gy O\ k42 249)

These theories enjoy a Z; symmetry of their fusion algebra; the generator acts on the
highest weight module P (k, [£, m]) according to

Pk, [0, m]) — e X Pk, [€, m]). (2.50)

In later sections, we will locate parafermionic subalgebras of the moonshine module,
and lift (a quotient of) this Z; symmetry to an automorphism in the monster group.

In some cases, we are able to extend the parafermion chiral algebras by taking direct
sums with their modules with integral highest weight, analogously to the simple cur-
rent extensions of the previous section. We content ourselves with demonstrating these
extensions as needed.
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Lattice VOAs Rational toroidal compactifications of bosonic string theory are described
by a d-dimensional torus 7¢ = R?/L with L an even positive definite lattice. The
holomorphic part of the corresponding CFT has the structure of a lattice VOA. Lattice
VOAs are described in detail in many places including [53,57,58] so we will be very
brief. The simplest example of lattice VOAs are the ¢ = 1 examples based on the lattice
L = /2NZ. For every A € L there is a state |A) and a set of oscillators a,, n € Z
obeying

lam, an] = m(sm,fn (2.51)

with a,f = a_,. The state |1) obeys a,|A) = 0 for n > 0 and ap|r) = A|)L). Physical
states are constructed by acting with the creation oscillators a_, with n > 0 on the
states |A). Vertex operators Vj (z) that create the states |1) are given by normal ordered
exponentials

Vi(z) =: *X@ (2.52)

up to cocycle factors which are discussed in the literature. These vertex operators have
conformal weight 22/2. The vacuum state is |0) and the conformal state (i.e. the state
corresponding to the stress tensor) is

1
Vvir = 5a-1a-10) . (2.53)

When N = 1 (which corresponds in the physics picture to a circle compactification
at a radius which maps to itself under T-duality), the states a_;]|0), | =+ +/2) all
correspond to vertex operators of conformal weight one and these form the basis of the
Segal-Frenkel-Kac construction of affine A at level one.

The rank one case has a generalization to lattice VOAs based on an even positive
definite lattice L and with central charge ¢ = rank(L). The inequivalent simple modules
of a lattice VOA can be labeled by elements of the discriminant group L*/L where L*
is the dual lattice. The characters of these modules are given by

0, (1)
n(v)4

where 7 is the Dedekind eta function in equation (2.48), and the theta function is given
by

xx(T) = (A eL*/L) (2.54)

Q)L* (‘L') = Z qkz/Z . (255)

reL+1*

The S-matrix of this theory can be deduced from the multiplier system of the » function,

n(—1) = V—=itn(r) (2.56)

as well as the fact that the theta functions transform into one another according to the
Weil representation,

srank (L)

! —2mi(AF,p%)
— ) e 0,+(7) (2.57)
L*/L| y*el*/L

9}»* —%) =
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where (-, -) : L* x L* — R is the inner-product defined on the dual lattice.

When L is the root lattice of a simply laced ADE Lie algebra, the lattice VOA has
the corresponding affine ADE symmetry. In what follows we will make use of the lattice
VOA +/2R where R is the root lattice of a simple laced Lie algebra. These lattice VOAs
have dimension two operators dual to the states |v/2p) with p € R and p? = 2 which
play a crucial role in deconstructing VOAs into VOAs with smaller central charge.

In addition to the lattice VOA V;, one can also consider the charge conjugation
orbifold V7, defined as the f-invariant subspace of V;, where 6 is the automorphism
induced by the canonical lattice involution v — —v. For a physicist, V; would appear
as the chiral algebra of the usual modular-invariant Z, orbifold of a sigma model with
target 7¢ = R?/L [59]. In the rank 1 case, the charge conjugation orbifolds are all of the

form V* ANz with N a positive integer. The discriminant group of the associated lattice

has representatives

1 ~ 1 2 2N—1
(AyD)/(VIND) = (0, 4. 2o, 2 (2.58)

and, in terms of the characters x _« (t) of V ANZ and the generalized theta functions
V2N

q>ot,ﬂ(7:) (T) Zq(m+4) 2mm2 (2.59)

meZz

+ .
the characters of V sz Are given by [59,60]

h=0:&" ()= % (xo(x) + @o,1 (1))
h=1: 500 = 2 (100 — 01 (0)
h= %: (D) = le(w (=12
- (2.60)
= v (r):xﬁ(t) k=1,...,N—1)
h= % e () = % (®10() + ®11(1) (i =1,2)
h= 136 c M) = % (®10(r) — @1.1(1) (i =1,2)

where we have borrowed from the notation of §7.b of [59]. In the case of a general even,
d-dimensional lattice L [6,61], the characters are given by

1
&7 = 3 (xo(r) + @0.1(0)")
1
&7 = 3 (x0(m) = @01()")
E0(1) = l)g*(r) (i = 1,2, and A* € L*/L such that 21" = 0)

£ (1) = xao (1) (A* € (L*/L)/ ~ such that 21* # 0)
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IL/R|2

£5 (@) = = (Gr0@ + @11(0)) (= 1. |R/2L)
1
L/R|2
0@ =T (@00 0i@) =1 RAL)  @6D

where R = {A € L | (A\,L) C 2Z} and ~ denotes the equivalence relation which
identifies A* with —1* (i.e. E)g?) and éiﬁl are not regarded as inequivalent characters).

2.2. Deconstruction generalities. It is often useful to build up a complicated theory out
of simpler building blocks. An example of this is Gepner’s description [62] of sigma
models with Calabi-Yau target at special points in their moduli space as a suitable
(orbifold of a) tensor product of superconformal minimal models. In the other direction,
one might begin with a known theory, and discover an alternative way of looking at it
in terms of more tractable constituents. For example, after the original construction of
the moonshine module by Frenkel, Lepowsky, and Meurman [53] as a Zj asymmetric
orbifold of the Leech lattice VOA, it was discovered that V® admits an E(%, 0)‘8’48
subalgebra [63] with respect to which its fields can be alternatively organized; this
construction is similar in spirit to the decomposition of a theory into representations of
its current algebra (an affine Kac-Moody algebra), a procedure which is unavailable in
the case of V" due to its lack of dimension 1 operators. One may even find new structures
entirely in their efforts to “deconstruct” a theory into its pieces, as we will indeed find
to be true for us in Sect. 3. In this subsection, we will outline a somewhat systematic
procedure for discovering such deconstructions, and provide several examples.

Stress tensor decompositions In order for a chiral algebra to admit a tensor product
subalgebra, it should be at least possible to write its stress tensor with central charge ¢
as the sum of two commuting conformal vectors whose central charges add to c. So we
will begin our analysis at the level of the stress tensor. Consider first the case where there
is a single Virasoro primary field ¢ (z) of dimension 2. We then have two dimension 2
fields—the stress tensor 7 (z) and ¢(z)—with the following OPEs,

c/2 2T (w) 8T (w)
(z —w)* (z—w)2+z—w
2¢0(w) N dgp(w)
z—w)? z—w
1 4T (w)/c +bo(w) (4T (w)/c +bp(w))/2
C—wi T G—w? —w '

T@)T(w) ~

T(2)ew) ~

(2.62)

p(2)e(w) ~

In the above, the second line follows from the fact that ¢ is primary and has dimension
2. In the third line, the first term involves a choice of normalization of ¢, the vanishing
of the 1/(z — w)?> term follows from Bose symmetry, and the other two terms involve a
single undetermined coefficient b and have a form dictated by associativity of the OPE.

It is now natural to try to construct a conformal vector as a linear combination of
T (z) and ¢(z), that is to consider

1(z) = aT (z) + Bo(z) (2.63)
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and to solve for the constants «, § by demanding that 7(z) have the OPE of a stress
tensor,

ct/2 2t (w)
t()t(w) ~ +--- 2.64
@) (z—w?* (z—w)? (269
for some ¢;. Using the OPEs of the two dimension 2 fields, we compute
1 2 2
t t ~ — 2+
@) ~ s (e/24 47)
1
P (2a2T(w) + B24T (w) /e + bo(w)) + 404,38g0(w)) +oe
(z —w)?
(2.65)
Equating these two expressions, we get the quadratic equations
4
20 =207 + - B2
c (2.66)
28 = bp> +4ap
and
¢ = alc+28% (2.67)

Provided that b # 0, one finds two solutions c4 for ¢; with

¢ 32\
c+ = 5 1+(1+ E y (268)

and two solutions for « and S,

_ 1 1+ 1+32 B B+ = 2 1+32 E (2.69)

=3 pc) ) PEETRU0Te) '
When b = 0, we have o = % and 8 = ?%\@ . One can check that the OPE between )
and (7 is regular, and further that c; + ¢c_ = c. Thus, the stress tensor of any theory

with two dimension 2 operators can always be deconstructed into a sum of commuting
conformal vectors for two chiral algebras with smaller central charge,

T(z)=1%(2) +17(2), (2.70)

a fact which we will put to use in later sections. If ¢ > 1 but ¢+ < 1, then we can
organize the Virasoro primaries of the original theory into a finite set of primary fields
with respect to t™® and ().

Example 2.1 (Bosonization). Take the starting CFT to be that of a free boson on a circle
of radius R with ¢ = 1. Such a theory arises in many places in physics. For example,
it describes the continuum limit of the 2-dimensional statistical mechanical XY model
at low temperatures. One may also take the bosonic field X (z, z) as the coordinate of a
string propagating on a circle S! with periodicity X ~ X + 27 R; such a model arises as
part of a fuller world-sheet string theory whenever spacetime is compactified on a circle.
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To describe the theory, we split the bosonic field into a left-moving and right-moving
part,

X(z,2) = Xp.(2) + XR(2). (2.71)
The holomorphic stress tensor is
1
T:_E 10X oXyg : (2.72)

where : O(z) : indicates that O(z) should be normal-ordered. There is a corresponding
anti-holomorphic stress tensor 7 defined analogously. The primary fields include vertex
operators of the form

Vn,m(z, Z) — eiI’LXL(Z)+i17RXR(Z) . (273)
where

( )—(m+R - R) (2.74)

PL,PR—2R n,2R n . .

2 2
They have conformal dimensions (%, h) = (PTL, pTR) with respect to T, T.

Now, if R? is irrational, then it is easy to see from inspection of equation (2.74)
that there are no holomorphic operators besides the identity and 0 Xy ; in this case, the
chiral algebra is an enhancement of the Virasoro algebra known as an affine U(1) current
algebra (with X playing the role of the current). However, if R is rational, then the
holomorphic chiral algebra enhances further to a VOA known in the math literature as a
rank 1 lattice VOA (c.f. Sect. 2.1.5). To get operators with conformal dimension (2, 0),
we can go to R = 1 where we have the purely holomorphic operator

1 2iX(2) —2iX(z)
(/)(Z)=—(:e’L(Z:+:e ’LZ:). (2.75)
V2
The OPE of ¢ with itself trivially gives » = 0 and so one finds

c+ = (2.76)

1
2
and that

r<i>—] ! D0XL0XL : (2.77)
—2 2. L L ﬁgo .

are commuting conformal vectors with central charge %, and so give a subalgebra of
the chiral algebra which is isomorphic to two copies of the Ising VOA. Thus, we have
deconstructed the stress tensor of this ¢ = 1 model into a sum of conformal vectors
with central charge % This is closely related to a particular form of bosonization in two
dimensions: in particular, it is one piece of the equivalence between the Z, orbifold of
the R = 1 compact boson and two decoupled Ising CFTs [64].



Conformal Field Theories with Sporadic Group Symmetry

This analysis can be extended to theories which have an arbitrary number ny of
dimension 2 primary fields ¢'. The OPE takes the general form

b aPyP) b+ PP w)

z—w? (z—w)? (z — w)? —w (2.78)

¢ (2! (w) ~

where repeated indices are summed, ¥# are the set of dimension 1 operators, and x”
the set of dimension 3 primary operators of the CFT. The ellipsis indicate contributions
from descendants. This now looks rather hopeless, but in fact if one looks at the OPE of

ny

t=aoT +) g (2.79)

i=1

with itself, the coefficients ¢’/ and ¢'/? cancel out and the equations that have to be
solved to deconstruct the stress tensor involve only the 5" k.

2
2 2
ap = oj + - X;Qi (2.80)
1=
1 & y
@ = 200 + > ajeybit, (2.81)
jk=1

The decoupling of @*/# and ¢'/* should be expected from our earlier claims that conformal
vectors can be characterized in terms of the Griess algebra. Indeed, the Griess algebra
involves only the data of the 1 /(z — w)* and 1/(z — w)? terms of the OPE, and so doesn’t
witness the coefficients a'/# and ¢/?; the b'/* can be thought of as its structure constants.

Assuming there’s a solution ¢ with central charge ¢;, it is known [58] that if (T¢)3 = 0
then 7 = T — ¢ is also a conformal vector with central charge ¢ — ¢;, and in particular
one can successfully deconstruct the stress tensor as T = ¢ + 7. In a theory without
currents, (i.e. if V1 = 0, as is true for the moonshine module), we are guaranteed that
(Tt)3 = 0, and so any conformal vectors in addition to the stress tensor will lead to a
deconstruction.

Example 2.2 (Toroidal CFT). We can generalize the previous example by considering
chiral algebras which arise in the world sheet CFTs which describe strings propagating on
certain special tori [65]. We will see that the stress tensor can be iteratively deconstructed
into multiple conformal vectors with smaller central charge.

As an example, consider the ¢ = 2 theory of 2 free bosons X(z,z) =
(X1(z, 2), X2(z, 7)) with stress tensor

1
T=—5:0X. 0Xp: (2.82)

We will work at a special point in the moduli space of such theories where the chiral
algebra consists of primaries of the form

Vp(z) =: P XL (2.83)
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where p belongs to the (rescaled) root lattice v/2 2 Aroot (A2). Such operators have holo-

morphic dimension & = 2 , S0 we can obtain 3 operators with 7 = 2 by taking pi, p3
to be the positive simple roots of Aa, p» = p1 + p3, and defining

A X
¢ =— (: e PriL g T PEAL ) (2.84)
V2

Solving equation (2.80), one can show that there is a conformal vector t(g) with central
charge %‘, given by

13 (g) = %T(z) - ‘? A (2.85)

which deconstructs the stress tensor as
— D €3]
T(z) =15(2) +1°5(2). (2.86)

One can then work in the subspace of dimension 2 operators which have regular OPE

. 4 S 6 .
with #(5) (which includes ¢5)), and again search for conformal vectors. If one does
this, it is possible to show that the central charge g conformal vector can be further
deconstructed as

(D) = 1D (2) + 10 (2) (2.87)

so that all together, the stress tensor of this toroidal CFT can be decomposed as the sum
of conformal vectors whose central charges agree with those of the first two non-trivial
minimal models and the Z3 parafermion theory,

T(2) = 1D () +10 (2) + 13 (2). (2.88)

This can be generalized, e.g. by working with the lattice VOA associated to
ﬁAmot(A ~N—1) (which arises as the chiral algebra of a CFT whose target space is
an N — 1 dimensional torus at a special point in its moduli space). It was conjectured in
[65] and proved in [66] that the stress tensor of this c = N — 1 CFT can be deconstructed
as

N+1

_2N-1) 6
N—1_—N+2 +Z<1 —m(m+l)> (2.89)

m=3

where the first term is the central charge of the Zy parafermion theory and the second
term is the sum of the central charges of the first N — 1 minimal models.

This construction can be generalized to the VOA associated to any simply laced root
system. If R is a simply laced root system with rank £ and Coxeter number /4, then it
was shown in [66] that the lattice VOA V f T contains a conformal vector @ With

8 if

central charge cg = 2¢/(h +2),i.e.cg = “3 1fR Ap,cr=1i1f R =Dy, cpr = 71

R = Eg, cg = 15if R = E7,and cg = % if R = Es.
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Commutant subalgebras So far, we have only described the (not necessarily unique)
deconstruction of the stress tensor,

T()=)Y t9@) (2.90)

i

into commuting conformal vectors t® with ¢ = Zi ¢;. Of course, there is more to a
chiral algebra than its stress tensor. Equation (2.90) should be thought of as the first step
towards reaching a more refined statement of the form

Vo VY. (2.91)

Here, each V) is a chiral algebra whose stress tensor is ), so in particular, equation
(2.91) generally contains more information than equation (2.90).

Let us specialize for simplicity to the case where we have deconstructed the stress
tensor into just two commuting conformal vectors, 7 = ) +¢® | though it is straight-
forward to generalize. There is a well-known construction which is useful for describing
V) and V@, known as the commutant: if }V is a subalgebra of V, the commutant of
W in V, which we will denote W = Comny, (W), is defined as the set of operators in
V which have regular OPE with every operator in W. If 1(z) = )", .7 ln27™"~ ~2 is the
stress tensor of V), then the corresponding space of states consists of those of ) which
are vacua with respect to ¢,

ComyOV) = {gp € V | I_1¢ = 0}. (2.92)

This description makes it clear that the commutant of VV in )V depends only on the stress
tensor of W,

Comy (W) = Comy(Vir(t)) (2.93)

where Vir(r) is the Virasoro subalgebra of V generated by ¢. Now, if (T'1)3 = 0, then
W= Comy, (W) has the structure of a chiral algebra with7 = T — ¢ as its stress tensor
[58]. It follows that the maximal subalgebras which can appear in equation (2.91) are
simply commutant subalgebras,

VI = Comy (Virt®)), V@ = Comy (Vir(t")). (2.94)

These subalgebras are further each others’ commutants, i.e. Comy VD) = Y@ and
YD = Comyp(V?®), and so we refer to (WD, V@) as a commutant pair. Our main
strategy for building chiral algebras with large, exceptional symmetry groups will be to
take V = V¥, locate known, simple s subalgebras W (whose stress tensor we denote by
t), and consider their commutants V. Since V% has no currents, (Tt)3 = 0 is trivially
satisfied by dimensional analysis, and so W is guaranteed to carry the structure of a
chiral algebra/VOA.

We will also occasionally perform iterated deconstructions, as in the toroidal CFT
example. For example, we will often find chains of subalgebras of the form

V=u®>5yh>...oy®» 5y =o. (2.95)
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where each /(") is the result of deconstructing 1) off of L/~ i.e.

U9 5 virtMy @ u» U = Comyo (Vir(rV))

> Vir(t V) @ Virt®) @ U U? = Comy) (Vir(r?))
(2.96)

S Vir(M) @ - @ Vil @u™ U™ = Comyyu-r (Virt™))

Of course, since the commutant depends only on the stress tensor, one can alternatively
describe the /) as

i
U = Comy [ Vir| Y 19 ] . (2.97)
j=1

Symmetries in deconstruction Having control over the properties of VW will allow us to
infer various properties of its commutant V. For example, we will frequently make use
of the homomorphism

@, : Stabpyvy (1) = {X € Aut(V) | Xt =t} — Aut(Comy, (Vir(t))) = Aut(V~\/)
X = Xl
(2.98)

to infer symmetries of VA\'{; The reason this map is well-defined is that any X which
stabilizes ¢ will preserve W = Comy (Vir(t)),

1_1(Xp) = (X0)—1(Xg) = X(I_1p) = 0 (2.99)

where we have used the definition of an automorphism in (2.25). The map ®; makes
it clear why the procedure of deconstruction is well-suited for probing the structure of
subquotients of Aut()) as opposed to just subgroups: it is because Stabpyv)(?) is a
subgroup of Aut()), and its image under ®, in Aut(W) by the first isomorphism theorem
is simply Stabayy (t) /ker(®,). It is this fact which underlies the reason why we are
able to obtain precisely simple sporadic groups, as opposed to extensions of them. For
example, as we will see in Sect. 3.1.2, it is B which is the automorphism group of the
baby monster VOA and not 2.B, even though 2.B is a subgroup of M, and not B.

We will also be interested in the automorphisms of V which preserve the decom-
position of V into representations of YW ® W. Let us assume for simplicity that V is
a meromorphic CFT, i.e. that it has exactly one irreducible module and its partition
function Z(t) is modular invariant, though it is not difficult to generalize. The fact that
(W, W) furnish a commutant pair inside V implies (under suitable assumptions, which
hold for V = V?) that there is a decomposition of the form [41]

V=PWe e W) (2.100)

where the W(a) (resp. W((x)) are mutually inequivalent irreducibles modules of W
(resp. W) Thus, the realization of a commutant pair (W, W) inside of V establishes a
bijective pairing between a subset of irreducible modules of Y and a subset of irreducible
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modules of W in a manner similar to Schur-Weyl duality, and relates'* their fusion
categories [67] (e.g. VW and W will have conjugate modular S-matrices, as we will see
in the next subsection). We will say that an automorphism X of V preserves WV if it can
be realized in the form

X=) Xa®1 (2.101)

such that X, : W(a) — W(x). We denote the collection of such automorphisms
Aut(V|W), or M(W) in the case that V = V'%; the analogous notions go through when
W is replaced with W. It is not hard to see that Aut(V|W) commutes with Aut(V|W),
so that they are contained in each others’ centralizers. In the case that they are equal
to each others’ centralizers, we call the groups (G, G) (Aut(V|W), Aut(V|W)) a
centralizer pair, and WV, W) a centralizing commutant pair; in the case that V = V¥,

we call such a pair a monstralizing commutant pair, or M-com pair for short. Although
we will only work in the monster CFT, we suspect that the notion of a centralizing
commutant pair is a natural one in any CFT, as it furnishes decompositions of V which
play well with respect to the action of its automorphism group. -

The centers of a centralizer pair must agree, Z(G) = Z(G) = G N G, as must their
normalizers, Nay (1) (G) = Nau(v)(G) =: N.The only way the centers can be the same
is if e.g. the X, in equation (2.101) are each proportional to the identity, X, = o 1.
Thus, we learn that G N G acts by diagonal fusion algebra automorphisms, as in (2.28),
on both the modules of WV and the modules of WV, as one might expect from the fact
that their fusion categories are related. We can further define H := N/{(G, G) which
will be a subgroup of the outer automorphism groups of both G and G.In general, we
will report the data of a centralizer pair as [G o G].H, or [G X G] H in the case that
the centers of G and G are trivial, where G o G denotes the central product of G with
G, which will be a subgroup of Aut()). In all our examples, we will find that the outer
automorphisms which W inherits from Aut()) come from the group H.

How does the group e.g. G compare with Aut()V)? It simultaneously includes too
much and too little. In general, it includes too much because it contains fusion algebra
automorphisms coming from its center which act trivially on the vacuum module, and so
we must quotient by these to reach what we would properly call the inner automorphism
group. It also contains too little because it misses out on outer automorphisms. Therefore,
we have the expectation that

InnOW) ~ G/Z(G), AutOWV) ~ (G/Z(G)).H' (2.102)

with H' a subgroup of H. The group G is closely related to the projective representation
theory of Inn(}V) because any projective representation of Inn()V) that is realized on
the modules V() can be lifted to an honest representation of G. In all of our monster
examples, we find that Gisa (usually trivial) quotient of the Schur cover of Inn(W)

Characters Finally, we comment that we are also able to put constraints on the characters
and modular S and T matrices of WV from our knowledge of the analogous data for W
and V. Passing to characters, the decomposition (2.100) becomes

Z(0) =) Xa(0)Xa(T) (2.103)

14 Their fusion categories are “braid-reversed equivalent”
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which can be satisfied if
STS=1, 7T'T=1 (2.104)

with S (§ ) the modular S-matrix of WV (W) and similarly for 7° (’?). Because the S and
T matrices of a rational CFT are always symmetric and unitary, we in fact have that

S=8, T=T* (2.105)

In the moonshine module V = V1, which has no currents, the simplest and most natural
ansatz for the conformal dimension A, of the highest weight subspace of WW(a) which is
consistent with 7 = 7 is hy = 2 — hy when a # 0 (i.e. for the non-vacuum modules)
and hop = 0. We will make this assumption throughout.

These considerations set up a bootstrap problem of sorts which can be explicitly
solved in all the cases we consider in this paper, owing to the relative sparsity of modular
forms. Three methods will come to our aid, each producing identical results: Rademacher
sums, modular linear differential equations, and Hecke operators. We turn to their treat-
ment next.

2.3. Character methods.

2.3.1. Modular linear differential equations The characters of a VOA often satisfy
a modular linear differential equation (MLDE), a fact which has been successfully
exploited in many contexts, see e.g. [68-72]. In the present setting, our knowledge of
the conformal dimensions #, of the highest weight subspaces of the modules W(«) is
in many cases sufficient to uniquely determine an MLDE satisfied by the corresponding
characters X, (7). We briefly provide some details on the theory of such equations.

Let E4(7) and E¢(7) be the weight four and six Eisenstein series respectively, and
E>(7) the quasi-modular Eisenstein series of weight 2. The Ramanujan-Serre derivative
Dy = % — %i wk E> maps modular forms of weight k to modular forms of weight k + 2
and we can iterate this to define a differential operator

D" = Dyy—2D2ry—4---D2Dy (2.106)
that acts on weight zero modular functions to produce a weakly holomorphic modular

form of weight 2n. A general nth order modular linear differential equation has the form
[68]

n—1

(D” + qukpk) f=0, (2.107)
k=0

where the ¢ (t) are modular forms of weight 2(n — k).

If fi(z), fa(z), ..., fn(7r) are the n linearly independent solutions of (2.106) then
we can express the coefficient functions ¢ (t) as

o= (=" w/w (2.108)
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where as usual the Wronskians are given by

fi oo S
Dfi  Dfa -+ Dfy
Wi = D"‘.lfl Dk;lfz ~-~Dk‘.1fn i (2.109)

Dk+lfl Dk+1f2 L Dk+1fn

an] anz . Dﬂfn

and we set W = W,,. It is useful to classify solutions to MLDEs by the value of the
integer

’
£ =3ord;(W)+2ord,(W)+6 Z ord,,(W) (2.110)
peF

where i = /—1 and w = ¢>™/3 are the orbifold points of the fundamental domain F
of the modular group PSL;(Z). For an MLDE of order n, the Wronskian W has weight
n(n — 1); if the leading behavior of the solutions f; at the cusp at infinity takes the form
fi = g%, then it follow from the Riemann-Roch theorem that

nn—1)
EZT—szai. (2.111)
1
The solutions f;(7) can be found using the Frobenius method and take the form

fi©)=q"Y cing" 2.112)

n=0

with ¢ = ¢*/7. The proof that solutions f;(t) of an nth order MLDE transform as a
vector-valued modular form for SL;(Z) follows from results on the monodromy prop-
erties of solutions to complex linear differential equations and the fact that the only
singularities of the MLDE occur at the cusp at infinity and at the orbifold points T = i,
€271/3 of the fundamental domain of PSL»(Z). Note that the function 1728/ () maps
the cusp and orbifold points to (0, 1, 00) so one is essentially studying solutions on
PL(C) — {0, 1, oo}. For details see the discussion in [73].

