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Abstract—Deep-learning object detection methods that are de-
signed for computer vision applications tend to underperform when
applied to remote sensing data. This is because contrary to com-
puter vision, in remote sensing, training data are harder to collect
and targets can be very small, occupying only a few pixels in the
entire image, and exhibit arbitrary perspective transformations.
Detection performance can improve by fusing data from multiple
remote sensing modalities, including red, green, blue, infrared,
hyperspectral, multispectral, synthetic aperture radar, and light
detection and ranging, to name a few. In this article, we propose
YOLOrs: a new convolutional neural network, specifically designed
for real-time object detection in multimodal remote sensing im-
agery. YOLOrs can detect objects at multiple scales, with smaller
receptive fields to account for small targets, as well as predict target
orientations. In addition, YOLOrs introduces a novel mid-level
fusion architecture that renders it applicable to multimodal aerial
imagery. Our experimental studies compare YOLOrs with contem-
porary alternatives and corroborate its merits.

Index Terms—Aerial imagery, fusion, multimodal, object
detection, remote sensing (RS).

I. INTRODUCTION

OBJECT detection is a fundamental task in computer vision
and remote sensing (RS) with a plethora of civilian and

military applications, including medical diagnosis, autonomous-
vehicle navigation, surveillance, and search-and-rescue opera-
tions, to name a few [1], [2]. An object detection algorithm
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strives to jointly identify the location of each object within an
image and the class to which this object belongs. Traditional
machine learning (ML) approaches rely on extracting various
features (e.g., edges, color histogram, and corners) from each
image. These features are then given as input to a learning
algorithm, which, in turn, performs classification of the objects,
as shown in [3] and [4]. Popular ML approaches that are still
widely used are the Haar-features-based classification [5] and
the support-vector-machine (SVM) classifier using histogram of
oriented gradient features, among others [6]. In contrast, deep
learning (DL) methods perform classification and localization of
objects jointly [7]–[10]. In order to determine whether a standard
ML or a DL approach is more appropriate for a particular
problem, one has to consider the amount of available training
data and computational power. In general, DL approaches tend
to exhibit superior performance when there is an abundance
of training data and sufficient computational power so that the
model can train in a reasonable amount of time.

In RS, images are acquired by satellite, aircraft, and more
recently, drone sensor technologies. Therefore, in contrast to
computer vision, RS training data are harder to collect. Red,
green, and blue (RGB) cameras, light detection and ranging,
synthetic aperture radar, and infrared (IR) are typical sensor
technologies that are widely used in RS. Due to the way in
which remote images are captured, a few major challenges
arise. First, objects can be very small with respect to the size
of the image, offering little feature information. For example,
an object may occupy just few tens of pixels in a multimillion
pixel image. Second, objects are oriented arbitrarily and object
detection algorithms need to learn rotation-invariant features in
order to attain higher detection performance [11]. Moreover, the
scale of objects within and across images can vary significantly.
For example, the scale of a car will greatly differ from the
scale of an airplane [12]–[17]. Finally, noise signals, occlusions,
and compression artifacts are also challenges that need to be
addressed by object detection algorithms.

In this work, we propose YOLOrs: a new convolutional neural
network, specifically designed for real-time object detection in
multimodal RS imagery. The proposed YOLOrs model is capa-
ble of detecting rotated bounding boxes and performs detection
at a larger scale compared to YOLOv3 [18]. Therefore, YOLOrs
is able to better detect rotated and closely spaced small objects
in an aerial imagery setting. In addition, motivated by the use
of multimodal data, as explained in Section II-B, we present
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an extended version of YOLOrs with the ability to conduct
mid-level fusion and combine data from multiple RS modalities.
The proposed fusion further improves the detection performance
of YOLOrs, as it is verified in a series of experimental studies.

II. BACKGROUND

A. Object Detection With DL

DL architectures can be classified as two-stage, single-shot,
and anchor-free. Two-stage architectures first generate a large
number of proposed region candidates (e.g., by means of the
selective search algorithm [19]) and then perform classifica-
tion at each region. Region-based convolutional neural network
(R-CNN) [20] is one of the first successful two-stage methods.
In R-CNN, candidate regions, in the form of bounding boxes,
are given as input to a CNN that extracts class features and, in
turn, passes them to a SVM classifier. Arguably, the computa-
tional efficiency of R-CNN is limited due to its dependence on
heavy region proposal algorithms. Fast-R-CNN [21] addresses
this problem by performing feature extraction over the image
before proposing regions and replacing the SVM classifier by a
softmax layer, which extends the CNN for predictions instead of
a separate model. Faster-R-CNN [22] introduces a CNN-based
region proposal network, omitting the use of a selective search
algorithm, which further improves the inference speed, making
it suitable for real-time applications. These approaches exhibit
high detection performance, but tend to be computationally
demanding.

