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Abstract—We consider outlier-resistant Lp-quasi-norm (p ≤ 1)
Principal-Component Analysis (Lp-PCA) of a D-by-N matrix. It
was recently shown that Lp-PCA (p ≤ 1) admits an exact solution
by means of combinatorial optimization with computational cost
exponential in N . To date, apart from the exact solution to Lp-
PCA (p ≤ 1), there exists no converging algorithm of lower cost
that approximates its exact solution. In this work, we (i) propose
a novel and converging algorithm that approximates the exact
solution to Lp-PCA with significantly lower computational cost
than that of the exact solver, (ii) conduct formal complexity and
convergence analyses, and (iii) propose a multi-component solver
based on subspace-deflation. Numerical studies on matrix re-
construction and medical-data classification illustrate the outlier
resistance of Lp-PCA.

Index Terms—Principal-Component Analysis, PCA, L1-PCA,
Lp-norm, quasi-norm, Lp-quasi-norm, outliers, robustness.

I. INTRODUCTION

Principal-Component Analysis (PCA) is a standard method
for the analysis of matrix data with applications in the fields of
machine learning, wireless communications, computer vision,
and neuroscience, to name a few [1], and is commonly
used for compression, denoising, classification, and pattern
recognition. From an optimization standpoint, standard PCA
is formulated as a L2-norm error (Euclidean distance) mini-
mization, or, equivalently, a L2-norm projection maximization
problem. Its solution is computed by means of Singular-
Value Decomposition (SVD) of the processed matrix [2].
Regretfully, researchers have long noticed that standard PCA
is highly sensitive against outliers in the processed matrix
[3, 4]. Outliers are erroneous points that lie far away from the
nominal subspace on which the points of the processed matrix
are expected to lie on. Outliers often appear in modern datasets
due to data storage/transfer errors, faulty sensors, or deliberate
data contamination in adversarial environments [5]. Accord-
ingly, the performance of applications which rely on PCA is
compromised, even when a small fraction of data points are
outlier corrupted [6]. This sensitivity of standard PCA against
outliers can be traced back to its L2-norm based formulation,
which places squared emphasis on each data point of the pro-
cessed matrix, benefiting high-magnitude/peripheral points. To
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remedy the impact of outliers, researchers have proposed mul-
tiple robust PCA formulations [6, 7]. For instance, [8] and [9]
consider L1-norm and Lp-norm, respectively, based residual-
error minimization formulations and approximate a solution
by means of alternating-optimization. In contrast, authors
in [10] consider a L1-norm based projection maximization
approach which derives by simple substitution of the outlier-
responsive L2-norm in the standard projection-maximization
PCA formulation by the more robust L1-norm which places
linear emphasis on each data point of the processed matrix.
This change in norm results in the popular L1-norm PCA (L1-
PCA) formulation. L1-PCA has been solved both exactly [10]
and approximately [11, 12]. Moreover, stochastic, adaptive,
incremental, and complex-valued L1-PCA solvers have been
presented in [13–18]. Image recovery, video surveillance, and
visual tracking [19–22] are just a few applications in which
L1-PCA has been successfully employed. It has been well
documented that L1-PCA exhibits similar performance to PCA
when the processed data are nominal while it exhibits strong
resistance against outliers. Following the paradigm of L1-PCA,
researchers proposed robust reformulations of popular multi-
way (tensor) decompositions–e.g., L1-Tucker [23–30] and L1-
Rescal [31]. Similar to L1-PCA, L1-norm formulations of
tensor decompositions exhibit similar performance to their L2-
norm based counterparts when the processed data are nominal
and sturdy resistance against outliers. Apart from p = 2
(standard PCA) and p = 1 (L1-PCA), Lp-quasi-norm PCA
(Lp-PCA) was recently solved exactly for any p ≤ 1. It
was shown that, for any matrix X of size D-by-N , Lp-PCA
can be cast to combinatorial optimization and solved exactly
with cost exponential in N [32]. To date, apart from the
(computationally expensive) exact solution to Lp-PCA, there
exists no converging approximate algorithm that approximates
the exact solutuion to Lp-PCA (p ≤ 1).

