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Abstract—Standard Principal-Component Analysis (PCA) is
known to be sensitive to outliers among the processed data. On the
other hand, L1-norm-based PCA (L1-PCA) exhibits sturdy resis-
tance against outliers, while it performs similar to standard PCA
when applied to nominal or smoothly corrupted data [1]. Exact
calculation of the K L1-norm Principal Components (L1-PCs) of
a rank-r data matrixX ∈ R

D×N costsO(N (r−1)K+1) [1], [2]. In
this work, we present reduced-rank L1-PCA (RR L1-PCA): a hy-
brid approach that approximates theK L1-PCs ofXby the L1-PCs
of its L2-norm-based rank-d approximation (d ≤ r), calculable
exactly with reduced complexity O(N (d−1)K+1). The proposed
method combines the denoising capabilities and low computation
cost of standard PCA with the outlier-resistance of L1-PCA. RR
L1-PCA is accompanied by formal performance guarantees as well
as thorough numerical studies that corroborate its computational
and corruption resistance merits.

Index Terms—Faulty data, L1-norm, matrix analysis, PCA,
outliers.

Manuscript received September 6, 2019; revised February 16, 2020, May
27, 2020, and September 28, 2020; accepted November 3, 2020. Date of
publication November 23, 2020; date of current version January 5, 2021. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Justin Dauwels. This work was supported in part by the
U.S. National Science Foundation under Grants 1808582, 1462341, 1526771,
1704813, and 1828181. The work of Panos P. Markopoulos was supported
by the U.S. National Science Foundation under Grant 1808582. The work of
Michael Langberg was supported by the U.S. National Science Foundation under
Grants 1526771 and 1462341. The work of Dimitris A. Pados was supported
by the U.S. National Science Foundation under Grants 1704813 and 1828181.
(Corresponding author: Panos P. Markopoulos.)

Hossein Kamrani was with the University at Buffalo, SUNY, Buffalo, NY
14260 USA. He is now with the Department of Communication and Electronics
Engineering, Shiraz University, Shiraz, Iran (e-mail: kamrani@shirazu.ac.ir).

Alireza Zolghadr Asli is with the Department of Communication and
Electronics Engineering, Shiraz University, Shiraz 7134851154, Iran (e-mail:
zolghadr@shirazu.ac.ir).

Panos P. Markopoulos is with the Department of Electrical and Microelec-
tronic Engineering, Rochester Institute of Technology, Rochester, NY 14623
USA (e-mail: pxmeee@rit.edu).

Michael Langberg is with the Department of Electrical Engineering, State
University of New York at Buffalo, University at Buffalo, Buffalo, NY 14260
USA (e-mail: mikel@buffalo.edu).

Dimitris A. Pados is with the Department of Computer and Electrical En-
gineering and Computer Science, Florida Atlantic University, Boca Raton, FL
33431 USA (e-mail: dpados@fau.edu).

George N. Karystinos is with the School of Electrical and Computer En-
gineering, Technical Univerisity of Crete, Chania 73100, Greece (e-mail:
karystinos@telecom.tuc.gr).

Digital Object Identifier 10.1109/TSP.2020.3039599

I. INTRODUCTION

PRINCIPAL-COMPONENT Analysis (PCA) finds numer-
ous applications in the fields of signal processing, image

processing, communications, computer vision, machine learn-
ing, and bio-informatics/genomics, to name a few [3]–[7]. PCA
seeks a low-dimensional linear subspace that maximizes data
presence, traditionally measured by data variance and estimated
via the L2-norm of the projected data. Therefore, PCA is also
known as L2-PCA. In an array of applications, PCA has been
shown to attain high denoising performance when low-rank
data are corrupted by benign (e.g., Gaussian) noise. Another
advantage of PCA is its low-cost implementation by means of
standard singular-value decomposition (SVD) and faster prac-
tical variants [8]. Owning to these merits, PCA is widely used
today for general denoising, data compression, visualization,
clustering, detection, and classification [6].

On the negative side, PCA is well-known to suffer significant
performance degradation when the processed data include irreg-
ular points that lie far from the true/nominal subspace (i.e., the
low-rank data subspace prior to any contamination) [9]. Such
points, commonly referred to as outliers, may appear due to
sensor malfunctions, errors in data transmission/transcription,
or heavy-tail noise corruption [10], [11]. This sensitivity can
be emphasized when outliers form a high-variance low-rank
subspace [12] –a case of particular interest in this work. The out-
lier sensitivity of PCA derives from its L2-norm-maximization
definition, by which it places squared emphasis on every datum
and benefits unfavorably peripheral entries.