In contrast, single-shot approaches combine the detection
and classification steps by jointly predicting the class of an
object and its bounding box. You only look once (YOLO) [23],
YOLOv2 [24], YOLOv3 [18], and single-shot multibox detector
(SSD) [25] are successful single-shot architectures with real-
time processing capabilities. YOLO trains a single end-to-end
CNN that jointly predicts bounding boxes and object class
labels, significantly increasing processing speed, compared to its
predecessors. YOLOv2 relies on fully convolutional layers and
tuned priors on bounding boxes instead of predicting heights and
widths. YOLOv3 makes the bounding box predictions at three
different scales making it suitable to identify objects of multiple
spatial resolutions. YOLOv4 [26] is able to further increase the
detection performance and computation speed of YOLOv3 by
employing heavy data augmentation, evolved activation func-
tions, and improved IoU loss metrics. SSD is similar to the
YOLO architectures but performs independent detection using
multiscale feature maps. YOLOv4 is the latest iteration in the
YOLO series and explores different single-shot detectors tend
to exhibit moderate-to-high detection performance with faster
detection speeds.

Both two-stage and single-shot approaches rely on horizon-
tally aligned bounding boxes, which fall short in providing
tight bounding-box predictions. Oriented bounding boxes ap-
proximate object shapes more tightly compared to horizontally
aligned ones. Liao et al. [27] introduced a single-shot oriented
text detector that can predict bounding boxes with arbitrary
rotations, varying sizes, and different aspect ratios. Similarly,

Nosaka et al. [28] used a regression branch to extract rotation-
sensitive features by actively rotating the conventional filters.
Liu et al. [29] introduced RR-CNN that is built on R-CNN and
utilizes rotated-region-of-interest pooling layers, an auxiliary
structure to extract features of rotated regions. Lie et al. [30]
modified YOLOv3 to predict oriented bounding boxes for RS
applications. Finally, Terrial and Jurie [31] introduced faster
RER-CNN, which is based upon faster R-CNN and is able to
regress oriented bounding boxes.

In contrast to two-stage and single-shot architectures that
rely on anchors for the localization of objects by introducing
a lot of hyperparameters in the model, anchor-free architectures
omit the process of anchor-based sliding window and perform
detection in a pixelwise fashion, similar to semantic segmenta-
tion. CornerNet [32] and fully convolutional one-stage object
detection [33] are early examples of anchor-free architectures.
These architectures aim to reduce the number of hyperparame-
ters and, thus, the excess training time. Moreover, anchor-free
architectures can simplify object detection and lead to training
speed enhancements.

Similar to general object detection, both ML and DL ap-
proaches have been proposed for object detection in aerial
imagery [34], [35]. Single-shot networks that employ multiple
detection scale sizes and consider multiple target orientations
have been shown to achieve a promising tradeoff between execu-
tion time and detection performance, rendering them appropriate
for real-time applications.

B. Object Detection in Multimodal Data

Fusion of data collected across multiple modalities (multi-
modal data) can allow for enhanced inference [36]–[39]. Sim-
ilarly, the performance of object detection in RS can further
improve by leveraging multimodal aerial imagery. For example,
IR modality captures longer thermal wavelengths and, thus, it
can enable detection of objects in varying weather conditions,
expanding on the capabilities of RGB [40].

C. Challenges

The state-of-the-art object detection frameworks discussed
earlier are designed and optimized for general computer vision
tasks and tend to underperform in RS applications where objects
cover only few pixels in the entire image and exhibit arbitrary
perspective transformations. In this article, we address these
challenges and introduce a real-time convolutional framework
designed and optimized for object detection in multimodal RS
aerial images. In addition, the proposed architecture is also
capable to conduct mid-level fusion of multiple RS modalities.