In what follows, we provide MLDEs for the characters of CFTs with exceptional sym-
metry in Sects. 3.1.2, 3.1.3,3.2.2,3.2.3,3.2.9, 3.2.5, and 3.2.8, where we use MLDEs
with (n, £) values given by (3, 0), (4, 0), (4, 0), (6, 0), (5, 0), (6, 3), and (6, 3) respec-
tively.

2.3.2. Hecke operators One of the tools that we use in later sections to construct the dual
characters of commutant chiral algebras is that of Hecke images of RCFT characters,
developed in [42]. Although not universally applicable, when it works, this technique is
particularly powerful since it constructs the dual characters analytically, and determines
their modular properties. The reasons behind the effectiveness of this technique are first
that the Hecke images have the same number of components as the characters of the
original RCFT, and this is a necessary ingredient by virtue of the decomposition in
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equation (2.100). Second, the modular representation of the Hecke image is precisely
determined in a way that makes it easy to search for bilinears in the characters and their
Hecke images that give the modular J (t) function, as is also required. This is explained
in more detail below.

This section has a brief summary of the results in [42] that are relevant to our discus-
sion. The irreducible characters y(7),« = 0,1, ..., n — 1, of arational conformal field
theory (RCFT), whose chiral algebra we denote WV, are weakly holomorphic functions
which transform under SL,(Z) according to an n-dimensional unitary representation

p : SLr(Z) — GL,(C). (2.113)

More explicitly, the characters obey
at+b ab ) 2.114)
= E T .
X ct+d 5 Pap \ ¢ q)Xp

Each of the components y, is separately a weakly holomorphic modular function for
the principal congruence subgroup

I'(N) = {(i 2) € SLy(Z) |a,d =1 mod N and b, c = 0 mod N} (2.115)

where N is the smallest integer such that p(7)" is the identity. Here T is the modular
transformation taking t to t + 1. For each integer ¢ with (¢, N) = 1, one can define
a Hecke operator T, such that the Hecke images of the RCFT characters (T, x)o are
also individually weakly holomorphic modular functions for I'(N). Moreover, T, x

transforms as a vector-valued modular function according to a representation p@ of the
modular group which is defined on the generators S, T as

P T = p(TT),  p'V(S) = p(oyS) (2.116)

where g is the multiplicative inverse of g in the group (Z/NZ)* and o, is the preimage
of (g 2) under the natural map SL(Z) — SLy(Z/NZ). A short computation using
results of [74] gives the explicit formula

p(og) = p(TIS'TISTIS) . (2.117)
The Hecke operators can be described abstractly in terms of a double coset construction,

but for practical computations the most useful definition is in terms of the coefficients
of the Fourier expansion of the characters: if

Xa(D) =Y ba(mg¥ (g =€) (2.118)

is the Fourier expansion of the character of the irreducible module WW(«), and p is prime,
then the Fourier expansions of the components of the Hecke image are given by

XD @) =Y bP (g (2.119)
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where
boz(p”) p'f”
Py =17 2.120
“ {pba<pn)+—§:ﬁ;mﬁ(op)bﬂ(§> pln. 2120

If (g, N) = 1 but g is not prime, then the Hecke operator T, can be computed in terms
of Hecke operators T, with p prime using the formulae

Ton =T Th (2.121)
for m, n relatively prime and
Tpm+1 =T,Tm —popo Tpm—l (2.122)

for p prime.

These Hecke operators are well suited for solving the bootstrap problem presented
at the end of Sect. 2.2. Indeed, it is shown in [42] that if x is a vector of characters
of an RCFT with conductor N transforming in the representation p of SL»(Z), and
x@ = T, x is the vector of their Hecke images under T, then the bilinear

X" Gy x(1) (2.123)
is modular invariant provided that
G+£>=0mod N . (2.124)

Here g is the inverse of ¢ mod N and
G = p(Tts'TisTS) . (2.125)

The goal is to locate a linear combination M = Y a;G, with non-negative, integer
entries such that

X" M-x(r) = Z() (2.126)

where Z is the modular-invariant partition function of the meromorphic CFT V in which
W ® W is realized as a subalgebra. If one is successful, then one could conjecturally
identify the components of M7 - T, x with the dual characters of the modules W («)
which arise in the decomposition (2.100), i.e.

Y@ ~M" - (T0)(r) (2.127)

since these functions would then satisfy equation (2.103). Because the most singular
exponent of T, x is ¢ times the most singular exponent of x, such a construction can
only go through' if ¢; = gc; for ¢ an integer coprime to the conductor N of the
characters of W, where ¢; (c7) is the central charge of W (W).

If we specialize to the case that V = V? is the moonshine module, then the partition
function

Z@)=J@)=q¢ ' +0+196884q + - - - (2.128)

15 At least for the Hecke operators considered in this paper, though they may generalize.
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is the modular invariant J-function. In all the examples we consider, for which ¢; + ¢ =
24 (with 24 the central charge of V), this bilinear must yield a function of the form
aJ + b, with a and b two numbers. Imposing the further physical restriction that the
chosen linear combination M have non-negative integral entries, and that the entry of
M which pairs the components of y and T, x with the most singular exponents be 1,
forces the bilinear to yield J + b with b an integer. It is then usually straightforward to
determine whether or not there is physical M for which b = 0.

2.3.3. Rademacher sums Our last technique for computing the dual characters g ()
is the theory of Rademacher sums. The method originally goes back to Poincaré [75],
followed by key insights from Rademacher [76,77], and has since been the subject of
extensive study and application by both mathematicians and physicists [78-88] (c.f. [89]
for a review).

The philosophy behind this approach is that meromorphic vector-valued modular
forms typically belong to vector spaces of small dimension, and are therefore determined
by only their first few Fourier coefficients along with some information about how they
transform under the modular group. In some cases, it is more or less sufficient to specify
only the poles, and in such cases Rademacher summation furnishes formulae for the rest
of the g-expansion in terms of the singular terms. In this sense, Rademacher sums are
the spiritual successor of the Cardy formula [90]: they determine the entire spectrum of
the CFT in terms of finitely many light states, as opposed to only the leading asymptotics
of the density of high energy states.

At a technical level, the method of Rademacher summation is the specialization of a
very general idea to the theory of automorphic forms: the starting point is the idea that
one can obtain an object which is invariant under the action of a group G by summing
together the G-images of a seed object (or the G/H-images of the seed object if it is
already invariant with respect to a subgroup H of G),

“Ogymmetric = ), & - Osecd.” (2.129)
geG/H

The procedure applied to vector-valued modular functions of weight O takes the following
as its input:

1. A representation p of SL(Z) which specifies how the symmetric target function
transforms. In the case of the characters of an RCFT, p is determined by the modular
matrices S and 7.

2. Alist P = {cq(n)} of the singular terms in the g-expansion of the target modular
function, which can be determined from the central charge ¢ and the conformal
dimensions A, of the highest weight subspaces of the modules W(«).

In terms of this data, the seed object is simply the vector-valued function whose «-th
component consists of the singular terms in the «-th component of the target function,

> cal)gh. (2.130)

u<0

Notice that this seed function already transforms correctly with respect to the translation
subgroup I'oo = {£T" | r € Z} of SLy(Z), and we therefore should only sum together
its images under ['oo\SL(Z), as opposed to all of SL,(Z). Generalizing slightly the
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constructions in [89] to the vector-valued case, the Rademacher sum!® which then makes
equation (2.129) precise is

RE pa@ =YD cpw) Y My Dp)g) (2131
5

n<0 7 €lo0\SL2(Z)
where
rip(yT— 2mip(yt — yoo) ™! )
Al _ ,2mip(yt—yo0) [ Uy 14 —
My, ) =e go Fnt) : yoo= lim yt
n=
(2.132)

is a regularization term which is needed in order for the sum to converge. A somewhat
involved computation of the Fourier expansion of this Rademacher sum,

Rng(Z),p,a(T) = Z ca(v)q" (2.133)

vehy— ﬁ +Z>(

yields the following exact expressions'” for the Fourier coefficients,

=X Y03 ¥ ety ey, A2 (2 o)

B u<0 c=1 0<a<c
(a,c)=1
(2.134)
whenever v > 0, and
5 0 eZﬂiu% N
— *
@ =—4723 > epw) ) Y m——g—p (¢35 (2.135)

B u<0 c=1 0<a<c
(a,c)=1

In the above, I, (z) is the modified Bessel function of the first kind,

L@ =Y . ( Z)zm (2.136)

=0 F'n+a+1)n! \2

and (%7} ) is any element of SL>(Z) whose first column is given by (). So defined, these
Rademacher sums are expected in suitable circumstances (modulo exceptions, which we
will mention in a moment) to transform as

RS, 2.0 D) = PR,z ,(T) (v € SLy(Z)). (2.137)

In general, however, there will be obstructions to this procedure recovering the characters
of the CFT under consideration. For example, there may be more than one modular
function with the desired transformation properties and polar terms, in which case the
Rademacher sum is not guaranteed to recover the characters of interest. A more serious

16 Convergence of this sum has not been proven in general, however we conjecture that in all the cases we
consider in this paper, the sum dooes in fact converge.

17 Similar formulae appear in [91] for weight % vector-valued modular forms transforming in the Weil
representation.
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issue is that this Rademacher sum may converge to a mock modular form rather than a
genuine one, in which case equation (2.137) will not hold. The fact that this problem does
not arise for the twined characters of the moonshine module (a.k.a. McKay-Thompson
series) is equivalent [80] to the fact that each transforms under a genus zero subgroup
I" of SLy(R) (c.f. Sect. 3.1.1 for the definition of genus zero). This genus zero property
(alternatively, the Rademacher summability property) of monstrous moonshine is one of
its defining features. Therefore, in addition to its practical utility, our description of the
characters of the RCFTs we consider as Rademacher sums can be thought of as the first
steps towards investigating whether an analogous genus zero property holds for them as
well.

3. Monster deconstructions

We now come to our main results. Namely, we construct several examples of com-
muting subalgebras Wg, Wg) of V% attached to monstralizer pairs [G o G].H (c.f.
Table 1 for an explanation of the notation) which satisfy the following properties.

(a) The subgroups preserved by Wg and Wg are M(Wg) = G and M(Wg) =

(b) The inner automorphism group of Wg is given by G/Z(G), where Z(G) is the
center of G. Therefore, the Wg realize subquotients (rather than just subgroups) of
the monster as their inner automorphism groups. The same goes for the Wg.

(c) The subalgebra of the full fusion algebra of Wg (resp. WWg) which is spanned by the
modules Wg (a) (resp. Wg () appearing in the decomposition (2.100) admits an
action of Z(G) = Z(G) by diagonal fusion algebra automorphisms.

(d) The full automorphism group of W is given by (at least) [G/Z(G)].H' for some
subgroup H' of H. The same goes for the Wg.

(e) The commutant of Wg in V7 is Weg and vice versa, i.e. VTJG = Wg and W@ =Wg.

(f) Whenever one monstralizer pair (H, H ) includes into another (G, 5) in the sense
that H — G and G — H, the associated chiral algebras mirror these inclusions,
ie. Wi < Wg and Wg — Why.

We will begin by reviewing how known models fit into this framework. In Sect. 3.1,
we recall various relevant properties of the moonshine module V7, the baby monster

VOA VB, and the Fischer VOA VPg4, and argue that they participate in M-com pairs
with G := M(Wg) a cyclic group. Since the latter two models can be obtained from
the first via deconstruction, i.e. as commutant subalgebras, they provide an opporunity
to exposit the techniques we will be using throughout in the simplest settings. We also
describe the relationships of these three theories to the extended Dynkin diagrams of Es,
E7,and Eg respectively; in particular, we will describe how the nodes of these diagrams
are naturally decorated by conjugacy classes of M, B, and Fip4, and how this leads to
distinguished subalgebras Wp,, C V* WB(mY) C VB’ and Wrez) C VF;4 We then
give our first new example of an M-com pair coming from a parafermion deconstruction,
which is associated to the monstralizer (G, G) = (Zya, 4 4222, Coz).

In Sect. 3.2, we study M-coms associated to monstralizer pairs (G, G) with G = D,x
a dihedral group; it will turn out that the VOAs which uplift these dihedral groups are
precisely the chiral algebras coming from McKay’ Eg correspondence mentioned earlier,
We = Whp,x. We compute the symmetry groups and dual characters of the commutants
of the algebras Wp,y in the moonshine module,

WD}IX = ComVn (WDnX)' (31)
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Table 1. A table taken from [22] of all monstralizer pairs for |g| > 11, where |g| is the order of the largest prime
which divides G. The notation [G o G].H indicates that G = Centy;(G) and G = Centyg(G). The centers and
normalizers of such pairs agree, Z(G) = Z(G) and N = Ny(G) = Ny (G), and we define H = N/(G, G)
which is a subgroup of the outer automorphism groups of both G and G. The group [G o G].H appears as a
subgroup of M, where G o G indicates the central product of G with G (and which is abbreviated to G x G
when Z(G) = Z(G) = {1}). The notation Z, x denotes a cyclic group which is generated by any element in
the nX conjugacy class. The notation D, x denotes a dihedral group which is generated by two 2A involutions
whose product lies in the nX conjugacy class. A x next to an entry indicates that it is an example for which
Wg and Wg are known. See [1] for further details on notation

lg] [GoGl.H gl [GoGlLH
71 * Zia X M 11 [Mip x Ly(11)].2
47 * Zop 02.B S6.2 x My
31 * D3c x Th [Ly(11) x Mj2].2
29 * [Zap o 3.F1'/24].2 [(2 x S5) 02.Mp2].2
23 Sy x 21 My [32.2.A4 x 3%.Ly(11)].2
[Ag x 211 .Mpa1.2 [42.2.83 x 219L,(11)].2
Dg o 21+22.M23 [42.S3 x 210 M2
* D3 x Fin3 [32.0g x 3°.M(11.53
[22 0 22+11+22 ppo i1 S5 [(A4 x S3) x Us(2)].2
*[Dap 02173 .Con].2 [A5 x A12].2
* [Zap 04.222.Co3].2 [42.3 x 210 My,.2].Dg
Znp 0 21%24 Co, [2 x S4) 021 May].2
19 [A5 X U3(8).31].2 [(2 X S4) o 2.M12].2
* [Dsp x HN].2 [(2 x 5.4) 0 2.HS].2
* [Daa 0222E(2)].53 (@14 02120 1, (11)].(2 x $3)
17 [La(7) x Sa(4).2].2 [8.22 62210 My 1.2
Sy x S3(2) 3142 6 31410 15 (11)].Dg
[7:3 x Hel.2 [(22 x S3) 022.U5(2)].53
[A4 x 0}H(D)]:2 [(3 x 83) x 30.M;]1.2
* [Dyp 02.F4(2)].2 [(2 x Dg) 022210 M;,1.(2222)
13 [13.6 x L3(3)].2 [(2 x Dg) 0 21%21 My51.22
[2.A4 0 (2 x U3(4)).2].2 [4.2% 6 4.220 My p1.22
[0g 02.212.U3(4).2].83 [8.202.210 Myy1.22
[Zgg o 6.Suz].2 [32 6 32+5+10 A1 12,8y
[Zap 04.212.G>(4).2].2 132 0 3111 Us(2)1.2 x $3)
[Z3g o 31%12.2.5uz].2 [23 623.220 Uy (2)].54
32.2.84 x L3(3).2 [23 623+20+10 pph 5y
314222 x G,(3)].2 [23 623.220 M;5.2].84
[32.Dg x L4(3).2].2 [(2 x 4) o (2 x 4).229.HS].Dg
[2.54 0 (2 x 2F4(2))].2 [(2 x 4) 0 (2 x 4).229.2.M,].Dg
[(S3 x S3) x 07(3)].2 [Qg 0212235 My ].53
Sy x3D4(2).3 * [Dgp 021722 McL].2
[32.2 x D4(3)].54 S3 x 3.2.M|»

* [Dea o (2.Fipp)].2

and in many cases find that their symmetry groups are closely related to sporadic simple
groups in the happy family, i.e. sporadic groups which arise as subquotients of the
monster. We will also check in many cases that the VOAs embed into one another as
subalgebras in the same way their corresponding preserved symmetry groups do as
subgroups. We summarize these results in Table 2 and Fig. 3. See the appendices for
additional data.

We are able to compute the dual characters of every theory Wg considered in this
paper using at least one of three complementary approaches. First, every model con-
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<D2B»21+23-002> <D3C7Th> @2A722-2E6(2D <D5A;HN> (DSA;Fj23>

(Daa, 2822 McL) Dyp, 2.F4(2)

Fig. 3. The subset of monstralizer pairs (G, G) whose associated M-com pairs Wg, Wg) are treated in this

paper. A red line from a pair (H, H) up to (G, 5) indicates that H is a subgroup of GandGisa subgroup of
H. The associated chiral algebras mirror these inclusions, W < Wg and Wg — Wy

sidered in Sects. 3.1 and 3.2 has characters which arise from Rademacher summation,
though we will typically only mention this explicitly when the other two methods are
ineffective. Second, we will also find that the characters of the Wg can be obtained as
Hecke images of the irreducible characters of VWg whenever ¢; = gc; for some integer
q, a phenomenon we suspect might provide a useful tool for analyzing commutant sub-
algebras in more general settings. Finally, in many cases, we are able to exhibit the dual
characters as solutions to a suitable MLDE. Whenever more than one method works, we
find that they produce identical predictions for the characters, which provides further
evidence in support of our conjectures. A nice property that these character-theoretic
considerations reveal is that the highest weight spaces of the YWz () always transform
under irreducible (projective) representations'® of the inner automorphism group.

In Sect. 3.3, we offer partial results which support the hope that one can derive other
M-com pairs, beyond the ones we’ve studied, which realize chiral algebras with sporadic
symmetry. We conclude in Sect. 3.4 by arguing that many of the algebras which were
derived as deconstructions of the monster VOA with respect to the Wp,, algebras are

the same as deconstructions of VB and VF, >4 With respect to the algebras Wg(,,v) and
WEF(z) coming from McKay’s E7 and E6 correspondences.

3.1. Cyclic monstralizers from parafermion theories. We begin by reviewing the proper-

ties of the chiral algebras V¢, VB, and VFg4 which are most relevant for our subsequent
analysis, and explain how these models correspond to monstralizers with G = Za, Zoa,
and Z3. We then show that these constructions can be straightforwardly generalized to
produce a new M-com pair with G = Zya.

3.1.1. (Zia, M): The monster and E\g The main model we will deconstruct is the moon-
shine module V7. This chiral algebra was first obtained [6,53] as a Z, asymmetric orb-
ifold of the lattice VOA associated to the Leech lattice, the unique even, unimodular
lattice without any vectors of square-length equal to 2. Its automorphism group is the
monster, and it trivially constitutes a degenerate M-com pair with Wy, , the trivial CFT.

18 We are not aware of any theorem that requires the highest weight subspaces of irreducible modules of
a (suitably nice) VOA to transform as irreducible representations of the inner automorphism group, and we
suspect that this niceness is related to the fact that (G, G) form a monstralizer pair.
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The vacuum module is its unique, irreducible module, and its associated character is
famously given up to a constant by the j-invariant,

Try:qt0~ = J(r) = j(r) — 744 = ¢~ + 196884¢ +21493760¢% +--- . (3.2)

Because it has monster symmetry, we can consider characters [92] which are twined by
the action of M, known as McKay-Thompson series,

Jo(t) = Tryzggto! (g € M). (3.3)
These functions are invariant under the action of special discrete subgroups I'g of SL> (R),

Jo (42 = Jo (1) (¢b)er, (3.4)

ct+d

which have the property that Fg\H:]I =~ C, where H = HU Q U {ioo} is the upper
half-plane extended by its cusps, and C = C U {iocc} is the Riemann sphere. Such
discrete subgroups of SL,(RR) are referred to as genus zero, and J, can be described as
the unique generator of the field of modular functions for I'; whose g-expansion starts
as ¢! + O(q); equivalently, and more constructively, all of these McKay-Thompson
series can be obtained as Rademacher sums [80]. We will refer to conjugacy classes of
the monster group using the Atlas notation [1]. We will also go back and forth between
labeling McKay-Thompson series by group elements versus conjugacy classes, e.g. we
allow ourselves to write J24 in place of J, whenever g is taken from the 2A conjugacy
class of M. e

The monster group has an intriguing connection to the extended Eg Dynkin diagram.
This is brought about by considering products of elements taken from the 2A conjugacy
class. It is known that any pair of 2A involutions #; and f, combine to give an element
of either the 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, or 3C conjugacy class, and generates a
corresponding dihedral group D, x = (t1, t2) which participates in a monstralizer pair
(c.f. Table 1). These conjugacy classes can be thought of as corresponding to the nodes
of the Eg diagram as follows. If o1, a3, ..., ag are the simple roots of Eg and «y is the
negative of the maximal root, then there are integers ¢; known as Coxeter labels which
satisfy

8
> ciai =0 (3.5)
=0

and take the values 1, 2, 3,4,5,6,4,2,and 3 fori = 0, 1, ..., 8. It was noted by
McKay [93] and elaborated on by Glauberman-Norton [94] that the values of the c;
are precisely the orders of elements in the conjugacy classes appearing in the products
of 2A elements. It is natural to try to find signatures of this correspondence in the
context of the moonshine module. In doing so, we will see that one is naturally led to
a collection of subalgebras WWp, ,—one for each conjugacy class nX arising in the Eg
correspondence—with respect to which one may deconstruct V.

To explain how these subVOAs Wp, . are defined, we note that the Griess algebra of
V% has an interesting structure [33,39]. The 2A involutions in the monster group M are
in one-to-one correspondence with conformal vectors of the moonshine module with

central charge equal to % Equivalently, they are in bijection with idempotents of the

Griess algebra %t with (¢,1) = 4—1‘. In one direction, the correspondence is easy to see:



Conformal Field Theories with Sporadic Group Symmetry

each conformal vector of central charge ; generates a subalgebra VW = E(é, 0) of V¥,
and it turns out that its M1yam0t0 involution 7yy always belongs to the 2A class. In light
of the Eg correspondence, it is natural to define the algebra Whp,x to be the VOA which is
generated by any two conformal vectors e(z), f (z) of central charge 5 whose associated
Miyamoto involutions have product 7.7 residing in the nX conjugacy class of M. It
turns out that this algebra depends up to isomorphism only on the conjugacy class nX,
and so our labeling is consistent. The Miyamoto involutions 7, and Ty always act by
either fusion algebra automorphisms or inner automorphisms, and generate a dihedral
subgroup D,x of M. In fact, the group preserved by Wp,, (c.f. Sect. 2.2) is precisely
M(Wan) = Dpx

Our main body of examples will arise by considering the commutants of the Wp, , in
V%; we will see that their automorphism groups are often related to sporadic or otherwise
exceptional groups.

The Wp,x algebras as subalgebras of V sy The abstract description of the algebras
Whp,x above is not explicit, and the connection to Eg is indirect. However, following
[38], we now sketch a more concrete description of the Wp,, by realizing them as
subalgebras of the lattice VOA associated to V2 A o0t (E3).

To describe these subalgebras of V 3Eg> leti =0, 1, , 8 label the nodes of the
extended Eg Dynkin diagram and let ¢; be the Coxeter label of each node. We associate
these nodes with the conjugacy classes 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, 3C in this order
(see also Fig. 2). Now consider the root lattice L (i) associated to the Dynkin diagram
produced by removing the node i in Eg. Then ¢; is the index of L(i) in Ayoot(E3), and in
fact Aroot (Eg)/L(i) = Z,. Thelattices L(i) willin general have several indecomposable

components R(’), el R,ﬁl). For each indecomposable component Réi) of L(i), it is
possible [66] to write the conformal vector a)(l) of V V2RY as the sum of two commuting

conformal vectors of smaller central charge, a)(') = wé') + sé’) (c.f. [38] for the precise

definitions, and Sect. 2.2 for an example), where a)el) has central charge 2n/(n +3) if

Ré’) = A,, central charge 1 if Ré') D,,, and central charge s 10 f R(l) Eg, E7,
Eg respectively.

With these definitions in place, [38] define the subVOA U/ @ of the v2E g lattice VOA
to be the simultaneous commutant of all the séi) for¢ = 1,2, ..., k, which will have

J)Y) +.-+ o as its stress tensor. For i = 0,1, ---,8, the /D are then chiral algebras
with central charges !/, /5, 58/3s, 2, 16/, 3120, 1%/10, 1, and /11 respectively which can be
associated to each node of the extended Eg diagram. For example, deleting the node
i = 5leaves the Dynkin diagram of As & A2 @ A1, and the central charge of the sum of
the conformal vectors a)i )+ wés) + w§5) 4 + ‘5‘ + % = g(l) Furthermore, the VOAs have
dihedral groups associated to them which they inherit from the canonical Z, symmetry
enjoyed by any lattice VOA and the Z., symmetry which is induced from the Abelian
group +/2Eg/~/2L(i). These U so defined can then be identified (conjecturally in
some cases, provably in others) with the algebras Wp, .

We end this section by briefly describing a connection to work of Sakuma. In [34],
Sakuma considers subalgebras B, r of the Griess algebra of an arbitrary VOA V without
dimension 1 operators that are generated by a pair of ¢ = % conformal vectors e, f.
His main theorem is a classification of the possible algebras which can arise in this
way: he finds 9 possible algebras B, s whose structure depends only on the order of
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the product of Miyamoto involutions .7y and the inner product (e, f). The resulting
algebras B, coincide precisely with the Griess algebras of the /) constructed in [38];
in other words, the monster CFT V" realizes all the possible Sakuma algebras. There is
some evidence that the VOA generated by B, s will always be isomorphic to one of the
UD, regardless of what VOA V one is working inside. See [95] for a recent discussion.