In view of the above, in the past decade there has been
increased research interest for the development of L1-norm-
based Principal Component (L1-PC) calculators. Existing
L1-norm-based PCA formulations seek to either minimize the
absolute subspace representation error (L1-error-minimization)
or maximize the absolute magnitude of the subspace-projected
data points (L1-projection-maximization). For the first approach
(error minimization), there has been thorough theoretical anal-
ysis in the literature [13]–[19] and efficient/iterative algorithms
have been presented [20]–[24]. However, for a general number
of principal components, no exact solution exists to date. For the
second approach (projection maximization), henceforth referred
to simply as L1-PCA, the exact solution is known for any number
of components [1], [2]. In addition, an array of approximate
algorithms have been proposed in the literature with varying
performance/cost trade-offs [25]–[34]. The outlier resistance
of L1-PCA has already been leveraged in many applications,
such as direction-of-arrival (DoA) estimation, interference-
suppressive filtering, image restoration, face recognition, and

1053-587X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on October 19,2021 at 15:45:20 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9686-779X
https://orcid.org/0000-0002-7470-0718
https://orcid.org/0000-0001-8959-6450
https://orcid.org/0000-0002-8649-160X
mailto:kamrani@shirazu.ac.ir
mailto:zolghadr@shirazu.ac.ir
mailto:pxmeee@rit.edu
mailto:mikel@buffalo.edu
mailto:dpados@fau.edu
mailto:karystinos@telecom.tuc.gr


KAMRANI et al.: REDUCED-RANK L1-NORM PRINCIPAL-COMPONENT ANALYSIS WITH PERFORMANCE GUARANTEES 241

video surveillance, to name a few [35]–[41]. More recently,
L1-PCA has also been extended to tensor processing [42]–[46].

Authors in [1] showed that L1-PCA can be equivalently
formulated as a combinatorial optimization problem, in the form
of nuclear norm maximization over antipodal-binary variables.
In addition, [1] offered the first optimal algorithms that compute
theK L1-PCs of matrixX ∈ R

D×N , with complexityO(2NK),
in the general case and O(N (r−1)K+1) when r := rank(X) is
a constant with respect to N . The complexity of these optimal
algorithms often renders them unsuitable for several real-world
applications where N and/or D are large. The complexity of
low-cost approximate solvers (such as those proposed in [30] and
[28]) also depends on r. Therefore, we are motivated to design
an L1-PCA solver that operates on a low-rank approximation of
the data matrix.

In fact, one could conjecture that if Xd is a rank-d matrix
that constitutes a close approximation to X, for some d ∈
{K + 1, . . . , r}, then its L1-PCs would also be similar to those
of X. In this work, we examine this conjecture for the first time
and prove its truthfulness when Xd is the projection of X on its
d-dimensional L2-norm principal subspace –i.e., the subspace
spanned by the d most significant PCs of X, obtain by standard
SVD. Accordingly, the K L1-PCs of Xd can be computed
exactly with reduced cost O(N (d−1)K+1) [1] or approximately
by any of the algorithms in [25]–[28], [30] with cost as low as
O(N2dK). We refer to the proposed method as Reduced-Rank
L1-PCA (RR L1-PCA). Our algorithmic developments are ac-
companied by performance bounds that solely depend on the
size and singular-value profile of X –and are, thus, calculable
by means of SVD, prior to any L1-PCA computation.

The remainder of this paper is organized as follows. In Section
II, we briefly review the L1-PCA theory. In Section III, we
present the proposed RR L1-PCA approach. In Section IV, we
present formal performance bounds for the proposed method.
Section V holds an array of experimental results from the fields
of data analysis, image reconstruction, and direction-of-arrival
estimation. Finally, concluding remarks and acknowledgements
are presented in Sections VI and VII, respectively.

This work is a significantly extended version of the conference
publication [47] by P.P.M, D.A.P., G.N.K., and M.L. Major
extensions include improved performance bounds, presented
in Section IV, and extended numerical studies, presented in
Section V.

II. L1-PCA THEORY

We consider matrix X = [x1,x2, . . . ,xN ] ∈ R
D×N of rank

r ≤ min{D,N} and denote by σi(X) its i-th highest singular
value. The L2-norm, L1-norm, and nuclear norm of X are given
by

‖X‖F =

√√√√ D∑
i=1

N∑
j=1

[X]2i,j =
√

Tr(X�X) =

√√√√ r∑
i=1

σ2
i (X),

‖X‖1 =

D∑
i=1

N∑
j=1

|[X]i,j |, and

‖X‖∗ = Tr(
√
X�X) =

r∑
i=1

σi(X), (1)

respectively. Given a desired number of K < r PCs, the L1-
PCA of X is defined as the pursuit of an orthonormal basis
Q∗ ∈ SD,K := {U ∈ R

D×K ; U�U = IK} that solves

maximize
Q ∈ SD,K

‖X�Q‖1. (2)

Authors in [1] showed that L1-PCA in the form of (2) is equiva-
lent to the combinatorial optimization overNK antipodal binary
variables. In addition, [1] offered the first two exact algorithms
for solving (2). Prior to these exact algorithms, several approx-
imate calculators had been proposed in the literature [25]–[28].
In the sequel, we briefly present the optimal solution to L1-PCA,
in the form of Theorem 1, as derived in [1].

Theorem 1: (L1-PCA Theorem [1]) Let B∗ be a solution to

maximize
B∈{±1}N×K

‖XB‖∗. (3)

If XB∗ admits SVD

XB∗ svd
= YΣZ�, (4)

then an exact solution to (2) is given by

Q∗ = YZ� = Φ(XB∗) := argmin
Q ∈ SD,K

‖XB∗ −Q‖F . (5)

Moreover, it holds that ‖X�Q∗‖1 = ‖XB∗‖∗ and B∗ =
sgn(X�Q∗), where sgn(·) returns the {±1}-sign matrix of its
argument.