In this work, we propose a novel iterative procedure which
approximates the exact solution to Lp-PCA (p ≤ 1) with
significantly lower than exponential computational cost and
convergence guarantees. The proposed algorithm is accom-
panied by formal complexity and convergence analyses. Fi-
nally, we propose a multi-component solver which employs
a subspace-deflation approach. Our experimental studies on
matrix reconstruction and medical-data classification illustrate
the outlier resistance of Lp-PCA.
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II. PROBLEM STATEMENT

Consider X = [x1,x2, . . . ,xN ] ∈ RD×N with rank(X) =
K ≤ min{D,N}. For p > 0, Lp-PCA is formulated as

max.
q∈SD

∥∥X>q∥∥p
p
, (1)

where, for any x ∈ RD, ‖x‖p :=
(∑D

d=1 |[x]d|p
) 1

p

and SD :=

{q ∈ RD : ‖q‖2 = 1}. First, we observe that, for p ≥ 1, ‖ ·‖p
defines a proper norm the definition of which follows [33].
Definition 1. A norm on RD is any function f : RD → R+

which, for any x ∈ RD, y ∈ RD, and α ∈ R, satisfies the
following properties:

1) f(αx) = |α|f(x) (absolutely homogeneous).
2) If f(x) = 0, then x = 0D (zero-vector).
3) f(x + y) ≤ f(x) + f(y) (triangle inequality).

In contrast, for p < 1, ‖ · ‖p violates the triangle inequality
property and, thus, it’s not a proper norm. However, ‖·‖p (p ≤
1) is a quasi-norm–i.e., it satisfies 1), 2), and the inequality

f(x + y) ≤ C (f(x) + f(y)) , (2)

for some constant C ≥ 1. In fact, one can show that ‖ · ‖p
satisfies (2) with C = 2

1−p
p [34]. Trivially, every proper norm

is also a quasi-norm that satisfies (2) with C = 1. Compactly,
for p > 0, ‖·‖p defines a quasi-norm that satisfies (2) with C =

max{1, 2
1−p
p }. In view of the above, in the special case that

p ≤ 1, (1) reduces to a Lp-quasi-norm maximization problem.
To date, Lp-PCA has been solved exactly only for p = 2,
p = 1, and p ≤ 1. For p > 1, approximate converging solvers
have been proposed in [35] but the exact solution remains
unknown. For p < 1, there exists no approximate algorithm
with convergence guarantees. In the sequel, we briefly review
the special cases of p = 1 (L1-PCA) and Lp-PCA (p ≤ 1).
Then, we present novel approximate algorithms for Lp-PCA
(p ≤ 1) which approximate the exact solution to Lp-PCA with
low computational cost and convergence guarantees.

A. Lp-PCA (p ≤ 1) BACKGROUND
For p = 1, (1) simplifies to the L1-PCA formula-

tion max.q∈SD
∥∥X>q∥∥

1
. L1-PCA was solved exactly in

[10], where it was proven that if bopt is a solution to
max.b∈{±1}N ‖Xb‖2, then, qL1 = ω(Xbopt), solves L1-PCA
exactly, where ω(x) := x‖x‖−12 for any x ∈ RD. Intelligent
algorithms can solve L1-PCA with computational costO(NK)
[10]–i.e., polynomial in N . [11] offered an efficient solver
that approximates qL1 with cost O(DN min{D,N}+N2K),
similar to the cost of standard PCA (SVD). For p ≤ 1,
authors in [32] first observed that maxq∈SD

∥∥X>q∥∥p
p

=

maxq∈BD

∥∥X>q∥∥p
p
, where BD = {q ∈ RD : ‖q‖2 ≤ 1}.

That is, maximization can be equivalently pursued over the
unit-radius hyperball in RD. Then, they noticed that BD

can be partitioned into a finite number (which depends on
N ) of non-overlapping sets which, in turn, implies that the
original (non-convex) problem of interest can be partitioned in
a finite-number of convex subproblems, each of which admits a
solution. Moreover, the global solution to the original problem

coincides with the solution of one of the convex subproblem
instances. Formally, it was shown that BD = ∪b∈BN

C(b),
where BN = {±1}N , for every b ∈ BN C(b) := {q ∈ BD :
sgn(X>q) = b}, sgn(x) = [sgn([x]1), . . . , sgn([x]D)]>,
sgn(α) = +1 if α > 0 and sgn(α) = −1 if α < 0. Without
loss of generality, sgn(α) is set to +1 when α = 0. Impor-
tantly, for every b, C(b) is equivalently expressed as C(b) =
{q ∈ BD : [b]nx

>
nq ≥ 0∀n ∈ [N ]}. In view of the above,

it follows that max
q∈BD

∥∥X>q∥∥p
p

= max
q∈

⋃
b∈BN

C(b)

∥∥X>q∥∥p
p
. For

any fixed b ∈ BN , the following hold: C(b) is a convex
set and ‖X>q‖pp =

∑
n∈[N ] |x>nq|p =

∑
n∈[N ]([b]nx

>
nq)p

is concave with respect to q when ∀n ∈ [N ] [b]nx
>
nq ≥ 0.