III. PROPOSED ARCHITECTURE: YOLORS

A. Network Architecture

The proposed YOLOrs (“rs” stands for “remote sens-
ing”) framework builds upon the modular residual blocks
from ResNet [41] and the multihead detection approach of
YOLOv3 [18]. The network utilizes 66 convolutional layers
along with 30 more layers that consist of the following.
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Fig. 1. Schematic of the proposed YOLOrs architecture. The table on right presents the filter depths (X,X1,X2) along with the number of filters (Y, Y1, Y2) for
each downsampling stage in the network. E.g., for stage (1C, 1R), 1C denotes 1 convolutional layer with 64 filters of size (3 × 3 × 32) and 1R denotes 1 residual
block with 2 convolutional layers with 32 filters of size (1 × 1 × 64), followed by 64 filters of size (3 × 3 × 32).

1) Shortcut layers that bring the output of the third-layer
backward and add it to the output of the previous layer
(see bottom right subblock in Fig. 1).

2) Upsample layers that upsample the output of the previous
layer by a factor of stride using bilinear upsampling.

3) Route layers that return the depthwise concatenated out-
puts of the listed intermediate layers.

4) YOLO layers that correspond to the detection head layers,
as shown by Scale 1, Scale 2, and Scale 3 layers in Fig. 1.

The combination of convolutional layers along with shortcut,
upsample, route, and YOLO layers achieve strides of 16, 8,
and 4 for the three detection heads at layers 70, 82, and 96,
respectively. This architecture allows for differentiation between
objects as close as four pixels apart. For an input image of dimen-
sions 512 × 512, YOLOrs offers detection head granularity of
32 × 32, 64 × 64, and 128 × 128, for the three detection heads,
respectively. The importance of detection-head granularity in
resolving densely spaced objects in aerial imagery is illustrated
in Fig. 2. Despite downsampling at four different stages in the
intermediate feature maps by a stride of two pixels, the network
achieves the aforementioned resolutions due to upsampling and
concatenation (CO) of features from longer skip-connections
from the semantically rich intermediate feature extraction layers.
This shallower architecture offers YOLOrs double detection
heads granularity with much fewer parameters (20 132 106)
compared to YOLOv3 (61 561 429). The network utilizes batch
normalization as the input normalizer for feature maps and
leaky-ReLU as an activation function between convolutional
layers.

Fig. 2. Representation of objects in an aerial RGB image divided into 4 × 4
(left) and 16 × 16 (right) grids.

B. Multimodal Fusion

In YOLOrs, longer skip-connections start after the third down-
sampling block. This allows for enough depth (up to the 37th
layer) for fusing data from multiple modalities at various stages
in the feature extraction region of the network, as shown in
Fig. 1. For example, if fusion occurs after the nth layer, we
create two streams of the first n layers of the YOLOrs network,
one for each modality, and fuse their outputs at the end of
the (n+ 1)th (convolutional) layer with filter size 1× 1. This
last convolutional layer is used to adjust the weighted feature
map depth of each modality so that after fusion, the resultant
feature map meets the input requirements of the first layer of the
remaining joint YOLOrs network. In this work, we consider two
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Fig. 3. Representation of multimodal fusion via CO and elementwise cross
product (EP) methods.

specific fusion methods, as shown in Fig. 3. The proposed fusion
methods are presented below for two modalities, for the sake of
simplicity, but can straightforwardly extend to any number of
modalities.

Concatenation: We start with two individual YOLOrs
streams. We denote by A and B the feature maps at layer n for
the first and second modality, respectively. The depth of A is z1
and the depth ofB is z2. In this fusion approach, we concatenate
A andB along the depth dimension and obtain the fused feature
map C, with depth z1 + z2 as

C :,:,i =

{
A:,:,i, i ≤ z1

B:,:,i, i > z1
. (1)

The CO offers to the network an increased number of feature
maps. Then, the network learns how to combine them (minimiz-
ing overall loss), effectively performing fusion of the modalities.

Elementwise Cross Product: In the same setup as above, we
built the fused feature map C by elementwise multiplication of
every feature map in A with the every feature map in B. That is,
for every pair of i ∈ {1, . . . , z1} and j ∈ {1, . . . , z2}, we form

C :,:,ij = A:,:,i ◦B:,:,j . (2)

The depth of the resulting fused feature map C is z1z2. Com-
pared to CO, EP offers the network an even larger collection
of already combined feature maps, effectively enforcing fusion.
Then, the network can learn how to further combine these maps
in order to minimize the loss.

