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Abstract—Tucker decomposition is a standard method for pro-
cessing multi-way (tensor) measurements and finds many appli-
cations in machine learning and data mining, among other fields.
When tensor measurements arrive in a streaming fashion or are
too many to jointly decompose, incremental Tucker analysis is
preferred. In addition, dynamic adaptation of bases is desired
when the nominal data subspaces change. At the same time, it
has been documented that outliers in the data can significantly
compromise the performance of existing methods for dynamic
Tucker analysis. In this work, we present Dynamic L1-Tucker:
an algorithm for dynamic and outlier-resistant Tucker analysis of
tensor data. Our experimental studies on both real and synthetic
datasets corroborate that the proposed method (i) attains high
bases estimation performance, (ii) identifies/rejects outliers, and
(iii) adapts to changes of the nominal subspaces.

Index Terms—Data analysis, L1-norm, outliers, robust, tensors,
tucker decomposition.

I. INTRODUCTION

DATA collections across diverse sensing modalities are
naturally stored and processed in the form of N -way

arrays, also known as tensors [1]. Tucker decomposition is a
standard method for tensor analysis, with important applica-
tions in machine learning [2]–[4], pattern recognition [5], [6],
communications [7]–[9], and computer vision [10]–[12], among
other fields. Common uses of Tucker include compression, de-
noising, and model identification. Canonical Polyadic Decom-
position (CPD) [13], [14], also known as Parallel Factor Analysis
(PARAFAC), is another successful tensor analysis scheme with
many applications in data mining and machine learning.

Tucker can be viewed as a high-order extension of Principal-
Component Analysis (PCA) [15]. Similar to PCA, which jointly
analyzes a collection of vectors, Tucker analyzes a collection
of (N ≥ 1)-way tensors to extract one orthonormal basis for
each tensor mode. Instead of applying PCA on vectorized
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measurements, Tucker treats multi-way measurements in their
tensor form, thus leveraging inherent data structure and allow-
ing for superior inference. Standard solvers for Tucker are the
Higher-Order Singular Value Decomposition (HOSVD) and the
Higher-Order Orthogonal Iterations (HOOI) [16], [17].

The merits of Tucker analysis have been demonstrated in a
wide range of applications. However, it is well-documented that
Tucker is very sensitive against faulty measurements (outliers).
Outliers appear often in modern datasets due to sensor mal-
functions, errors in data storage/transfer, and even deliberate
dataset contamination in adversarial environments [18]–[20].
The outlier-sensitivity of Tucker is attributed to its L2-norm
(Frobenius) formulation, which places quadratic emphasis to
peripheral tensor entries. To remedy the impact of outliers,
researchers have proposed robust reformulations of Tucker. For
instance, Higher-Order Robust PCA (HoRPCA) [21] models
and decomposes the processed tensor as the sum of a low multi-
linear rank tensor (nominal data) and a sparse tensor (outliers).
Another straightforward robust reformulation is L1-Tucker [22],
[23], which derives by simple substitution of the L2-norm in
Tucker by the more robust L1-norm (not to be confused with
sparsity-inducing L1-norm regularization schemes). Algorithms
for the (approximate) solution of L1-Tucker have been proposed
in [22]–[28].

In many applications of interest, the tensor measurements
arrive in a streaming way. Accordingly, the sought-after Tucker
bases have to be computed incrementally. Incremental solvers
are also preferred, from a computational standpoint, when there
are too many collected measurements to efficiently process them
as a batch. For such cases, researchers have proposed an array
of algorithms for incremental Tucker decomposition, including
Dynamic Tensor Analysis (DTA), Streaming Tensor Analysis
(STA), Window-based Tensor Analysis (WTA) [29], [30], and
Accelerated Online Low-Rank Tensor Learning (ALTO) [31], to
name a few. Despite their computational merits, similar to batch
Tucker analysis, most of the existing incremental methods are
sensitive against outliers.

In this work, we present Dynamic L1-Tucker: a scalable
method for incremental L1-Tucker analysis, with the ability
to (i) provide quality estimates of the Tucker bases, (ii) detect
and reject outliers, and (iii) adapt to changes of the nominal
subspaces. The rest of this paper is organized as follows. In
Section II, we introduce notation and provide an overview of
the relevant technical background (tensors, Tucker decomposi-
tion, L1-Tucker, and existing methods for dynamic/incremental
Tucker). In Section III, we formally state the problem of interest.
In Section IV, we present the proposed Dynamic L1-Tucker

1932-4553 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on October 19,2021 at 15:27:03 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6464-0723
https://orcid.org/0000-0001-5710-0561
https://orcid.org/0000-0001-9686-779X
mailto:dimitris@mail.rit.edu
mailto:mxd6023@rit.edu
mailto:panos@rit.edu
mailto:ashley.prater-bennette@us.af.mil


588 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 3, APRIL 2021

(D-L1-Tucker) method. Section V holds extensive experimental
studies on synthetic and real datasets. Concluding remarks are
drawn in Section VI.

II. TECHNICAL BACKGROUND

A. Notation and Tensor Preliminaries

In this manuscript, vectors and matrices are denoted by
lower- and upper-case bold letters, respectively –e.g., x ∈
RD1 and X ∈ RD1×D2 . N -way tensors are denoted by upper-
case calligraphic bold letters –e.g., X ∈ RD1×...×DN . Collec-
tions/sets of tensors are denoted by upper-case calligraphic
letters –e.g., X = {X,Y}. The squared Frobenius/L2 norm,
‖ · ‖2F , returns the sum of squared entries of its tensor argument
while the L1-norm, ‖ · ‖1, returns the sum of the absolute entries
of its tensor argument. SD×d = {Q ∈ RD×d : Q�Q = Id} is
the Stiefel manifold of rank-d orthonormal matrices in RD. Each
entry ofX is identified byN indices {in}Nn=1 such that in ≤ Dn

for everyn∈ [N ] = {1, 2, . . . , N}. For everyn ∈ [N ],X can be
seen as a collection of Pn =

∏
m∈[N ]\n Dm length-Dn vectors

known as mode-n fibers of X. For instance, given a fixed set of
indices im∈[N ]\n, X(i1, . . . , in−1, :, in+1, . . . , iN ) is a mode-n
fiber of X. A matrix that has as columns all the mode-n fibers
of X is called the mode-n unfolding (or, flattening) of X and
will henceforth be denoted as mat(X, n) ∈ RDn×Pn . X×n A
is the mode-n product of tensorXwith matrixA of conformable
size and X×n∈[N ] Q

�
n compactly denotes the multi-way prod-

uct X×1 Q
�
1 ×2 Q

�
2 . . .×N Q�

N . In accordance with the com-
mon convention, the order in which the mode-n fibers of X
appear in mat(X, n) is as specified in [16].