The following Proposition 1 summarizes the exact solution to
(1) for any p ≤ 1, first presented in [32].
Proposition 1. The exact solution to Lp-PCA in (1) can be
computed by an exhaustive search over b ∈ BN . That is, for
each fixed b ∈ BN , one needs to solve the convex subproblem

min.
q∈C(b)

−
∑

n∈[N ]

([b]nx
>
nq)p≡ min.

q∈BD

[b]nx
>
n q≥0∀n

−
∑

n∈[N ]

([b]nx
>
nq)p. (3)

The global solution to Lp-PCA coincides with the solution of
the subproblem that minimizes the objective in (3).
The optimization problem in (3) can be solved efficiently with
a primal-dual interior-point solver based on Newton’s method
[36, 37] with about cubic cost in D,N . Moreover, (3) can be
solved with publicly available software like CVX [38, 39]. A
CVX code snippet for solving (3) is offered in [32].

III. PROPOSED ALGORITHMS

Similar to Lp-PCA, L1-PCA and rank-1 L1-Tucker2 have
been solved exactly by means of combinatorial optimization.
To avoid a costly exhaustive search over BN , iterative ap-
proximate solvers that conduct optimal single bit-flips per
iteration have been proposed for L1-PCA [11] and L1-Tucker2
[25]. Motivated by these works, in this work, we propose Lp-
bit-flipping (Lp-BF) algorithm, a converging algorithm that
approximates the exact solution to Lp-PCA by a search via
optimal single bit flips per iteration. The proposed algorithm is
described as follows. First, we initialize at an antipodal binary
vector b0 ∈ BN such that C(b0) 6= ∅ (e.g., b0 = sgn(X>q)
where q is arbitrary). Next, at the (t ≥ 1)-th iteration,
we search for the entry of bt−1 the negation/flipping of
which offers the maximum increase in the metric of (3) (or
equivalently, (1)). For instance, consider m ∈ [N ] and

b′t(m) = bt−1 − 2[bt−1]mem,N , (4)

where em,N is the m-th column of the size-N identity matrix
IN . At the t-th iteration, the proposed algorithm computes

m∗ = arg max
m∈[N ]

max
C(b′t(m))

∑
n∈[N ]

(
[b′t(m)]nx

>
nq
)p
, (5)

and sets b′t
∗

= bt−1 − 2[bt−1]m∗em∗,N . Thereafter, we let
v(b) = maxC(b)

∑
n∈[N ]

(
[b]nx

>
nq
)p

for any b. If v(b′t
∗
) >

v(bt−1), then we set bt = b′∗t , and proceed to the next
iteration. In contrast, if m∗ is such that v(b′∗t ) ≤ v(bt−1),
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Algorithm 1. Proposed Lp-BF algorithm for Lp-PCA.
q← Lp-BF(X, p)

Input: X ∈ RD×N , 0 < p ≤ 1
1: Initialize b ∈ {±1}N , C(b) 6= ∅
2: Until convergence/termination
3: q ← argminq∈C(b)−

∑
n∈[N ]([b]nx

>
nq)

p

4: v ← ‖X>q‖pp
5: For every m ∈ [N ]
6: b′(m)← b− 2[bt−1]mem,N

7: q′ ← argminq∈C(b′(m))−
∑

n∈[N ]([b
′(m)]nx

>
nq)

p

8: If ‖X>q′‖pp > v, v ← ‖X>q′‖pp, b ← b′

Return: q ∈ RD

Fig. 1. Proposed Lp-BF solver for Lp-PCA.

then the iterations terminate and the algorithm returns q =
arg maxq∈C(bt−1)

∑
n∈[N ]([bt−1]nx

>
nq)p, as the approximate

solution to (1). The proposed Lp-BF algorithm is summarized
in Fig. 1.
Convergence/termination: By definition, the above procedure
increases the metric of (3) (and thus, (1)) at each iteration at
which a single bit is flipped. Moreover, the metric is upper
bounded by the exact solution of Lp-PCA obtainable by an
exhaustive search. Since b ∈ BN , the target metric takes a
finite number of values, and thus, the presented algorithm will
converge in a finite number of steps. In practice, we have
observed that the algorithm terminates in T � N iterations.
Complexity analysis: At every iteration, the algorithm solves
N instances of the optimization problem in (3). Accordingly,
the the per-iteration computation complexity of the proposed
Lp-BF algorithm is N times the computation effort required
for solving an instance of (3) which depends on the solver of
choice–e.g., a primal-dual interior point solves (3) with about
cubic complexity in D,N .