Accordingly, for K = 1, (3) takes the form1

maximize
b∈{±1}N

‖Xb‖2 (6)

and, given the optimal solution b∗ to (6), the L1-PC of X is

q∗ = Xb∗‖Xb∗‖−12 . (7)

In addition, ‖X�q∗‖1 = ‖Xb∗‖2 and b∗ = sgn(X�q∗).
In view of the above connection of L1-PCA to combinato-

rial optimization, a conceptually simple optimal algorithm[1]
searches exhaustively the size-2NK feasibility set {±1}N×K of
(3) for B∗ and then returns Q∗ by (5).2 Authors in [1] offered
an alternative polynomial-time algorithm that searches for B∗
in a subset of {±1}N×K (wherein B∗ is guaranteed to exist)
with overall cost O(N (r−1)K+1), when r is considered fixed
with respect to N , which is a reasonable assumption for most
cases of engineering interest where D is the number of sensors
or data-features and, thus, constant with respect to the number
of measurements, N .

III. REDUCED-RANK L1-PCA

A. Proposed Method

Consider SVD X
svd
= UDr×rV�, where U ∈ SD,r,

V ∈ SN,r, and D = diag([σ1(X), σ2(X), . . . , σr(X)]�).
The columns of U and V are the left and right singular vectors
of X, respectively. D contains the r positive singular values of
X. Moreover, for any i, j ∈ [r] := {1, 2, . . . , r}, with i < j, we
define Ui→j := [U]:,i:j , Vi→j := [V]:,i:j , Di→j := [D]i:j,i:j ,

1The nuclear norm, ‖ · ‖∗, and Euclidean norm, ‖ · ‖2, operators coincide for
vector arguments.

2In practice, this algorithm can take advantage of the nuclear-norm invari-
ability to negations and permutations of the columns of its matrix argument and

search exhaustively in a size-
(
2N−1+K−1

K

)
subset of {±1}N×K , wherein a

solution to (3) is guaranteed to exist. Still, this reduced set has asymptotic size
O(2NK).

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on October 19,2021 at 15:45:20 UTC from IEEE Xplore.  Restrictions apply. 



242 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Algorithm 1: Proposed Framework for RR L1-PCA.
L1-PCA(Xd,K) Returns the K Exact [2] (or Approximate
–e.g., [25]–[30]) L1-PCs of Xd.

Data: Measurement matrix X; number of PCs K;
reduced rank d ≥ K

Result: Basis Q∗d
UDV� SVD← X;
Xd ← U1→dU

�
1→dX;

Q∗d ← L1-PCA(Xd,K)

and Dj := diag([σ1(X), σ2(X), . . . , σj(X), 0�r−j ]
�). The

rank-d L2-norm approximation of matrix X is then
given by Xd := U1→dU

�
1→dX = U1→dU

�
1→dUDV� =

U1→dD1→dV
�
1→d = UDdV

�. In this work, we propose to
approximate the exact L1-PCs of X, Q∗, by the L1-PCs of its
rank-d approximation, Xd, defined as

Q∗d = argmax
Q ∈ SD,K

‖X�dQ‖1, (8)

for d ≥ K. The proposed RR L1-PCA framework is presented
in Algorithm 1.

The rationale behind the proposed framework is the following:
if Xd is close to X, depending on the magnitude of the omitted
singular values σd+1(X), . . . , σr(X), Q∗d will be a close ap-
proximation to Q∗. The polynomial-time algorithm of [1] can
solve (8) with reduced cost O(N (d−1)K+1). The near-optimal
algorithms of [30] can solve (8) with cost O(N2K2(K2 + d)).
The algorithms of [26] and [28] can approximate the solution
to (8) with cost O(N2dK).3 In practice, we can set d to be
greater-or-equal to the dimensionality of the dominant subspace
in X (i.e., the number of significantly large singular values),
capturing both inliers and outliers –which can be then suppressed
by L1-PCA.

The following Lemma 1 shows that the L1-PCA of a matrix
that has rank lower than its number of rows can be recast as the
L1-PCA of a shorter matrix of full row rank. A proof for the
lemma is provided in the appendix.

Lemma 1: Consider matrix X ∈ R
D×N with rank r and

X
svd
= UDr×rV�. If Q̄∗ are the K < r L1-PCs of DV� ∈

R
r×N , then UQ̄∗ are the K L1-PCs of X.
According to Lemma 1, we can obtain theK L1-PCs ofXd in

(8) (recall K ≤ d ≤ r) by those of D1→dV
�
1→d. That is, Q∗d =

U1→dQ̄
∗
d, where Q̄∗d are the K L1-PCs of D1→dV

�
1→d.

B. Further Refinement

The proposed RR L1-PCA method approximates the solution
to the L1-PCA problem in (2) Q∗, by the solution to (8), Q∗d,
for some d ∈ {K,K + 1, . . . , r}.

As an optional refinement, we can run on Q∗d the alternating
optimization of [28], for any desired number of iterations, with
practically negligible additional cost. Specifically, consider the
reduced-rank approximate solution Q∗d ∈ SD,K , denote it by

Q
(0)
ref , for the purpose of this refinement step, and define

B
(1)
ref = sgn(X�Q(0)

ref ). (9)

3The presented complexities for the iterative algorithms of [26] and [28]
consider N ≥ d ≥ K and that the number of iterations is upper bounded by a
linear function of N , which is corroborated by our numerical experiments.

Algorithm 2: Alternating-Optimization Iterations for the
Refinement of Q∗d [28].