3.1.2. (Zoa,2.B): The baby monster and E; The simplest example of monster decon-
struction was first studied in [27,96,97], and is obtained by taking Wy,, = E(%, 0) to
be the chiral algebra of the Ising model. As we will see in a moment, the commutant
W, with central charge ¢; = 24 — 1 = 231/, enjoys an action by the baby monster

sporadic simple group B. Just as the moonshine module is denoted V¥ because it fur-
nishes the “most natural” representation of M, the chiral algebra V7, provides the most
natural representation of the baby monster, and so is typically denoted VB' in the math
literature!”; we abide by this convention here. We will show that the pair Wz, , VB?)
naturally furnishes a VOA uplift of the monstralizer pair Zoa o 2.B.

It is instructive to sketch the reason that the baby monster acts on VB, Let us call ¢
the central charge % stress tensor of Wz,, . It is known that the Miyamoto involution t;
associated to Wy,, always belongs to the 2A conjugacy class of M. Moreover, one can
show that, for any g in the monster, the Miyamoto involutions of ¢ and g¢ are conjugate,
Ty = g8~ (c.f. equation (2.30)). Therefore, if we take g to live in Centyy(z;) =
Centpg(2A) = 2.B, then the Miyamoto involutions associated to ¢ and gt are actually
the same, 7, = 7;. Because there is a bijection between elements of the 2A conjugacy
class of the monster and conformal vectors of central charge %, it follows that in fact
t = gt,and so 2.1B stabilizes ¢. Indeed, this is made evident if one decomposes the weight

2 subspace V2u in terms of irreducible representations of 2.B. From the well-known fact

that V2u = 1 6@ 196883 as a monster representation, a character theoretic calculation
shows that

v, Lx = 10104371 © 96255 ® 96256 (3.6)

as a 2.8 representation. The two-dimensional trivial subspace is spanned by ¢ and 7, the
stress tensors of Wz,, and VB respectively.

From the map &, in (2.98) which relates the stabilizer of ¢ to automorphisms of
its commutant, it follows that the image of 2.B under ®, acts via automorphisms on
VBE. The central order 2 element in 2.B is simply the Miyamoto involution ;, and the
decomposition

Vi=L(3.0)® VB'(0) @ L(3. 3) ® VB (1) ® L(3. 15) ® VB*(2) 3.7)

makes it clear that 7; can be thought of as a diagonal fusion algebra automorphism of
VB, and in particular acts trivially on VB®(0). However, the rest of 2.B/(z,) = B must
act non-trivially on VB’ (0), because the baby monster is a simple group. This establishes
that B C Aut(VB?); it was later proved [96] that the baby monster is actually the entire
automorphism group of VBY. Putting all these observations together, one sees that the
Ising chiral algebra and the baby monster VOA furnish an M-com pair corresponding

19 1n e.g. [27], the notation VB is actually used to denote the vertex operator superalgebra obtained by
taking a direct sum of Wz, , with its irreducible module of highest weight % This VOSA has automorphism
group Zy x B, where the extra Z; is generated by (=DF.
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Fy(2)
2C

1A — 2B — 3A — 4B — 3A — 29B— 1A
2Es(2) Fiss Fis 2Es(2)

Fig. 4. Dynkin diagram of E?, decorated by conjugacy classes of the baby monster sporadic group B. We
propose to further decorate each node by the inner automorphism group of the commutant of Wp,,x) in VB!
(c.f. Sect. 3.4). The cases 2B and 4B do not appear to coincide with any of the constructions considered in
Sect. 3.2, and we leave their study to future work

t0 G o G = Zya o 2.B, and that the various symmetry groups agree with those which
can be read off from this monstralizer,

MWz,,) = G = Zoa M(VBY) =G =2.B
InnWz,,) = G/Z(G) = {1} Inn(VB®) = G/Z(G) =B
FusWp,,) = Z(G) =7, Fus(VBY) = Z(G) = Z, (3.8)

It will be useful for us to note that the baby monster VOA enjoys a structure on its
Griess algebra which is analogous to the relationship between central charge % conformal
vectorsin V7 and 2A involutions in M [98]. Namely, there is a one-to-one correspondence
between 2A involutions in B and central charge % conformal vectors in VB of “o-type”.

A central charge 17—0 conformal vector is said to be of o-type in a VOA V if decomposing
V with respect to the W = [,(17—0, 0) subalgebra that the conformal vector generates

features no modules of highest weight h = % orh = 83—0; alternatively, in the notation
of (2.11), we would say that it is of o -type if V(lﬁ) = 0 and V(%) = 0. In this case, the
1

automorphism tyy of V defined by lifting the Z, automorphism in (2.42) of the fusion
algebra of W = ﬁ(%, 0) is trivial, but one can define another automoprhism oyy which
acts as

v, ¢V V(%)

. 3.9
¢, vV OV

owl(p) =

In the case that V is taken to be VB, this map is a one-to-one correspondence between
central charge % conformal vectors of o-type and elements of the 2A conjugacy class
of B.

The 2A involutions of the baby monster enjoy a relationship to the Dynkin diagram of
E7, analogous to the one enjoyed between 2A involutions in the monster and the Dynkin
diagram of Eg. Namely, the product of any pair of 2A involutions in B always lies in
either 1A, 2B, 3A, 4B or 2C, and it was proposed that these conjugacy classes naturally
decorate the nodes of E7, as in Fig. 4. The correspondence between nodes of E7 and these
5 conjugacy classes is not one-to-one, but only because E7 has a diagram automorphism,
and so the conjugacy classes which decorate nodes related by this automorphism should
be the same. In [98], the authors constructed subVOAs W, x) of VB for each conjugacy
class nX arising in the McKay-correspondence. These subVOAs have the property?’ that

20 Unlike in the case of the E\g correspondence, these VOAs are not always generated by their two central
charge 17—0 conformal vectors.
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they contain two central charge % conformal vectors whose associated o -involutions
have product lying in the nX class. As in the case of the E} correspondence, these VOASs
come naturally from the lattice VOA based on ﬁAmot(Eﬂ, and this helps further
justify the relationship between B and E7. We will also discuss the commutants of these
Wp(nx) algebras in VB’ in Sect. 3.4: in most cases, we will find that they coincide with
commutants of W,y algebras in 143

We now study the characters of the baby monster VOA. The decomposition (3.7) at
the level of characters reads

J(T) = x0(T) Xvma(0) (T) + X1(T) Xvme (1) (T) + X2(T) Xvma2) (T) (3.10)
with xo(t), x1(7), and x2(t) the characters of Ising modules E(%, 0), £(%, %), and
E(%, %) respectively, and

XvBi0) (T) = G~ 8 (1 +96256¢2 + 9646891¢> + 366845011¢% + - - -),
Xvea(T) = g (4371 + 1143745¢ + 64680601¢2 + 1829005611¢° + - - -),

Xva) (T) = g7 (96256 + 106024967 + 42083123297 + 968595251247 + - - ),
3.11)

the characters of VB". The xyp: (4 (7) have been known since VB was first constructed.
Later it was pointed out that they are solutions to the following MLDE [99, 100],

231572 2702573
[D3 e E4(7)D — i~ E(,(‘L’)i| X VB (@) (T) = 0. (3.12)

Even more recently, it was pointed out in [42] that they can be described as Hecke
images of Ising characters. To understand which Hecke operator can relate these two
sets of characters note that T, scales the power of the polar term of the vacuum character
it acts on by p, so in order for T, x to stand a chance of coinciding with the characters
of an RCFT with central charge %, we must have p = 47. With this choice, one can
indeed show that

XvBie) (T) = (Ta7))e (7). (3.13)

We refer to loc. cit. for additional details behind this computation. We will see that this
observation generalizes to a number of other examples.

We conclude by noting that the characters xyp:(q) () can also be recovered from
Rademacher summation, using equations (2.134) and (2.135). We have checked this
numerically for the first few terms in the g-expansion by taking the sum over ¢ from 1
to 900 and checking that the resulting numbers round to the coefficients in (3.11).

3.1.3. (Z3a, 3.Fiyy): The largest Fischer group and I/E\6 Another example of monster

deconstruction can be obtained by taking Wy,, = L(%, 0) ® E(%, 3) to be the chiral
algebra of the 3-state Potts model. We will argue that this algebra and its commutant
correspond to the monstralizer pair

[G o Gl.H = [Z3p o 3.Fi),].2 (3.14)
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1A Fis

2A Fipo

1A — 2A — 3A — 2A — 1A
Fj23 Fjgz Fi22 Fj23

Fig. 5. Dynkin diagram of E\ﬁ decorated by conjugacy classes of the Fischer group Fip4. We propose to

further decorate each node by the inner automorphism group of the commutant of Wg(,x) in VF,, (c.f. Sect.
3.4). The case 3A does not appear to coincide with any of the constructions considered in Sect. 3.2, and we
leave its study to future work

To see this, note that the chiral algebra of the 3-state Potts model is the same as the Z3
parafermion theory, Wz,, = P(3), and thus enjoys a Z3 automorphism of its fusion
algebra which turns out can be lifted to an automorphism 7 of V% belonging to the 3A
cor}[]ugacy class of M. The theory also has an outer automorphism which acts as +1 on

,0)and —1 on £( 5, 3). These observations are consistent with the symmetry groups
for WZ3  that one would read off from the monstralizer,

MWz,,) = G = Z3a,
InnWz,,) = G/Z(G) = {1},
AutWz,,) = (G/Z(G)).H =7,
FusOWz;,) = Z(G) = Zs.

(3.15)

Now, it was argued in [28] that the commutant VNVZ3 , admits an action of Ny ((t))/(t) =
Fiyy via automorphismszl, and hence was labeled VF there, though we will use the

notation VPg4 to distinguish it from the chiral algebras we associate to the other Fischer
groups, Fip3 and Fip,. The sporadic simple group Fi), is a subgroup of Fip4 with index

2, and we will be able to see, once we have expressions for the characters of VPg4, that it
is the inner automorphism group. Thus, the monstralizer also reproduces the symmetry

groups of VFg4,
M(VE,) = G = 3.Fi,
Inn(VE,) = G/Z(G) = Fiy,
Aut(VEy,) = (G/Z(G)).H = Fixy
Fus(VE,) = Z(G) = Zs.

(3.16)

As in the case of M and B, the Fischer group enjoys a relatlonshlp to the Dynkin
diagram of E6 The product of any two involutions in the 2C conjugacy class of Fix4
always lie in one of 1A, 2A or 3A, and it is natural to label the nodes of Eg with these
conjugacy classes, as in Fig. 5. Again, the correspondence between nodes and conjugacy
classes is not one-to-one, but only up to the two non-trivial diagram automorphisms.

We can agaln uplift this correspondence from one between Fip4 and Eg 6 to one between

VF24 and Eﬁ, following [28]. The idea is similar to that of the previous section: the

21 We use the notation NG (S) ={g € G| gS = Sg} to denote the normalizer of the set S in G.
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“derived” conformal vectors of central charge g in VFg4 are in one-to-one correspon-
dence with involutions of Fiy4 in the 2C class (see loc. cit. for the precise definition of

what “derived” means). Indeed, it is known that the decomposition of VFg 4 With respect

to the U := [,(g, 0) subalgebra generated by a derived central charge g conformal
vector,
VF =P VF " (3.17)
heX
features only the modules £(7, h)forhe ¥ = {0, 7, 272, 5, 12 7}, and so we say that

the conformal vector is of o-type. These modules fuse among themselves, and admit a
Z, automorphism o of their fusion algebra, which can be lifted to an automorphisms
oy of VF¥ which acts as

¢ @eVF, forh=0,3 2
muw== {» Py (3.18)
> 7

—@ (peVth)forh_ ,

and always lies in the 2C class. In light of the Ee correspondence, it is natural to seek
subVOAs Wr(;x) of VFg 4 with the property that they contain two derived central charge
g conformal vectors whose associated o -involutions have product lying in nX, as was
done for V% and VB'. These are constructed explicitly in loc. cit., again coming naturally
from subVOAs of the lattice VOA associated to ﬁAmot(EG). ‘We will consider decon-

structing VFg4 with respect to such Wg(,x) subVOAs in Sect. 3.4, and we will find that
in most cases they coincide with VOAs we had already constructed as commutants of
WmY in Vu.

We now study the dual characters of VFg4 in V. One way to obtain them is as the
solutions of the MLDE

T

9077 428973 17576974
[D4+ 225 B 0D - 675 LoD WE‘%(T)} Ky (0 =0
(3.19)

However, it is interesting to note that, as in the case of VB, they can also be obtained

as Hecke images of the characters I//(3) of Wz,, = P(3). First, note that the conductor
of the Z3 parafermion theory is N = 30, as one can determine from inspection of the
central charge ‘5—‘ and conformal dimensions of its primary fields: 11—5, %, 11—5 g’ %, 0.
We will label these primaries with pairs (¢, m) = (1, 1), (2,0), (2, 2), (3, 1) (3, 1),
(3, 3) respectively; when we write down matrices, the ba31s will be in the order we have
just written. Note that primaries with dimensions 2 Z and = 15 appear twice because these
operators transform non-trivially under the Z3 symmetry, and so one has the operator
and its complex conjugate with the same character. For reference, the first few terms in

the g-expansions of the characters of P(3) are given below,
w(g)(r)—q30(1+2q+2q +4¢° +5¢* +8¢° + 11¢% +16¢" + - - ),
U@ = g (1+q +2¢° +3¢ +5¢* + 74 +10¢° + 147 + - ),
W (@) = gD (1 +q+2¢> +2q +4q* +5¢7 +8¢° + 107 +- ), (3.20)
Y@ =g 01 +q” +2¢> +3q* +4¢° + 745 +8¢7 + ),
yHo =y, vo=y @
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Calling p the SL,(Z) representation generated by the modular S and T-matrices of the
Z3 parafermion theory (c.f. equations (2.45) and (2.49)), the charge conjugation matrix
is given by

001000
010000

100000
C=p)2=|000010|" (3.21)

000100
000001

It exchanges the (1, 1), (2,2) and (3, —1), (3, 1) components, consistent with these
being characters of conjugate pairs of primary operators. A straightforward calculation
also shows that

p(o29) = C. (3.22)

These are all the ingredients necessary to define the relevant Hecke operator. Now, if we
label the dual modules of VFg4 according to how they appear in the decomposition of
Ve,
Vi= P PG. (L m]) ® VF, (L, m) (3.23)
(£,m)

then we claim that their corresponding characters can be realized as
X, e (™) = T29 D)em (). (3.24)
This leads to the following g-expansions,

Xygs, 1.1)(7) = 4 (64584 + 6789393 + 2612025364

+5863550310¢° + 927042621844 + 1139097001086¢° + - - - ),
Xvi, 0,00 = 4% (8671 + 1675504 + 832936264

+21755484484¢° + 38129457201¢™ + 505531399264¢° + - - -),

Xy, 0.2)(F) = 4 (64584 + 6789393 + 2612025364

+ 58635503104 +927042621844" + 11390970010864° + - - ),
XvE, G- (@ = 4% (783 + 3069364 + 196486024>

+589705488¢° + 11326437954¢" + 1604459644564° + - - -),
Xy, 3. (T) = 47 (783 + 3069364 + 196486024

+589705488¢° + 11326437954¢" + 1604459644564 + - - -),
Xygs, 5.3 (®) = 4~ 9 (1+ 57478 + 5477520q”

+201424111¢™ + 43977525609° + 68202269658¢° + - - - ).
(3.25)



J.-B. Bae, J. A. Harvey, K. Lee, S. Lee, B. C. Rayhaun

The inner automorphism group in general acts projectively on the non-vacuum modules;
the projective representations of Fi,, correspond to the honest representations of G =
3.Fi,, in the same way that projective representations of SO(3) correspond to honest
representations of SU(2), so we work with this latter triple cover>” when analyzing the
characters; note that this is consistent with our claims that any projective representation
of Inn(Wg) which is realized on the dual modules We (o) can be lifted to an honest
representation of G. Indeed, one can immediately see that the highest weights transform
under irreducible representations of 3 .F1'/2 , of dimension 783, 8671, and 64584. Other low
order coefficients also have decompositions into irreducible representations: 57478 =
57477+ 1, 1675504 = 1666833 + 8671, and so on. These identifications are determined
by how V7 decomposes by restriction into representations of 3.Fi),.

Consistent with (3.23), these dual characters pair diagonally with the characters of
the Z3 parafermion model to yield the partition function of V¢,

3) _ -1 2
(@Z> Vi (O Xygs, oy (1) = 4" + 196884 +21493760¢7 +--- . (3.26)
.m

One can also verify at the level of characters that the Z3 automorphism of the fusion alge-
bra of P(3) lifts to an automorphism of V¥ in the 3A conjugacy class of M. Indeed, under
this Zs3, the characters transform as wgzl P Wéil, and one can straightforwardly
compute that

> ez”"%wfri(r)wiz’m)(r) = ¢! +783¢ +8672¢2 + 65367¢° +371520¢* + - - -
(€m)

(3.27)

which agrees with the g-expansion of J34, the McKay-Thompson series associated to
any element belonging to the 3A conjugacy class of M.

The above is consistent with the more general analysis of bilinears in [42]. We can
construct bilinears from G, with

29 + ¢% = 0 mod 30 (3.28)
which is solved by £ = 1, 11, 19, 29. Explicit computation shows that G is the identity
matrix giving a diagonal modular invariant. Since G19 = —G1, £ = 19 does not lead to
an independent solution. Finally, G1; = —Gy9 and

001000
010000
100000
Gy = 000010l (3.29)
000100
000001

This differs from G by the exchange of the first and third characters and the fourth and
fifth characters. But since these characters are identical (there are two characters with
the same conformal dimension but which transform differently under Z3) this does not
give a new modular invariant: there is essentially a single modular invariant bilinear.

22 This also justifies the consideration of the group 3.Fi’24 in [99].
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3.1.4. (Zap,4.2%2.Co3): The third Conway group As we have mentioned in previous
sections, the stress tensor of the moonshlne module V¥ can be written as a sum of
48 conformal vectors of central charge 5. This implies that it admits an £(2 0)®48
subalgebra, which gives it the structure of a framed VOA [63]. This subalgebra furnishes
an alternative description of the moonshine module; indeed, on general grounds, it can
be decomposed as [38]

(3.30)

.....

"
2
&
~
Q=
=
®
®
=
Q=
t‘
&

hi,....hag

where each h; runs over the set {0 70 7 6} Parts of this structure are passed on to the
baby monster VOA. Indeed, in light of the decomposition (3.7), one has that

VB @) = P hirng LG 0D ® - @ L5 har), (3.31)

whereng = 0,n; = %, andn, = %. The baby monster symmetry ultimately arises from
the fact that 2.1B centralizes the lift of the Z, automorphism of the fusion algebra of any
of the Ising factors (c.f. Sect. 2.1.3). It is natural to wonder whether there are analogs of
this kind of structure with the Ising model replaced by some other chiral algebra.

In fact, in [101], it was shown that the moonshine module admits as a subalgebra a
tensor product of 24 copies of the charge conjugation orbifold V (c f. Sect. 2.1.5

for the definition of VZ) for each k > 2; the special case k = 3 commdes with the Zg4
parafermion theory, V:r/gz = P(4). Itis possible to construct such a subalgebra because
one can always find 24 orthogonal vectors in the Leech lattice of norm-squared 2k;
these generate 24 commuting Vr/ﬂz subalgebras of V}'\Leech, and the latter is in turn a

subalgebra of V% by virtue of the original FLM construction [6] of the monster CFT as
a Zy orbifold of V| .-

Furthermore, the moonshine module was decomposed with respect to these subalge-
bras, and so in particular one can write

= P CClrmy) oo (rimany PG L1, 1)) ® -+ @ P(4, [€24, maa))
(Lr,my),...,(€24,m24)

(3.32)

for known multiplicities ¢ (¢ my), ..., (¢24,ma4)- 1t 1s then natural to mimick the construction
of the baby monster, but with the role of the Ising model [,(2 , 0) being played by P(4).
We will see that doing so produces an M-com pair corresponding to the monstralizer
[G o G] = [Zap 0 4.2%2.C03].2. To carry out this construction, one should choose
one of the P(4) factors (or alternatively, specify one of the one-dimensional sublattices
L = 67 of Aleech) and identify it with the algebra W7,,. We may then define, in
analogy with equation (3.31), the modules

Wiy (€,m) =
@ C(l1,m1),ns (b23,ma3), €m) P (4, [€1, m1]) ® - - - @ P(4, [£23, m23])

(Ly,m1),....(£23,m23)

(3.33)
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which leads to a decomposition of the form

viz @ P@, [6.m]) @ Wy, (€. m) (3.34)
(€,m)

As we will see momentarily, VT/ZM = WZ4 (4, 4) is the commutant of the chosen P (4)
subalgebra of V!, The other components Wy,, (¢, m) will be irreducible modules of
Wiin- _

Another perspective on Wy, is thatitis the Z orbifold V]i: of the ¢ = 23 lattice VOA
attached to the orthogonal complement L := L' of any of the L = +/6Z sublattices of
ALeech described earlier. We will compute the characters using this explicit description.
To proceed, we extract the generators of L from the data files provided with [102]
and compute the theta function of L using Magma [103]. The discriminant group is
L*/L = Ze¢ := (A*) and, using the notation O (1) := 07 ,;,+(7), we find that the
components have g-expansions given by

Oo(t) = 1+75900¢° + 52923000¢° + 108706050g* + - - -

B1(v) = q 1 (48600 + 39346564 + - - -)

B(1) = ¢3 (11178 + 1536975 + - - -) (3.35)
B3(r) = ¢ (552 +257600q +---)

O4(1) = O2(1), Os(1) = 0:1(7).

We can then use the expressions for the characters of charge conjugation orbifolds given
in equation (2.61) to obtain that

i 1/0

{0 =5 (n(‘i—()g + cbo,l(r)”)
i 1/0

§m =5 (n ;;‘;1 - @o,l(r)”)

O 160

i =505 =12 (3.36)

N ®)

£ (o) = n(’;()g (k=12

sﬁ?m =210 (@1,0(1)23 + @1,1(1)23> (i=1,2)
sif?m =210 (<I>1,o(r)23 + @1’1('[)23) (i=1,2).

We will see in a moment that the g-expansions of these same characters are reproduced
by the method of Hecke operators.

Now, it is known [104] that the Conway group Cos is the stabilizer of the rank one
lattice L, and we will now argue that an extension of Cos acts naturally on the orbifold
VOA associated to its orthogonal complement. To see this, note that the generator of the
Z4 automorphism of the fusion algebra of the level 4 parafermion theory can be lifted to
an automorphism o of V%, which a character-theoretic calculation reveals belongs to the
4A conjugacy class. One thus expects that at least a 222.Co3 = Centyg(c)/ (') symmetry
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group acts by inner automorphisms on V~VZ4 » Where we have quotiented by (o) because
it acts trivially on Wz,,. We further conjecture that Wz, , inherits an additional order
2 outer automorphlsm from the monster, so that the full automorphism group is given
by AutOWVz,,) = 2%2.Co3.2 in accordance with the prediction from the monstralizer.
However, without access to the character table of 222.Cos.2, it is difficult to conduct
explicit checks of this expectation. In total,

MOWz,,) = G = Zya MOWz,,) = G = 4.2%%.Cos
Inn(Wz,,) = G/Z(G) = {1} Inn(Wz,,) = G/Z(G) = 2?*.Cos
AutOWz,,) = (G/Z(G)).H =7y  AutONz,,) = (G/Z(G)).H = 2?*.Co3.2
Fus(Wz,,) = Z(G) = Z4 Fus(Waz,,) = Z(G) = Za. (3.37)

We will now show that the characters of the WZ4 A (£, m) can be computed via Hecke
operators. Let us order the characters of P(4) as

4 4

X0—1ﬂ44, X1 =¢1(,1)a X2—W33, X3 —1/’22v X4=w2(,8’
4) 4) 4)
=371 X6 =1Y31, ¢4 —2s W4 2 X9 =Yy

with highest weights O, 16 E’ 3 16 16> 10 1° anNd 1 respectively. The conductor of

(3.38)

these charactersis N = 48, and the central charge of Wz, isrelated to the central charge
of P(4) as ¢z = 23 = 23¢,. Since (23, 48) = 1, one might guess that the components of
Ta3x can be identified with the graded-dimensions of the Wz, (£, m). This will indeed
turn out to be the case. Using the modular S-matrix of the parafermion theories, one can
compute the g-expansions of their Hecke images,

(Tasx)o(t) = ¢~ 2 (1 + 3822642 + 3519529¢° + 126577280% + - - -),
(Ta3)0)1(2) = ¢ (2048 + 565248 + 31700992¢> + - - - ),

(Ta30)3(7) = ¢ 2 (48600 + 50524564 + 192216888¢> + - - -),
(Ta3)a(z) = g2 (11178 + 1794069¢ + 822868472 + - - -),
(Ta3)5(v) = ¢ B (47104 + 4757504q + 178382848¢% + - - -),
(Ta3x)7(2) = g7 (276 + 135148 + 91928244 + 2833168524 + - - ),

(Tazx)o(T) = q 71 (23 +37973¢ + 352132342 + 1265678964 + - - -),
(T23x)2(t) = (To3)01(7),  (T23x)e(r) = (T3 x)s5(r), (Tazx)s(r) = (T3 x)7(2).
(3.39)

If these functions are to be consistently identified with the characters of W@ A» it should
be possible to bilinearly pair them with the x, to produce the J function. To find candidate
matrices G, which implement this bilinear pairing (c.f. Sect. 2.3.2), we solve the equation

23+ ¢%> = 0 mod 24. (3.40)

One can find solutions for £ = 1,35, 19, 23.23 It turns out that only two of them are
independent, namely G; = Gs and G19 = Gj3. Furthermore, one can check that G

23 The integers £ = 7, 11, 13, 17 also satisty 23 + £2 = 0 mod 24. However, G7, G11, G13, and G 17 have
negative entries and so we do not consider them.
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is the identity matrix. On the other hand, G 19 is the matrix which is zero in each entry,
except for the entries (0, 0), (2, 1), (1,2), (3, 3), 4,4), (5,6), (6,5), (7,8), (8,7), and
(9,9) where it is 1. Because x2(t) = x1(7), x6(t) = x5(t), and x3(r) = x7(v), G|
and G19 act identically on x. This motivates the identification X, (t) = (T23x)a ()
which one can check leads to the bilinear relation

J@) =Y xa(®)FalT) (3.41)

consistent with the decomposition in (3.33). As an independent check on this result, one
can easily see that, to low orders in the g-expansion, the functions obtained by Hecke
operators agree with the characters presented in (3.36) from the description of Wz, as
a charge conjugation orbifold. Explicitly,

Moo =65, T =8, Tupn =55,
(T3x)3 = EA(*Z), (Tazx)a = 52@

(T3 x)s = éf(,zl), (T x)e = Et(,zz), (Tazx)7 = 5;'3(%*)’1,

(Tazx)s = Eg(,@z (T23x)o = SJ(-Z)-

As a final consistency check, we may also confirm our earlier claim that the generator
of the fusion algebra automorphism of P(4) lifts to an element of M in the 4A class.
From the transformation rules in equation (2.50), the Z4 twined characters are

(3.42)

4 ., 4 ., 4 4 4
Xo,0 = %(;,3, Xo,1 = lwf’l)’ Xw2 = —”/fg(,3), Xw,3 = _1[/2(’%, Xow,d = 1//2(’8,
(4 4 4 4 4
Xw,5 = _lw;l]’ Xw,6 = ll/’:‘i])a Xo,7 = —1/0&2, Xw,8 = —I/fi)z), Xw,9 = 1/f4(,3,
(3.43)
and one can check to low orders in the g-expansion that
1
Jaa(1) = — +276g + 204842 + 11202¢° + 49152¢* + 1840244° + - - -
7 (3.44)

= Z )Ta(f)Xw,a(T)'

In summary, reverting back to the natural basis for parafermion characters indexed
by pairs (¢, m) we have argued that we can identify the graded dimensions
TrWZ @ )q" % for ,m) = &,4), 3,—-1), 3,1), (2,2), (2,0), (1, 1), (3,3),
4, 2) (4, 2), (4, 0) with the functions ¥, fora =0, ..., 9 respectively.