B. Tucker Decomposition

Consider coherent tensor measurements Xt ∈ RD1×...×DN ,
t = 1, 2, . . . , T . Also, define their concatenation tensor X ∈
RD1×...×DN×T , such thatX(:, :, . . . , :, t) = Xt. Tucker analysis
of the measurement batch {Xt}Tt=1 is formulated as

max.
{Qn∈SDn×dn}n∈[N]

∥∥X×n∈[N ] Q
�
n

∥∥2
F
, (1)

where ‖X×n∈[N ] Q�
n‖2F =

∑
t∈[T ] ‖Xt×n∈[N ] Q�

n‖2F .
For dn ≤ Dn∀n ∈ [N ], (1) seeksN low-rank bases to compress
the tensor measurements so that the aggregate preserved vari-
ance is maximized. Tucker is commonly implemented by means
of the HOSVD or HOOI algorithms. HOSVD is a single-shot
method that approximates the N bases in (1) disjointly by N
parallel PCAs of the form

max.
Q∈SDn×dn

‖mat(X, n)�Q‖2F . (2)

On the other hand, HOOI is an iterative method which optimizes
the N bases jointly. In general, initialized at bases {Qn,0}n∈[N ],
at iteration i > 0 and for n = 1, 2, . . . , N , HOOI returns Qn,i

as the solution to the PCA problem

max.
Q∈SDn×dn

‖An,i
�Q‖2F (3)

where

An,i = mat(X×m∈[n−1] Q
�
m,i ×k∈[N−n]+n Q�

k,i−1, n). (4)

C. Outliers and L1-Tucker

Outliers appear often in datasets and can significantly com-
promise the performance of Tucker methods. Motivated by the
success of L1-PCA in vector-data analysis [32], L1-Tucker
decomposition has been proposed as an outlier-resistant Tucker
reformulation. In fact, it has been documented in many data ex-
periments that, when the processed tensor is clean, or corrupted
with only benign noise, L1-Tucker attains similar performance
to standard Tucker. However, when the processed tensor is
corrupted with heavy-tail outliers and L2-norm based Tucker
methods fail, L1-Tucker has repeatedly demonstrated marked
robustness [22]–[26].

Mathematically, L1-Tucker derives by substituting the outlier-
responsive L2 norm in (1) by the more robust L1-norm, as

max.
{Qn∈SDn×dn}n∈[N]

∥∥X×n∈[N ] Q
�
n

∥∥
1
, (5)

where ‖X×n∈[N ] Q
�
n‖1 =

∑
t∈[T ] ‖Xt×n∈[N ] Q�

n‖1. L1-
HOSVD [23], [33], [34] approximates the solution to L1-Tucker
by N parallel L1-PCA problems. That is, for every n ∈ [N ], it
finds Qn by solving (approximately or exactly) the L1-PCA

max.
Q∈SDn×dn

‖mat(X, n)�Q‖1. (6)

On the other hand, L1-HOOI is an iterative process that provably
attains a higher L1-Tucker metric when initialized at the solution
of L1-HOSVD [23], [35]. Initialized at {Qn,0}n∈[N ] (typically
by means of L1-HOSVD), at every iteration i ≥ 1, L1-HOOI
updates Qn,i by solving

max.
Q∈SDn×dn

‖An,i
�Q‖1, (7)

where An,i is defined in (4).
Detailed complexity analyses for both L1-HOSVD and L1-

HOOI are offered in [23]. The same work also presents formal
convergence guarantees for the iterative L1-HOOI. As seen
above, L1-HOSVD and L1-HOOI are implemented through
a series of L1-PCAs. L1-PCA admits an exact solution by
combinatorial optimization with high cost [32]. However, there
are multiple high-performing approximate L1-PCA solvers in
the literature that can be used by L1-Tucker methods. In the
algorithmic developments of this work, we consider the L1-
norm Bit-Flipping (L1-BF) algorithm of [36]. For the sake of
completeness, a brief description of L1-BF follows.

Consider matrix X ∈ RZ×Q, for Q ≥ Z, and the L1-PCA

max.
Q∈SZ×z

∥∥X�Q
∥∥
1
. (8)

L1-BF is based on the following Theorem, presented in [32].
Theorem 1: [32] Let Bopt ∈ {±1}Q×z be a solution

to max.B∈{±1}Q×z‖XB‖∗. Then, Proc(XBopt) is an exact so-
lution to L1-PCA in (8).

The nuclear norm ‖ · ‖∗ returns the sum of the singular values
of its argument and, for any tall matrix A ∈ RZ×z that admits
SVD A = UΣ

z×z
V�, Proc(A) = UV�.

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on October 19,2021 at 15:27:03 UTC from IEEE Xplore.  Restrictions apply. 



CHACHLAKIS et al.: DYNAMIC L1-NORM TUCKER TENSOR DECOMPOSITION 589

Fig. 1. L1-Tucker Decomposition (batch-processing) [23]

In view of Theorem 1, [36] proposed to initialize at arbi-
trary B0 ∈ {±1}Q×z and iteratively conduct optimal single-bit
flips (negations). Let eq,Q denote the q-th column of the size-Q
identity matrix IQ. Then, at iteration i ≥ 1, L1-BF solves

(k′, l′) = argmax
(k,l)∈[Q]×[z]

∥∥X (
Bi−1 − 2ek,Qe

�
l,z[Bi−1]k,l

)∥∥
∗ (9)

and updates Bi = Bi−1 − 2ek′,Qel′,z[Bi−1]k′,l′ . Among all
possible single bit-flips, negation of the (k′, l′)-th entry of Bi−1

offers the maximum possible value in ‖XBi‖∗. Importantly,
L1-BF is guaranteed to monotonically increase the metric and
converge in finite (in practice, few) iterations. A pseudocode of
L1-Tucker, implemented by means of L1-HOOI is offered in
Fig. 1.

D. Existing Methods for Incremental and Dynamic Tucker

Streaming and robust matrix PCA has been thoroughly stud-
ied over the past decades [37]–[42]. However, extending matrix
PCA (batch or streaming) to tensor analysis is a non-trivial
task that has been attracting increasing research interest. To
date, there exist multiple alternative methods for batch tensor
analysis (e.g., HOSVD, HOOI, L1-HOOI) but only few for
streaming/dynamic tensor analysis. For example, DTA [29], [30]
efficiently approximates the HOSVD solution by processing
measurements incrementally, with a fixed computational cost
per update. Moreover, DTA can track multi-linear changes
of subspaces, weighing past measurements with a forgetting
factor. STA [29], [30] is a fast alternative to DTA, particu-
larly designed for time-critical applications. WTA is another
DTA variant which, in contrast to DTA and STA, adapts to
changes by considering only a sliding window of measure-
ments. The ALTO method was presented in [31]. For each
new measurement, ALTO updates the bases through a tensor
regression model. In [43], authors presented another method
for Low-Rank Updates to Tucker (LRUT). When a new mea-
surement arrives, LRUT projects it on the current bases and
few more randomly chosen orthogonal directions, forming an
augmented core tensor. Then it updates the bases by standard
Tucker (e.g., HOSVD) on this extended core. In [44], authors
consider very large tensors and propose randomized algorithms
for Tucker decomposition based on the TENSORSKETCH [45].