In the more general case where 1 ≤ k ≤ K Lp-PCs need
to be extracted, Lp-PCA is formulated as

max.
Q∈SD×k

∥∥X>Q∥∥p
p
, (6)

where SD×k = {Q ∈ RD×k : Q>Q = Ik}. To date,
there exists neither a converging approximate solver nor an
exact solution for (6). In this work, we propose an approx-
imate solution to (6) which employs a subspace deflation
approach and extracts the columns of an orthonormal matrix
Q = [q1, . . . ,qk] sequentially. Mathematically, the proposed
algorithm sets X1 = X and computes q1 ← Lp-BF(X1, p).
Then, it sets X2 = (ID − q1q

>
1 )X and computes q2 ←

Lp-BF(X2, p). Generalizing, for the extraction of the k-th Lp-
PC the proposed algorithm sets Xk = (ID−

∑
i∈[k−1] qiq

>
i )X

and computes qk ← Lp-BF(Xk, p). The proposed algorithm
for the extraction of k components is summarized in Fig. 2.
The computationally complexity of Algorithm 2 is k times the
computational complexity of Algorithm 1.

IV. NUMERICAL STUDIES

We commence with an empirical study on the performance
degradation ratio attained by the solution of the proposed Lp-

Algorithm 2. Proposed Lp-BF algorithm for rank-(k ≥ 1) Lp-PCA.
Q← Lp-BF(X, p, k)

Input: X ∈ RD×N , 0 < p ≤ 1, k
1: For i = 1 to k
2: Xi ← (ID −

∑
j∈[i−1] qjq

>
j )X, qi ← Lp-BF(Xi, p)

Return: Q = [q1,q2, . . . ,qk] ∈ RD×k

Fig. 2. Proposed Lp-BF solver for rank-(k ≥ 1) Lp-PCA.

BF algorithm in Fig. 1 with respect to the exact solution
of Lp-PCA. We consider Xr = qv> + Nr, where ‖q‖2 =
‖v‖2 = 1, q ∈ R(D=6), v ∈ R(N=8), Ni draws entries from
the zero-mean unit-variance normal distribution N (0, 1), and
r ∈ [R = 500]. For each realization of Xr, we compute qopt,r
by solving Lp-PCA exactly and qbf,r by means of the proposed
Lp-BF algorithm. Then, we compute the Performance Degra-
dation Ratio (PDR) ∆r = 1 − ‖X>r qbf,r‖pp‖X>r qopt,r‖−pp . In
Fig. 3, we illustrate the empirical Cumulative Distribution
Function (CDF) of {∆r}r∈[R] for p ∈ {0.25, 0.50, 0.75}. We
observe that all curves exhibit high performance. The curve
corresponding to p = 0.25 exhibits PDR less than 0.12 with
probability 1. The curves corresponding to p = 0.50 and 0.75,
both attain PDR less than 0.22 with probability 1.

Next, we consider a matrix reconstruction study. That is,
we consider Xr = Xnom + Nr + Or ∈ R(D=8)×(N=10),
where Xnom =

√
Nσ2

sQV>, Q ∈ SD×K , V ∈ RN×K ,
Nr draws entries from N (0, σ2

n), Or has a single non-zero
column at an arbitrary location drawn from N (0D, σ

2
oID),

and r ∈ [R = 500]. Above, Xnom models the rank-K
signal-of-interest content carried by Xr, Nr models Addi-
tive White Gaussian Noise (AWGN), Or models a high-
magnitude/peripheral outlier, and r denotes the r-th realization
of noise/outlier. Moreover, the realizations of the noise and
outlier signals are statistically independent across realizations.
For every r ∈ [R], we process Xr by means of PCA
(SVD) and the proposed Lp-BF algorithm in Fig. 2, to obtain
Qsvd,r ∈ SD×K and Qbf,r ∈ SD×K , respectively. Then,
we obtain estimates X̂svd,r = Qsvd,rQ