3.2. Dihedral monstralizers from McKay'’s Eg correspondence. We now turn to mon-
strous deconstructions which arise from McKay’s correspondence. In each subsection,
we take as our known subVOA Wp ., the chiral algebra generated by two conformal
vectors e(z) and f(z) of central charge % whose associated Miyamoto involutions 7, and
7 have product lying in the nX conjugacy class, where nX is either 1A, 2A, 3A, 4A,
5A, 6A, 2B, 4B, or 3C. These algebras have been studied extensively in e.g. [34,36-38],
and we rely heavily on their results. In each case, we study the commutant subalgebra
WD”X, and in particular establish its symmetries and its dual characters in V*. In each
case, it will be clear from our character theoretic decomposition of V* that Wp,,, and
VT/DHX are each others’ commutants.
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Symmetries Before treating each example in detail, we provide the sketch of an argument
that

MOWp,) =G, Inn(Wp ) =G/Z(G), FusOVp,y) = Z(G), (3.45)

where G := Centy(Dyx). Itis essentially a recapitulation of the arguments given in Sect.
3.1.2 for the baby monster. The starting point is the fact that the subgroup of M which is
preserved by Wp, . is M(Wp,x) = D,x. We then would like to argue that the centralizer
of this group acts trivially on Wp, . To see this, we note that the dihedral group is
generated by the Miyamoto involutions of e and f,i.e. G := D,x = (7., Tf), and so
G = Centy(Dyx) = Centy(t,) N Centyy(zy). Because any X in Centyy(ze) = 2.B
stabilizes e by the arguments presented in Sect. 3.1.2, and similarly for f, any X which
lies in the intersection Centyy (z.) NCentyy (T ¢) will stabilize both e and f simultaneously.
Since Wp, is generated by e and f by definition, it follows that Wp,  is stabilized by
G, and thus G can at most act by diagonal fusion algebra automorphisms. It follows that
MOOWp,x) = G. ~

Because (G, G) furnish a monstralizer pair, their centers agree and must act by
diagonal fusion algebra automorphisms, as discussed in Sect. 2.2. Taking the quotient
by this center thus leaves the inner automorphism group. This completes the justification
of (3.45).

Griess algebras In the following subsections, we will provide constructions of vector-
valued modular forms which we tentatively identify with the characters of the VOAs
Wh,x- One piece of evidence which supports these assignments is the fact that they
solve the bootstrap problem presented in equation (2.103). Another piece of evidence
is that the Griess algebras that they lead to satisfy a consistency check which we now
describe.

The putative characters, along with the decomposition of V% by restriction into rep-
resentations of D,x o Centy(Dyx) = Dyx o Dyx, uniquely determines a Inn(Wp, ) =
5nx /Z (EnX) representation R, x such that the Griess algebra of VT/an decomposes as
(VN\/DnX)z = 1 @ R,x; explicitly, these are

(Inn(Wpx), Rux) = (B, 96255), (2E5(2), 48620), (Fir3, 30888), (Th, 30875),

(HN, 8910 @ 9405), (Fix, 3080 © 13650), (F4(2), 1377 @ 22932).
(3.46)

Here, irreducible representations are labeled by their dimensions which in each case
uniquely specifies the representation, and we have omitted examples where we do not
have access to the character tables or are unsure of the characters. In the monster VOA,
the existence of an M-invariant inner product and M-invariant algebra on the dimension

two operators V2u =1 & 196883 relies on the group theoretical fact that the symmetric
square of the 196883-dimensional irreducible representation contains both the trivial and
the 196883-dimensional representation itself as subrepresentations [105]. Consistency
of the characters and groups we have proposed requires that a similar statement should
be true in all our examples, namely it should be the case that SymE(R,,X) contains both
the trivial representation as well as R,x, thus allowing an Inn(JVp, )-invariant inner
product and algebra. We have used GAP software to check that this is indeed the case
in each of the examples listed above.
Let us now look more closely at each example.
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3.2.1. (Dja, 2.B): Baby monster Two involutions combine to produce the identity ele-
ment if and only if they are the same involution. Since 2A involutions are in one-to-one
correspondence with conformal vectors of central charge %, this implies that Wp,, is a
degenerate case of the Wp . construction in which the VOA is generated by just one
Ising conformal vector, i.e. Wp,, = E(%, 0). The commutant of Wp,, in V¥ is nothing
but the baby monster VOA VB, which was already considered in detail in Sect. 3.1.2.

3.2.2. (Daa, 22.2E¢(2)): Steinberg group We now consider the subVOA Wp,, gener-
ated by two central charge % conformal vectors whose associated Miyamoto involutions
combine to yield an element of the 2A conjugacy class of M. This central charge ¢, = g

VOA admits an ﬁ(%, 0)® £(17—0, 0) subalgebra, in terms of which its 8 irreducible mod-
ules decompose as (c.f. Theorem 5.2 of [106])

W, (0) = [0,0] &[4, 31,
W, (D [0, 21 @[3, 151

[
[
W, (2) = [il_(” == V3VDQA<3), 347
Wi, @) = [1,01@ [0, 31,
Wpo (5) = [15. 551 = W, (6),

Wiop (D = [5. 218 [0, 551,

where [hy, hy] = E(%, h1) ® £(17—0, h). In particular, this gives a prescription for
writing its characters x, (7) as sums of products of Ising and tricritical Ising characters,
—_,® % [©IC) _ ., @ 3), @
X0 = XiaXint X X4 X=X X13 ¥ X201 %12

3) (4 3)_ 4 3) 4
X2 = xffxfi + xz(fxff X3=x4= xfz)xz(f (3.48)

3) ¢ 3) @ INC!
X5 = X1(1)X1(2) +X2(,1)X1(,3), X6 = X1 = X1(2)X2(2)

The resulting modular S-matrix is given by

O_ oy O_ - o_ oy oy Oy
Oy —O0_ Oy o4 oy —O_ —0_ —O_
O_ oy O_ —O_ —0_ 04y —04 —Oly
O_ Oy —O_ O_ —0_ —04y 04 —0y
S= , (3.49)
O_ Oy —0_ —0_ O_ —04 —04 Oy
Oy —0_ Oy —0fp —0yp —O_ O o_
oy —0_ —04y Ofy —0p OO —O0_ O_
op —0_ —04 —04 Oy O_ O_ —0_
where oy = %,/ Siﬁﬁ, and T-matrix read
. _mi 97 9w 9w 9ni  mi  omi omi
T =diag (e 10,¢”10,¢10 ,¢10 ,¢10 10,10, ¢10 ). (3.50)

Now, we would like to study the commutant VT/DZ - We comment that, in addition to
the general argument given at the beginning of Sect. 3.2, one can alternatively get a handle
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on its symmetry group by realizing it as a commutant subalgebra of the baby monster
VOA. To do this, we note that Wp,, can be obtained via an iterated deconstruction,

ViS L(4,0)® VB

1 7 ~ (3.51)
D L(3,0) ® L(5,0) @ Wp,,
and so in particular, V~\/D2 . embeds into VB?. In fact, we can define it as
Wi,y = Comyg:(L(5. 0) (3.52)

where the £( 110’ 0) subalgebra is chosen so that its stress tensor is of o-type in VB (c.f.
Sect. 3.1.2). One can therefore define an involution o as in equation (3.9) which lies in the
2A conjugacy class of B. Using arguments similar to the ones we used in the case of the
baby monster, we know that Centg (o) = Centg(2A) = 2.2E4(2).2 [107] stabilizes the
stress tensor of the E(llo, 0) subalgebra. Indeed, the Griess algebra of the baby monster

VOA is VBg = 16496255 as arepresentation of B, and a character-theoretic calculation
shows that this decomposes into 2.2 E¢(2).2 representations>* as

VB; = 10y ® 1) © 1938 ) @ 456961, © 48620 353
22y D EROR n® LD ) (3.53)

where 1(1), 19381, 48620(1), and 456961 are the 1st, 3rd, 5th, and 192nd irreps of
2.2E¢(2).2 in the order in which they are recorded in the Gap library [108]. The two-
dimensional invariant subspace is spanned by the stress tensor of the E(% , 0) subalgebra
as well as its commutant in VB?, which implies that the former is stabilized by 2.2 E¢(2).2.
As in the case of the baby monster VOA, the central order 2 element of 22E¢(2).2
acts trivially on Wp,,; this is the same as the statement that the map (2.98) has a Z,
kernel. Therefore, we must quotient by this Zj to get (a subgroup of) the automorphism
group of Wh,,. This leads us to propose that 2E¢(2).2 C Aut(Wp,,). We will see
momentarily that in fact some of these are outer automorphisms>>, and in particular that
2E6(2) = InnWp,,). B

Let us try to find evidence for these claims in the dual characters of Wp,, in V. We
will first describe these as the Hecke image of the characters of WWp, , . The central charge
cyof VTJDZ 18 an integer multiple of the central charge ¢; of Wp,, , ¢ = 24 —¢; = 19¢;,
where ¢, = g. Moreover, the conductor of the y, is N = 20, so we may consider
applying the Hecke operator T1g to the characters x, of Wp,,, which can be computed
using the modular S matrix in (3.49). This yields the dual characters X, of VT/DZ 4 in VA
ie.

Xa(T) = (T19X)a (7). (3.54)

24 Whenever a group has multiple irreducible representations of dimension d, we use the notation d;) to
denote the ith irrep of dimension d, according to how they are ordered in Gap.

25 The naive prediction from the monstralizer [Dyp o 22.2E6 (2)].83 is that the full automorphism group
should be 256 (2).83 as opposed to 2E6 (2).2. However, if one decomposes the Griess algebra V2u into represen-
tations of 2E6 (2).83 one does not find any singlets besides the usual stress tensor, which indicates that a decon-
struction is not possible. This example is the reason why we say in general that Aut(OVg) = (G/Z(G)).H'
for H' a subgroup of the group H which appears in the monstralizer [G o G].H. It is the only example we
consider for which H" # H.



J.-B. Bae, J. A. Harvey, K. Lee, S. Lee, B. C. Rayhaun

Explicitly, the g-expansions of the Hecke images are

Fo(t) =g~ B (1+48621q + 432740243 + 152207784 + - )

2

F1(x) = g™ (1938 +556206q + 314855464 + 8752686304° + - - ) ,
$o(t) = g (2432 1539904 + 278269444 + 7347266564° + - - - ) , (3.55)

F5(t) = g® (45696 +4713216g + 1772417284 + 3893072640° + - - ) ,
X3(0) = Xa(1) = X2(r),  Xe(r) = X7(7) = X5(0).

Another way to obtain these characters is with a modular linear dlfferentlal equation.
Evidently the three irreducible modules of WDQA of highest Welght 5 have identical

characters, and the same is true of the three modules with highest welght 12 Therefore,
there are only 4 inequivalent characters, and we may therefore try to find the characters
of the commutant algebra with a fourth order modular linear differential equation. The
following MLDE has the dual characters as solutions,

172972 4159im3 3573974 -
[D4 * 150 E4(1)D* — - e Ee(7)D — WE%(T)} Yx(t) = 0. (3.56)

As a consistency check we verify that these characters obey a bilinear relation with the
partition function of the moonshine module,

J@) =) X Fa(®) (3.57)

which is consistent with the desired decomposition of the moonshine module in terms
of its Wp,, ® Wp,, subalgebra,

VE= D Woy, (@) @ Wi,y (@). (3.58)

Since WDZ , appears as a subalgebra of VB, it should also be possible on general grounds
to decompose the modules/characters of the baby monster VOA into bilinears involving
the characters of E( 10> 0) and VVD2 > and indeed one can check that

XvBi(0)(T) = x1 1(T)X0(T) + x (f)m(r) + x (f)m(r) + x (f)m(r)
Xver (1) (T) = x1 4(r)XO(r) + x1 z(r)m (r) + x1 1(T)X4(T) + x (r)m(r) (3.59)
XvBi)(T) = xz 1(?)(X2(T) +x3(1) + x (r)(XS(r) + X6(1)),

which suggests that
1
VB () = (3,00 @ (5. 1) @ (0,4) @ (3, 7) (3.60)

where we have introduced the notation (&, o) := ( ,h QW Dz A (o).
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For concreteness, we illustrate how one can determine how the various coefficients of
the characters decompose into irreducible representations of the inner/full automorphism
groups. We will see in a moment that the modules Wp,, (o) fora = 0, 1, 4, 7 are acted
upon by the full automorphism group 2Eg(2).2, while the modules V~VD2 A () fora =2,
3, 5, 6 are in general permuted amongst each other by the outer automorphisms, and so
are only representations of the inner automorphism group 2Eg(2). For uniformity, we
will actually work with the groups 22 2E, (2).2 and 22.2E6 (2) as opposed to 2E6 2).2
and 2FEg(2) because the latter pair are in general realized projectively on the modules of
W, » and all the projective representations of relevance to us are honest representations
of the covering groups 22.2E¢(2).2 and 22 .2 E¢(2). Similarly, we will work with the group
2.1B as opposed to B.

Then, the only possibility that is consistent with the decomposition of V]B%g into
2.2E¢(2).2irreps®0 (equation (3.53)), the decomposition of VB*(0) into C(%, 0)®Wp,,
modules (equation (3.60)), and the characters of the Wp,, («) (equation (3.55)) is if

W (02 = Lty © 486200, W, (1)7 = 193811, W, (1) 10 = 456961,

(3.61)

as 22.2E¢(2).2 representations. Analogously, the fact that the 2.1B representation
VB; = 1 ® 96255 @ 9550635 (3.62)

decomposes as

VB? =21 21938, ® 48620, B 554268, B 1322685
3h0p0)2 n® P P 1 e13 M 363)

D 2956096(1) D 2432(1) ®2- 45696(1) D 4667520(1)
determines that
W, (003 = 1) @ 48620(1) @ 1322685(1) & 2956096(1). Wiy, (4)3 = 243201,

W, (112 = 19381 @ 554268(1). Wiy, (1) 20 = 456961 © 46675201
(3.64)
One can continue this process to higher orders to obtain constraints on how the V~VD2 A@)n

transform fora =0, 1, 4, 7.
On the other hand, if we attempt to restrict the 2.1B representation VB*(2) 3 = 96256
1

to a22.2E¢(2).2 representation, we find that it decomposes as

s
31
16

= 4864 ¢ 91392. (3.65)
222F4(2).2
This seems to contradict the fact that equation (3.60) requires a decomposition of the
form 96256 = 2432 + 2432+ 45696 + 45696. This can be resolved by further restricting
to 22 .2E6 (2), in which case we find that the representations 4864 and 91392 split in half,

31 = 24322 @ 2432(3) © 45696(2) B 45696(3). (3.66)
To 122.2E6(2)

26 Irreps of 2.2E6 (2).2 are the same as irreps of 22.2E6 (2).2 in which the central Z, which is generated
by the 2A conjugacy class acts trivially. In the Gap ordering, the first 320 irreps of 22.2E6 (2).2 map onto the
irreps of 2.2E4(2).2.
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The interpretation of this is that the extra involution in 22 .~2E6 (2).2 is acting as an outer
automorphism which mixes Wp,, (2) <> Wp,, (3) and Wp,, (5) <> Wp,, (6), but the
22 2E¢(2) subgroup preserves these modules and therefore acts by inner automorphisms,
namely as

Wis (2)3 = 24320), Wi,y (3)3 = 24323),

~ ~ (3.67)

Wpaa (5)% = 456962, Wp,, (6)% = 456967).
Continuing in this manner to one order higher, it is straightforward to see that the
decomposition

VBEH 225,0) =2. 2432(2) D2- 2432(3) D2 45696(2) D2 45696(3)
16 12=.

(3.68)
@ 537472y ® 5374723 ® 46675202 @ 46675203,

implies that

Wiy (D)3 = 24320 ® 5374722), Wiy, (3)3 = 456963 ® 4667520,

Wiy ()2 = 45696 & 466752002, W, (6) 2 = 456963) ® 46675203,
(3.69)

To double check these proposed decompositions, one can check that the twined characters
they lead to can be combined bilinearly with the characters of WWp,, to yield monstrous
MT series (at least to low orders in the g-expansion),

Jo(0) =) xa(DXea(t) (g €2°7Es(2)) (3.70)

where here we are implicitly using the fact that 22.2Eg(2) is a subgroup of M on the left
hand side of the equation.

3.2.3. (D3p, Fix3): Second largest Fischer group For our next example, we consider
the commutant of Wp,,, the VOA generated by two Ising conformal vectors whose
Miyamoto involutions have product lying in the 3A conjugacy class of M. We will see
that the commutant YWp,, admits an action by the second largest Fischer group Fi»3,
and for this reason we denote it with the symbol

VE,; = Comy:(Wps,,). (3.71)

We will also realize VF;3 as a commutant subalgebra of VFg4, which will allow us to
leverage the relationship between the corresponding Fischer groups Fir3 and Fip4 and
get a complementary perspective on its symmetry groups to the one obtained from the
general argument at the beginning of Sect. 3.2.

The chiral algebra Wp,, of central charge ¢; = % has been studied in [36-38],
where it was found that it contains a subalgebra of the form,

N@®PB) SN @ (L(E.0)® L(E,3)) (3.72)
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where N := L(g L0 L( g , 5).Ithas 6 irreducible modules whose heighest weights have

dimensions h = (O,% % % % 345) They decompose into N ® P(3) representations

as (c.f. Theorem 4.9 of [37])
W, (0) =P3) @ N(0) & P(3,[0,2) @ N (" ® PGB [3, 1) @N ()
Wpyy (D) ZPB3)@N () @ PG, [0,2) @ NG @ PG, [3, 1D @ NG~
Wiy (2 ZPR) @ N(E) @ P(3,10,2) @ N(4)T @ PGB, [3, 1) @ N ()~
Wps,3) = PG3,[2,0) @ N (0) & PG, [1, 1) @ N (' & PGB, [2,2D @ N(3)”
Wpsa @ = PGB, [2,0D @N(H) @ PG [L 1D @NGDT @ P(3.[2,2) @ N (1)~
Wpar (5) 2 PG, 12,00 @ N () @ PG, [1, 1) @ N (D @ PG, [2,2) @ N ()~
(3.73)
where the modules of N decompose into £(%, 0) representations as
NO=LE 0@ LS5, N =LE, peld, 3 NG =LE, LS, F)
NHF=LE DT NGpT=LE.p* NGDF =L@ D™
(3.74)
Although AV (h)* and N (h)~ are isomorphic as E(%, 0) representations, they are distinct
as N = E(g, 0) EBE(%, 5) representations. In particular, N~ = o o /" (c.f. Sect. 2.1.3)

where o is the order 2 automorphism of A/ which acts trivially on L(g, 0) and as —1 on

L(g, 5). For convenience, we provide expressions for the characters of WWp,, in terms
of minimal model characters,

5 5 6 6 5) (6
x0=(x1(1)+x1(5)) (xl(])+xf§)+2x](3)x3(]),

—(4® 5 (6) (6) (5),,©)
—(X11+X15)( 2+X15)+2X13 X320

() &) (6) (6) (5) (6)
= (Xl 1 +X15) (X13+X14>+2 X13X33:

(5 ) (6) (6) ()., ©) (373)
:(X1+25)(X1]+ )"‘223 X315
— (4O (5 (6) (6) (5),,(6)
—(21 X25 (X12+X15)+2X23X327

(5)

5 6 6 5 _(6

x5 = () +d3) (6% + %) + 2082089
Now, the fact that Wp,, (whose stress tensor we write as ¢) has an [,(%, 0)® E(%, 0)
subalgebra means that there is a decomposition of the stress tensor of V7 of the form

~ 4 6 ~

T(z) =1(2) +1(2) = 15 (2) + 17 (2) +7(2). (3.76)
We can apply an iterated deconstruction to this decomposition, as in (2.96). The
first iteration, Comvn(\/ir(t(%>)) = Comva(ﬁ(%‘,O) @ E(%, 3)), was computed in
Sect. 3.1.3 and is simply VFg4. The second iteration is then Com,, (Vir(r($))) =

24

Comys (L(5.0) @ L(§,5)). Using (2.97), this implies that

VE; = Comy: (Wpy, ) = Comys (£(5.0)®L(5.5)). (3.77)
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In other words, we have realized VPg3 as a commutant subalgebra of VPg4. We will
argue for the symmetries of VF;3 using this description. We start by noting that the
centralizer Centp,, (07/) = Zo x Fip3 [109] stabilizes t(g). To see this, note that the
Griess algebra (VPg )2 = 1@ 57477 decomposes into Z, x Fi3 representations as

(VE,) ~ 1, @1, @782, @ 30888, @ 25806_ (3.78)
Zo x Fip3

where the +/— indicates how the Z, acts. The two-dimensional trivial subspace is

6 ~ . .
spanned by (7 and 7, and so Z, x Fi»3 acts by automorphisms on VPg3. However,
oy acts trivially, and so after taking the quotient by this Z,, we get that the true auto-

morphism group is simply Fip3 C Aut(VF%3).
We move on to deriving the characters of VFg3. From the known modular matrices
of minimal models, one can show that the characters x, transform under S and T as

1
Xa(—7) = E Sup X Xa(T+1) = E Tap xp(T). (3.79)
B B
where the S-matrix is
a_sin% a,cos%—z o_cos{y  aysin% a+cos31—7£ 0o4Ccos Ty
a_cos% —a_cos{; a_sin7 a+cos3]—7£ —Q4CO8{7  ysin7
S— «_cos{y a-_sinT —a,cos3—ﬁ 04Co8Ty  aysinT —oe+c0s31—’i
oy sin a+cos3]—’£ aicosfy  —o_sin% —a_cos31—7£ —a_cosg |’
a+cos31—ﬁ —Q4CO8{7  ysinT —04_0053—’1 ®_cos{y —a_sin%
oycos{y  ausin —oz+cos31—z —a_cos{y —a_sin% a,cosi—ﬁ,
(3.80)
with a4 =,/ %(5 + +/5), and the T-matrix reads
. 297 3lwi 149w 139w 199w 197i
T=dlag(e 210, ¢ 210 @~ 210 ¢ 210 ¢ 210 ’62]0) (3.81)

Labeling the dual modules of VFg3 according to how they appear in the decomposition
of V¥ with respect to its Wp,, ® VPg3 subalgebra,

Vi= P Wn,, (@) @ VE;(@) (3.82)
o
we claim that the characters XVE. (@) (7) are solutions to the 6th-order MLDE,
23
6 4, . 3 212 | 3 2 _
[D + U EsD" + i E¢D” + usEyD* +ipusa E4EcD + pusEj + M6E6]XVF23(Q) =0,
(3.83)
with
2467972 25318317 _ 47065137717*
1= 600 © "7 231505 © M7 77277830000
_ 75142760397° _ 22368262558337° _2944321497917°
M= 786202500 M T Ts83a43000000 MO

107207651250
(3.84)
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Table 3. Decompositions of the graded components of the modules VFg3 (o) into irreducible representations
of Fip3

a h VF;3 (@)p
0 0 1
2 1 & 30888
3 1 @ 30888 d 279565 @ 2236520
1 13/ 25806
20/ 25806 d 274482 @ 2322540
2 5h 782
16/7 782 @ 279565
3 8/s 5083
13/ 5083 & 812889
4 51/35 3588
86 /35 3588 @ 789360
5 66/35 60996
101 /35 60996 @ 1951872 & 3913910

The Fourier expansions of the six independent solutions to this equation are
-39 2 3 4
Xy o () = ¢~ (1 +30889¢2 + 254697443 + 85135558¢% + - - ) ,
23
Xye, oy (D) = g0 (25806 + 2622828 + 9635882242 + 20677525324 + - - - ) ,

149

Xyg ) (®) = 4 (782 +280347¢ + 1668716642 +470844155¢° + - - ) ,

o._

XVFJ (,;)(‘L') - q42

c—-

Xyr ) (®) = g7 (3588 +792948¢ + 3998287842 + 1031142072¢° + - - ) ,

401

Xygs 5, (T) = 4720 (60996 +5926778¢ + 213547709¢% + 45279559504 + - - - ) .
(3.85)

i
(
(5083 +817972q + 36460359¢> + 877212478¢° + - - - ) :
(
(

As a consistency check, one can verify that, to low orders in the g-expansion, these
characters pair with the characters of Wp,, to yield the partition function of V¥,

Ty =Y Ko (D Ay, g (D- (3.86)

Furthermore, we see that the highest weight subspaces have dimensions which coincide
with irreducible representations of Fi»3, and that higher order terms decompose naturally,
as described in Table 3. These decompositions can be derived by demanding consistency

with the restriction of the graded components Vnu to Fip3, in a manner analogous to the
previous section.