It is stated that these algorithms can also extend for processing
streaming data. Randomized methods for Tucker of streaming
tensor data were also proposed in [46]. These methods rely on
dimension-reduction maps for sketching the Tucker decompo-
sition and they are accompanied by probabilistic performance
guarantees. More methods for incremental tensor processing
were presented in [47]–[50], focusing on specific applications
such as foreground segmentation, visual tracking, and video
foreground/background separation.

Methods for incremental CPD/PARAFAC tensor analysis
have also been presented. For instance, authors in [51] consider
the CPD/PARAFAC factorization model and assume that N -
way measurements are streaming. They propose CP-Stream,
an algorithm that efficiently updates the CPD every time a
new measurement arrives. CP-stream can accommodate user-
defined constraints in the factorization such as non-negativity.
In addition, authors in [52] consider a Bayesian probabilistic
reformulation of the CPD/PARAFAC factorization, assuming
that the entries of the processed tensor are streaming across all
modes, and develop a posterior inference algorithm (POST).
Further, the problem of robust and incremental PARAFAC has
also been studied and algorithms have been presented in [53],
[54]. Typically, the application spaces of CPD and Tucker are
complementary: CPD is preferred when uniqueness and inter-
pretability are needed; Tucker allows for the latent components
to be related (dense core) and it is preferred for low-rank tensor
compression and completion, among other tasks [4], [14].

The problem of both outlier-resistant and dynamic Tucker
analysis remains to date largely unexplored and it is the main
focus of this work.

III. PROBLEM STATEMENT

Focusing on outlier-resistant tensor processing, we wish to es-
timate the L1-Tucker bases of a tensor-data model, as formulated
in (5). We assume, however, that the measurements {Xt}Tt=1 are
originally unavailable and collected in a streaming fashion, one
at a time.

To set our algorithmic guidelines, we start by considering
two simplistic antipodal approaches. On the one hand, an in-
stantaneous approach would L1-Tucker-decompose each new
measurement to return new bases, independently of any previ-
ously seen data. While this approach is memoryless and compu-
tationally simple, its bases estimation performance is bound to
be limited, especially in low Signal-to-Noise Ratio (SNR). On
the other hand, an increasing-batch approach would append the
new measurement to the already collected ones and re-solve
the L1-Tucker problem from scratch. As the data collection
increases, this method could attain superior bases estimation
performance at the expense of increasingly high computational
and storage overhead.

Both these extreme approaches exhibit an unfavorable per-
formance/cost trade-off. In contrast, a preferred method would
leverage each new measurement, together with previous ones, to
efficiently update the existing bases. The development of such
a method is the main contribution of this paper, as presented in
detail in the following Section IV.
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IV. PROPOSED ALGORITHM

The proposed Dynamic L1-Tucker Decomposition (D-L1-
Tucker) is a method for incremental estimation of the L1-Tucker
bases. D-L1-Tucker is designed to (i) attain high bases estima-
tion performance, (ii) suppress outliers, and (iii) adapt to changes
of the nominal subspaces. In this Section, we present D-L1-
Tucker in detail, addressing bases initialization, bases updates,
parameter tuning, and modifications for long-term efficiency.

A. Batch Initialization

Considering the availability of an initial batch of B 
 T
measurements,B = {X1, . . . ,XB}, we run on it L1-HOSVD or
L1-HOOI to obtain an initial set of L1-Tucker estimates Q0 =
{Q(0)

1 , . . . ,Q
(0)
N }.

Apart from Q0, we also initialize a memory set M0 =
Ω(B,M), for some maximum memory size M ≥ 0. For any
ordered set I and integer Z ≥ 0, we define

Ω(I, Z) =

{
I, if |I| ≤ Z,

[I]|I|−Z+1:|I|, if |I| > Z,
(10)

where | · | denotes the cardinality (number of elements in a set) of
its input argument. That is,Ω(B,M) returns the lastmin{M,B}
elements in B.

If an initialization batch B is not available, the bases in Q0

are chosen arbitrarily and the initial memory M0 is empty. In
this case, D-L1-Tucker becomes purely streaming.

B. Streaming Updates

When a new measurement X̄t �= 0, t ≥ 1, is collected,1 we
first perform a check on it to assess its reliability based on the
most recently updated set of bases Qt−1. Motivated by [28],
[41], [55], [56], we define the reliability as

rt =
∥∥∥X̄t ×n∈[N ] Q

(t−1)
n

�∥∥∥2
F

∥∥X̄t

∥∥−2

F
∈ [0, 1]. (11)

After some algebraic manipulations, (11) can be rewritten as

rt = cos2(φ(vec(X̄t×n∈[N ]Q
(t−1)
n Q(t−1)

n

�
), vec(X̄t))),

(12)

whereφ(·, ·) returns the angle between its two vector arguments.
Intuitively, rt quantifies how much measurement X̄t conforms
to the multi-way subspace spanned by {Q(t−1)

n }n∈[N ], or, the an-

gular proximity of vec(X̄t×n∈[N ]Q
(t−1)
n Q

(t−1)
n

�
) to vec(X̄t).

This check of reliability/conformity inherits its robustness from
the L1-Tucker-derived bases upon which it is defined. Moreover,
if an outlier happens to pass the reliability check, L1-Tucker will
try to suppress it, providing again robust bases. By definition,
the value of rt will be between 0 and 1. If rt = 1, then the
bases in Qt−1 perfectly describe X̄t. In contrast, if rt = 0, then
the set Qt−1 does not capture any component of X̄t. Then, we
introduce a user-defined parameter τ and consider that X̄t is
reliable for processing if rt ≥ τ . Otherwise, X̄t is considered to
be an outlier and it is rejected.

1A bar over a tensor denotes that it is streaming.

If X̄t passes the reliability check, we use it to update the bases
and memory as follows. First, we append the new measurement
to the most recent memory setMt−1 by computing the extended
memory M′ = Φ(Mt−1, X̄t) = Mt−1 ∪ X̄t. Then, we update
the set of bases to Qt by running L1-HOOI on M′, initialized to
the bases in Qt−1. Finally, we update the memory by discarding
the oldest measurement, as

Mt = Ω(M′,M). (13)

In view of the above, the cost of the L1-HOOI algorithm remains
low across updates because, at any given instance, the extended
memory M′ will comprise at most M + 1 measurements.

If X̄t fails the reliability check, we discard it and update the
bases and memory by setting Qt = Qt−1 and Mt = Mt−1,
respectively. A schematic representation of the proposed al-
gorithm is offered in Fig. 2. Here, it is worth noting that the
proposed approach focuses on temporal coherence of stream-
ing measurements. That is, temporally sporadic points from a
second nominal source of measurements could be perceived as
outliers.

C. Zero Centering

In some applications –most notable in image processing– we
are interested in subspaces of zero-centered data. To this end,
we can modify the proposed algorithm so that, at every update
instance (t− 1), it computes and maintains the mean Ct−1 =

(1/M)
∑M

m=1[Mt−1]m. Then, when X̄t is collected, it will
first be zero-centered as X̄ c

t = X̄t − Ct−1. If X̄ c
t passes the

reliability check, then it will be used to update the bases, as
described above.