Then, for i = 1, 2, . . ., until the termination condition is met,
obtain iteratively

Q
(i)
ref = Φ(XB

(i)
ref ). (10)

For this iterative refinement, two important properties hold: (i)
for any i ≥ 1,Q(i)

ref will offer a greater (or equal) value to (2), than

Q
(i−1)
ref and (ii) the iterations converge. To prove the increase to

(2), we calculate

‖X�Q(i)
ref ‖1 = max

B∈{±1}N×K
Tr

(
B�X�Q(i)

ref

)

≥ Tr
(
(B

(i)
ref )
�X�Q(i)

ref

)
= max

Q∈SD,K

Tr
(
(B

(i)
ref )
�X�Q

)

≥ Tr
(
(B

(i)
ref )
�X�Q(i−1)

ref

)

= ‖X�Q(i−1)
ref ‖1. (11)

A proof similar to (11) was also presented in [28]. Regarding the
convergence to the metric, it is evident since the metric is upper
bounded by ‖X�Q∗‖1 and the refinement iterations increase
it at every step. Thus, if the refinement iterations terminate at
some step t, the algorithm returns Q(t)

ref instead of Q∗d, for which
it holds

‖X�Q(t)
ref ‖1 ≥ ‖X�Q∗d‖1. (12)

A pseudocode for this refinement is offered in Algorithm 2.

C. Performance Evaluation

Next, we focus on formally evaluating the proposed L1-PCA
approximation by means of the following criteria.

1) Metric Approximation: For any Q ∈ SD,K , we define the
approximation error to the L1-PCA metric, when Xd is
employed instead of X, as

γd(Q;X) := ‖X�Q‖1 − ‖X�dQ‖1. (13)

Certainly, if γd(Q;X) = 0 for everyQ, (8) coincides with
(2). If, for a given value of d, γd(Q;X) takes low values
for everyQ, then we can also expect ‖X�Q∗d‖1 to be close
to ‖X�Q∗‖1.4

2) Solution Approximation: We define the approximation ac-
curacy to the L1-PCA metric in (2), when the approximate

4Specifically, ‖X�Q∗‖1 − ‖X�Q∗d‖1 ≤ ‖X�Q∗‖1 − ‖X�Q∗d‖1 +

‖X�dQ∗d‖1 − ‖X�dQ∗‖1 = γd(Q
∗;X)− γd(Q

∗
d;X).
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solution Q∗d is employed instead of Q∗, as

ρd(X) :=
‖X�Q∗d‖1
‖X�Q∗‖1 ≤ 1. (14)

Understandably, if ρd(X) is close to 1, then we say that
Q∗d is near-optimal. In addition, we define the performance
gap to the L1-PCA metric in (2), when Q∗d is employed
instead of Q∗, as

ξd(X) := ‖X�Q∗‖1 − ‖X�Q∗d‖1. (15)

3) Computational Efficiency: The cost for obtaining Xd

from X should not cancel out the computational savings
claimed by solving (8) instead of (2).

IV. BOUNDS ON METRIC AND SOLUTION APPROXIMATION

A. Metric Approximation

For any A ∈ R
n×p and i ≤ j ≤ min{n, p}, we define

λi→j(A) :=
√∑j

k=i σ
2
k(A). The following new Theorem 2

applies to any X ∈ R
D×N and presents formal lower and upper

bounds for γd(Q;X), for any Q ∈ SD,K . The proof is offered
in the Appendix.

Theorem 2: For anyX ∈ R
D×N ,Q ∈ SD,K , and (d,K) such

that K ≤ d ≤ r = rank(X), it holds that

λh+1→r(X)−
√
NKλ1→K(X) ≤ γd(Q;X)

≤ min
{√

NKλmin(d+1,r)→min(K+d,r)(X),

√
NKλ1→K(X)− λh+1→d(X)

}
, (16)

where h := min{r,D −K}. Moreover, if h+ 1 > r, then
λh+1→r(X) = 0, while if h+ 1 > d, then λh+1→d(X) = 0.

Importantly, Theorem 2 offers bounds for γd(Q;X) that
solely depend on the singular values of X and, thus, are com-
putable by SVD of X.

B. Solution Approximation

Below, we show that the solution approximation accuracy
ρd(X) may remain desirably high even for small values of
d. Thus, the proposed reduced-rank approximation can claim
significant computational benefits at a negligible performance
cost. Moreover, in this section, we provide formal bounds for
ρd(X) and ξd(X), calculable by SVD of X.

a) Special cases d = r and d = K = 1: It is clear that
when d = r (no rank reduction), Xd = X and, thus, ρd(X) =
1 and ξd(X) = 0. On the other hand, when d = K = 1,
X1 = σ1(X)u1v

�
1 , where v1,v2, . . . ,vr are the right-hand-

side singular vectors of X corresponding to the singular val-
ues σ1(X) ≥ σ2(X) ≥ · · · ≥ σr(X). Accordingly, ‖X�1 q‖1 =
σ1(X)‖v1‖1|u�1 q| and the solution to

maximize
q∈SD,1

∥∥X�1 q∥∥1 (17)

is q∗1 = u1. That is, q∗1 coincides with the standard PC of
X and the maximum value attained in (17) is σ1(X)‖v1‖1.
Accordingly, ρd(X) = 1 and ξd(X) = 0.

b) General case K ≤ d ≤ r: The following Theorem 3
provides novel bounds for the approximation accuracy parame-
ters ρd(X) and ξd(X), attained by the proposed method. A proof
is provided in the Appendix.