To summarize, the chiral algebra VFg3 has central charge 22!2/3s and Fiy3 as (a
subgroup of) its automorphism group, all of which acts by inner automorphisms. It can

be embedded into VFg4,

(£, 00 ® L&, 5)® VE, C VE, (3.87)
or into the moonshine module as

Wiy ® VE53 C V° (3.88)
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and so naturally fits into a chain of embeddings,
VE,; < VE, < V" (3.89)

The algebra WWp,, also has a conformal vector of central charge % (c.f. Appendix A of
[38]), and so 7(z) also fits into a decomposition of the stress tensor of V' of the form

T(z) = 1D (2) +1 ™ (2) +7(2). (3.90)

If one performs an iterated deconstruction with respect to this decomposition, it follows

that VFg3 also embeds into the baby monster VOA VB?. We will deconstruct this theory
one step further to obtain a chiral algebra with Fip» symmetry in Sect. 3.2.6.

3.2.4. (D, 2'%?2 McL): McLaughlin group The 4A algebra Whp,, is most readily
described as a charge conjugation orbifold (c.f. Sect. 2.1.5) VT, i.e. the subspace of a
lattice VOA which is fixed by its canonical involution 6. The central charge ¢; = 2
algebra Wp,, corresponds [38] to the specific choice

8
L = {Zaiei

i=1

3 8
alla; € Zoralla; € 3 +Zwith Y a; =Y a;=0p  (3.91)
i=1 i=4

where €; are any 8 vectors in R® with (¢;, € j) = 28;;; it is generated by two vectors,

3 8 3 8
vlzé Zei+Zej , vzzé —Zei+Zej . (3.92)
i=1 j=4 i=1 j=4

This lattice can be realized as a sublattice of Areech [102] and, following logic similar to
that used in Sect. 3.1.4, we claim that the commutant WWp,, can be described explicitly
as the canonical Z; orbifold of the lattice VOA attached to the orthogonal complement
L := L+ of L in Apeech. This description makes it transparent that Wp,, < Wz,,
in accordance with the fact that the associated monstralizers (Daa, 2'*22.McL) and
(Zan, 4.222~.C03) include into one another: indeed, this follows simply because the lattice
on which Wp,, is based is a sub-lattice of the one on which Wy,, is based. We will
also use this description to perform an explicit check on the characters produced by the
Hecke method.

The Miyamoto involutions associated to the two Ising vectors which generate Wp,,
can be lifted to automorphisms of Wp,, and V* which generate a dihedral subgroup
Dy of the monster M. The centralizer of this subgroup is Centyg(Dga) = 21422 MeL
[22], and we conjecture that this example respects the symmetry properties which are
predicted from its associated monstralizer, i.e.

M(Wp,,) = 2'*?2. McL
Inn(Whp,,) = 22>.McL
AutWp,,) = 222 McL.2
Fus(Wp,,) = Z»

(3.93)
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Further evidence for these symmetry groups comes from the fact that the lattice L is
stabilized by a McL subgroup of Aut(Areech) = Cop, and so we expect V% to admit an
action by some extension of McL by automorphisms.

As illustrated in Sect. 2.1.5, the characters of the modules Wp,, (@) can be expressed
in terms of the vector-valued theta function 6y .,+(t) with A* running over elements
of the discriminant group L*/L. We can compute this information using the data files
published with [102] and functions implemented in Magma [103]. We find that the
discriminant group is given by L*/L = 75 = 73 x Zs and, using the notation
Ou,b(T) = OLrays+hyz (T) with y5" = (v — v2)/3 and y5" = (v1 + v2)/5 generators of
the Z3 and Zs respectively, we recover the g-expansions

O0.0(7) = 1+4¢% +2¢° +2¢° +8¢% +6¢'> + 4¢"7 + 4¢4"8

©o,1(1) = qé(l +2¢+5¢° +2¢° +3¢* +--),

Op,2(7) = q%(3+q+2q2+4q3 +4¢ + 7 + ),
®1,O(T):q%(1+3q+2q2+5q3+2q4+...)’ (3.94)
Or1(r) = c]%(l +q+3¢7+q¢>+2¢4 43¢+ ),

O12(1) = q%(2+q +2¢°+q>+3¢4 +- ),

Ou,b(T) = O3-4,5(T) = O 5-5(T) = O34,5-5(7).

The identifications on the last line follow from the fact that the dual lattice L* has a
Zo x Zo symmetry group which preserves L and induces the automorphisms (a, b) —
(—a, b) and (a, b) — (a, —b) on the discriminant group L*/L. Now, one can construct
the characters x (7) of the modules Wp,, («) in terms of these theta functions as below,

o =600 = 3 (S v oner).

0@ =870 = (677()(3;5) - <I>o,1<r>2> ,

() = 0 = 2020 (0 = e (n) = 2D,

15(0) = EL8), (1) = 2RI, (399)
160 =650 = S,

001288050 = S 0= 800 = S

x9(7) i= £ (1) = @y (0)* + @11 (1),
x10(t) = £8P (1) = @ o(2)* — @11 (7).

Here, n(7) is the Dedekind n function and &, g is a generalized theta function defined in
equation (2.59). We note that x5 = x and x7 = xg, which is a consequence of the fact
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that Wp,, inherits a Zp = Aut(L)/Z, outer automorphism from L which exchanges
these modules.

It is straightforward to see that the behavior of the characters (3.95) under modular
transformations is described by the S-matrix

-+ - -+ r +r 1t 1 1 1 1
A I Sl Sl S G A LA LA S
W WS VB VB Y5 VB Y I Y5 272
L L —oy o_ 2 o a —ay —oy 0 O
sV P
V5 U5 Vs U5 Vs oys ys ovs s 00
S=| 75 75 @ —w -5 B~ B v- —n 0 0. (399
\/LTS \%5 o —0y —ﬁ B+ B— —v+ v- 0 0
ﬁ \% —0 0 _«/% - —v+ B+ B- 0 0
ﬁ \/;1*5 —0 0 _\/;1»5 v+ v- B- B+ 0 O
% —% oo o o o o0 0 % -%
1 1
5 —3 0 0 0 0 0 0 0 -3 3
whereay, = /3545 g, = LSEVI0-6Y3 gy, = %\/1‘—5 (9++/5+V30-6V5).

The T-matrix reads

in _17in in in in 9im 9im in 1im

. _ir _im Tim in
T =diag(e  6,e 6,30 ,¢” 30 ,e2, el0,el0, 10,10 el2 e 12 ), (3.97)

One can check that these matrices satisfy the relations of PSL,(Z), i.e. S> = 1 and
(ST)? = 1. Moreover, applying the Verlinde formula yields a consistent fusion algebra,
whose structure constants we present in appendix A (see also [110,111]).

As we said earlier, we expect that the commutant WD4 » 1s described by the Z;
orbifold Vli: of the ¢ = 22 lattice VOA associated with L. To check this claim at the

level of characters, we start by computing the vector-valued theta function of L, using a
similar notation O () = 07, ;x w2 (T) 1O the one used for the theta function of L,

©0.0(1) = 1 +44550¢> +2525600¢° +44995500¢* + 4184278564 + - - -

Bo.1 (1) = g3 (15400 + 1269675¢ + 269082002 + 278446300¢° + - - -),

Bo.2(1) = 5 (275 + 113400 + 4833675¢> + 73167600¢° + - - -),

O1.0(1) = 3 (7128 + 779625¢ + 188244004 + 21009780043 + - - -), (3.98)
®1.1(v) = ¢ 15 (22275 + 1603800q + 3205372542 + 319334400¢° + - - -,

B1.2(t) = ¢ 15 (2025 + 356400 + 10758825¢° + 135432000¢° + - - - ).

Oup(T) = B3_0p(7) = O 5-p(1) = O3_4,5-5(7).
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One can then find the dual characters X, (7) using these theta functions. Similarly to
equation (3.95), the dual characters X, (t) are

%or) = 4P @) = 3 (?‘éf)(;) + cbo,l(r)”) ,

% =0 = 5 (% - ¢o,1(f)22> ,

%) = D) = %, %) = £ ) = %,

Fa(o) =0 () = ?Lf)(;), (3.99)
%s(0) = &0, (1) = %, %o = &1, (0 = ?zj)(fz),

7o(0) = 61 (0 = 2T () = g1, 0 = T

Fo(0) 1= £D (1) = 21%(@, o(1)2 + @11 (1)),
F0(0) =& (1) = 210 o(1)* — @1 1(0)*?).

With these conventions, the characters (3.95) and (3.99) diagonally pair to produce the
partition function of the monster CFT,

10

J@®) =) xa(D)Xa(T) (3.100)

a=0

which is consistent with a decomposition of the form

V= D Wiy, (@) @ Wy, (). (3.101)

We would now like to argue that the characters of VNVD .+, can alternatively be computed
using Hecke operators. Let ¢; and ¢ be the central charges of Wp,, and WD:; > Tespec-
tively. The fact that c; = 11¢; suggests that we should apply the Hecke operator Ty to
the characters x in equation (3.95). Doing so recovers”’ the following g-expansions,

Fo() = (T110)0(t) = ¢~ 7 (1 + 2252842 + 1753334¢° + 56418362¢" + - - -)
F1(0) = (T101(2) = g T2 (22 +22297¢ + 175489642 + 564105633 + - - -)
F(0) = (T11x0)3(2) = ¢ (15400 + 1608475 + 59076050¢2 + - - -)

F3(1) = (T11x)2(z) = ¢ (275 + 119450q + 74041009 + 21138920043 + - - -)
Fu(0) = (T11x0)4(0) = ¢ (7128 + 9364414 + 37936350¢° + 856665315¢° + - - -)

27 In most examples, the bilinear which pairs x, with its Hecke images to produce the J-function can be
obtained as a linear combination of the matrices G, described in Sect. 2.3.2. This is one of the few instances
for which this is not true, i.e. the matrix which relates T x to ¥ cannot be realized as a linear combination
of the matrices (G g)T. This suggests that there are modular invariant ways to combine characters with their
Hecke images beyond the bilinears studied in [42], however we leave their study to future work.
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F5(2) = (T11x)7(1) = g (22275 + 2093850 + 73462950¢% + - - -)
Fo(2) = (T11x)s(1) = g (22275 + 2093850 + 73462950¢% + - - -)
52(0) = (Tix)s(t) = ¢ (2025 + 400950¢ + 191565004 + 4752594003 + - - - )
Fs(0) = (T11x)6(1) = ¢ 2 (2025 +400950¢ + 1915650042 + 475259400¢° + - - -)
Fo(2) = (T11x)10(t) = g7 (45056 + 4190208 + 1461616642 + - - -)

F10(2) = (T1ox)o(7) = ¢ 7 (2048 + 518144q + 2689843242 + - - ) (3.102)

These g-series perfectly agree with the expressions in (3.98).

+ ~ +
Finally, we comment that V] admits a V" fZ fZ PE) YV subalgebra

V10Z
which makes some of its symmetries more manifest. In particular, the characters x,

in equation (3.95) can be written in terms of w(4) and the characters of V Jioz (¢ f.
equation (2.60) with N = 5); this allows one to compute Z4 twined characters g, (7)

by dressing w(4) with the phase ¥ wherever it appears in the decomposition of .
It turns out that the twined characters x, o (t) and Xy (t) combine bilinearly to produce
the 4A McKay-Thompson series Jya of V7,

10
D (O Xoa(t) = 7' +276q +2048¢% + 11202q° +49152¢* + 184024¢° + - - -
a=0
(3.103)

in harmony with the fact that Wp,, preserves a dihedral group M(Wp,,) = Dsa whose
order 4 elements live in the 4A conjugacy class of M.

3.2.5. (Dsa, HN): Harada-Norton group In this section, we study the commutant of
Whps,, the subalgebra of V% generated by two conformal vectors ¢ and f whose
Miyamoto involutions 7, and 77 have product residing in the 5A conjugacy class [112].
We claim that the centralizer of this product, Centyy(z.77) = Zs x HN [92], stabilizes
the conformal vector of Wp., , and that the Zs = (t.7) acts trivially on 17\/[)5 A so that
at least HN is the automorphism group. We therefore denote the commutant VT/DS N
VHN'. We will in fact argue momentarily that the slightly larger group HN.2 acts by
automorphisms, but that the extra Z, is outer.

We will use two different descriptions of Wp.,. In the first, we will characterize
Whs, in terms of its P(5) ® P(5) subalgebra. The fusion algebra of P(5) ® P(5)
has a Zs x Zs symmetry, and the generator of the diagonal Zs lifts to 7, 7s; this is
one way to see why the Zs acts trivially on VHN®. Another description is in terms
of a [,(%, 0)® £(%, 0) ® L(%—g, 0) subalgebra. This decomposes the stress tensor ¢

1 25 . . . . .
of Wp,, ast = 12 +¢(70); performing an iterated deconstruction with respect to this
decomposition makes it clear that the Harada-Norton VOA embeds into the baby monster
VOA,

Vi Vi) @ VB

(3.104)
S Vir(t®) @ Vir(('®) @ VHNE.
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and that it is in fact a commutant subalgebra of VB?. We can therefore try to determine
what automorphisms VHN? inherits from B. The Griess algebra of the baby monster
VOA decomposes into HN irreps as

VJBQ(HN ~1® 1@ 1@ (non-trivial reps) (3.105)
while it decomposes into HN.2 (a maximal subgroup of B, [107]) irreps as

VB;‘HN-Z = 1@ 1@ (non-trivial reps). (3.106)

This suggests that HN stabilizes 7 and the two central charge % conformal vectors

individually, while HN.2 stabilizes 7 and 1 but swaps the two central charge %—g

conformal vectors. Under this assumption, HN.2 C Aut(VHN?). We will see that the
extra Z, is outer once we have expressions for the characters.
The algebra Wp,, has 9 irreducible modules, and they decompose into representa-

tions of its £(3,0) ® £(%, 0) ® L£(33, 0) subalgebra as (c.f. Theorem 3.19 of [38])
M, j)=10,h1,,h1;1®0, h3;, hs ;1@ [0, hs;, h3 ;1@ [0, h7;, h7 ;]
@[5, h1i.h7,]1® (5. h3,i, h3 ;] 1© (5, hsi, hs ;10 [5, b, hi )]

B (5. hoi ha ;1@ (5. haiihoj1® (5. heis ha ;1 @[55, hasi }gjllo :
107

(7)

where h,y = h; 5 and i, j = 1, 3, 5. We will order these modules as

Wiex (0) := M(0,0), Wp, (1) := M(1,5), Wpe, (2) := M(5, 1),
Wy 3) 1= M(1,3), Wpe, (4) := M3, 1), Wp,(5) := M(5,5),  (3.108)
Wiien (6) := M(3,5), Wps, (7) := M(5,3), Wps, (8) := M(3,3).

On the other hand, we can also express the characters in terms of products of P(5)
characters as below:

1p(S)w(S) 1//(5) 1#5(511 Ip(S)I//(S) 1/f5(5111/f(5) W(S)w5(5)3’
w(S)W(S) 1p(S) 105(511 W(S)W(S) w(S) 130(5) w(S)wﬁi’

X1 = 1p(S)I/fG) W(S)W(S) wS(S)_ll/f(S)_i_w‘(‘Siw(S) w(S)IﬁS(S;
w(S)wG) +w5(51]w(5)+¢(5)w(5)+w(5) 1/,(5)14_,’”(5)1#3(51),

Ko = UEIs ) + U] + U e+ ul), (B109)
=+ 0 v, + v Cu )+ O + ),

X6 = USoUsd + i v+ s+ u + uvl),

X7 = 1p(S)I//(S) w§5111p(5) W(S)lﬂ(s) w(S)I//(S) w(S)wz(Sg’

X8 _w(S)w(S) 1p(5)w3(5)_l ¢(5)¢(5) W3(,5)_11ﬁ(5) W(5)¢(5)
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One can then show from the known modular matrices of the minimal models that the
characters of this theory transform according to

s12 s|ca2  S1c2  S1c1 S|1Cq c% cicy  cien c]2
S1¢y —S81C1 C% sl2 cicr —ci1c2 S1c2 —c% s1C1
S1C2 C§ —S1C1 C1C S2 —C1C2 —Ci S1c2  S1C1

4 S1C1 Sl Clgz —S12C2 Cl 51C2 —C2 S]Cé —C1C2

S = 7 s1§1 cica s i —sie 513‘2 sjcr —c; —6126‘2 ,  (3.110)

¢y —Cicp —C1C2 S1C2 S1C2 ¢y —si1c1 —sic1 S
ci1c2 S102 —c% —c% sic1 —Ssic1 c1e2 s% —81C2
cico —c% s1cy  S1C1 —c% —s1C1 s% c1cr —S1¢3
C% 51C1 S1€1 —cC1c2 —C1C s12 —S81C2 —S1C2 C%

and

. _ 4mi _ 10mi _ 10mi 8mi 8mi _ l6mi 2mi 2mi 207i
T:dlag(e 21 e~ 21 e 21 Je2l g2l e 21 ,e2l g2l e 2I ), (3.111)
where 51 = sin (%), c1 = cos (]”—4) and ¢ = cos (3]—Z)
The nine characters in (3.109) obey the bilinear relation
J(r) = Z Xo (O XvENE (@) (T (3.112)
o

where we claim that the dual characters of VHN? := WDS . in V¥ are solutions to the
MLDE below,

[E6<r)D6 + 11 E4(1) E6(1)D* + i pua EG (1) D + 3 EZ (1) E (1) D*
+ipa E4(T)EG(T)D + ps E3 (1) E6(T) + pe g (1)

+ipr EX(0)D +ips E3(1)D? + iugEj(r)D]XVHNu(a)(r) =0,

24172 1389173 21531574 79027407

M= M2 = 733 3T T s 0 M4 T T T sgaaas

s = 0. g — 18191360076 oy — 7 s — 24173 o — _215315715

’ 85766121 ’ 63 ' 3
(3.113)

This suggests a diagonal decomposition of the moonshine module of the form

Vi P Whs, (@) ® VHN (@). (3.114)
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Table 4. Decompositions of the graded components of the modules VHN(«) into irreducible representations
of HN

o h VHN (),
0 0 1
2 1@ 8910 ® 9405
1 8/1 133
15/7 133(1) (&) 65835(1)
2 8/ 133y
15/ 133(2) © 65835y,
3 12/7 87781
19/7 8778(1) @ 8910 @ 267520 & 718200y
4 12/ 8778(2)
9/ 8778(2) @ 8910 @ 267520 & 7182005,
5 ok 760
16/7 760 © 16929 ¢ 214016
6 B/ 35112y
7 B3/ 35112y
8 10/7 3344
/1 3344 © 270864 © 406296

The g-expansions of the characters of VHNF are given by

XvENe0)(T) = g~ (1 + 18316¢2 + 1360096¢° + 423938264 + - - ),

Xvine(1) (T) = 71 (133 + 65968¢ + 417247642 + 119360584¢° + - - -),

XviNi2) (D) = g7 (133 + 65968¢ + 4172476¢% + 119360584° + - - ),

v () = g7 (8778 + 1003408 + 378666964 + - - -),

Xvine @) (T) = 1 (8778 + 1003408 + 37866696¢> + - - - ). (3.115)
Xvines) (T) = 4 2 (760 + 2317054 + 1259593647 + 333082540° + - - ),
Xvine o) (T) = g7 (35112 + 3184818 + 108781232¢% + - --),

XvEney (T) = g7 (35112 + 3184818¢ + 108781232¢2 + - - -),

Xvin: s (D) =4 3 (3344 + 6805044 + 32364068¢° + 795272512¢° + - - - ).

The lowest-order coefficients of (3.115), 133, 760, 3344, 8778, and 35112, are indeed
dimensions of irreducible representations of the Harada-Norton group HN. However, 133
is for example not the dimension of an irreducible representation of HN.2. This implies
that the extra involution in HN.2 mixes the modules of VHN and is therefore an outer
automorphism. Higher order coefficients of the characters also have decompositions into
irreducible representations of HN, as in Table 4; one can check that they are consistent
with the decomposition of the graded components V, into irreducible representations
of HN.

To illustrate an example of a twined bilinear, one can verify our earlier claim that the
lift of the diagonal of the Zs x Zs fusion algebra automorphism of P(5) x P(5) lifts to
an element in the 5A conjugacy class of M. Indeed, if we denote the generator of this
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diagonal Zs by w, then one can compute that the twined characters of Wp,, are

Xw,0(T) = q*%(l +q>+2¢° +3¢% +4¢° + 645 + ),

Xw,l(l') =q%(l+q+2q2+q3+3q4+3q5+...),

Xw,Z(T) =q%(l+q+2q2+q3+3q4+3q5+...),

Xos(D) = g7 (2 +29+3¢% +5¢° +8¢* +13¢7 +- ),

Xoa(T) = q7T (2 +2q +3¢% +5¢° +8¢* + 13¢5 +- ), (3.116)
13

Xw.5(1) =q21 (=1 —2¢q —3q2 —5q3 —8q4 — 11q5+...)’
1

Xo,6(T) = g2 (=1 —6]—2q2—3q3 —5q4—7q5+...)’
1

Xo,7(T) = q21 (=1 —q—2q2—3q3 —5q4—7q5+...)’

Xo,8(T) IQ%(I+q+3q2+3q3+6q4+8q5+...)’

and one can show by direct calculation that

1
Y Yo (D Xyini@) () = = + 134q +760q + 3345q% + 122564" +39350q° + - --
q
o

(3.117)

agrees with the Mckay-Thompson series of class SA of the monster group to low orders
in its g-expansion. The inner automorphisms of VHN? will also lift to corresponding
automorphisms of M,

Jo() = xa(OXg viv@(@): (g € HN) (3.118)

where for Jg(7), we are implicitly using the fact HN is a subgroup of M. One can
construct a bilinear (3.118) for each of the 54 conjugacy classes in HN using Table 11.

To summarize, VHN? is a central charge 215/ chiral algebra with HN as its inner
automorphism group, and HN.2 as its full automorphism group. It embeds into both the
moonshine module and the baby monster VOA,

VHN' < VB < V&, (3.119)

3.2.6. (Dea, 2.Fipy): Third largest Fischer group We now study the commutant of Wpy,
[38,113], the algebra generated by two conformal vectors of central charge % whose
associated Miyamoto involutions have product residing in the 6A conjugacy class of M.
The commutant Wea we will argue has an automorphism group which at least contains
Fi;.2, and so we denote it with the symbol Vsz.

In addition to using the argument provided at the beginning of Sect. 3.2, one can
derive (part of) the symmetry group by realizing Vng as a commutant subalgebra of

VFH23 and using the fact that 2.Fipp = Centpj,, (2A). The idea is that the stress tensor ¢
of Wpy, can be decomposed as

1) =19 @) +1P(0) + 1 (2). (3.120)



Conformal Field Theories with Sporadic Group Symmetry

If one iteratively deconstructs these conformal vectors as in (2.96), one gets

VES Virt®) @ VE,
S VirtY) @ Virt D) ® VF, (3.121)
5 Virt®) @ Vir(t')) @ Vire®) ® VF,,

so that E(%, 0)® Vng C VFg3. The E(%—g, 0) chiral algebra has a Z; automorphism
of its fusion algebra which lifts to an element in the 2A conjugacy class of Fiy3. The
centralizer of this element is 2.Fiy> and fixes t(g), with the central Z, acting trivially
on VF;Z. After taking the quotient by this Z,, one is left with Fip;. When we have the

g-expansions of the dual characters of Vng in V%, we will see that this Fi,; is in fact
the inner automorphism group. We turn to this now.

Although Wpy, and its irreducible modules can be decomposed into representations
of its E(%’ 0)® E(g, 0O E(%, 0) subalgebra [113], we will instead describe it—using
the block-diagonalization method presented at the end of Sect. 2.1.2—in terms of a
P2) ® P(3) ® P(6) subalgebra which makes some of its symmetries more manifest.
From the known modular S-matrices of the parafermion theories, one can check that
the modules specified by the 14 characters x,(7) presented in equation (C.1) form a
consistent extension of P(2) ® P(3) ® P(6). As in previous subsections, our goal is
to find 14 functions to serve as candidates for the dual characters, i.e. 14 functions
XVFJZZ(Q)(r) which satisfy

J(@) =Y Xa (O Xy o) (D) (3.122)

Unfortunately, neither MLDEs nor Hecke operators are effective at recovering these
functions: MLDEs are unwieldy because the required differential equation would be
high order, and the coefficient functions belong to very large dimensional vector spaces
of modular forms. On the other hand, the Hecke operator method does not work for this
example because ¢;/c; is not an integer. Nevertheless, we claim?® that the functions can
be obtained from the Rademacher sum (c.f. Sect. 2.3.3) attached to the representation p
generated by the complex conjugates of the modular matrices presented in Appendix C

with singular part of the form R§L2 @).p 2 (D)= &Loq’% + O(qo). After some compu-

tation, we arrive at the following g-series for Xygh (a)(‘l,'),
22

XvE, ) (1) = g~ (1 + 1673142 + 118861643 + 35978085¢% + - - -),
X,y (0) = 4 (10725 + 1007304 + 3909534247 + 808423473¢° + ),
Xy, (T) = 4790 (429 + 131560q + 71470740 + 18736832447 + ),
Xy, 3y (7) = 4 T (1001 + 163449 + 70540474 + 1631265354 + -,

Xy 4)(®) = 1% (30030 + 2625337¢ + 8737864247 + 1733413968¢% + - - ),
22

28 See Appendix C for an alternative derivation of these characters.
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Xygi 5T = 10 (1430 + 333762q + 164448579 + 40928373243 + - - ),
22

Xyii () = 10 (78 + 437584 + 2787213¢> + 79431495¢% + - - -),
22

Xy 1y (®) = T8 (3003 + 401478¢ + 1598096542 + 352878240 + - - -),
22

Xy (@) = g7 (13728 + 1212288 + 40511328¢2 + 805723776¢° + - - -),
22

Xy 9)(®) = g7 (13728 + 1212288 + 40511328¢2 + 805723776¢° + - - -),
22

Xvet oy (®) = g™ (352 + 123552q + 6918912¢7 + 18449974443 + - - ),
22

Xy an(® = ¥ (27456 + 25172164 + 8554339242 + 1718827968¢° + - - -),
22

Xyg a2y (®) = 70 (2080 + 384384 + 1740710442 + 413523968¢° + - - -),
22

Xyr 1 (™) = 70 (2080 + 384384 + 17407104¢> + 413523968¢% + - ). (3.123)

As a consistency check, we note that all the leading coefficients of the dual characters
XW% @ are dimensions of irreducible representations of 2.Fip;, and that these functions
satisfy equation (3.122).