D. Adaptation to Subspace Changes

In many applications of interest, the underlying data sub-
spaces change across time. In such cases, an ambiguity naturally
rises on whether a rejected measurement was actually an outlier
or the nominal data subspaces have changed and need to be
tracked. To resolve this ambiguity and allow D-L1-Tucker to
adapt, we work as follows.

First, we make the minor assumption that outlying mea-
surements appear sporadically. Then, we introduce a buffer of
ambiguous measurements, W , with capacity W > 0. When a
streaming measurement fails the reliability check, we insert it
to W . If a measurement passes the reliability check, then we
empty W . If at any update instance |W| reaches W –i.e., W
consecutive streaming measurements were rejected as outliers–
then we detect a change of the nominal subspaces.

In order to adapt to these changes, we empty the memory,
set B = W , and re-initialize (reset) the bases and memory,
as described in Section IV-A. Next, the updates proceed as
described in Sections IV-B and IV-D. A pseudocode of the
proposed D-L1-Tucker algorithm is presented in Fig. 3.

E. Long-Run Efficiency

As measurements are streaming, D-L1-Tucker keeps re-
fining the bases estimates. Naturally, after a sufficiently
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Fig. 2. A schematic illustration of the proposed algorithm for streaming L1-norm Tucker decomposition.

Fig. 3. Proposed Dynamic L1-Tucker Decomposition

large number of measurements have been processed, the en-
hancement rate of the bases estimates can be so low that
does not justify the computational effort expended for the
update.

In view of this observation, we can enhance the long-run
efficiency of D-L1-Tucker by introducing an exponentially de-
creasing probability ρt to determine whether or not the t-th
measurement will be processed. Intuitively, when a large number
of reliable measurements have been processed, ρt should be low
enough to limit the number of updates performed. For example,
let us denote by αt−1 the number of consecutive measurements
that have passed the reliability check at update instance t− 1.
Then, if X̄t passes the reliability check, it will be processed with
probability ρt = ραt−1+1, for some initial probability ρ > 0,
close to 1. If X̄t fails the reliability check, then it is rejected
and αt is reset to 0.

F. Parameter Configuration

The performance of D-L1-Tucker largely depends on three
parameters: the initialization batch size B, the memory size M ,
and the reliability threshold τ . Here, we discuss how to select
these parameters.

Batch size B: B determines the quality of the initial set of
bases. That is, higher values ofB will generally offer better set of
bases. Naturally, a very large B would contradict the streaming
nature of the method.

Memory sizeM :M determines how many measurements L1-
Tucker will process at each time instance. Similar to B, higher
values of M can enable superior estimation performance. At the
same time, high values ofM increase the overhead of storage and
computation (cost of L1-Tucker updates). Thus, a rule of thumb
is to set M as high as the storage/computation limitations of the
application permit.

Reliability threshold τ : For τ = 0, all measurements will
be processed (including outliers); for τ = 1, all measurements
will fail the reliability check and no bases updates will take
place. Appropriate tuning of τ between 0 and 1 may ask for
some prior knowledge on the SNR quality of the nominal data.
Alternatively, in the sequel we present a data-driven method for
setting τ .

We start with the reasonable assumption that the initialization
batch B is outlier-free. Then, we conduct on B a leave-one-out
cross-validation to tune τ . For every i ∈ [B], we first form Bi =
B\Xi. Then, we obtain the set of basesQi by running L1-HOOI
onBi. Next, we capture in ri the reliability ofXi evaluated onQi

(notice that Xi did not participate in the computation of Qi).
Finally, we set τ to the minimum, median, or maximum value of
the cross-validated reliabilities {r1, . . . , rB}, depending on the
noise-tolerance/outlier-robustness level that we want to enforce.

V. EXPERIMENTAL STUDIES

A. Testing Parameter Configurations

We first study the performance of the proposed D-L1-Tucker
algorithm across varying parameter configurations. We con-
sider T N -way measurements X̄1, . . . , X̄T , where

X̄t = Gt ×n∈[N ] Q
nom
n +Nt +Ot ∈ RD×D×...×D, (14)
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Fig. 4. N = 3,D = 10,d = 5,B = 5,T = 30, SNR= 0dB, ONR= 14dB,
3000 realizations.

for a nominal set of bases Qnom = {Qnom
n ∈ SD×d}n∈[N ]. The

core tensor Gt ∈ Rd×d×...×d draws entries independently from
N (0, σ2

s). Nt models Additive White Gaussian Noise (AWGN)
and draws entries from N (0, σ2

n). Ot models sporadic heavy
outlier corruption and is non-zero with probability po. When
non-zero, Ot draws entries from N (0, σ2

o). In order to measure
data quality, we define the SNR as

SNR =
E{‖Xt‖2F }
E{‖Nt‖2F }

=
σ2
s

σ2
n

(
d

D

)N

(15)

and the Outlier-to-Noise Ratio (ONR)

ONR =
E{‖Ot‖2F }
E{‖Nt‖2F }

=
σ2
o

σ2
n

. (16)

Our objective is to recover Qnom by processing the measure-
ments {X̄t}t∈[T ] in a streaming way. Denoting by Q̂n the esti-
mate of Qnom

n , we quantify performance by means of the Mean
Aggregate Normalized Subspace Squared Error (MANSSE)

MANSSE =
1

2Nd

∑
n∈[N ]

∥∥∥Qnom
n Qnom

n
� − Q̂nQ̂

�
n

∥∥∥2
F
. (17)

First, we set N = 3, D = 10, d = 5, B = 5, and T = 30.
Moreover, we set σ2

s , σ2
n, and σ2

o such that SNR = 0dB
and ONR = 14dB. In Fig. 4, we plot the MANSSE met-
ric versus varying M ∈ {5, 10, 15, 20} and fixed (p0, τ) ∈
{(0.1, 0), (0.06, 0.4), (0.1, 0.6), (0.06, 0.7)}. We observe that
the curves corresponding to τ ≥ 0.6 are almost horizontal. This
implies that these values of τ are too strict, rejecting almost
all measurements. For τ = 0, all measurements are processed
(outliers and nominal ones); therefore, we see that the estimation
performance improves as M increases, however, the estimation
error is somewhat high because of the processed outliers. The
curve corresponding to τ = 0.4 exhibits the best performance
across the board.

Next, motivated by the above observations, we fix SNR= 0dB
and let τ vary in {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. In Fig. 5,
we plot the MANSSE versus τ for different values of outlier
probability po. We notice that for any τ ∈ [0.3, 0.5], D-L1-
Tucker exhibits high, almost identical MANSSE performance
independently of po. This, in turn, suggests that the SNR plays
an important role in determining the optimal value of τ , for

Fig. 5. N = 3, D = 10, d = 5, B = 5, M = 10, T = 30, SNR = 0dB,
ONR = 14dB, 3000 realizations.