In addition, YOLOrs allows both CO and EP fusion to be
carried out in weighted manner. For instance, for two modalities,
we can set the bias hyperparameter to left, right, or center and
thus, respectively, place more emphasis at the first modality, the
second modality, or none of the two (equal emphasis). The pro-
posed YOLOrs network along with multimodal fusion elements
is easy to interpret and tune and it is end-to-end trainable. For
example, fusion via balanced CO between feature maps for RGB
and IR modalities at 38th layer is shown in Fig. 4.

C. Network Output

The proposed method partitions the entire image in a grid of
cells within which we search for objects individually. The output
feature map at each detection head is a 3-D tensor [42]: mode-1
corresponds to the width-index of each cell, mode-2 corresponds

to the height-index of each cell, and mode-3 corresponds to the
extracted features.

For the ith grid cell, YOLOrs predicts nA bounding boxes,
one for each anchor box. For each predicted bounding box, our
method returns an output feature vector of the form

vk =
[
tx , ty , tw , th , θ , o , p1 , · · · , pN

]
. (3)

Output vectorvk is also shown in Fig. 1. Entries (tx, ty) are the
center coordinates of the bounding box, relative to the top-left
corner of the cell. Entries tw and th are the log-transformed width
and height, respectively, of the box. θ is the orientation angle of
the box, relative to the positive x-axis. o is the “objectness” score,
taking values from 0 to 1—high value signifies high probability
of this box to contain an object. pn, for n = 1, 2, . . . , N , is the
score for class n, taking values from 0 to 1—high pn indicates
high probability for the bounding box to contain an object from
class n.

We consider nA anchor boxes per detection head and, accord-
ingly, nA bounding boxes and nA corresponding output vectors
per grid cell. This leads to a detection head of depth (6 +N)nA

for each grid cell.
Next, we want to identify the center, width, and height of any

predicted bounding box. Consider bounding box corresponding
to the output vector in (3) and placed within the ith grid cell.
Denote the width and height indices of the cell (counting from
the top-left corner of the image) by gxi and gyi , respectively.
Also, denote the width and height of the anchor box by awi and
ahi , respectively. Then, for this bounding box, we calculate: the
center coordinates relative to the top-left corner of the image
cx = tx + gxi and cy = ty + gyi ; the width w = awi exp (tw);
and the height h = ahi exp (t

h).

D. Loss Function

Similar to YOLO [23], we want a single bounding box to
be responsible for each object detection. Therefore, we want to
keep exactly one out of the nA bounding boxes that the network
predicted for each cell.

To do that, we keep the bounding box that yields the highest
Intersection over Union (IoU), calculated as shown in detail in
the following section. Next, we denote byvi the single predicted
bounding box for the ith cell and by vg

i the ground-truth vector
for the same cell. Based on these, we evaluate the loss of the
prediction as follows:

L = Lreg + Lconf + Lcls. (4)

In (4)

Lreg = λxy

S∑
i=1

nA∑
j=1

1oi,j [(t
x,g
i − txi )

2 + (ty,gi − tyi )
2]

× λwh

S∑
i=1

nA∑
j=1

1oi,j [(t
w,g
i − twi )

2 + (th,gi − thi )
2]

× λθ

S∑
i=1

nA∑
j=1

1oi,j [(θ
g
i − θi)

2] (5)
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Fig. 4. Schematic of the mid-level CO fusion at sixth-layer model using YOLOrs as backbone network for RGB and IR modalities. R and C are same as in Fig. 1.

is the overall bounding-box regression loss, capturing loss due to
location, width/height estimation, and orientation of the bound-
ing box.

Moreover

Lconf = λo

S∑
i=1

nA∑
j=1

1oi,j [−(1− oi)
γ log(oi)]

× λno

S∑
i=1

nA∑
j=1

1noi,j [−oγi log(1− oi)] (6)

is the object confidence loss (objectness and no-objectness) and

Lcls = λc

S∑
i=1

N∑
n=1

1oi [−log(pni )]. (7)

is the object classification loss.
In (5)–(7), S is the total number of grid cells in the detection

head. “g” in the superscripts denotes ground truth. 1oi is 1 if the
object is present in the ith grid cell and 0 otherwise. 1oi,j is 1 if
the jth bounding box is responsible for detection in the ith grid
cell and 0 otherwise. Similarly, 1no

i,j is 1 if the jth bounding box
in the ith grid cell does not correspond to any detection and 0
otherwise. γ is the focal loss parameter [43] (γ = 0 corresponds
to binary cross entropy loss). The weights λxy , λwh, λθ, λo,
λno, and λc regulate error emphasis between box coordinates,
box dimensions, box orientation, “objectness,” “no-objectness,”
and classification. These weights can be set ad hoc. In this
work, we consider λxy = λwh = λo = λc = and λno = 10, to
penalize false-positives since we expect in RS images low object
to background ratio.