We end this section by analyzing twined characters and their associated bilinears.
The fact that Wp,, admits a P(2) ® P(3) ® P(6) subalgebra gives the false impression
that the theory has some kind of Z x Z3 x Ze symmetry, in apparent contradiction with
the assertion that M((OWVp,, ) = Dea. We will show, however, that a Zg subgroup of this
group conspires to act trivially.

Twined characters are dressed by three phases a)Z”‘ where w; = e% andk =2, 3, 6.
Therefore, there are a priori 36 ways to twine the characters x, (t) using the transfor-
mation rules from (2.50). We will denote twined characters as Xa;w;"z,w;’l3,w’6”° (7). For

instance, x,.| 2 (7) means we dress the P(6) characters with their Z¢ phase a)é while

leaving the P(2) and P(3) characters unmodified. Combined with the dual characters
(3.123), each twined character generates a Mckay-Thompson series corresponding to a
certain conjugacy class in the monster. Table 5 reveals that the Zg subgroup generated
by w2; w3; we acts trivially, which reconciles the Miyamoto lifts of the fusion algebra
automorphisms of the parafermion theories P(2), P(3), P (6) with the observed dihedral
group M(Wpy,) = Dea.

3.2.7. (D4, 2.F4(2)): Chevalley group The chlral algebra JW,p is most easily described
as an extension of its £(2, 0)® L( 170, 0) ® L(L 19> 0) subalgebra [38], in terms of which
it and its irreducible modules decompose as

Wpy(0) Z[0,0,01 @4, 3, 01@[4,0, 31810, 3, 31
Wp (1) 10,0, 319[0,3,01@[4,0,01@[4, 3, 3]
W, (2) = [0, 0,5]@[0,2 @5 3. 2150, 4]
Wiy 3) = [0 ’5’0]69[0’ 10 2]69[27% %]@[%,%,O]
Wpys(4) = [o,g 110100, 4. 5103 1. 2193, 2. 15
Wp,(5) =10, 2, gl &[0, % el 5 wl@ls. 2. 2]
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Table 5. In this table, wg; wé’; wg refers to the corresponding fusion algebra automorphism of the P(2) ®
P(3) ® P(6) subalgebra. This lifts to an element of the monster, whose conjugacy class is determined by a
character theory calculation. This table shows that the Zg group generated by wy; w3; wg acts trivially on Vi

;w3 1 Lo 1 w15 1 W w3; 1 w0y; w2 1
3A 3A 2A 6A 6A
1; 1; we l;l;wé l;l;wg 1; l;wé l;l;a)g
6A 3A 2A 3A 6A
w2; 1; we wy; 1;w6 wz;l;a)g (ug;l;oo6 wz;l;w6
3A 6A 1A 6A 3A
1 w3; w6 1 w3; wg 1;w3;wg I w3; g 5 w33 wyg
2A 3A 6A 1A 6A
1;6()%;&)6 l;w%;w6 l;w%;wg l;cu%;a)6 l;u)\%;a)6
6A 1A 6A 3A 2A
w2} w3} w6 2} W35 Wy w); w35 0 w2} W3} W w2} W3} Wy
1A 6A 3A 2A 3A
wz;w%;wﬁ wz;w%,wﬁ wz;wg;wg wz;w%;c% wz;w%,wé
3A 2A 3A 6A 1A
~ 1 33 1 3 1 1 3
WD4B(6)=[O 0’ m]ea[ov ia g]@[jy 2 E]@[E’Oy g]
3 1 1 3
WD4B(7)—[01 1070]69[07 3> 2]69[2 ]@[E, 10° j]
7 7 3
WD4B(8) = [1 > 16° 16] & Q WD4B(9) = 1 > 16 %] & Q
1 3 ~rl 3
WD4B(10)_[_6 30° 16]®Q WD4B(11):[_6’ 30° %]®Q (3.124)

where [hy, ha, h3] = E(%, h1) ® C(%, h2) ® C(%, h3), and Q is the 2-dimensional
representation of the quaternion group of order 8. The resulting modular S matrix of this
theory is then

Y- v- § E ve v+ € § —w o o A

Y- v- § E ve v+ & § o —0—0 —i

& & —v- v 56—y v+ 0o o A —0

£ & vy —v-—§—-§ v —y- 0 A o —0

Y+ Vs —g —g Y- V- —g —g A —0 —0 —w

Yo v+ —=§ =& y-y- =§ =& —A o o0 o
S=l% % v ¥ 6y y —0o-0-ho (3.125)

£ & vy —v-—€—-5 v —y-—0 —A-wo

—-w w o o A —A—-0 —o 0 0 0 O

o —0 A —o0coc —owo —A 0 0 0 O

o —o A w —o0 o0 =2 —o 0 0 0 0

A —A —0 —0 —ww o o 0 0 0 O
where we have defined y1 = %(5 :I:«/g), w = \1@;’ A=5 + \L@,E = ﬁ, and

o =

\/LTO' The £(% ,0) ®/J(17—0, 0) ®£(% , 0) subalgebra of W,p defines a deconstruction
of the monster stress tensor as

T = D@ +1 0 @) 410 2) +7(2). (3.126)

This decomposition makes it clear that this chiral algebra can be obtained from an iterated
deconstruction whose intermediate steps involve the baby monster VOA and the VOA
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W, with 2Eg(2).2 symmetry. Indeed,

b ir(t () h
ViD Virt'?) ® VB
7 ~
S Vir(t ) @ Vir(r ") @ Wp, (3.127)
7 A ~
S Vir(t D) ® Vir(t, ™) @ Vir(ty ) @ W
so that in particular, VT}D@, — VT}DZA < VB! < V&
The monstralizer [ D4p 02.F4(2)].2 predicts that the inner automorphism group should
be F4(2). One can see this from the embedding chain above as follows. The algebra Wp,;
A ~
arises from deconstructing a central charge 110 conformal vector tz('o) off of Wp,,,
and the Z, fusion algebra automorphism of the £(17—0, 0) VOA it generates lifts to an

element of the 2D conjugacy class of 2Eg(2).2 C Aut(VvDZA). We can thus consider
7

Centag, () 2, (2D) = Zp x F4(2), which will stabilize tz(m) as well as the stress tensor of
Wh,; . and after taking the quotient by the Z, which acts trivially on Wp,,, we are left
with F4(2) acting by inner automorphisms on Wp,;. A character theoretic calculation
in the monster shows that the full automorphism group contains the slightly larger group
F1(2).2

Neither Hecke operators nor MLDEs are effective at recovering the dual characters
X« (T), for the same reasons as in the previous section. We can nonetheless consider the
Rademacher sum attached to the SL,(Z) representation p generated by S* and 7* and
whose singular part takes the shape X, (1) = Rng(Z) (D) = Sa‘oq’% +0(@gY. If
we compute the g-expansion of this Rademacher sum to low orders, we find

Fo(r) =g~ 3 (1 +24310¢% + 1923805¢° + 62596703¢* + 1240094427¢° + - - - ) ,

X1 () = ¢ 30 (1326 +252603q + 1186571142 + 2925233353 + - - - ),
(1) =q% (1105 +262990g + 13533325¢%+3506452304°+6008564575¢* + - - - ) ,
F3(1) =B (1105 +262990g + 13533325¢%+3506452304°+6008564575¢* + - - - ) ,
Xa(1) = ¢ 3 (21658 + 23039254 + 8562954442 + 1841109010 + - - - ),
F5(1) = g7 (833 +270725¢ + 15330770 + 418641184¢> + 7423572325¢* + - - - ) ,
X6(7) = ¢ (23205 +2114970g + 7339614042 + 1513535075¢3 + - - ) ,
%7 (1) — g% (23205 +2114970g + 7339614042 + 1513535075¢° + - - - ) ,
Fs(r) =q10 (52 + 468524 + 34520209 + 107984680 + 2088333312¢* + - - ),
Xo (1) = ¢ 7 (2380 + 490620 + 238326404 + 598421980¢° + - - - ),

X10() = ¢ % (2380 + 490620 + 23832640 + 598421980¢° + - - - ),

X11(7) = ¢ 10 (43316 + 4176900g + 14865255642 + 311318633643 - --) .

(3.128)

One can check that this set of characters pairs bilinearly with the characters x,(t) of
Wp,g» which can be deduced from the decompositions in (3.124), to produce the partition
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function of V¥,

J@®) =) Xa(O)Fa(T) (3.129)

which is consistent with a diagonal decomposition of the moonshine module of the form

Vi D Woys (@) @ Wiy (). (3.130)

Furthermore, we observe for example that the leading coefficient of each component
is always the dimension of an irreducible representation of 2.F4(2) (i.e. a projective
irreducible representation of the predicted inner automorphism group, F4(2)). Further-
more, for each character which appears with multiplicity 2, twice the leading coefficient
coincides with the dimension of an irreducible representation of 2.F4(2).2, which is
consistent with our prediction that this theory inherits an order 2 outer automorphism
from the monster; this outer automorphism evidently exchanges pairs of modules that
come with the same character.

We conclude this section by describing the algebra Wp,,, in terms of an P (2) @ P(8)
subalgebra, which makes some of its symmetries more manifest. We claim that the char-
acters which arise from (3.124) can be alternatively expressed in terms of parafermion
characters as

X0 = W(Z)W(S) 1//(2)1#(8) 1,0(2)1#(8) W(Z)‘//ég)m
X1 = 1p(2)w(8) + lﬁm’,ﬁ(g) + 1p(2)w(8) + w(2)¢§83’
X2 = VaaVio + Uaovit. X3 =ViaWilo +VaoVi.
Y4 = I//(2)1'/,(8) n Ip(2)w(8) Ip(2)¢(8) " 1/[(2)1//6(8)4’
15 = V208 + v 208+ v B+ By ®, 3.131)
X6 = VaaVia + Uiowio. X1 =Viavih +Vaovi.
Y3 = 1//(2)1/f(8) + l//(Z)K”(S) + 1/,(2)1/f(8) + l//(2)w§8)2,
Yo = I//(2)1',,(8) n Ip(2)w(8) . X0 = 1//1(2)111(8) " Ip(2)w(8)
X11 = 1p(Z)I//(g) 1//(2)1#(8) W(Z)W(g) 1ﬁ(2)l//(8)
Indeed, from these expressions, one can check that fusion algebra automorphisms of

P (8) lift to Z4g in the monster.

3.2.8. (Dag, 2.21%22.C0,): Second Conway group We now consider the commutant of
Whp,g - It turns out that if two 2A involutions have product residing in 2B, then their
corresponding conformal vectors of central charge % commute. This means that the
W, subalgebra is a decoupled pair of Ising models, Wp,, = ﬁ(%, 0)® E(%, 0), a
case which has already been considered in [99]. We are therefore brief and refer readers
to (loc. cit.) for additional details.

To compute the automorphisms that its commutant inherits from the monster, we
note that the group Centyp(Z X Zp) = 221422 (o, stabilizes the stress tensor of Whog»
and therefore its image under the map in equation (2.98) acts by automorphisms on
the commutant Wp,,. The Z, x Z, being centralized is the automorphism group of



J.-B. Bae, J. A. Harvey, K. Lee, S. Lee, B. C. Rayhaun

the fusion algebra of Wp,,, and it is not difficult to see that it acts trivially on WDZB.
Therefore, after taking the guotient29 by this group we are left with 2%2.Co as the inner
automorphism group of Wp,,. We conjecture that it inherits a further order 2 outer
automorphism from the monster so that Aut(WDZB) = 222 C0,.2, consistent with the
monstralizer in which it participates.

We note also that this VOA embeds into the baby monster VOA. Indeed, it arises
from an iterated deconstruction of two Ising models,

Vio L(1,0)® VB

: 1 ~ (3.132)
D L(3,0) ® L(3,0) ® W,

and so in particular, it can be described as the commutant of a particular Ising subalgebra
of VB. This means in particular that the characters of WDzB can be bilinearly combined

with the characters of the Ising model to produce the characters of VB,
The VOA Wp,, has 9 irreducible modules Wp,, () fora = 0,1, ..., 8. One can
express their characters as

0@ =X OxH @, 0@ =xOxO, eo =)o,

16 = x5O @) xa(@) = X OxH 0. x50 = XX ).
x6(1) = x(3)(f)x(3)(f) 0@ = X 3O @, () = XG)(I)X(S)(I)

(3.133)
Its commutant has 9 dual modules, VNVDZB (o) fgra =0,1,..., 8. The moonshine module
decomposes simply in terms of its Wp,; ® Wp,; subalgebra as
8 ~
VEZ P Wy (@) @ Wiy, (@). (3.134)
a=0

In (loc. cit.), the characters X, (t) of the 9 dual modules were obtained as solutions to
an MLDE,

[D6 + 11 E4(0)D* + 2 E6(1)D? + 3 B3 (1)D? + jua E4 (1) Eg(t)D + pus E3 (1)

E}(t) s  Ej(v)_ 5  Ef(D) 1~
4 U ER(T) + 7 DT g D g D (1) = 0
6 E6(7) E6(7) Ee(r) 1™
(3.135)
with the coefficients u; given by
264772 8427173 59897974 1088454577
== F) - _l—, = -, =l
M="56 > 12 o2 = 1 82044 ° M7 ' 995308
0 355540976 , 264773 59897973
=Y = —Comiara =17, =1 , = —j—
s 1o = "S971068 * M7 Hs 576 ° M 82044
(3.136)

29 We use the fact that 21+22.C02 has a Z normal subgroup which leaves 222.C02 after taking the quotient
[114].
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Here we comment that they can alternatively be expressed as Hecke images of the
characters x(7) of Wp,,. Specifically,

X0(7) = (T3 x)0(0), X1(v) = x2(v) = (Tazx)1(2),
X3(7) = xa(v) = (T x)3(r), xs5(v) = (T x)s(1), (3.137)
X6(1) = X7(7) = (T2z x)6(1), X8(r) = (T3 0)8(7).

To construct modular invariant bilinears, one can consider the matrices G; with 02+
23 = 0 mod 24. There are eight solutions £ = 1,5,7,11,13,17,19, 23, and their
corresponding matrices are identical. We choose G5 whose entries are 0 except for the
entries

0,0), (1,2), 2,1, (3,4), 4,3), (5,5), (6,7), (7,6), (8,8), (3.138)

which are equal to 1. One can then show that the characters x (7) and their Hecke images
pair to produce J (),

J(@) =T (1) -Gs- x(1) (3.139)

so that we identify x(7) = GST (Tazx) (7).

Finally, we note that analogous remarks apply to this deconstruction as the ones
made in Sects. 3.1.4 and 3.2.4 about Wz,, and Wp,,. In particular, because Wp,, =
E(%, 0)® E(%, 0) = Vj with L = 27 a rank one sublattice of Apcech generated by
a vector of norm-squared 4 [64], we may realize VT]DZB as a Zp orbifold V% of the

¢ = 23 lattice VOA attached to its orthogonal complement L = Lt in Apeech. From
this perspective, the fact that the inner automorphism group of W,p is an extension of
Coy is related to the fact that Co, stabilizes L [104]. One can indeed check that the
Dg®. 6D 6D 60 6D where
i = 1,2 and A" is a generator of the discriminant group L* / L = 7Z4. This description
also establishes that WWp,, contains Wp,, as a subalgebra: indeed, this follows from the
fact that L contains the lattice (3.91) on which WD4 » 18 based.

g-expansions of the ¥, agree with the characters .§1(L

3.2.9. (D3¢, Th): Thompson group Finally, we consider two conformal vectors e and f
of central charge % whose associated involutions 7, and 77 have product residing in the
3C conjugacy class. We will take our subalgebra of V'’ to be the VOA W, generated
by these two conformal vectors [112], and argue that its commutant WD3C, as well as
its modules, enjoy an action by the Thompson sporadic group, Th. We therefore refer to
this chiral algebra as VT*.

First, we discuss some of the properties of Wp,.. It admits several descriptions in

terms of simpler models. For example, it is known that its ¢ = % stress tensor can be
deconstructed into two conformal vectors with central charges % and %,

1) = 1D () + 13 (2). (3.140)

Therefore, Wp,. admits a subalgebra of the form L(%, 0)® E(%, 0), with respect to
which it decomposes as

Wpie Z[0,01®[0,81 0[5, 210 [3. 210 [15. 3510 [15. 121 (3.141)
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where [y, ho] = /3(;, h)) ® ,C(%;, hy). Its irreducible modules are also known: there

are exactly five with highest weights (0, 2 1 1— 1— i %), and the non-vacuum modules
decompose as

WD3C(1)’£[0,11]@[ %]@[% ]EB[ 301]@[%’%]@[%’%]7
W@ Z [0, 1010, 3] ® 3. 351 ® (3, 531 [15. 1551 © [7. 156]:
WD3C(3):[O’H]@[ %]@[; 22]@[ 7] 69[11—6,%]@[11—6,%],
Wi @ =10, 1010, 21 @[3, 510 [5. 571 @ [15. 12l @ [15. ]

Alternatively, there is a parafermionic description which makes some of its symmetries
more manifest. Indeed, Wp, is an extension of the level 9 parafermion theory P(9)
by its two irreducible modules with integral highest weight. Abbreviating (¢, m) :=
PO, [£, m]), we have

Wpa(0) = (9,9) @ (9,3) @ (9, —3),
Whpy (1) = (2,0) ® (7, 3) & (7, =3),
Wpsc(2) = (4,0) & (5,3) @ (5, =3), (3.143)
Wps(3) = (6,0) ® (3,3) & (3, =3),
Wpyc(4) = (8,0) @ (8,6) & (8, —6).
It follows that the characters,
Xa(T) = Tryy,, (g™ 5 (3.144)

can be expressed either as sums of products of minimal model characters, or sums of
parafermion characters. For example, in terms of parafermion characters, one has

X0(T) = Yo (T) + YSA(T) + U 4 (T),
X1(0) = Y30 (1) + YA (D) + 3 5 (1),
X2(1) = Yo (0) + YT + Y (1), (3.145)
X3(1) = Yoo (@) + YA + ¥ 5 (1),
Xa(T) = Y0 (1) + U () + g6 (0.

The five characters (3.145) transform under S and 7 as

=D =Y Suprp(. xaT+ D= Tupxp(D) (3.146)
B B
where the S-matrix is S given by
sin{; cos252—’£ 0052% cos 3275 s1n21—’1’
5 cos52’2f sinﬁn —cos'5 %’5 —sind& 1 cos22
= —— | cos& —coszZ cos2E —sinZE  sind- (3.147)
J11 2 22 2 o L

T .

COS222 —Slnﬁ —SIHW cos 25 2% —COS§—2
T s TT T

SingT  COS355 Sin{; —COS%55 —COS55
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and the T-matrix 7 reads

. 4mi Smi 32w 2mi SO0mi
T =diag(e 33,3 ,e33 ,e33 ,e 33

(3.148)

Now, the parafermion theory enjoys a Zg automorphism of its fusion algebra, which
acts on the characters as

V(@) = MY (1) (3.149)

where ¢ = %" This symmetry can be lifted to an automorphism of Wp,., and even
further to an automorphism of V¢. However, since the modules (£, m) of P(9) which
appear in the decomposition of Wp,. all have m = 0 mod 3, only a Z3 acts non-trivially.
The generator w of this Z3, thought of as an element of the monster group, lives in the

3C conjugacy class, and is equal to the product 7, 7y of Miyamoto involutions associated
to the two ¢ = % conformal vectors e and f* which generate Wp,..
Now, the centralizer of D3¢ in the monster is given by Centyg(D3c) = Th. If we

decompose the dimension 2 subspace V2D with respect to the action of Th, we find that
V2t1 " 19101®3-4123 ¢ 30628 @ 30875 @ 2 - 61256. (3.150)

We claim that the 3-dimensional subspace on which Th acts trivially is spanned by
Ct3)@C (1))@ C(F) withT the stress tensor of the commutant, VT, This in particular

implies that Th is a subgroup of the stabilizer group of t = 13 4 t(%), and so from the
homomorphism Stab (v (1) — Aut(Comy: (Vir(r))) = Aut(VT?) in equation (2.98),
VT* admits an action of the image of Th under this map by automorphisms. Because
Th is simple, it follows that the map restricted to Th has trivial kernel, and therefore all
of Th acts. Its simplicity also implies that Th acts by inner automorphisms, and so all
the modules of VT® will also be Th symmetric. Furthermore, because D3c x This a
maximal subgroup of M, and Dsc acts trivially on VT, it follows that VT® can inherit
no additional automorphisms from V.

Now, This a maximal subgroup of B, and so it is natural to wonder whether VT can
be obtained by deconstructing the baby monster VOA, VB, In fact, it is straightforward
to see that we can obtain VT via an iterated deconstruction, in which we first strip off
the central charge % conformal vector to obtain VIB®, and then strip off the central charge

% conformal vector to obtain VT%. This demonstrates that the Thompson VOA embeds
into the baby monster VOA, [,(%, 0) ® VT! — VB!,
We will now produce evidence for this symmetry by considering the dual characters

X VT (@) (T) of VT! in V. We claim that they are solutions to the fifth order differential
equation,

[ D% + 111 E«0)D* 4 12 B (0D + 113 EXOD + 1a E4(0) Es (D) | sty o0 (1) = 0,

_ 4137? 84573 8618717* 11251983367°

=g 2= 159 107811 ° M4 77391353093
(3.151)

13 =
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Table 6. Decompositions of the graded components of the modules VT () into irreducible representations
of Th

o h VT (@),
0 0 1

2 1@ 30875

3 1 ® 30628 @ 30875 P 2572752
1 20/ 30628

31/ 30628 & 30875 & 3376737
2 16/11 4123

2/ 4123 @ 957125
3 2/ 61256

2/ 61256 & 957125 @ 4936750
4 B/ 248

24/ 248 @ 147250

whose g-expansions are given by

Xvre (o) (1) = g~ (1 +30876¢2 + 26342564 + 90061882¢* + 18559675204
+27409643240¢° + 3179853200084 + 3064708854915¢% + - - -),

Xvrey (D) =4 T (30628 + 34382404 + 1329443682 + 295470200843 + 459761231264
+5545831750404° + 5510740058664¢° + 46939446922208¢” + - - -),

Xy (T) = ¢ 5 (4123 + 961248 + 4992574842 + 13153924964 + 229536631264
+301143085728¢° + 31934903448564° + 28662439021248¢" + - - -),

Xy (1) =4 3 (61256 +5955131¢ +216162752¢2 + 4622827508¢° + 700511974884*
+828481014062¢° + 8106388952544¢° + 68191291976248¢" + - - -),

Ayt (T) = g7 (248 + 1474984 + 1010748842 + 30897551243 + 5936748000¢
+83455971224¢° + 9328666349764¢° + 8730997273664¢" + - - - ).

(3.152)
One can check that
J() =) X Xyr) (D) (3.153)
o
which suggests that the moonshine module decomposes as
Vi P Whye (@) @ VT (). (3.154)
o

The decompositions of the low-lying coefficients of the yy:,, into dimensions of
irreducible representations of Th are fixed by the bilinear relation equation (3.153)
and the known decompositions of the coefficients of J into dimensions of irreducible
representations of M. For instance, the first few leading coefficients of (3.152) are
decomposed as in Table 6.

As a consistency check, one can twine the characters of Wp,. by their D3¢ automor-
phism,

_2
Xe.a(® = Trwy, @8d" (g € Dso) (3.155)
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and/or the characters of VT" by elements of Th using Table 6,

31
Xyt () = Tryge o) hg" ™ (h € Th) (3.156)

and observe that they satisfy e.g. (at least to low order in the g-expansion)

T =Y Xoa@Xyrw @ I@ =Y xaOXyr@a® (3157

where w is one of the elements of order 3 in D3¢, and more generally,

Jgh(r) = ZXgaW(T)XVTﬁ(o{),h(I)' (3.158)

In the above, we are thinking of gh € D3c x Th < M. As an illustrative example, we
present the twined character for £ taken from the 2A conjugacy class of Th, which can
be computed using the data in Table 6 and Tables 7, 8, 9, and 10 in appendix B.

Xv1e0),24(0) = g% (1 + 1564 — 1008¢° +- ) ,
S 17
XviEyaa (D) = g5 (=92+672q + ), Xyppaa() =qF (27 -288¢ +---),

3 8
Xvr@y2a(T) =q3 (72 =453q + ), Xyp@a(T) =g (=8+42g +---).
(3.159)

It is straightforward to see that
Z X (O Xy T @y 2a (T) = = + 276q — 2048¢> + - (3.160)

where the right-hand side corresponds to the Mckay-Thompson series of the 2B class
in M. Generalized bilinear relations for arbitrary conjugacy classes of Z3 x Th can be
determined by how they fuse into conjugacy classes of the monster group. These fusion
rules can be computed with Gap [108], and we present this data in Table 12.

Moonshine for the Thompson sporadic group has been studied in another context [19],
but to our knowledge, the chiral algebra VT? does not have any obvious relationship to
the automorphic forms which arise there.