Theorem 3: It holds that

1 ≥ ρd(X) ≥ max

{
σ1(X)‖v1‖1√
Nλ1→K(X)

,

1

1 +

√
min{(r−d),K}Nσd+1(X)

λ1→d(X)

,

1

1 +

√
min{(r−d),K}Nσd+1(X)

σ1(X)‖v1‖1

,

λ1→d(X)√
Nλ1→K(X)

}
(18)

and

0 ≤ ξd(X) ≤ min
{√

min {(r − d),K}NK σd+1(X) ,

√
NKλ1→K(X)−

√
K σ1(X) ‖v1‖1 ,

√
NKλ1→K(X)−

√
Kλ1→d(X)

}
. (19)

Similar to Theorem 2, Theorem 3 offers bounds for the
solution approximation that depend only on the singular values
of X and d. Therefore, through SVD on X, one can determine
the reduced-dimension d that allows for acceptable bounds. It is
also worth noting that (18) formalizes our initial conjecture that,
if σd+1(X) is negligibly small so that Xd practically coincides
with X, then ρd(X) approaches 1 and the proposed RR L1-PCA
tends to optimality.

Table I presents straightforwardly derived inequalities for the
bounds in (18) and (19), for 5 selected conditions on the size
and SVD profile of X. In view of the bound inequalities for
each condition, we can significantly simplify (18) and (19). For
instance, for λ1→d(X) ≤ σ1(X)‖v1‖1 (condition of first row of
Table I), we can simplify the lower bound in (18) as

max

⎧⎪⎨
⎪⎩

σ1(X)‖v1‖1√
Nλ1→K(X)

,
1

1 +

√
min{(r−d),K}Nσd+1(X)

σ1(X)‖v1‖1

⎫⎪⎬
⎪⎭ . (20)

For ease in reading Table I, we denote the four terms in the
max in (18) as {ρi}4i=1 (with index in the order of appearance)
and the terms in the min in (19) as {ξi}3i=1 (with index in
the order of appearance). For instance, ξ3 =

√
NKλ1→K(X)−√

Kλ1→d(X).
Table I offers some insights on the bounds and how they relate

to the nature of the data matrix. To promote understanding, let
us consider the following scenaria of interest.

Scenario 1: We consider that the nominal data have a single
dominant dimension and that the noise variance is low. Then,
σ1(X) will be close to λ1→d(X). Moreover, since the dominant
dimension is represented across all measurements, the right-
hand singular vector v1 will be balanced (not sparse) and its L1
norm will be tending to its upper bound,

√
N .5 Thus, we expect

that the condition of row 1 in Table I will be active (instead of
row 2), which in turn implies ρ1 ≥ ρ4 and ρ2 ≤ ρ3. Moreover,
by row 5 of Table I, we can expect that ρd(X) will be close
to 1, for every value of d. Moreover, assuming negligibly low
σd+1(X)/σ1(X) (which is valid for low noise variance) and
‖v1‖1/

√
N < 1, row 4 of Table I will be active (instead of row

5It holds that ‖v1‖2 = 1 ≤ ‖v1‖1 =
√
N =

√
N‖v1‖2.
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TABLE I
COMPARISON OF THE BOUNDS FOR ρd(X) AND ξd(X) IN THEOREM 3, UNDER DISTINCT CONDITIONS ON THE SIZE AND SVD OF X

3) and ρ1 < ρ3. Combining the conditions of row 1 and row 4,
we find ρ3 > ρ1 ≥ ρ4 and ρ3 ≥ ρ2. Thus, in this scenario, ρ3 is
expected to be the bound closest to ρd(X), for any d.

Scenario 2: In this scenario, we consider the same nominal
data as above, but high noise variance. Now the singular values
of X are much more spread out and row 2 can be active instead
of row 1 (the same will hold if the nominal data describe a
high-rank subspace, even for low/intermediate noise variance).
ForK = 1, in accordance with the nominal data dimensionality,
λ1→K(X) = σ1(X). In addition, since both noise and data
are uniformly represented across all measurements, ‖v1‖1 will
again be near

√
N and σd+1(X)/σ1(X) can be non-negligible.

Thus, in this scenario, row 3 of Table I can be active instead of
row 4.

Scenario 3: In this third scenario, we consider intermedi-
ate/low noise variance, nominal data of any rank, and an outlier
of very high variance in one (or few) of the measurements. De-
termined by the outlier, σ1(X)will be dominant and comparable
to λ1→d(X). In addition, since the outlier variance is in just few
measurements, v1 will be sparse and ‖v1‖1 can approach 1.
Accordingly, by (18), ρ1 can be close to ρ4 and that ρ2 will be
close to ρ3. Moreover, for low noise variance, σd+1(X)/σ1(X)
can be low. Thus, row 4 of Table I can be active instead of row 3,
so that ρ3 > ρ1. In this scenario, as the noise variance increases,
σd+1(X)/σ1(X) and ‖v1‖1 can increase and, thus, ρ2 and ρ3
may fall under ρ1.

In the three exemplary scenarios discussed above (corrobo-
rated by our numerical studies in Section V), we see how the
bounds relate to the nature of the measurements at hand. Similar
intuitions can be drawn from the bounds of ξd(X).