Fig. 6. N = 3, D = 10, d = 5, B = 5, M = 10, T = 30, SNR = 0dB,
ONR = 14dB, 3000 realizations.

which nominal measurements will be processed and outliers
will be rejected with high probability. For the same study, we
present the frequency of rejection versus τ in Fig. 6. Again,
we notice that for very low values of τ , most measurements
are accepted for processing. In contrast, for very high values
of τ , most measurements are rejected. Interestingly, this figure
suggests that for any given parameter configuration there will be
an optimal value of τ for which the frequency of rejection will
approach the probability of outliers po –which, in turn, implies
that in general outliers will rejected and nominal data will be
processed.

Finally, we let po vary in {0, 0.02, 0.06, 0.08, 0.1} and, in
Fig. 7, we plot the frequency of rejection versus po. In accor-
dance with previous observations, we see that high values of τ
result in high rejection frequency, independently of the value
of po. Interestingly, we see that values of τ within [0.3, 0.4]
appear to be near-optimal for this particular SNR and param-
eter configuration, as their performance almost coincides with
the 45◦ slope, at all points of which the frequency of rejection
equals the outlier probability po.

B. Convergence

At any fixed update index, D-L1-Tucker is guaranteed to
converge. That is, when a measurement is deemed reliable,
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Fig. 7. N = 3, D = 10, d = 5, B = 5, M = 10, T = 30, SNR = 0dB,
ONR = 14dB, 3000 realizations.

Fig. 8. Empirical convergence. N = 3, D = 10, d = 3, T = 100, B = 2,
M = 12, W = 0, SNR = −6dB, data-driven τ , 20 000 realizations.

the proposed algorithm processes the measurements in mem-
ory after appending the new measurement by means of L1-
HOOI the convergence of which has been formally proven [23].
Further, due to the sturdiness of L1-Tucker it is expected
that, after many updates, the replacement of a single nominal
measurement in the memory set will not cause much of a
shift to the bases. To illustrate this, we conduct the follow-
ing study. We process measurements X̄1, . . . , X̄T in the form
of (14). D-L1-Tucker returns Q̂t = {Q̂n,t ∈ SD×d}n∈[N ]. In or-
der to evaluate convergence across updates, we measure e(t) =
1

2Nd

∑
n∈[N ] ‖Q̂n,tQ̂

�
n,t − Q̂n,t−1Q̂

�
n,t−1‖2F . In Fig. 8, we

plot e(t) versus update index t for a single realization of mea-
surements. Moreover, we plot e(t) when it is sample-average
computed over 20 000 statistically independent realizations of
measurements. As expected, we see that after enough mea-
surements have been processed, e(t) remains low and very
close to the average expected performance. We conclude that,
upon nominal operation and large enough M , bases changes
will be minuscule in the long run. This will be even more
emphatic for high SNR. Finally, the long-run efficiency feature

Fig. 9. N = 3, D = 10, d = 3, T1 = 70, T2 = 30, B = 2, M = 12, W =
4, SNR = −6dB, ONR = 18dB, data-driven τ , 20 000 realizations.

of D-L1-Tucker, introduced in Section IV-E, can also enforce
convergence/termination.

C. Dynamic Subspace Adaptation

We consider a total of T = T1 + T2 streaming measure-
ments, in the form of (14). The first T1 measurements are
generated by nominal bases Qnom,1. For t > T1 and on, the
measurements are generated by bases Qnom,2. The angular prox-
imity of Qnom,1

n to Qnom,2
n , defined as 1− ‖Qnom,1

n Qnom,1
n

� −
Qnom,2

n Qnom,2
n

�‖2F (2d)−1, is set between 30% and 40% for ev-
ery n ∈ [N ]. Moreover, we consider that the outlier is only
active at instance t = to = 45. We set N = 3, D = 10, d = 3,
T1 = 70, and T2 = 30. The SNR and ONR are set to −6dB
and 18 dB, respectively. We process all measurements by the
proposed D-L1-Tucker algorithm for B = 2, M = 12, W = 4,
and data-driven τ (median of cross-validated batch reliabilities).
We also process the streaming measurements with DTA (λ =
0.2, 0.8), LRUT (additional core dimensions k = D − d− 2),
and instantaneous HOSVD2 counterparts.

In Fig. 9, we plot the MANSSE versus update index t. All
methods, except for the instantaneous HOSVD, start from a
higher MANSSE value and refine their bases by processing
streaming measurements until they reach a low plateau. At t =
45, when the outlier appears, we observe that all competing
methods suffer a significant performance loss. In contrast, the
proposed D-L1-Tucker algorithm discards the outlier and its
performance remains unaffected. When subsequent measure-
ments are streaming, the competing methods start recovering
until they reach again a low plateau, which is largely determined
by the SNR and the parameter configuration of each method.
Interestingly, the instantaneous HOSVD recovers rapidly, after
just one measurement, because it is memoryless. DTA (λ = 0.2)
recovers faster than DTA (λ = 0.8) but its MANSSE plateau is

2At update instance t, instantaneous HOSVD returns the HOSVD solution
of X̄t, independently of any previous measurements.
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Fig. 10. N = 3,D = 10,d = 3,T1 = 70,T2 = 30,B = 2,M = 12,W =
4, SNR = −6dB, ONR = 18dB, data-driven τ , 20 000 realizations.

higher. LRUT also recovers and reaches its plateau performance
after it has seen about 10 measurements after the outlier. At
time instance 71 the nominal data subspaces shift, affecting
all methods expect for the memoryless/instantaneous HOSVD.
D-L1-Tucker attains a high value of MANSSE for aboutW time
instances while its ambiguity window is being filled. Right after,
it rapidly recovers to a low MANSSE value and keeps refining
as more measurements are streaming. DTA and LRUT are also
adapting to the new underlying structure after processing a few
measurements. Another interesting observation is that the low
plateau level for each method appears to be the same in the two
distinct coherence windows.

In Fig. 10, we plot the reliability of the streaming measure-
ments across updates in accordance with (11). At the same figure,
we illustrate the frequency of rejection; that is, the frequency by
which measurements fail the reliability check. We notice that the
outlier at t = 45 and the W measurements following the change
of subspaces are rejected with probability close to 1. In addition,
we observe the instantaneous reliability drop when the outlier
appears and when nominal subspaces change. For this value of
SNR = −6dB, the reliability level for nominal measurements is
about 0.2 and our data-driven τ is accordingly low.

We conclude this study by comparing the run time of each
method across updates. In Fig. 11, we plot the instantaneous
run times. We observe that the instantaneous HOSVD and DTA
exhibit constant run time across updates independently of out-
liers or changes of subspaces. D-L1-Tucker also exhibits about
constant runtime after its memory has been filled. Moreover,
we notice an instantaneous drop in the runtime at index t = 45
which is because D-L1-Tucker discarded the outlier and did not
process it. In contrast, when the outlier appears and when the
subspaces change, LRUT attains an increase in runtime, as it
tries to adapt.