E. Intersection Over Union

To compute the IoU of a predicted bounding box in the ith grid
cell with the corresponding ground-truth, we work as follows.
First, we center the box at origin and compute the four vertices
{(xj , yj)}j=1,...,4, using w and h. We repeat the same for the
ground truth box. Next, we rotate the predicted and ground truth
boxes by the predicted θ and ground truth θg , respectively. The
rotations are counterclockwise with respect to the positive x-axis
as [

x′
j

y′j

]
= R(φ)

[
xj

yj

]
, j = 1, 2, 3, 4 (8)

where

R(φ) =

[
cos(φ) -sin(φ)

sin(φ) cos(φ)

]
(9)

is the 2× 2 rotation matrix for angle φ. Next, the rotated
predicted bounding box is translated to its respective central
co-ordinate (cxi , cyi ) as[

x′′
j

y′′j

]
=

[
x′
j

y′j

]
+

[
cxi
cyi

]
, j = 1, 2, 3, 4. (10)

We note that the region of intersection of two nonoriented
bounding boxes is rectangular, leading to a simple IoU com-
putation. However, in the case of oriented bounding boxes, the
intersection area may not be rectangular, but a polygon with as
many as eight sides. An example of intersection of two oriented
bounding boxes ABCD and PQRS is shown in Fig. 6. The IoU
is computed as the ratio of the intersection area PQKCM and
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Fig. 5. Data augmentation using jumble-up technique to create 2× 2 image
grid of rectangular cells from original input image.

Fig. 6. Representation of the area of intersection and area of union of two
rotated bounding boxes. ABCD and PQRS are the ground truth and predicted
bounding boxes, respectively. The intersection area PQKCM is in yellow.

the union area ABKRSMD

IoU =
area(PQKCM)

area(ABKRSMD)
. (11)

F. Data Augmentation

In view of the limited availability of labeled RS training
datasets, to increase the robustness of the YOLOrs network
against the variability in the input images, we employ the follow-
ing data augmentation techniques: geometric augmentations,
such as flipping (horizontal, vertical, and their combination) and
rotation (90◦, 180◦, and 270◦); photometric augmentations by
altering gamma, brightness, contrast, and grayscale properties
of an image. In addition, inspired by jigsaw puzzles [44], we
introduce “jumble-up”: a new geometric data augmentation
method by which we split an image along any dimension into
two arbitrary rectangular parts and swap them with each other.
When this process is carried out horizontally and vertically, it
leads to modified version of the input image as shown in Fig. 5.
While splitting the image, we make sure that the split does not
intersect with an object.

IV. EXPERIMENTAL STUDIES

In this section, we present the performance of the proposed
YOLOrs architecture on the VEhicle Detection in Aerial Im-
agery (VEDAI) dataset [46]. The performance of YOLOrs is

Fig. 7. YOLOv3 with early fusion [45].

TABLE I
DISTRIBUTION OF AVAILABLE CLASS INSTANCES IN THE VEDAI DATASET

ACROSS TEN FOLDS

compared with that of unimodal YOLOv4 [26], EfficientDet
(D0) [47], RetinaNet (with backbone ResNet 50) [43], and
YOLOv3 [18] trained on RGB and IR images as well as their
multimodal versions trained on concatenated RGB and IR im-
ages [45], as shown in Fig. 7. In addition, we present the
performance of the proposed YOLOrs model on unimodal RGB,
unimodal IR, and mid-level fusion of RGB and IR modalities.
Before we proceed to the experimental results, we provide a
brief overview of the VEDAI dataset.

A. VEDAI Dataset [46]

The VEDAI dataset contains cropped images that are taken
from the much larger Utah Automated Geographic Reference
Center (AGRC) dataset [48]. The size of each image in AGRC
is about 16 000 × 16 000 pixels, with a resolution of about
12.5 ×12.5 cm per pixel. All images were captured from the
same altitude. Each image is available in two modalities: RGB
and IR. The images in both modalities capture the same scene
and are registered with each other. VEDAI dataset includes
1246 smaller images, cropped from ARGC, in two resolu-
tions, 1024 × 1024 and 512 × 512. These 1246 images were
selected such that they include varying background, including
grass, highway, mountains, and urban areas, among others. The
VEDAI dataset contains 11 classes of vehicles. In this work, we
operate on the 512 × 512 images of eight vehicle classes. The
available instances per class are divided in ten folds, as shown in
Table I. We do not consider classes with fewer than 50 instances
in the dataset, such as plane, motorcycle, and bus. Every image
is annotated and, for each object in the image, the annotations
contain the co-ordinates of the center of the bounding box, the
orientation of the object with respect to the positive x-axis, the
four corners of the bounding box, the class ID, a binary flag that
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identifies if an object is occluded, and another binary flag that
identifies if an object is cropped.