V. EXPERIMENTAL STUDIES

A. Solution Approximation

In this study, we study the performance of RR methods on the
L1-PCA solution approximation criterion, for varying number of
data points, N . We consider measurement matrix X = Xnom +
O+N ∈ R

(D=6)×N such that: (i) the columns of Xnom are
drawn from N (0,Udiag([100, 9])U�) for some U ∈ S6,2; (ii)
each column of outlier matrix O is equal to 0D with probability
85% and otherwise drawn from N (0,Uo diag([20, 51�5 ])

2U�o )
for some Uo ∈ S6,6 such that [U�o U]1,1 = 0.1 (the exact ori-
entations of the inlier and outlier subspaces are not as impor-
tant as their relative position); (iii) the entries of noise matrix
N are drawn from N (0, σ2 = 100). We conduct PCA on the
corrupted data, looking for the dominant component (K = 1)
by which we estimate the line of [U]:,1. In Fig. 1, we plot the
average solution approximation ratio ρd(X) versus N , over 300
independent realizations, for standard PCA, RPCA [9] (solved
by means of alternating direction methods of multipliers [48]),

Fig. 1. Average solution approximation ratio ρd(X) versus N .

Fig. 2. Average component-analysis time versus N .

exact L1-PCA (solved by the algorithm of [1]), L1-PCA by
means of alternating-optimization (L1-PCA AO) [28] (which
coincides with the fixed-point method (L1-PCA FP) of [25] for
K = 1), L1-PCA by means of semi-definite programming (L1-
PCA SDP) [27], and the RR (d = 3) counterparts of all L1-PCA
methods. Expectedly, for exact L1-PCA, the performance is a
flat line at 1. Moreover, all methods attain performance above
95%. L1-PCA SDP (full-rank and RR), RR L1-PCA Exact, and
RR L1-PCA AO attain approximation ratio close to 1. L1-PCA
AO closely follows. PCA and RPCA (which are not designed to
solve L1-PCA) follow, with performance from 95% to 97%. In
the same figure, we also present the L1-PCA SDP lower-bound
benchmark

√
2/π (dotted line), as presented in [27]. In Fig. 3,
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Fig. 3. Bound tightness occurrences for γd(Q;X).

we plot the average computation time for the same methods.6

We notice that rank-reduction shortens execution time, most em-
phatically for exact L1-PCA. Interestingly, for d = 3, exact RR
L1-PCA attains near-optimal performance at markedly reduced
computational cost.

B. Bound Tightness

We continue with an empirical study on the tightness of the
bounds presented in the previous section (i.e., (16), (18), and
(19)). By tightness, we refer to the proximity of a bound to the
actual value of the metric and it is not to be confused with the
bound tangibility.

We commence our study with the bounds for γd(Q;X) in
(16) and denote by γi the i-th bound in (16) (in order of
appearance). We consider 1000 independent realizations of ma-
trix X ∈ R

D×N , for D = N = rank(X) = 5. The entries of
X are independently drawn from N (0, 1). In Fig. 3, we plot
the number of times that each bound in (16) is the tightest,
for d = 1, 2, 3, 4 and K = 1. We notice that γ1 is the tightest
bound in all 1000 realizations. Next, we repeat this study for
D = N = rank(X) = 2 and d = 1, 2 and we plot the results in
Fig. 4. We now notice that, for d = 1, γ2 becomes the tightest
bound 15% of the time.

Next, we study the bounds for ρd(X) in (18). Once again, we
consider X ∈ R

D×N , with D = N = rank(X) = 5 and entries
from N (0, 1). In Fig. 5 we plot the tightness occurrences of
the bounds in (18) in 1000 independent realizations. We notice
that ρ1 is tight most frequently for d = 1, 2. Then, for d = 3,
ρ1 is tight with frequency 80% and ρ3 is tight with frequency
20%. For d = 4, ρ3 is the tightest with frequency 75% and ρ1 is
the tightest with frequency 25%. Interestingly, for every tested
value of d, ρ2 and ρ4 are the tightest bounds quite infrequently.

Next, we examine the effect of the SVD profile of X
in the bounds of (18). To that end, for any given realiza-
tion of X, we define matrix Y by substituting σ1(X) with
10σ2(X). Specifically, after computing the SVD X = UDV�
such that D = diag([σ1(X), σ2(X), . . . , σr(X)]�), we define
Y = UZV� with Z = diag([10σ2(X), σ2(X), . . . , σr(X)]�).
In Fig. 6, we present the number of times that each bound in

6Timed studies were conducted using MATLAB 2019a, on an Intel(R)
Core(TM) i7-4790 CPU 3.60GHz, with RAM 32 GB.

Fig. 4. Bound tightness occurrences for γd(Q;X).

Fig. 5. Bound tightness occurrences for ρd(X).

Fig. 6. Bound tightness occurrences for ρd(Y).

(18) is the tightest, for d = 1, 2, 3, 4, and K = 1. We notice that
this plot is quite different than that of Fig. 5 since now ρ3 is the
tightest bound with much higher frequency.

To obtain a better insight on how the nature of the measure-
ments (nominal data, noise, outliers) affects the tightness of the
bounds, we also conduct the following studies. We consider
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Fig. 7. Bounds{ρi}4i=1 versus number of measurementsN (outlier-free data).

Fig. 8. Bounds {ρi}4i=1 versus reduced-rank d (outlier-free data).