Next, we repeat the above study. This time, instead of having a
fixed outlier at an index, every measurement with index t > B is
outlier corrupted with probability po = 0.1. Moreover, T1 = 75
and T2 = 85. This time, we include a curve which corresponds

Fig. 11. N = 3,D = 10,d = 3,T1 = 70,T2 = 30,B = 2,M = 12,W =
4, SNR = −6dB, ONR = 18dB, data-driven τ , 20 000 realizations.

Fig. 12. N = 3,D = 10,d = 3,T1 = 75,T2 = 85,B = 2,M = 12,W =
4, SNR = −6dB, ONR = 18dB, data-driven τ , 20 000 realizations.

to a method we label D-Tucker. D-Tucker is identical to D-L1-
Tucker with the exception that standard Tucker by means of
HOOI is employed instead of L1-Tucker.

In Fig. 12, we plot the MANSSE versus update index. We
observe that the estimation performance of the DTA curves
degrades due to the outliers until a plateau is reached. Their
estimation error increases at the subspaces change index and
returns to its plateau performance after a few measurements. Ex-
pectedly, the instantaneous HOSVD appears to exhibit constant
performance for any index t > B. A similar observation is made
for the LRUT curve with the exception of update indices 75 to 80
where it adjusts to the new underlying data structure. D-Tucker
starts from a low MANSSE value and improves for a while,
however, its performance slowly drops as measurements are
streaming. This is because outliers are passing the reliability
check of the L2-norm derived bases which, in turn, affects the

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on October 19,2021 at 15:27:03 UTC from IEEE Xplore.  Restrictions apply. 



CHACHLAKIS et al.: DYNAMIC L1-NORM TUCKER TENSOR DECOMPOSITION 595

Fig. 13. N = 3,D = 10,d = 3,T1 = 75,T2 = 85,B = 2,M = 12,W =
4, SNR = −6dB, ONR = 18dB, data-driven τ , 20 000 realizations.

performance of the memory batch processing. In contrast, we
see that D-L1-Tucker keeps improving its performance up to
update index 75 where the underlying data structure changes.
Then, after the ambiguity batch windows of D-Tucker and D-L1-
Tucker are filled, they both reset based on the measurements in
their window –each measurement of which is outlier corrupted
with probability po. Due to its inherent L1-norm robustness,
D-L1-Tucker is able to recover and learn the underlying data
structure of the new coherence window. In contrast, we see that
D-Tucker fails to recover due to the outlying measurements in
its ambiguity window.

In Fig. 13, we illustrate the reliability values and rejection fre-
quencies as they were computed by the proposed D-L1-Tucker
and its counterpart D-Tucker. We observe that during the first
coherence window (t ≤ T1), both methods exhibit almost iden-
tical reliabilities and rejection frequencies. However, in view of
Fig. 12, we infer that D-L1-Tucker is more successful at rejecting
outliers compared to D-Tucker. A few measurements after the
change of subspaces at index t = 75, we see that D-L1-Tucker
converges to reliability and rejection frequency values similar
to those of the first coherence window which implies that it has
adapted nicely to the new coherence window. On the other hand,
the reliability and rejection frequency values to which D-Tucker
converges in the second coherence window, both diverge from
their corresponding values in the first coherence window which,
in turn, implies that D-Tucker was not able to adapt well. This
is also depicted in Fig. 12 where we see that in the second
coherence window D-Tucker converged to a high MANSSE
value.

D. Dynamic Video Foreground/Background Separation

Foreground-background separation is a common task in video
processing applications, including moving object tracking, se-
curity surveillance, and traffic monitoring. The omnipresent
background in a static camera scene determines a nominal
subspace, while any foreground movement –e.g., by vehicles or
people– represent intermittent outliers. In this experiment, we

use D-L1-Tucker to estimate the background and foreground of
incoming video frames and compare its performance with that
of state-of-the-art alternatives.

For this experiment, we use videos from the CAVIAR
database [57]. Specifically, we use two videos, each contain-
ing 100 frames of size (D1 = 173)× (D2 = 231) and capturing
a different scene. Each video is viewed as collection of frames –
i.e., 2-way tensor measurements. We collate the two videos, one
behind the other to form the data stream X ∈ RD1×D2×(T=200).
Below, we denote by X̄t the t-th frontal slab of X (i.e., the t-th
video frame).

We apply the proposed algorithm on X by setting dn = d =
3∀n ∈ [2], B = 5, M = 10, W = 20, and τ by the proposed
batch reliability cross-validation. For every t ∈ [T −B] +B,
we obtain bases Q(t)

1 and Q
(t)
2 and the mean frame Ct. Accord-

ingly, we estimate the background as XBG
t = Q

(t)
1 Q

(t)
2

�
(X̄t −

Ct)Q
(t)
2 Q

(t)
2

�
+ Ct and the foreground as XFG

t = Xt −XBG
t .

We compare the performance of the proposed algorithm with
that of DTA, LRUT, OSTD,3 HOOI (increasing batch), and
L1-HOOI (increasing batch). For the last two benchmark ap-
proaches, at any frame index t, we run HOOI/L1-HOOI on the
entire batch {X̄j}j∈[t], starting from arbitrary initialization. We
notice that DTA is capable of tracking scene changes using a for-
getting factor λ. Since the background estimation involves mean
subtraction, for a fair comparison with the proposed method, we
enable mean tracking for DTA by computing CDTA

t = λCDTA
t−1 +

(1− λ)X̄t, for CDTA
1 = X̄1. For all other methods, we compute

the mean incrementally at any t as Ct = ((t− 1)Ct−1 + X̄t)/t.
For DTA, we use two values of forgetting factor, λ = 0.95, 0.7
and for LRUT we set the number of additional core dimensions
to kn = Dn − d− 3 ∀n ∈ [2].

In Fig. 14 and Fig. 15, we present the backgrounds and
foregrounds obtained by the proposed method and existing coun-
terparts at the 75-th frame (scene 1) and the 150-th frame (scene
2), respectively. We observe from Fig. 14 that HOOI (increasing
batch), LRUT, and OSTD perform similarly leaving a trail of a
ghostly appearance behind the person in their respective fore-
ground frames. We notice that OSTD and L1-HOOI (increasing
batch) perform better with a smoother trail behind the person in
their foreground frames. DTA with λ = 0.7 captures the person
in its background, leading to an undesirably smudged foreground
estimate. DTA with λ = 0.95 demonstrates a cleaner foreground
estimate, similar to that of the adaptive mean (background
estimated by the same adaptive mean that we use for DTA),
however their backgrounds contain a ghostly appearance of the
person. The proposed method extracts a cleaner background and
foreground owing to its outlier rejection capability.