B. Data Preprocessing

We convert the annotations of the VEDAI dataset to
YOLOv3’s Darknet format. First, we express the class ID
for the 8 classes of interest 0, 1, ...,7. Then, we compute the
normalized center co-ordinates of the bounding box (xcenter/512,
ycenter/512. The normalized ground-truth width wg and
height hg are obtained by first aligning the bounding boxes
with the x-axis (to capture the exact width and height of
the rotated object) to obtain the new corner co-ordinates
xg1,

′ y′g1;xg2,
′ y′g2;xg3,

′ y′g3;xg4,
′ y′g4 using (8), with the trans-

posed 2× 2 rotation matrix, R�(θg). Next, we compute wg =
(max(xg1,

′ xg2,
′ xg3,

′ x′
g4)− min(xg1,

′ xg2,
′ xg3,

′ x′
g4))/512

and hg = (max(yg1,′ yg2,′ yg3,′ y′g4)− min(yg1,′ yg2,′ yg3,
′y′g4))/512. Finally, we have the orientation θg of each object,
scaled from [−π, +π] to [0, +π).

C. Results

We conduct performance evaluation by means of standard
ten-fold cross-validation. Specifically, we define 10 train-test
data splits (90:10) (the exact same data splits as in the VEDAI
paper [46]). In each split, 1089 images are used for training
and 121 images are used for testing, making sure that we never
test on training data. By means of this process, we evaluate the
average model performance for a range of hyperparameters and
tune the model. Accordingly, we train all YOLOrs models for a
total of 250 epochs, with a minibatch size of five images with
gradient accumulation interval equal to two minibatch iterations.
We employ the Adam optimizer [49] with a base learning rate
of 10−3 as well as a weight decay parameter equal to 10−3 and
use reduce on plateau scheme as the learning rate scheduler to
decrease the learning rate by a factor of 0.1, if the difference
in testing loss does not reduce by a certain threshold for a
patience interval of 15 epochs. We evaluate the performance of
the trained models on the testing data, at any training epoch,
by computing the mean Average Precision (mAP), which is
defined as mAP = 1

N

∑N
i=1 Pavg(i), where N = 8 and Pavg(i)

is the average precision of class i computed as the area under
the precision-recall curve [50]. We compute the final mAP
scores averaged over ten cross-validation folds, by setting IoU
threshold to 0.2, nonmaximum suppression (NMS) threshold to
0.1, and confidence threshold 0.7.

1) Number of Anchors: To demonstrate the effect of the
number of anchors per detection head on the performance of
YOLOrs, we perform a study by varying the number of an-
chors per detection head nA ∈ {1, 3} for focal loss parameter
γ ∈ {0, 3} for unimodal RGB configuration. As per (6), γ = 0
means that we do not use focal loss and instead, use the standard
binary cross-entropy loss; γ = 3means we use focal loss instead
of binary cross-entropy loss, with the focal loss parameterγ = 3.

We plot the resulting mAP versus training epoch index in
Fig. 8 and observe that nA = 3 and γ = 3 demonstrate the best
performance at lower epochs. However, the model with nA = 1
and γ = 3 catches up at higher epochs. We note that the model

Fig. 8. Effect of the number of anchors nA ∈ {1, 3} per detection head for
focal loss parameter γ ∈ {0, 3} for proposed unimodal YOLOrs RGB model.
The figure shows mAP on testing data versus training epoch index. IoU threshold,
NMS threshold, and confidence threshold values are set to 0.2, 0.1, and 0.7,
respectively.

Fig. 9. Effect of the focal loss parameter γ ∈ {0, 1, 2, 3, 4} for nA = 1
anchors per detection head for the proposed YOLOrs on RGB. The figure shows
mAP on testing data versus training epoch index. Threshold values are the same
as in Fig. 8.

with nA = 3 takes considerably longer to train and test because
of the use of three anchors per detection head, compared to the
model with nA = 1, which uses only one anchor per detection
head. Moreover, nA = 1 performs at least as high as nA = 3,
making it a more efficient option.