X = Xnom +N ∈ R
(D=100)×N such that: (i) the columns of

Xnom are drawn from N (0,Udiag([100, 10, . . . , 103−D])U�)
for some U ∈ SD,D and (ii) the entries N are independently
drawn fromN (0, σ2 = 1). We compute the top (K = 1) PC of
X by means of RR L1-PCA.

In Fig. 7, we set d = 3 and plot the average values of {ρi}4i=1,
calculated over 300 realizations, versusN = 200, 250, . . . , 500.
We notice that ρ3 is marginally above ρ1 which is almost equal
to 0.8 and very close to the benchmark

√
2/π.

In Fig. 8, we plot the same bounds, this time for fixed N =
1000 and varying d = 2, 4, . . . , D. We notice that even for d as
low as 2, ρd(X) is lower bounded by 0.85. Moreover, this lower
bound does not increase significantly as d increases from 2 to
D − 1 = 99.

Next, in Fig. 9, we plot the bounds for N = 1000, d = 2, and
varying noise variance σ2 = −10,−8, . . . , 10dB. We notice
that for low noise variance ρ3 > ρ1. For σ2 greater than 4dB, ρ3
drops below ρ1 which remains close to 0.8 across the board.

In Fig. 10, we plot the bounds forN = 1000, σ2 = 2, varying
K = 1, 4, . . . , 13, and d = K + 1. We notice that for low K,
ρK+1(X) remains above 0.8 and for anyK it does not fall below
0.7.

Next, we study the bounds for outlier corrupted data X =
Xnom +O+N ∈ R

(D=50)×(N=500) such that: (i) the columns
of Xnom are drawn fromN (0,Udiag([5, 1, . . . , 52−D])U�) for
some U ∈ SD,D; (ii) each entry of N is drawn from N (0, σ2);
(iii) each column of O is non-zero with probability 5% and
drawn from N (0, 400uou

�
o ), for some uo ∈ SD,1 such that

Fig. 9. Bounds {ρi}4i=1 versus noise variance σ2 (outlier-free data).

Fig. 10. Bounds {ρi}4i=1 versus number of components K and d = K + 1
(outlier-free data).

Fig. 11. Bounds {ρi}4i=1 versus noise variance σ2 (outlier-corrupted data).

u�o [U]:,1 = 0.1. In Fig. 11, we plot the bounds for varying noise
variance σ2 = −20,−15, . . . , 20dB. We notice the order of the
bounds changes as σ2 increases and ρ2 drops below ρ1 which
ascends. The results are in accordance with our discussion in
Section IV.B.

Next, we study the bounds for ξd(X), presented in (19). We
consider the same data model as in the study of Fig. 3 and present
the tightness occurrences in Fig. 12. We notice that for d =
1, 2, 3, ξ2 is the tightest bound most of the times. For d = 4, ξ1
is the tightest bound most often. At the same time, we notice
that, though much more rarely, ξ3 can also be the tightest bound
in some realizations.
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Fig. 12. Bound tightness occurrences for ξd(X).

Fig. 13. Average subspace error versus reduced rank d.

C. Subspace Estimation

In this study, we evaluate the subspace estimation accuracy
of the proposed framework. We consider N = 200 points of
dimension D = 50 forming measurement matrix X ∈ R

D×N .
We assume that X is noisy and outlier corrupted as X =
Xnom +O+N such that: (i) Xnom = QnomG is the rank-l
matrix, where Qnom ∈ SD,l is an orthonormal basis that de-
termines the nominal data subspace and G ∈ R

l×N satisfies
E{‖G‖2F } = 4× 104; (ii)O is the outlier matrix that has rank at
most 3, has exactly 10 non-zero columns that draw values from
a subspace near-orthogonal to the span of Qnom and satisfies
E{‖O‖2F } = 75× 103; (iii) N draws entries from N (0, σ2 =
102). We consider l = 2 and compute the K = l = 2 PCs of
X, Q ∈ SD,K . Then, we measure the subspace-estimation error
(SE) 1

2K ‖QnomQ
�
nom −QQ�‖2F . In Fig. 13, we illustrate the

average SE over 100 data/outlier/noise realizations, for standard
PCA, RPCA, L1-PCA AO, L1-PCA FP, L1-PCA SDP, and the
proposed reduced-rank (RR) counterparts of all the L1-PCA
methods. For the RR methods, we show how the performance
varies across d.

We observe that standard PCA is significantly affected by the
corruption, achieving SE near 0.8. RPCA exhibits robustness, at-
taining SE below 0.7. The L1-PCA methods outperform RPCA.
L1-PCA FP and AO attain SE 0.64, while L1-PCA SDP attains

Fig. 14. Average computation time versus reduced rank d for K = 2.

SE 0.49. The proposed reduced-rank implementations of all
L1-PCA methods allow for significant SE reduction compared
to their full-rank counterparts for all tested values of d > 2 and
with a minimum attained, across all methods, for d = 6 (i.e.,
for d just higher than the sum of the ranks of the nominal data
and the outliers). Specifically, for d = 6, RR L1-PCA FP and
RR L1-PCA AO attain SE just below 0.51, while RR L1-PCA
SDP attains SE 0.41. The above results corroborate that the rank
reduction prior to L1-PCA processing can have beneficial de-
noising impact that improves the subspace estimation accuracy,
while still allowing for L1-PCA to resist outliers.