In Fig. 15, we demonstrate the performance after the scene
changes at t = 100 by presenting the estimated backgrounds
and foregrounds at frame index t = 150. We observe that HOOI,
L1-HOOI, OSTD, and LRUT perform poorly because they are
not designed to track changes in the scene. DTA with λ = 0.95

3OSTD –i.e., Online Stochastic Tensor Decomposition– was specifically de-
signed for background/foreground separation in multispectral video sequences
[50].
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Fig. 14. Dynamic video foreground/background separation experiment. (a) Original 75-th frame (scene 1). Background extracted by (b) Adaptive Mean (λ =
0.95), (c) DTA (λ = 0.95), (d) DTA (λ = 0.7), (e) LRUT, (f) OSTD, (g) HOOI (increasing memory), (h) L1-HOOI (increasing memory), and (i) D-L1-TUCKER
(proposed). Foreground extracted by (j) Adaptive Mean (λ = 0.95), (k) DTA (λ = 0.95), (l) DTA (λ = 0.7), (m) LRUT, (n) OSTD, (o) HOOI (increasing memory),
(p) L1-HOOI (increasing memory), and (q) D-L1-TUCKER (proposed).

demonstrates better performance compared to that of λ = 0.75
at frame 75, however, at frame 150, we observe that DTA
with λ = 0.9 captures some of the background from scene 1,
while DTA with λ = 0.7 obtains a clean background and hence
a smooth foreground, wherein the person appears slightly blurry.
The proposed method is capable of tracking scene changes and
we observe that it obtains a good estimate of the background
and a clear foreground.

To quantify the background/foreground estimation perfor-
mance, we compute, for every frame, the Peak Signal-to-Noise
Ratio (PSNR) defined as PSNR = 10log10(

2552

MSE ), where MSE
is the mean squared error of the estimated background and
the ground truth (clean) background. In Fig. 16, we plot the
PSNR versus frame index and observe that all methods begin
with high PSNR and, as they process frames with foreground
movement, the PSNR drops. We observe that the PSNR of
the proposed method is the highest after approximately frame
25. When the scene changes, the PSNR of all methods drops
instantaneously. The PSNR values of HOOI, L1-HOOI, LRUT,
and OSTD increase at a low rate as they process frames from the
new scene. Adaptive mean and DTA with λ = 0.95 demonstrate

better performance with faster PSNR increase. DTA with λ =
0.5 adapts to the new scene very quickly, but it is affected by
foreground movement (depicted by oscillations in its PSNR
values). The proposed method adapts to the new scene after
it processes W = 20 measurements and attains the highest
PSNR values across all frame indices thereafter. Certainly, after
adaptation, the proposed method is straightforwardly capable
of accurately extracting the background and foreground of all
ambiguous frames in W in a retroactive fashion, as shown in
Fig. 16.

E. Online Tucker and Classification

In this experiment, we perform joint Tucker feature extrac-
tion and online classification. We use the Extended Yale Face
Database B [58], consisting of face images of many individuals,
captured at varying illumination. For this experiment, we use
the face images of subject 02 and subject 23 to perform binary
classification. Each class has 64 images in total, out of which, at
every realization, we choose 45 for training and the remaining 19
for testing. The size of each image is originally 192× 168 and
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Fig. 15. Dynamic video foreground/background separation experiment. (a) Original 150-th frame (scene 2). Background extracted by (b) Adaptive Mean
(λ = 0.95), (c) DTA (λ = 0.95), (d) DTA (λ = 0.7), (e) LRUT, (f) OSTD, (g) HOOI (increasing memory), (h) L1-HOOI (increasing memory), and (i) D-L1-
TUCKER (proposed). Foreground extracted by (j) Adaptive Mean (λ = 0.95), (k) DTA (λ = 0.95), (l) DTA (λ = 0.7), (m) LRUT, (n) OSTD, (o) HOOI (increasing
memory), (p) L1-HOOI (increasing memory), and (q) D-L1-TUCKER (proposed).

we down-sample it to 96× 84. Therefore, at every realization,
we have a tensor with training data X ∈ R96×84×90 containing
90 measurements in total (45 from each class) and a tensor with
testing dataY ∈ R96×84×38 containing 38 measurements in total
(19 from each class). At every realization, we arbitrarily shuffle
the training data and follow a parallel online feature extraction
and classification approach as follows.

At update index t, we process the t-th training sample in X,
X̄t, and update Q

(t)
1 and Q

(t)
2 using the proposed method

(B = 5, M = 10, d1 = 15, d2 = 6, and cross-validated τ ).
Next, we use the updated bases to compress all previously seen

training data {X̄i}i∈[t] as Zi = Q
(t)
1

�X̄iQ
(t)
2 . We vectorize the

compressed training measurements and give them as input to the
Online Support Vector Machine (OSVM) classifier of [60].4 We
test the performance of the classifier on testing data, compressed
using the same bases, and record the classification accuracy
for every update index t. We repeat the experiment 300 times
and plot the average classification accuracy versus update index

4Matlab code available at https://www.cpdiehl.org/code.html.

in Fig. 17. Along with the proposed algorithm, we also plot
the performance of the plain OSVM classifier, i.e., OSVM
classifier run on vectorized (uncompressed) data, DTA with λ =
0.33, and OSTD. In Fig. 17, we observe that all compared
methods attain almost identical performance. The classifica-
tion accuracy starts low and as the update index increases it
tends to 1.

Next, we repeat the experiment with the same setting, by
corrupting each training measurement outside the initial memory
batch B with noise from N (2, 5), cropping pixel intensities
outside [0255]. We compute the average classification accu-
racy over 300 realizations and plot it versus update index in
Fig. 17. In this case, we notice that plain OSVM is significantly
affected by the noise. DTA, OSTD, and D-L1-Tucker demon-
strate resistance to noise corruption, especially for earlier update
indices.

F. Online Video Scene Change Detection

In this experiment, we demonstrate the efficacy of the pro-
posed method in online video scene change detection. We
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Fig. 16. Dynamic video foreground/background separation experiment.
PSNR (dB) versus frame index.

Fig. 17. Online tensor compression and classification experiment. Average
classification accuracy versus update index.

operate on Red-Green-Blue (RGB) videos from the bench-
mark video scene change detection dataset in [59]. Specifically,
we operate on three video frame-sequences from the dataset.
Video 1 (twoPositionPTZCam) captures a street with a sin-
gle scene change. Video 2 (badminton) captures badminton
players in action with camera jittering. Video 3 (zoomIn-
zoomOut) captures the backyard of a house with a single
scene change. Each video can be seen as a collection of 3-way
tensors X̄t ∈ RD1×D2×D3 which are the video frames streaming
across time t = 1, 2, . . .. Videos 1, 2, and 3 are cropped to consist
of T = 202, 220, and 172 frames, respectively, and each frame
is of size 85× 143× 3, 94× 144× 3, and 60× 80× 3, respec-
tively. For videos 1 and 3, scene change occurs at frames 102
and 92, respectively.

We run the proposed algorithm on all three videos with B =
20,M = 10,W = 5, and cross-validated threshold τ set to 88%

of the median reliability of the initialization batch. For all videos
we set d3 = 1. For videos 1 and 2 we set d1 = d2 = 2 while for
video 3 we set d1 = d2 = 5.