3.3. Other monstralizers. 1t is worthwhile to ask whether or not there are M-com pairs
beyond the ones we’ve discussed. One immediate example arises by considering the
monstralizer pair G o G = Zop 0 2'*24 .Co; which is intimately related to the original
construction of V7 by Frenkel, Lepowsky, and Meurman [6,8,53] as a Z, orbifold of
the Leech lattice VOA. Calling A := Apeech, the orbifold construction implies that the
monster CFT can be decomposed as

Vi=Vi® Vi) (3.161)

where V3 (0), in physics language [52], is the space of Z;-invariant states in the twisted
sector of the orbifold. In this picture, the generator of Z;p is the automorphism which
acts as +1 on V} and as —1 on the twisted states in V} (o). The group 2!+2*.Coy is then
interpreted as the collection of automorphisms in the monster which maps untwisted
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states to untwisted states, and twisted states to twisted states, i.e. which does not mix
V1 and VJ (o). In the language that we’ve been using in this paper, we would then
say that Aut(V}) = Inn(V}) = 224.Co; (which is related to the fact that 2.Coy is
the automorphism group of the Leech lattice) and that the fusion algebra spanned by
{V{, V5 (0)} has a Zo automorphism. This suggests defining W = V5, which will then
have most of the nice properties required of an M-com pair. However, this would force
us to define Wg to be the trivial CFT, in which case W, Wg) are not each others’
commutants. This example is therefore a somewhat degenerate case of the M-com pairs
we have been considering.

Despite this shortcoming, the VOA V} does seem to respect the structure of
inclusions of monstralizer pairs. For example, the monstralizers (Zaa, 4.222.C03),
(Daa, 2'%22.McL), and (Dsg, 2.2'*%2.Co;) all include into (Zag, 2'*?*.Coy), and the
chiral algebras Wz,,., Wp,,, Wp,; correspondingly each embed into V} because each
is a charge conjugation orbifold V% with L C A. One can see this explicitly at the level

of characters. The graded-dimensions of V} and V} (o) are given by J,(t) and J_(7)
respectively,

. 1 @A(T) 24\ l ®A(T) 77(7:)24
Jo(r) = > <TI(T)24 + o.1(7) > ) <n(‘t)24 " r}(2r)24>7

ST 2 W\ 1 nQon/*
@) = 2" (@100 = &1 (0)*) =2 <n(f/2)24_ o)

(3.162)

where © 4 (1) is the theta-function of the Leech lattice, which satisfies © 4 (7)/n () =
J(t) + 24. These characters can be decomposed into Wy,, ® Wy,, characters as

L= Y xa(®Xal(D)
«=0,3,4,7,8,9

= ) X@®a()

a=1,2,5,6

(3.163)

where xq(7) and Xy (7) are given in equations (3.38) and (3.39). Into Wp,, ® VT/DM,
they decompose as

8

J(@) =) Xa(®)Fa(r) (3.164)
a=0

T (0= Y xa(DXal(r) (3.165)
«=9,10

where x4 (t) and o () are given in equations (3.95) and (3.98). Into Wp,, ® V~VD2B
characters,

LO= ) r®i),
a=0,1,2,5,8

M= ) XX (3.166)

a=3,4,6,7
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where x,(7) and X, (7) are given in equations (3.133) and (3.137).

It is more interesting to ask if the idea of M-com pairs has a chance at recovering
chiral algebras whose inner automorphism groups are precisely sporadic groups. For
example, there are at least three other monstralizers

[GoG).H =1[7:3 x Hel.2, [Zep 0 6.Suz].2, [2x5:4)02.HS].2  (3.167)

with the property that G / 2(5 ) is exactly a sporadic group, so any monstralizing com-
mutant pair which uplifts these would give rise to chiral algebras one might justifiably
call VHe?, VSZ%, and VHS?. Do such M-com pairs exist?

For concreteness, we will present an argument for the existence of VHe", and then
make some comments about more general monstralizer pairs.

Claim. There exists a chiral algebra VHe" with He.2 automorphism group (and conjec-
turally He inner automorphism group) which is a commutant subalgebra of both VFg4
and V*. Thus, the VOA participates in an embedding chain

VHe! < VF}, < V° (3.168)

which mirrors the inclusions of the corresponding monstralizers,

He <> 3.Fi,, <> M. (3.169)

The sketch of a proof is as follows. Our goal is to realize VHe" as a commutant
subalgebra of VFg 4> the Fischer VOA. In order to do this, we must find a decomposition

of the stress tensor 7' (z) of VPg4 into a sum of two conformal vectors of smaller central
charge, T (z) = t(z) +7(z). To find a decomposition which respects the Held symmetry,
we decompose the Griess algebra of the Fischer VOA into He representations via a
character theoretic calculation,

(VEy,)2 . 1@ 16 (non-trivial) (3.170)
(o4

which reveals a 2-dimensional subspace fixed by He. The same is true if one decomposes
(VFg4)2 with respect to He.2. This means that the subVOA (VF%4)H6, consisting of states
fixed by He, has a 2-dimensional space of dimension 2 operators, i.e. a 2-dimensional
Griess algebra. On general grounds, it must be spanned by the stress tensor 7 (z) and a
single Virasoro primary. This was precisely the situation considered in Sect. 2.2, where
it was found that such a theory always admits a unique deconstruction of its stress tensor
T(z) = t(z) +1(z) into two commuting conformal vectors ¢ and 7 of smaller central
charge. By virtue of the map (2.98) and the fact that He is a simple group, it must act
entirely on either Comvpg4(\/'jr(t)) or Com VE, (Vir(1)) as the only other possibility is

that it act by an abelian group of diagonal fusion algebra automorphisms; we assume
without loss of generality that it acts on the former and define

VHe" = ComVFL(Vir(t)) (3.171)

which is a theory with at least He symmetry. Further, because He.2 is maximal in Fiyq
[109], VHe can inherit no more automorphisms from Fip4 than just He.2. We suspect
that it does inherit the full He.2 with the extra order two element acting as an outer
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automorphism, and that the theory VHe" and its commutant in V? furnish an M-com
pair corresponding to the monstralizer [7 : 3 x He].2. O

There are two important general takeaways from this argument. The first is that, if
an M-com uplift of a monstralizer [G o G].H exists, and if the Griess algebra of &
decomposes into [G o G] H' representations with two singlets, i.e.

Vil . Z1@®1® (non-trivial irreducibles) (3.172)
[GoG1.H’

then the pair \Wg, Wg) is uniquely determined. This is the case, for example, for
[Go C~;] H = [Zep 0 6.Suz].2 = 6.Suz.2. The second takeaway is that, in the cases that
more than two singlets appear in the decomposition of V2 with respect to the monstralizer,
one may be able to find an intermediate M-com pair Wk, W) with G <> K and try
to realize the putative VOA Wg as a commutant subalgebra of Wg. We suspect that
such arguments could play a useful role in iteratively defining the full suite of M-com
pairs Wg, Wg), albeit non-constructively.

Unfortunately, such arguments do not immediately reveal the central charge of e.g.
Whr.3, which is necessary for a detailed understanding of VHe" = W7 .3, including the
computation of its dual characters. However, there are various properties we can expect.
First, one can read off from the monstralizer that Inn(J/7.3) = 7 : 3. Furthermore,
in order for VHe’ to embed into the Fischer VOA VPg4, W;.3 should contain a P(3)
subalgebra. Actually, since the Miyamoto lift of the Z3 fusion algebra automorphism
of this P(3) subalgebra will give rise to an order 3 element in 7 : 3, there should be 7
P(3) subalgebras which are permuted amongst each other by the generator of the Z;
normal subgroup. We leave a more detailed study of these issues to future work, and for
now provide a character theoretic calculation related to an algebra U which “may sit in
between VHe and V7, i.e. VHe? <> U{ <> V7 (though we emphasize that I/ does not
participate in an M-com pair).

Our starting point is the observation that the Held group appears in connection with
the centralizer/normalizer of the cyclic subgroup generated by any element from the 7A
conjugacy class of the monster,

Centy(7A) = Z7 x He,  Nm(7A) = (7 : 3 x He).2 (3.173)

with (7 : 3 x He).2 a maximal subgroup of M. A natural way to try to realize order k
cyclic subgroups of the monster is by finding a P (k) parafermion subalgebra and lifting
the order k automorphism of its fusion algebra to an automorphism of V. In this case,
we might try to locate a 7°(7) subalgebra of V!, and study its commutant.

Before proceeding, we should establish that such a subalgebra exists. First, it is known
(c.f. the discussion around equation (2.89)) that the lattice VOA based on V2 A o0t (Ak—1)

contains a P (k) subalgebra, which in fact survives in V* as well [66]. Second,
\/QArool (Ak— 1 )

it is also known that ~/2N is a sublattice of the Leech lattice Aleech for each Niemeier
lattice3® N. Furthermore, there is a Niemeier lattice N (Ag) based on the root system

A¢, which implies the chain of embeddings
+ + + i
PO =V mian = Yoavas 7 Vivea =V (3.174)

30 The Niemeier lattices are the even, positive-definite, unimodular lattices of rank 24.
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where in the last step, we used the fact that V1 is a Z, orbifold of the lattice VOA based
on Apeech. This establishes the existence of a P(7) subalgebra; we call its commutant
U, which we expect admits an action of He. There will then be a decomposition

Vi= P P.1e.m) @ UL, m) (3.175)
(&m)

withid 7,7= u ,and theld (¢, m) furnishing representations of . We will give evidence
momentarily that the Z fusion algebra automorphism of P(7) lifts to an element of the
7A conjugacy class of M.

Once again, we employ Hecke operators to get our hands on the graded-dimensions
of the I/ (¢, m). The Z7 parafermion theory has 28 different primary fields. We order the
characters x, of the corresponding highest weight modules as

7 7 7 7 7
X0 = 1/f7(7) X1 = tlfl(l) X2 = t/fﬁ(ﬁ) X3 = 1/f2(2) X4 = 1/f5(5)
7 7 7 7 7
=35 Xe=Vii x1=130 XS=w§,11, xo = V31,

7 7 7 7

X10 = I/fi,lz, X1 = %ﬁ%, X2 = ’ﬁs 23 X13= I/fs(g) X4 = ﬁé,
7 7

X15 = 1//6(,14, X16 = 1#6 4 X171 = 1ﬂ7,_5, X18 = 1/f7( 5) X19 = Ws 1
7 7

X20 = 1/f5(1) X21 = % oy X2 = wé,g, X23 = 1/f6 0 X4 = 1/f7,_3,
7 7

X5 = V33, xae =3y, xor = U, (3.176)

which have conformal weights

h= (0, k., k3. 3 2 2 28 8 11114141
- > 217212 63 637 21221292 21 217 212 21’ 63° 63° (3177)
216166659592525410101212) '

3°21°21°7°7°63°63°21°21°3> 7> 7 717

The conductor is given by N = 126.

The central charge of P(7) is ¢; = 3, and so the central charge ¢; of U is ;=
24 —¢; = 17¢;. Since (126, 17) = 1, we may consider applying the Hecke operator T 17
to x. Using the modular S matrix of the characters x provided in equation (2.47), one
readily computes the g-expansions of their Hecke images,

(T17x)0(x) = ¢~ 18 (1+15810g° + 1375232¢> +47653839¢* + - - ) ,
(Ti01(x) = g2 (204 +97563¢ + 639237447 + 191594522¢° +3643081640g" +-- ),
(Ti7x)3(x) = g% (51 +55284q +4454595¢” + 148169790¢° +3009822273¢% + - - -) ,
(Ti7x0)5(x) = q 1% (1955 + 4489024 + 2321849847 + 612398140g% +-- - ) ,
(Ti70)7(x) = g+ (11679 + 1432080g + 57855030¢7 + 132334565447 + - - -,
(T1i708(1) = g% (27234 + 2721020q + 1004478324 + 217562341647 + - -) ,
(T173010(z) = 1% (5084 + 8369614 + 382860064 + 941558481¢° +--- ) ,
T 12(0) = ¢ 2 (26112 +2548623¢ + 930752047 +2002645050° + - - - ) ,
(T17014() = g5 (680 + 2342264 + 138985204 +395054092¢% +---) ,
(Ti7x0)15(x) = g~ 1% (1+10404g + 1210230¢° +47772074¢> + 1077610433¢* + - - ) ,
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(Tix0)17(2) = ¢ 1% (153 +65212g + 405453447 + 118328160¢° +-- ),
(T17x019(z) = 3 (681 +221646g + 1294839042 + 3648958204° + - - - ),
(T17x)21(x) = g 1% (22984 + 21448564 + 76669456¢% + 1628223858¢° +-- - ,
(T170)23(1) = % (4454 + 6688484 + 2944107647 + 7080766564 + - --)
(T1750)24(7) = g% (51 + 32504 + 238139492 + 75441121¢% +---) ,
(T173026(z) = q 7% (1275 +236980q + 112692494 + 283574263¢° + - - -,

and

M7x)2(0) = Ti7x0)1 (), (T17)04(0) = T17)03(0),  (T17)06(r) = (T17x)5(7),
(M7x)9(r) = (M17x)s(x), (T (@) = (Ti7)010@),  (Ti171)013(0) = (T17)0)12(7),
M7016(0) = (T17015(®),  (T11)018(0) = (T17017(7), (T1730)22(7) = (T17))21 (7).

(M17x0)25(7) = (T17)024(v),  (T17)0)27(7) = (T17X)26(T).

If we are to identify these functions with the graded dimensions of the u (€, m), they
should fit into a bilinear with the characters x which produces J (7). From the general
theory of such bilinears, we must solve the equation

89 + 2 = 0 mod 126. (3.178)

for £, and consider the matrices G (c.f. Sect. 2.3.2). It is straightforward to see £ = 17,
53, 73, 109 are the available solutions, and the corresponding matrices are identical up
to sign. Namely,

G17 = G1o9 = —Gs3 = —G73. (3.179)

So, without loss of generality, we can work with G 17, which is O in each entry, except
for the entries

0,0), (1,15), (2,16), (3,19), (4,20), (5,11), (6,10), (7,7), (8,6), (9, 5),

(10,9), (11, 8), (12,4), (13,3), (14, 14), (15,22), (16,21), (17,26), (18,27),

(19, 12), (20,13), (21, 1), (22,2), (23,23), (24, 18), (25,17), (26,24), (27,25),
(3.180)

in which it is 1. One can then show that this matrix furnishes a bilinear with the right
properties,

J(@) = M0 (@) - Gi7 - x(0). (3.181)

As a further check, we can show that the same bilinear is consistent with the Z7 sym-
metry of the parafermion theory lifting to an element of the 7A conjugacy class of

M. Indeed, if one defines the vector-valued function ¥, by making the replacements

2im
‘pgr)n — e 2731 in the components of x, then one finds by direct computation that,

to low orders in the g-expansion,

1
T (@) - Gr7 - xo(t) = . +51g +204g% + 681> +1956¢* + -, (3.182)
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which agrees with the Mckay-Thompson series of the 7A conjugacy class in M, J74 (7).
One can thus identify Xy, (7) := Trﬁ(e’m)qlo’% with the component of GIT7 (Ti7)0).

Finally, we mention that low order terms in the g-expansion of the (T 17 x ), (7) involve
coefficients that are consistent with decompositions into small numbers of irreducible

representation of the Held group. For example, 51, 153 and 680 are dimensions of Held
irreps, 204 = 153 + 51, 1955 = 1275 + 680 and so on.

3.4. Baby monster and Fischer deconstructions from McKay’s correspondence. In pre-
vious sections, we constructed several examples of VOAs as commutant subalgebras of
V%, one for each conjugacy class arising in McKay’s Eg correspondence. As described
in Sects. 3.1.2 and 3.1.3, the baby monster B and Fischer’s group Fix4 enjoy similar
relationships with the Dynkin diagrams of E7 and E6 respectively (c.f. Figs. 4 and 5),

and so we may consider repeating the same kind of analysis for VB? and VFg4. We we

will see that this naturally leads to centralizing commutant pairs in VB? and VPg4.

B-com pairs We start by studying the commutants of the chiral algebras Wp(,x) consid-
ered in [98], whose defining property is that they have two central charge % conformal
vectors whose associated o -type Miyamoto involutions (c.f. equation (3.9)) have prod-
uct lying in the nX conjugacy class of B; we refer to (loc. cit.) for detailed descriptions
of these algebras. In this section, we will label the dihedral subgroup of B generated by
these o-type Miyamoto involutions as D,x. We do not attempt to solve this problem
completely; we content ourselves here with observing that the cases’ WB(z A WBGA),
and WB(QC) are identical to the algebras WDZ A WD3 N VFg3, and WD4B respectively.
This will follow immediately from the fact that e.g. Wg©a) C Wp,,, and so on.
1A case: [Dia 0 2.2E(2)].2

In analogy with the algebra Wp,, considered in Sect. 3.2.1, the algebra Wp(14) by
definition has two conformal vectors e and f of central charge 17—0 and o-type whose
associated Miyamoto involutions o, and oy multiply to produce the identity element of
IB. This implies that their involutions are actually the same, o, = o, and since elements
of the 2A conjugacy class of B are in one-to-one correspondence with central charge
% conformal vectors of o-type in VB, this means that e = f. Thus, we simply have
that Wp(1a) = E(%, 0); further, this algebra sits inside of the 2A case of McKay’s Eg
correspondence, i.e. Wg(1a) C Wp,, . The commutant of such a subalgebra of VB* was
computed earlier (c.f. equation (3.52)), where it was shown to produc;cv V~VD2 > the chiral
algebra with 2 E4(2).2 symmetry. We thus decorate the 1A node of E7 with this chiral
algebra.
2C case: [Dac 0 22.F4(2)].2

The 2C case can be described as a subalgebra of VB’ isomorphic to

WB(ZC) ['(1()7 O)®£(1709 0)®£(10 2)®£(10 2) (3.183)

This is a subalgebra of Wp,. It follows from the iterated deconstruction in equation
(3.127) that the commutant of this algebra in VB is given by Wp,;, the chiral algebra
with F4(2).2 symmetry. We thus label the 2C node of E7 with this group.

31 The algebrae.g. VT}B(]A) is defined to be the commutant of Wg(j ) in VB, while the algebra WDZA is
defined to be the commutant of WDzA in V”; we hope that this notation will not cause confusion.
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3A case: [D3p x Fix].2

The 3A algebra Wp3a) is an extension of P(3) ® P(6). Using the fact that Wp,
has a [,(%, 0) ® P(3) ® P(6) subalgebra, if one performs an iterated deconstruction of
V% with respect to the decomposition

T(z) = 12 (2) + 1) (2) + 7(2), (3.184)

where (30 is the stress of P(3) ® P(6), then it follows immediately that one can realize
W6A as the commutant of Wg(3a) in VB, 1 e. WB@A) Wea, the algebra with Fipy.2
symmetry. We thus label the 3A node of E7 with this group.

Fir4-com pairs We may repeat this analysis once more for the Fischer group, which
enjoys a relationship to the Dynkin diagram of E6, as described in Sect. 3.1.3. We

briefly show that the commutants of Wp(1a) and Wr(2a) in Vl':g4 are isomorphic to

VFg3 and VF;2 respectively. Again, we label the dihedral subgroup of VFg4 generated
by the Miyamoto involutions as D,x.
1A case: D]A,-Z< Fiy3

McKay’s E¢ correspondence concerns the “derived” conformal vectors of central

charge & in VF,,. Thus, just as Wp,, = £(1,0) and Wgaa) = L({5, 0), we have
that32 Wp(lA) £(7, 0) ® [,(7, 5); further, W (1) sits inside Wp,,, . It follows from

the fact that Wp,, = VFg3 admits a E(S , 0 ® £(7, 0) subalgebra, and the iterated
deconstruction performed with respect to the resulting decomposition

T(2) =13 () +1D(2) +7(2) (3.185)

ine.g. (3.77) that Wr1a) = Wy, = VE,.
2A case: [Daa o 22.Fiy].2

Finally, the 2A case admits a subalgebra of the form E(g, 0)® E(%, 0) C Wr(a)
and sits inside Wp,, . It thus follows from the iterated deconstruction considered in
(3.121) that

Wp(zA) = W6A = VPgZ. (3.186)

4. Conclusions

In this paper, we have studied various chiral algebras that occur as commutant sub-
algebras of the monster CFT, and which have interesting, usually sporadic symmetry
groups. In many cases, we were able to obtain the characters of these theories as Hecke
images, as solutions to MLDEs, or both; in all cases, we were able to obtain them as
Rademacher series. Our results are naturally organized via a connection to monstralizer
pairs, a concept which we have extended to the chiral algebra setting by defining the
notion of a monstralizing commutant pair. Although the characters we have found were
not derived directly from the definition of the commutatant subalgebras, they pass a num-
ber of nontrivial consistency checks, and in particular are compatible with the existence
of a number of non-trivial Griess algebras with sporadic automorphism groups.
A number of open questions remain.

32 The appearance of the module L(g, 5) is related to the fact that the conformal vector is “derived.”
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1. Isit possible to find an M-com uplift of every pair of mutually centralizing groups in
the monster? Can one iteratively look for centralizing commutant pairs inside of the
chiral algebras so produced? Will this lead to candidate algebras VG* for every G in
the happy family, i.e. for each simple sporadic group G which arises as a subquotient
of M? What distinguishes such subalgebras?

2. What are the general properties of centralizing commutant pairs? Can they be put to
good use in more general settings besides the monster CFT? -

3. Our use of Hecke operators to obtain the dual characters of WV in V* from the
characters of W required that the central charge of VW be an integer multiple of
the central charge of W, ¢ = gc¢;, and also that the conductor N of the characters of
W be coprime to this integer, (N, g) = 1. Is there a generalization of Hecke operators
which works in the more general case?

4. The baby monster VOA was studied recently in [115], where it was used to probe
the category of topological lines in V7. It was further anticipated in (loc. cit.) that
analogous decompositions of V* could also shed light on its topological lines. What,
if anything, do our deconstructions of V' reveal about the structure of defects in the
moonshine module?

5. Do the chiral algebras we constructed inherit any aspect of the genus zero property
from V%? What characterizes their McKay-Thompson series? Are they Rademacher
summable?

6. In recent work, [116] classified all ' = 1 SVOAs whose even part is a simply
connected WZW algebra (other than E7 >, E%l, and Eg ). The exceptional cases
in the classification have automorphism groups related to a chain of exceptional
subgroups of Co; called the Suzuki chain; the SVOAs arise as subalgebras in the
Conway SVOA V /% [9,10] in a similar manner to how our chiral algebras arise in
V9. Namely, they arise by what one might call supersymmetric deconstruction. Do
our chiral algebras arise as exceptional entries in a classification of rational VOAs of
some kind?
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A. Fusion Rules for the Wan Algebras

In this appendix, we present the fusion rules for some of the theories discussed in the main
text. The structure constants N 07;/3 are computed using the S-matrix of each theory and
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the Verlinde formula, equation (2.17). It turns out that each theory has N, OJ; 8= O or 1 for
all @, B, y. In the cases that we used the block-diagonalization method to determine the
characters of our models (c.f. Sect. 2.1.2), the consistency of the fusion rules provides a
non-trivial check on our results. Because fusion algebra is associative, N wp = = 1 imposes

that \V, g o = 1. Below, we present all the non-vanishing fusion algebra coefficients of the
five theories in Sects. 3.2.2,3.2.3,3.2.9, 3.2.5 and 3.2.6.

List of non-vanishing ./\/;/ﬂ for WDZA

Noo» Nov> Nops Nas» Nows Ngs» Nog, Nogs N N, Ny, Ny, N,

N, N5, Nige Nigo Nio N Ns N By Ms. Mg NS A,

/\/34, N5, Ny, N3y, J\/44, N5, Nis, Nipo N35, Nis, Nsg, Nig, N3y,
N3y, Ngs» Noo» Nego Ngg, N3y Ny

(A1)

List of non-vanishing N’ ;/ﬁ for VT

1 3 4 1 2 1 2 3
Noo» Novs Nia» Nz N Mo My Ny Mg, N, Niy, N N,
1 1
N13, Nl4’ N14s ./\/'22, N22, N22, sz, N22, N23, N23, Nzg, N23, N24, (AZ)
1
24’ NO’ J\/'33, 33» N%’ N34’ N34, ./\/44, N44-

List of non-vanishing N’ ;/ﬁ for VHN?:.

Novs Nots Nias Nass Nows Nos: N Nag» Nog: Moo N7y, MV, M,
Ny, Ny, Nis, Nis, Nig, Nis, Nig, Ny, N, Nig, Nob, Nas, N3,
N3yw Nay, Nas, Ns, Nig, Nags N3z, Nip, Nig, Nog, N3, Nas, N3,
N3y, Nis, Nis, Nig, Nig, Njg, N3 N3y, Nig, Nag, Nig, Ny N,
Nius Niso Nifs, Nig, Nig, Nig, Ny Ny, Nig, Moy, Nig, Ns, N3,
Nis, N3s, Nago Nig, Nggo Nig, N3y, Ny, N&p, NSy, Nig, Ny, N,
NSy, Ngs, Noo» Neg» Neg» Neo» Neg» Ngg» Ngyo Neo Ngg, Neso Nogs
Neg» Néss Neg» Nogs N3y, N3p, N3y Ni5, N3y, N3y Nig, Nig, N,
Nig, Ng, N, Ngg, Nas, Nes, Ngg, N, Mg, Neg, N, Ngs. (A3)

List of non-vanishing N 0’; 8 for VFg3:.