>
svd,rXr and X̂bf,r =

Qbf,rQ
>
bf,rXr. Then, for each estimate X̂r ∈ {X̂svd,r, X̂bf,r}

we measure the Normalized Reconstruction Error (NRE)
e(X̂r,Xnom) = ‖X̂r −Xnom‖2F ‖Xnom‖−2F . In Fig. 4, we
plot the Mean NRE MNRE = 1

R

∑
r∈[R] e(X̂r,Xnom), for

(σ2
s , σ

2
n,K) = (10dB, (DN)−1, 1), p ∈ {0.25, 0.75}, and σ2

o

varying in {0, 4, 8, 12}dB. We observe that for low values of
corruption variance (σ2

o ≤ 4dB), all methods exhibit almost
identical reconstruction performance. For σ2

o = 8dB, the
curves obtained by the proposed Lp-BF algorithm exhibit
higher performance than the standard PCA curve. Finally, for
σ2
o = 12dB the curve corresponding to PCA, implemented by

means of SVD, is clearly misled due to the outlier. In contrast,
the Lp-PCA curves exhibit high reconstruction performance
compared to standard PCA. In Fig. 5, we plot the MNRE
for (σ2

s , σ
2
n,K) = (12dB, (DN)−1, 2), p ∈ {0.25, 0.75}, and

σ2
o varying in {0, 4, 8, 12, 16}dB. Similar conclusion as in

Fig. 4 are drawn. We conclude our studies with a medical-
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data classification study. We work with the Breast Cancer
Wisconsin (Diagnostic) dataset which includes 569 samples in
the form of length D = 30 feature-vectors computed from a
digitized image of a fine needle aspirate (FNA) of a breast
mass [40, 41]. Each sample is labeled either as malignant
or benign tissue. There exist 212 malignant and 357 benign
tissue-samples in the dataset. We consider that Ntrain = 30
points from each class are available for training and Ntest = 60
samples are available for testing. We let Xb ∈ R30×30 and
Xm ∈ R30×30 denote the available benign and malignant
training data samples, respectively. Similarly, we let Yb ∈
R30×60 and Ym ∈ R30×60 denote the available benign and
malignant testing data samples, respectively. Importantly, we
consider that there is no overlap between training and testing
samples. We construct a classifier as follows. During training,
we compute qb = Lp-BF(Xb, p) and qm = Lp-BF(Xm, p).
Each (unknown) testing sample y is classified as benign if
(q>my)2‖y‖−2 < (q>b y)2‖y‖−2 and malignant otherwise.
To make the classification experiment more challenging, we
assume that m benign samples have wrongly been labeled
as malignant and m malignant samples have been labeled
as benign. We fix p = 0.15, let m vary in {0, 1, 2, 3, 4},
and compute the average classification accuracy, computed
over 500 distinct realizations of training/testing data splits and
mislabelings. As benchmarks, we include the classification
accuracy of PCA1 and (k = 1)-nearest-neighbor classifiers.
The average classification accuracy of the three classifiers
is reported in Fig. 6. We observe that in the absence of
mislabelings (m = 0), the nearest-neighbor classifier exhibits
the highest performance followed by the proposed Lp-BF

1PCA-based classifier: qb = dsv(Xb) and qm = dsv(Xm). dsv(·)
returns the dominant singular vector of its input matrix argument.
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Fig. 6. Classification accuracy vs number of mislabelings.

(p = 0.15) classifier with a small difference (about 0.025)
in accuracy. For any value of m ≥ 1, Lp-BF (p = 0.15)
outperforms all counterparts, remaining almost unaffected by
the mislabelings. In contrast, the performances of the PCA and
nearest-neighbor classifiers drops sharply as m increases. For
instance, when m = 4, Lp-BF (p = 0.15) attains an accuracy
of about 0.87 while the PCA and nearest-neighbor classifiers
attain performances of about 0.75 and 0.78, respectively.

V. CONCLUSIONS

We presented, for the first time, a converging algorithm
for approximating the Lp-quasi-norm (p ≤ 1) principal com-
ponent of a matrix. Then, we followed a subspace deflation
approach and presented a novel algorithm for extracting k ≥ 1
principal components. Numerical studies on synthetic/real data
corroborate the outlier resistance of Lp-quasi-norm PCA.
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