A scene change is detected when the ambiguity batch over-
flows. The frame index of the first frame to enter the ambiguity
batch is returned as the index of scene change. We quantify the
performance of the proposed algorithm by means of the standard
accuracy metric

TP + TN

TP + FP + TN+ FN
, (18)

where TP is the number of correct scene change detections,
TN is the number of frames correctly identified as non-scene-
changes, FP is the number of falsely identified scene changes,
and FN is the number of missed detections. We compare the
performance of the proposed algorithm with that of the state-of-
the-art subspace-based scene change detection (SSCD) method
in [61]. In addition, we extend SSCD to handle multi-way/tensor
subspaces and replace the matrix products in Algorithm 1 of [61]
by tensor products. Then, we apply SSCD on the tensor bases
obtained by means of HOOI (batch), L1-HOOI (batch), and DTA
(λ = 0.2). The values of d1, d2, and d3 are the same as those used
with the proposed algorithm. Other hyper-parameters of SSCD
include positive constants b and c which are optimally tuned,
individually for each method.

To evaluate the robustness of each method against corruptions,
we corrupt each frame of all videos with probability pf . To each
pixel of a corrupted frame, we add salt-and-pepper noise with
probability pn. In Fig. 18, we illustrate a frame instance per
scene for each video along with a noisy frame. For every value
of pn, we repeat the experiment 250 times.

For video 1 and pf = 0.1, we illustrate the average detection
accuracy of each method in Fig. 19 (left). We observe that
under nominal conditions (no noise), the proposed algorithm
and the tensor-based SSCD methods (HOOI + SSCD, L1-HOOI
+ SSCD, and DTA + SSCD), with c = 107 and b = 1 attain
perfect performance by correctly identifying the scene change,
without any false positives. In contrast, the plain SSCD method
with c = 107.4 and b = 1 that relies on the K = 2 orthonor-
mal bases obtained by SVD on the video frames demonstrates
slightly degraded performance. This can be attributed to the loss
of spatial context when the video frames are vectorized. As pn
increases in steps of 0.005, we notice that plain SSCD is affected
the most, followed by HOOI + SSCD and DTA + SSCD. L1-
HOOI + SSCD exhibits some robustness to noise, comparatively.
The proposed method maintains the best performance across the
board.

For video 2 and pf = 0.25, we report the average detection
performance of each method in Fig. 19 (middle). The tensor-
based SSCD methods use the same parameters as before while
plain SSCD uses the same K value, c = 107.5, and b = 1.
Because this video is jittery, SSCD methods exhibit some robust-
ness to noise for small pn. As pn increases in steps of 1%, SSCD
methods perceive camera jitter as scene change. In contrast,
D-L1-Tucker remains robust to noise and is not misled.

Finally, for Video 3 andpf = 0.1, we plot the detection perfor-
mance of all methods in Fig. 19 (right). pn varies in steps of 0.01
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Fig. 18. Frame instances per scene for the three videos in [59]. Video 1: (a) scene 1, (b) scene 2, and (c) noisy frame. Video 2: (d) scene 1, (e) scene 2, and (f)
noisy frame. Video 3: (g) scene 1, (h) scene 2, and (i) noisy frame. Probability of noise corruption per pixel is 10% for all noisy frames.

Fig. 19. Average online video scene change detection accuracy versus probability of noise corruption per pixel. For videos 1 and 3, the probability of frame
corruption pf is set to 0.1 while for video 2 it is set to 0.25. Video 1 (left), video 2 (middle), and video 3 (right).

from 0 to 0.02. We use the same parameters for the tensor-based
SSCD methods while for the plain SSCD method we use the
same K, c = 107.25, and b = 1. We observe similar results to
those of Fig. 19 (left) and Fig. 19 (middle). Although pn is small,
the number of corrupted pixels per frame is significant –e.g.,
consider video 1 where each frame is of size 85× 143× 3 and,
on average, a probability of pixel corruption pn = 0.01 results
in approximately 365 noisy pixels per corrupted frame.

G. Online Anomaly Detection

We consider the “Uber Pickups” tensor of the Formidable
Repository of Open Sparse Tensors and Tools (FROSTT) [62]
which is a (N = 4)-way tensor of sizeD1-by-D2-by-D3-by-D4

where D1 = 1140 latitudes, D2 = 1717 longitudes, D3 = 24
hours, and D4 = 183 days. Each entry of the tensor models
number of Uber pickups in New York City over a period of
about 6 months.

Pre-processing: To make the tensor more manageable in size,
we first take a summation across the day mode and obtain
a size D1-by-D2-by-D3 tensor where D3 = 183 days –i.e., a

collection of 183 size 1140-by-1717 matrix measurements. We
further reduce the size of the matrix measurements by retaining
a 250-by-250 area centered at Manhattan wherein most of the
activity –in terms of Uber Pickups– occurs. We consider the
resulting tensor Xuber ∈ R250×250×183 to be a collection of 183
streaming measurements, one for each day.

Streaming processing: Xuber can be seen as a data stream of
matrix measurements each of which corresponds to a day. Ac-
cordingly, 7 successive measurements across the day index must
correspond to a week which, in turn, is separated into weekdays
and Saturdays. We assume that traffic during the weekdays is not
the same as traffic on Saturdays and conjecture that weekdays
belong to a coherent class/distribution while Saturdays belong
to another.

We assume that we are given B = 5 measurements that cor-
respond to weekdays and use those measurements to initialize
D-L1-Tucker with memory sizeM = 5 and d = 10 components
per mode. Moreover, we leverage these B measurements to
tune τ using the leave-one-out cross-validation approach that we
presented above. We set τ to the median value of theB collected
reliability values in r. Then, we update the decomposition of
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Fig. 20. B = 5, M = 5, d = 10, 300 realizations, data-driven τ .

D-L1-Tucker by processing the rest of the measurements one by
one. In Fig. 20, we plot the reliability of streaming measurements
versus day (update) index. Moreover, we add the data-driven
value of τ as a horizontal line. Each measurement with reliability
value above this curve is deemed reliable for processing, while
each measurement with reliability value below that curve is
considered to be an anomaly (outlier). For better understand-
ing, we include vertical dotted lines on the day indices which
correspond to Saturdays. The reported curves are averaged over
300 random initializations of bases and runs of D-L1-Tucker
on Xuber. Quite consistently, days that correspond to Saturdays
exhibit reliability values that are clearly below the τ threshold
and are considered anomalies. In contrast, almost all weekdays
exhibit reliability values above the τ threshold. A different
selection of the threshold τ may slightly improve the results,
however, even with the data-driven tuning of τ , the reliability
check feature of D-L1-Tucker offers high accuracy in identifying
anomalies/outliers.

VI. CONCLUSIONS

When tensor measurements arrive in a streaming fashion or
are too many to jointly decompose, incremental Tucker analysis
is preferred. In addition, dynamic bases adaptation is meaningful
when the nominal data subspaces change. At the same time,
outliers in the data can significantly compromise the perfor-
mance of existing methods for dynamic Tucker analysis. In this
work, we presented D-L1-Tucker: an algorithm for dynamic and
outlier-resistant Tucker analysis of tensor data. Our experimen-
tal studies on real and synthetic datasets corroborate that the
proposed method (i) attains high bases estimation performance,
(ii) suppresses outliers, and (iii) adapts to changes of the nominal
subspaces.
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