2) Focal Loss: In addition, in Fig. 8, we observe that γ = 3
with both nA = 1 and nA = 3 improves the mAP performance
significantly. We understand that this is because focal loss pe-
nalizes the incorrectly detected parts of the image much more
compared to the correctly detected ones. Also, in Fig. 9, we
performed study on other focal loss parameter γ values keep-
ing nA = 1 and observed that γ = 1, 2, and 3 provide better
performance than other values. Deeper insight on the classwise
performance revealed that γ = 3 provides better balanced per-
formance across all classes than γ = 1 and 2.

Overall, the aforementioned study justify that one anchor per
detection head and focal loss parameter γ = 3 are preferred
options.
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Fig. 10. mAP on testing data versus training epoch index. Threshold values are same as in Fig. 8. We use a maroon circle to mark the top performance of each
method across all epochs. (a) Unimodal approaches. (b) Multimodal approaches.

TABLE II
STUDY OF THE INFLUENCE OF DIFFERENT DATA AUGMENTATION METHODS

FOR YOLORS

The mAP score in bold highlights the best data augmentation technique in isolation.

3) Data Augmentation: We also study the influence of dif-
ferent data augmentation methods with proposed YOLOrs, as
shown in Table II. The proposed jumble-up augmentation tech-
nique provides a significant boost in mAP scores over standard
geometric and photometric augmentations. We infer that the
jumble-up data augmentation motivates the network to learn
more meaningful semantic features than the standard augmen-
tation techniques. The combination of geometric, photometric,
and jumble-up augmentation yields the best mAP scores.

To further evaluate YOLOrs configurations against contem-
porary methods, we use the same set of input hyperparameters
as listed for YOLOrs, except for the initial learning rate and
weight decay parameter of the optimizer. We also use the same
set of augmentation techniques for all the networks and train
them from scratch to allow for a fair comparison.

4) Unimodal Data: In Fig. 10(a), we plot the mAP values
of unimodal approaches and observe that the proposed YOLOrs
unimodal RGB model outperforms the corresponding unimodal
IR model. Moreover, both the proposed YOLOrs unimodal RGB
and IR models perform better than the unimodal RGB model
configurations of YOLOv3 [18], RetinaNet [43], EfficientDet
(D0) [47], and YOLOv4 [26].

5) Multimodal Data: To evaluate the performance of the pro-
posed mid-level fusion, we fuse RGB and IR after layer L = 6,
using feature CO and EP across feature maps, as explained in

Section III-B. In Fig. 10(b), we plot the mAP values of multi-
modal approaches versus training epoch index and observe that
the proposed YOLOrs outperforms YOLOv3 [45], RetinaNet,
EfficientDet (D0) [47], and YOLOv4 [26] with early fusion
approaches.

In Fig. 10(b), we notice that the performance of the proposed
YOLOrs early fusion (L = 0) and mid-level fusion (L = 6)
perform better than the unimodal YOLOrs RGB and IR models
in Fig. 10(a), demonstrating a clear benefit of multimodal data
fusion in aerial object detection. Moreover, we observe that
YOLOrs for (L = 6, CO) demonstrates the best performance
at larger training epochs. At the 250th epoch, the next best
performing model is YOLOrs for [L = 6, EP (wIR)], i.e., EP
fusion using 16 and 4 feature maps from IR and RGB streams,
respectively. Early fusion (L = 0, CO) for the proposed YOLOrs
model outperforms the corresponding RetinaNet, EfficientDet
(D0), and YOLOv4 models.

Among the proposed YOLOrs fusion techniques, fusion using
(L = 6, CO), performs better, arguably because the features
from each individual modality are learned independently of the
other, before fusing them using feature CO. Interestingly, we
observe that the [L = 6, EP (wIR)] configuration performs better
than the (L = 6, CO) configuration at smaller training epoch
values (<110) and we understand this is because EP fusion
method allows the model to learn cross-modality interactions,
thereby unveiling richer semantic information in fewer training
epochs. However, if the model is trained further, the simple CO
fusion method allows the network the freedom to weigh the fused
feature map, containing the same number of unaltered feature
maps from individual modalities, in a way that leads to superior
performance.