N(?o’ M)ll’ Noz’ /\/()3’ M)4, /\/055, -/\/101’ lel’ Nllzv lev J\/'13, N134’ N154»
N145’ les’ /\/'22, sz’ sz’ /\/'23, N24’ N24, st’ stv st’ /\/33, /\/33’
N3]4’ 34» N/Z’ st» 44’ N447 -/\/445 N44, Ms, N457 N45! N457 N5055
N557 SSv N557 NSSv Nss-

(A4)
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List of non-vanishing N’ g B for Vng

Noos Nots Nz Nz Nows Noss Nogs Noze N Noos Nol%v No 11 Nol,zlzv

No1313’ N N N N Ny Ny Ny Ny, Ny Ny N, Nis,

Nis: Nigs Nize Nig. g, Ny, N, Nl 10° Nl 10° Nl 10 Nl 1 N1 i Nl 11>

N1,12’ Nl 125 N1,13» Nl i3 N3, N, N3y, Ao NGy N3y N3y Nas. N,

NS5, Nag: Nz, N, sts N3y N3, Nz 10° N2910’ Nz 10° N2 11 Nz 11 Nz 11

Nz 12 Nz 12 Nz 13 2 T3 M3 N3y M35, Mg, N3y, N, Ny, N3 10 Ns 1

N3 12 Nz 130 N Nias NGy Ny N2y N44’ Nis. Nis, Nis. Nis. N3s,

Nis: Nigs Nigs Nize Nifp Nig» Nig, Nidg, N, N4 10° N4 10° N4 10° N4 11

N4 117 Nztl(}ls N4 11 N4 11 N4,11v NA?IT N4 12 N4 12: N4 12 N4 13 N4 13- N4 13
4 T3 NS5, Nas, NG5, Nss, NS5, Nds, Nigo Nsg, Ngp, N3y Nig, Nag. N,

NS5 Ns 10° Ns 10° Ns 10° Ns 11° nguv Ns 11 Ns 11 Ns 11° Ns 11’ Ns 122 NS 12

Ns 12: Ns 12° Ns 13 Ns 13 Ns 13 5 T3 N Neo» Nors N&zw Neg» Nes Nﬁ 10°

Ngﬂl’ N 6,12° N6 12° N913’ N6 13> NO’ 77’ N78’ N79’ N7 10° N7 11’ N7 11°
N79,12’ N7,12’ N7,13’ N7,\13’ NE? ’ NSS’ N89’ N89’ N&IO’ NS,]O’ NS,]I’ N&ll’
N85,12’ N86,12’ Ng,l& Ng,lS’ 'Ng ’ N929’ N91,10’ N9,10’ N94,11’ N95,11’ NS{IZ’ N97,12’
N95,13’ N96,13’ NIOO,IO’ N110,10’ leO,IO’ Nl30,10’ Nf‘O,ll’ NISO,ll’ N160,11’ N170,11’
Nl40,12’ N]SO,IZ’ N140,13’ N150,13’ '/\[101,11’ Nlll,ll’ N121,11’ N131,11’ N141,11’ lel,ll’
Nf)l,ll’ Nl71,ll’ Nlll,12’ N121,12’ N141,12’ lel,l2’ N111,13’ N121,13’ N141,13’ N151,13’
NPZ,IZ’ N122,12’ N142,12’ N172,12’ N112,13’ N132,13’ N152,13’ N162,13’ Nl()3,13’ N123,13’
'/\/’fl?:,l?y7 N173,13' (A.5)

List of non-vanishing ./\/O)l/ﬂ for Wp,, -

Nov» Novs Nops Nos» Nows Nis, N, Noz» Mg, Noos Nol,(io’ N, N
Ny, Niy, Nis, Niy, N7, N, N, Nl 100 Voo, Noy, N3b, N3z, N33,
Nay N3y, N3, st» Nig: Nag, Nag, Nay, N, Ng, Ny, Nag, NQlOv
Nz 10 N33, N5, N33, N3y, N3y Nis, Nis, N, N, N3 N3y, N3,
N, N3y, Nig, Na,los N3,1o’ Nis» Nilys Nigo Nis, Nis, Nig» Nig, Nig,
Ni7 Nig, Nis, Nio, Ny, /\54910: N4101()v N5, Nis, N585v N3, Nsg, N3y,
N3, Ngg, N Noo, N3, /\/910» Ns 10 Nb» Nag» Neg» Négo Ny, Negs
Neg» Neo» Ngo Ns 10° N6 10 N7, N7y, N77’ Nig, N, N79: N790: N9107
N7,1® Nis» Ngg Nag» Ngo, N, 8,10° 8 Gor Ny Noos Noos Noo, Ny,
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8 1 3 4 5 6 7 8
N99’ N99’ N99’ N9,107 N;ZJO’ N9,10’ NQ,IO’ NQ 10° N9,10’ %,10’ N9,10’
3 4 5 6 8
NIOO,IO’ N/120,10’ N10,107 N10,107 NlO,lO? NlO,lO? NIO 10° NIO,IO (A.6)

List of non-vanishing ./\/;/ﬁ for WD4B

N(g)O’ N(}l’ NOZ’ NOS’ N04’ NOS’ N06’ N07’ NgS’ '/\/097 NO 10° NO 11° Nlol
N16 ’ N17%’ N14’ NIS’ Nl6’ N]7’ N]S’ '/\/]97 '/\/]1(%07 Nl 11’ NO ’ N22’ N;%’
N234’ N24’ NZSS* NZS* N216* 26’ N27’ '/\/9 ’ N29’ '/\/9 ’ 2 107 N2 11° NZ 11°
NO ’ N33’ 34’ N34’ NSS’ NSS’ N36’ N37’ N37’ N38’ N39’ N?a 10° N3,10’
N3911’ NS 11° Né(l)4’ N44’ N44’ N44’ N45’ N45’ N45’ N45’ N46’ N46’ N27’

N47’ N48’ N49’ N4191’ MIO’ N4 10° Nfll’ '/\/4?117 N4 11° N4 11’ NO ’ N525’ NSS’
NSS’ N56’N N57’ N57’N N59’ 59’N910’ NS 10° NS II’N’QII’NS 11’
511’N0’N66’ N67’N69’N69’ N69’ N6]0’ Nﬁll’Nﬁll’NO’ 77’ 71é)’
N79’ N7,10’ N7,1()’ N7 11 N71,111’ NSS’ NSS’ N89’ N89’ NS 10° N&IO’ NS,I]’ NSS,II’

Ng ’ N919’ N929’ N969’ NQ,IO’ N95,10’ /\/-9,117 NQ,II’ N9,11’ N9,11’ NIOO,IO’
NIIO,IO’ N130,10’ N170,10’ le(),]l’ N140,11’ NISO,II’ N160,11’ Nlol,ll’ Nlll,ll’ lel,ll’

3 4 5 6 7
Nivie M Mo N Moo
(A7)

B. Group Theory Data

In this appendix we provide, for a few examples, the group theoretic data necessary for
analyzing twined bilinears.

Let us start with a somewhat general discussion of how characters of V and W, twined
by inner automorphisms, can be bilinearly combined to produce twined characters of
the VOA V in which they sit as commutant pairs. We assume for simplicity that V is
a meromorphic CFT with partition function Z, that Inn()}/) x Inn(WW) C Aut(V), and
that the inner automorphism groups are realized honestly on the modules of VW and
W which appear in the decomposition of V' (as opposed to projectively). Under these
assumptions, there will be generalized bilinear relations of the form

Zen(®) =Y Xe.a () Tna(7) (B.1)

which arise by taking the graded trace of both sides of the decomposition

V=Pwee W(a). (B.2)

Because the graded characters are class functions of the associated groups, one only
needs to know how the conjugacy classes of Inn(JV) x Inn(JV) fuse into the conjugacy
classes of Aut()). For illustrative purposes, we take )V = V% and provide the necessary
data for the cases (W, W) = (Wsa, VHN?) and Wp,., VT?) in Tables 11 and 12:



Conformal Field Theories with Sporadic Group Symmetry

namely, information about how conjugacy classes of HN = Inn(VHN?) and Z3 x Th C
InnOWp,e) x Inn(VT") fuse into conjugacy classes of M. One can use this data to
conduct checks on our proposals regarding the implementation of the symmetry groups
in these two examples. For example, a prediction of Table 12 is that

J6e(1) =D Xoa (D) Xoa vt (T) (B.3)

where ¥, « are the characters of Wp,. twined by the generator of its Z3 automorphism,
X2A, VT (@) are the characters of VT twined by an element of the 2A conjugacy class of
Th, and JgF is the McKay-Thompson series of the 6A conjugacy class in M (c.f. Sect.
3.2.9 for more details). To compute x5 yre () to low order in its g-expansion, one can
use the character table of Th, Tables 7, 8, 9 and 10, as well as the decompositions of the
graded-components VT*(«);, into Th representations, Table 6.

C. Alternative Derivation of the Characters of Vsz

In this appendix, we give an alternative derivation of the characters of Vng. The basic
idea is that, although the Hecke method does not work out of the box, one can perform
intermediate deconstructions for which the Hecke method is effective. Although we
work purely at the level of modular forms, our steps are motivated by the following
algebraic manipulations.

1. We first decompose the moonshine module into (an extension of) one of its £( %, 0)®

E(%’ 0)® £(17—0, 0) subalgebras33 and its commutant. Here, the Hecke method is
effective in producing the dual characters.

2. It is straightforward to infer from the previous step how the moonshine module
decomposes into just £( %, 0) ®£(%, 0) and its commutant. From the fact that P(2) =
ﬁ(%, 0) and P(3) = ﬁ(%’ 0) & E(%, 3), we will be able to re-interpret this as a
decomposition of V* into a P(2) ® P(3) subalgebra and its commutant.

3. The previous step will give us a bilinear of the form J(r) = Zi gi (1)gi (t) which
we can set equal to the bilinear in equation (3.122) to extract expressions for the dual
characters XVF;z (a)(‘l,').

We start by constructing the characters of an extension of P(2) ® P(3) ® P(6), using
the block-diagonalization method outlined in Sect. 2.1.2. We label the S-matrices of the
VOAs P(2), P(3), and P(6) as S@, 8P, and S©. One can show that the matrix of
the tensor product theory, S @283 ®8© canbe block-diagonalized into a 14 x 14
block and its complement. This suggests the existence of a unitary RCFT described by
14 characters which can be expressed in terms of parafermion characters as

X0 —W(Z)We)w(é) W(Z)WG)W@ ¢(2)W3(3)_11//(6)
+¢(2)W(3)W(6)+w(2)W3(311W(6) +w(2)¢(3)wé6i’
1/f(2)1//(3)¢'(6)+W(2)1/f(3)1/f(6) +w(2)1//3(3111/f(6)
VR B v

33 Sucha subalgebra exists, as proven in [66].
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Table 8. The character table of the Thompson group, part I

19A 20A 21A 24A 24B 24C 24D 27A 27B 27C 28A 30A 30B 31A 31B 36A 36B 36C 39A 39B

15B 18A 18B

15A

[g]
X1

X2

0

X3

-1
-1

—1
—1

[8s

T

T =

-1
-1

—1
—1

X4

X5

—1

—1

X6

X7

—1

-1
—1

-1
—1

S O I~

—1
—1

(=]

o Lo o

X8

X9

X10
X11

X12
X13

~

X14
X15

0

X16
X17
X18
X19

X20
X21
X22
X23

-1

-1
-1

—1
—1

—1
—1

X24
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Table 10. The character table of the Thompson group, part [V
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Table 11. The fusion of conjugacy classes in HN into conjugacy classes of M. The notation nX indicates a
conjugacy class of HN, and mY indicates a conjugacy class of M, with both following the labeling conventions
of the Atlas of Finite Groups [1]. This data was computed using Gap [108]

nX 1A 2A 2B 3A 3B 4A 4B 4C 5A
mY 1A 2A 2B 3A 3B 4A 4B 4D S5A
nX 5B 5C 5D SE 6A 6B 6C TA 8A
mY 5B 5B 5B SA 6A 6C 6B TA 8C
nX 8B 9A 10A 10B 10C 10D 10E 10F 10G
mY 8B 9A 10C 10A 10E 10D 10D 10A 10B
nX 10H 11A 12A 12B 12C 14A 15A 15B 15C
mY 10B 11A 12C 12A 12F 14A 15A 15C 15C
nX 19A 19B 20A 20B 20C 20D 20E 21A 22A
mY 19A 19A 20C 20C 20B 20E 20E 21A 22A
nX 25A 25B 30A 30B 30C 35A 35B 40A 40B
mY 25A 25A 30B 30A 30A 35A 35A 40A 40A

2) ,(3), (6 2) ,3), (6 2)., @3 6
ll’( )I/f( )¢( ) +Klf( )111( )’»”( ) +1/f( )1/}3( lll/f( )
+1//(2)I/,(3)1//(6)+1/f(2)1/f3(3111/,(6) w(z)l//3(3)1/f(6)

2) ,(3) , (6 2) ,(3) , (6 2)., @3 6
w( )1//( )w( ) w( )W( )‘ﬁ( ) W( )w3( 111#( )

IP(Z)WG)‘P(@ 1p(2)1p3(3) 11p(ﬁ) WO)WG)W((,G)Q

2) ,(3) , (6 2) ,(3) , (6 2) ,3), (6
lﬁ( )W( )W( ) +!/f( )W( )W( ) +1/,( )W( )’ﬁ( )
+1/f(2)1/f(3)1/f(6)+1//(2)1/f(3)1/f(6)+1/f(2)1ﬂ(3)1//£6)2,

2) ,(3) , (6 2) ,(3) , (6 2),3) (6
w( )1/,( )1/f( ) w( )lﬂ( )]/f( ) W( )W( )]/j( )

@3y © @3 © @), G) (6)
YoV Vaa VooV 0Va0 VoYV

2) ,(3) , (6 2) ,(3) , (6 2) ,(3), (6
l”( )W( )w( ) !ﬁ( )W( )W( ) l/,( )W( )’ﬁ( )
+1/f(2)w(3)1/f(6)+1/f(2)1/f(3)1/f(6) +1/[(2>¢,<3)1/fé62>7

2 3 6 2 3 6 2 3 6

= VaVa0Vas + Vaaaaven + Vaaviive

@3y © @3 © @) 3) 6
+¥o0¥2.0¥6.0 + V2.0V 11 Vea + V20¥2.2V6 4

2 3 6 2 3 6 2 3 6
w( )W( )W( ) w( )¢( )W( ) w( )¢3( 111#3(’117

2) ,(3), (6 2) ,3),, (6 2)., @3 6
l”( )I/f( )Vf( ) Kl’( )1/[( )’»”( ) W( )1/}3( 11“’3( 11’
1p(Z)w(3)1//(6) +1//(2)w(3)¢(6) +1//(2)1/,(3)¢(6)

2)., (3 6 2) , 3, (6 2)., 3 6
+¢( )1ﬂ( )lw( )+w‘ )W( )1ﬂ( ) +1p‘ )W3( )—1¢5( 11’

Y11 = 1p(Z)I/,(3)1/f(6) +1ﬂ(2)1ﬂ(3)1/f(6) +¢(2)1ﬂ(3)1/f(6)
1p(2)1//(?)w(6) 1p(2)1//(?)w(6) w(Z)I/IG)wS(@l

2) ,(3) , (6 2) ,(3) , (6 2) ,(3) , (6

Xi2 = ‘ﬂ( )1//( )w( ) w( )W( )‘ﬁ( ) W( )W( )1#3( )_1’

2 3 6 2 3 6 2 3 6

W( )W( )W( ) w( )w( )‘ﬁ( ) w( )¢( )W3( )—1- (C.1)
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The modular properties of the characters in (C.1) are governed by the S-matrix S

Vasie = Ve £ £ Vg VB« o  V2a V2B B B
£ =V —V2sie S V2 V2B £ £ -« —a 2a V2B -B B
L =V —VIsie S —V2np V2B £ £ o o —V2a V28 B B

Vs g = Vasie £ £ V2B VB —a  —a —V2a V2B —p P
% —V2518 /2518 % V2sia 251 —5r “ % B B V2B V2a —a —a
£ VIip V2B £ VI Vi - - —p B V2B —Vie o« @

V2518 % by V2518 —%r —5; V251 —V2sia B B —V2B V2 o« o

I
= [

VIsg A A VBB -3 - —VIse —VIse B B V2P VI o« —a
« —a o —a B -8 —B B —2a V2« 0 0 V28 —V28
o —a o —a B —B -B B V2a —2a 0 0 V28 V28
V2o V2a —V2e —V2e V2B V2B V2B V2B 0 0 0 0 0 0
V2B V2B V28 V2B V2« V2o  V2a  —V2a 0 0 0 0 0 0
B -B B -B —a a o —a V28 V28 0 0 V2a —2a
B -B B - —a a o —a =28 V28 0 0 —V2a V2
where o = /1 — %, B=./1+ %, and 51 = sin (%) The T-matrix 7 reads
. _Win  Bin  _Slix  6ix  Tin  _ Tz _Bin 4%z in in 13 3z 9in  9im
d1ag<e 80 ,e 80 ,¢ 80 ,¢ 8 g8 ¢ 80 ¢ 80 e 8 el el0, e 2()’e2()’e1(),g1(]>.

One can check that these matrices furnish a representation of PSL,(Z), namely S* = 1
and (S-7)3 =1.

Our goal is to find the characters dual to those in equation (C.1). The solution we present,
although inspired by the idea of performing a series of intermediate deconstructions,
unfortunately features steps which do not quite have consistent VOA interpretations.
The contents of the remainder of this appendix should therefore be thought of strictly
as manipulations at the level of modular forms which produce the right answer for the
characters XVE, (1), although we do believe it should be possible to improve upon our

results.
Stelp 1 We start off by constructing the fictitious characters** of an extension U of
L(3,0)® E(%, 0)® £(17—0, 0). This extension has 16 states of conformal weight

0.1, =, -, -, 2,22, — — = 2 =2 =

11172221 1 23319 9 17
h= , (C.2)

whose characters f; with conductor N = 60 can be written in terms of minimal model
characters as
IO MCOME) B, @ 6 IR OMCOMEO) [OCOME)
Jo= XXX ¥ X1 X3 X ST = X2 X1 2 Xax F X1 1 X1 3 X2 4

) B CO NN )] 3@ O (©BCYIE))
J2 = XX 2K T X X1 3K T 22X 2 X0 0 X0 s

) B CO N )] 3, _ 0O 3 @ _O5)
B3 = XX a X e T X X K e 2 X2 X 1 X

N C) B CO N ) [© IO I®)) [©IC®)
Ja= X0 X12X23 ¥ X1 K13 X203 22X 0 X0 2 X203

W C) B CO N 6)) 3, @ 0O (©ICONE))
J5 = X0 X0 X3 F X X3, X103 22X X0, 1 X003

I C) B CO N 6)) [©) B CON®)) _ B3 @ _(©5) [©OICYRE))
Jo = X\ Xia X3 ¥ X201 X310 X103 ST = Xi1X13X23 + X2 1 X1 .2 X2 35

) B CO NN )] 3) @ _©) _ B3 @ (O 3) @ _©)
8= XX X2 T X0 X3 Ko SO = XU X 1 X023 F X2 X3, 1 X230

34 We use the term fictitious because these characters e.g. do not lead to consistent fusion rules, and the
bilinear they participate in, equation (C.5), has fractional coefficients o; .
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_,0,&_ 6 3, @ _ 5 3 ,@® 6
J10 = XXX+ X0 X3 X0t 22X X0 X1 4

(OB CONE)) [©ICME)] 3, @ _©)
JIU= XX X003 F X X 3 X003 2 X000 X02 X130

_ ., B @ O [©ICO R E)] N C) BCO N E)) (©CE)
J12 = XX 3 X0 e F XXy X J13 = XX 3 X003 F XX 2 X0 3

3, @ O 3, @ _©) 3, @ S
J1a = X0 X3 1 X0 ¥ X0 1 X1 1 Xo4 ¥ 2X0 0 X2, 1 Xo 4

3@ 6 3, @ 5 [©QICME
fis = X1(,1X3(,1X2(,3 T X2 1 X1,1X23 +2X1,§X2,1)X2,3)’ (C.3)

5 5 5 5 5 5
where X](i = X](I) + X1(5> and Xz(J), = X2(1) + Xz(s)

The central charge of E(%, 0H® E(%, 0H® E(%, 0) is 2, and its commutant in V? has
central charge 22 = 2 - 11, so we have a chance at finding the dual characters as the
Hecke image of f under T1;. We provide the ¢-expansions of the components of Ty f
below,

Fo@) = Ti1 fo(r) = g~ T2 (1 + 13959¢% + 10837429 + 34869263¢* + - - -),
Fi@) =T fi(r) = ¢12(22 +36212q + 283813242 + 91279606¢° + - - -,

Fo(0) =T fo(2) = g2 (6072 + 1124640g + 5218593642 + 1273841712¢° + - - ),
B =Ti1 f5(r) = g2 (2376 + 429792 + 1993464042 + 486569424¢° + - - -),
Fa(@) = Ti1 fu(r) = g 12 (45048 + 4456584 + 159935952¢% + - - -),

Fo(@) = Ti1 f5(7) = ¢ 12 (17160 + 17020084 + 61089072¢% + - - -),

Fo(@) = Ti1 fo(T) = ¢ (253 + 68321 + 3703205¢2 + 98302325¢° + - - -),
F(0) =T f2(2) = 12 (638 + 179377 +9692980¢ + 257372401¢° + - - ),
Fo(0) = T11 fia(v) = g (2387 +355014q + 15143865¢2 + - - -)

Fo(1) = T11 fi3(v) = g 8 (15884 + 1357477 +45571669¢% + - - -)

Fio(0) = T11 fia() = g (39864 + 3578784q + 122770296¢% + - - -)

Fii(@) = T11 fis() = ¢ (528 + 209880q + 12540264¢% + 3514544884° + - - )
Fia(0) = Ty fs(T) = g0 (638 + 149402 + 758612842 + 1945893304° + - - -)
Fi3(@) =T fo(t) = ¢~ 8 (1 + 52584 + 615197¢ + 23698356¢° + - - -)

Fia(0) = T11 fio(r) = @ (168 + 110880g + 7675800¢° +232188528¢° + - - -)
Fis(0) =T f11(1) = ¢ (2376 + 5198164 + 255792244 + 64525533643 + - - ).

(C4)
One can check that the Hecke images (C.4) satisfy the following bilinear,
15
J(1) =) e fi(0) fi (D). (C.5)
i=0
where the «; take the values
a,-:1,1,%,%,%,%,2,2,1,2,%,%,1,2,%,%, (C.6)



fori =0,1,...,15.

Stelp 2 Next, let us construct the fictitious characters>?
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of a particular extension of

,0)0® £( 3 0); its irreducible modules have highest weights

h—Ol 123 7237 9 1 31 17
16273748767 5°80° 107 157 240" 30

(C.7

and its characters can be written as

80(0) = X 1 (@D,

83(1) = x (O3 (D),

g6(7) = x(3)(r)x(5)(t)

8o(1) = %11 (XS (1),

g1 = x @O D, &) = x3@x ),

84(1) = x (XA (). g5(t) = x A (Ox A ),
g7(7) = x(3)(r)x(5)(t) gs(7) = x(3)(r)x(5) (),
g10(7) = X1 (D331, g11(T) = X3 (D)x33(D).

(C.8)

We would like to find the dual characters, which by assumption should satisfy a bilinear

of the form

J(r) =

Zgi(f)gi(f)~ (C.9)

By comparing (C.5) and (C.9), one can express g; (7) in terms of (C.4) and the characters

of £({.0). We find

go(r) =
gi(v) = 2
&) =
g3(r) =
g5(1) =
86(7) =
g1(v) =
gs(r) =

go(1) =

gi(r) =

35 C.f. the previous footnote.

3%, ])fs(r)+ x flO(T)

2
_X2 2f2(T) + = X2 1)f14(7)

—x14f3(r)+ x L Fro@ + 10 o) + x4 fiz (o),

4

g4(r) = —X21)f5(f)+ x fn(r)

1 -
—X11f3(f)+ X flO(T)+X3’1f0(":)+X1’2f12(T),
—x§4ffs(r)+ x fll(T)+2X(4)f6('f)+2)(1(?3)]713(7)»
—x1 @ Fo(r)+ 2 S @ + 205 fo(0) + 25 fia (@),

1 ~ ~ ~
OGRS x U Aa@ + x (3@ + 0 fs(@),

4
Zi0(r) = —x22f4(r)+ x21)f15(t)

1 4) 7 @) 7
_X13f2(f)+ x11f14(f)+x fl(r)+x 1 f3(1),
—xf4§f4(r)+ x 2 Ais(0) + 2019 Fr(0) + 2x1 5 Fo (o),

2 ~ ~
x13f4(f)+ X11)f15(f)+2X f7(r)+2x3(f‘ff9(r).

(C.10)
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Step 3 Note that the parafermion theories P(2) and P(3) are the same as L(%, 0) and

C(‘S—1 ,0)BL( ‘51 , 3), respectively. Thus, we can replace the characters of the Z, parafermion

theory w(z) with the characters X( )i

P2) characters is

in equation (C.1). The relation between Ising and

2 _ 3 () (3) () (3)
Voo =X VYoo0=Xa1r ¥Yi1=X (C.11)

Similarly, we can substitute x: S) for the characters of the Z3 parafermion theory ¢(3)
as

3 5 5 3 3 5
Yis = xff Xis: Vil U, = 2(3),

The next step is to find the relations among the characters g;(t) and XVE, (@) by com-
paring equations (C.9) and (3.122). Setting them to be equal, we get a relation of the
form
g0 = 1/f X1 + I/f(G)Xz + 1!'(6))(% + 1/16 6X0,
1// xs + 1//(6))(9 + 1// 3 X10 + 1//5 3)(10,
S = 1/f2 oxz + llf(é)m + 1//(6))(0 + 1//6 6 X3
B = V0T + Ui ST+ UK+ U + U 4T + U Fo + Ve a Ko + Vea X,
S4= 1//(6)X10 + 1//3(611)78 + 1//3(611)79 + ‘//(6))(8 + ¢(6)X9 + 1lf5(611)(10 + 1/1(6))(10 + 1/15(65))(10,
= USOT + VT + UK + U T+ Ue ) Fo + Ve )T + UK + Wiy Xos
§6 = 1//563)(5 + 1//(6) Xa+ Y% + %“2)(7,
= 1ﬁ3_3)(12 + W(ﬁ)xw + W AX11+ Ws A1
= w“’;’a + U0 + w‘% + Vg o X
go = 1// )X+ 1/14 ) X5+ 1/1(6))(5 + ¢(6)X4 + 111(6) X6+ 1// )T+ w(% + 1116 ) X6
g0 = 1/’(6))(11 + I/fg@_])?lz + % O Fis+ 1//(6)X12 + 111(6))(13 + 1//5(6),1)711 + 1// X11 + 1//5 S X115
B = U s + Ui o e + U X + VAT + Ve T + Vg2 X + Wa Ko + Va7 (C.13)
Here, X, (t) is short notation for XVng (a)(‘l,'). Using the expressions for the g;(7)
in equation (C.10), one can find the g-expansions of XVF;z (a)(r). Here, we assumed

Xs(t) = Xo(7) and X12(7) = X13(7), because xs(t) = x9(r) and x12(r) = x13(7).
With these extra conditions, (C.13) recovers the g-expansions (3.123).
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