In summary, we observe that fusion methods perform better
than the corresponding individual unimodal methods and we
understand that this is because the fusion models are able to
leverage any complimentary information available in different
modalities, by creating fused feature maps that contain richer
latent information.
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TABLE III
CLASSWISE AVERAGE PRECISION (BEST ACROSS ALL EPOCHS) FOR PROPOSED YOLORS, YOLOV4, RETINANET (BACKBONE: RESNET 50), AND EFFICIENTDET

(D0), UNIMODAL AND MULTIMODAL CONFIGURATIONS CORRESPONDING TO EPOCH INDEX OF THE BEST ACHIEVED MAP SCORE BY EACH MODEL

Note: The top two performances per class are in bold.

TABLE IV
PRECISION AND RECALL FOR PROPOSED YOLORS MODELS CORRESPONDING

TO EPOCH INDEX OF THE BEST ACHIEVED MAP SCORE BY EACH MODEL

6) Classwise Performance: In Table III, we compare the
classwise results of the proposed YOLOrs models with
YOLOv4, RetinaNet, and EfficientDet (D0) models. The
performances of the proposed multimodal YOLOrs methods
are among the two best for every class (except for the truck).
Also, the mid-fusion YOLOrs—(L = 6, CO) and (L = 6, EP
wIR)—attain the top two mean performances. Also, we notice
that, overall, the mAP scores of both unimodal and multimodal
YOLOrs are significantly higher than that of YOLOv4, Reti-
naNet, and EfficientDet (D0) for most of the classes. Further-
more, we notice that we achieve top performance for the classes
“car” and “pickup,” for which we also have the most training
instances (see Table I).

7) Precision and Recall: In Table IV, we compare the perfor-
mance of the proposed YOLOrs models in terms of precision and
recall. We notice that the multimodal approaches have increased
recall, which contributes to their superior mAP performance
shown in the studies above.

8) mAP Versus Thresholds: In Table V, we compare the
performances of the best unimodal (RGB) and multimodal (L
= 6, CO) configurations of YOLOrs for confidence threshold in
{0.7, 0.85}, NMS threshold in {0.1, 0.3, 0.5}, and IoU threshold
in {0.2, 0.3, 0.5}. We notice that we achieve top performance
for confidence 0.7, NMS 0.1, and IoU 0.2. Regarding the
confidence threshold, lower values would increase undesired
background detections, whereas higher values could lead to
more false negatives. Regarding the NMS threshold, we notice

TABLE V
MAP PERFORMANCE OF UNIMODAL AND MULTIMODAL YOLORS FOR

DIFFERENT COMBINATIONS OF THRESHOLD VALUES

that, due to minimal object overlap, different detection boxes
generally capture the same object. A lower NMS threshold
reduces the number of detections per ground truth object, leading
to improved performance. Regarding the IoU threshold, we
notice that low values allow us to consider positive detections
even when there is some rotation misalignment between the
bounding and predicted boxes. Also, we notice that multimodal
YOLOrs outperforms unimodal YOLOrs for every threshold
configuration.

D. Detection Results

In Fig. 11, we show the detection results obtained by the
proposed unimodal YOLOrs RGB and the mid-fusion (L = 6,
CO) configurations. The first column corresponds to the input
image, whereas the second and third columns display the detec-
tion results obtained by the proposed unimodal RGB YOLOrs
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Fig. 11. Object detection using various networks. Column 1 shows the input images, columns 2 and 3 shows detections obtained by the proposed YOLOrs
network in baseline RGB and fusion at layer 6 via CO configurations, respectively. Black bounding boxes and labels show the ground truth, whereas colored
bounding boxes and labels show the detected objects.

method and the proposed mid-fusion (L = 6, CO) configura-
tions, respectively. Black bounding boxes along with black la-
bels represent the ground truth, whereas colored bounding boxes
and labels represent detections. In the examples of rows 1 and 4,
unimodal and mid-fusion YOLOrs perform similarly. In exam-
ple of the second row, mid-fusion method outperforms unimodal
YOLOrs, detecting correctly the car. Also, in the example of the

third row, the mid-fusion method again outperforms unimodal
YOLOrs avoiding the two false-positive car detections.

V. CONCLUSION

We proposed YOLOrs: a fully convolutional single-shot net-
work, designed and optimized for real-time object detection
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in RS aerial imagery. YOLOrs has the capability to leverage
data from multiple sensing modalities through a novel mid-level
fusion scheme. Our extensive experimental studies corroborate
the effectiveness of YOLOrs, which is shown to outperform
state-of-the-art alternatives.
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