Next, we wish to study the computational benefits of the pro-
posed rank reduction. As discussed in Section I, for the exact L1-
PCA algorithm, rank reduction can drop the cost exponentially,
fromO(N (r−1)K+1) toO(N (d−1)K+1). In Fig. 14, we conduct
run-time (in seconds) studies for PCA, RPCA, and approximate
L1-PCA methods. We notice that the computation time of the
proposed RR methods is upper bounded by that of their full-rank
counterparts. Certainly, for these approximate/low-cost algo-
rithms, the computational savings of rank reduction are not
as pronounced as for the exact solver. Still, for the low-cost
L1-PCA FP [25], the rank reduction can offer a 5× speedup.
L1-PCA SDP (full rank and RR version) and RPCA, are more
than 100× slower than all L1-PCA counterparts. For the same
setup, we decrease the nominal data rank to l = 1 and setK = 1.
In Fig. 15, we plot the average run-time. Again, we observe the
computational benefit of rank-reduction.

Next, for K = 1, we set E{‖G‖2F } = 2× 104 and compute
the PC of the corrupted data matrix, for various values of noise
deviation σ. In Fig. 16 we plot the average SE performance
of PCA, RPCA, L1-PCA AO (which algorithmically coincides
with L1-PCA FP for K = 1), L1-PCA SDP, as well as the
proposed RR counterparts of the L1-PCA methods, for d = 5.

We notice that PCA is significantly affected by the outliers
(drawn from a subspace almost orthogonal to that of the nominal
data), attaining SE close to 0.94, for all values of σ. RPCA is
certainly more robust than PCA against outliers, especially for
low σ. As σ increases, the performance of RPCA tends to that
of PCA (as the low-rank-plus-sparse assumption that it is based
on seizes to hold). On the other hand, all L1-PCA methods (full
and reduced rank) exhibit sturdy robustness, close to 0.3 for σ
close to 0. As σ increases, the proposed RR methods exhibit
higher noise immunity and clearly outperform their full-rank
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Fig. 15. Average computation time versus reduced rank d for K = 1.

Fig. 16. Average subspace error versus noise deviation σ.

counterparts. Interestingly, RR L1-PCA FP attains quite similar
performance to full-rank L1-PCA SDP, for significantly lower
computational cost.

Next, we conduct a subspace estimation study for larger data
matrices. Specifically, we consider data matrix X = Xnom +
O+N ∈ R

(D=50)×(N=1000) such that: (i) the columns of
Xnom are drawn from N (0,Udiag(λ2, λ, . . . , λ3−D)U�) for
some U ∈ SD,D and λ = 12; (ii) each entry of noise ma-
trix N is drawn from N (0, σ2 = 10); (iii) each column of
outlier matrix O is non-zero with probability p and drawn
fromN (0,Uodiag(λ2

o , λo, . . . , λ
3−D
o )U�o ), with λo = 25 some

Uo ∈ SD,D such that [U�o U]1,1 = 0.1.
We estimate U:,1 by the K = 1 PC of X, computed by means

of PCA, RPCA [9], RPCA with Outlier Pursuit (RPCA OP)
[49], Coherent Pursuit PCA [51], and L1-PCA AO (full and
reduced rank). In Fig. 17, we plot the average subspace error
versus corruption probability p. We observe that Coherent PCA
exhibits sturdy resistance against the corruption. Remarkable
robustness is also attained by L1-PCA AO and RR L1-PCA AO.
RPCA and RPCA OP are somewhat more robust than PCA,
which is critically affected by the corruption. In Fig. 18, we plot
the computation time for the same methods. Quite interestingly,
RR L1-PCA is the fastest robust PC calculator, with computation
time slightly higher than standard PCA.

Fig. 17. Average subspace error versus corruption probability p (σ2 = 10).

Fig. 18. Average computation time versus corruption probabilityp (σ2 = 10).

Fig. 19. Average subspace error versus corruption probability p (σ2 = 100).

In Figures 19 and 20 we repeat the studies of Figures 17
and 18, respectively, this time for σ2 = 100. We notice that
the proposed method attains the lowest estimation error (in
particular for p > 0.25) at the lowest computation time (similar
to standard PCA).

D. Image Reconstruction

In this experiment, we consider original image X0 ∈
{0, 1, 2, . . . , 255}H×W (cameraman image), with H = W =
256, as shown in Fig. 21(a). We collect N = 10 copies of X0,
{Xn}Nn=1, such that each copy is corrupted by zero-mean Ad-
ditive White Gaussian Noise (AWGN) with variance σ2 = 100
(e.g., see an instance of a noisy copy in Fig. 21(b)). Next, in six
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Fig. 20. Average computation time versus corruption probability p (σ2 =
100).

Fig. 21. (a) Original image; (b) AWGN corrupted image; (c) AWGN and S&P
corrupted image; (d) Reconstructed image by RR L1-PCA (d = 3; RR with
SVD); (e) Reconstructed image by RR L1-PCA (d = 3; RR with NNMF); (f)
Reconstructed image by RR L1-PCA (d = 3; RR with SVD after centralization).

arbitrary copies, 40% of the pixels are overwritten by “salt and
pepper” (S&P) noise; that is, each corrupted pixel is set white,
with probability p = 0.9, or black, with probability 1− p. An
instance of a S&P corrupted copy is shown in Fig. 21(c)). We
consider that X0 is unavailable and we wish to reconstruct it as
X̂0, using {Xn}Nn=1. To that end, we first divide each corrupted
copy Xn into Z = HW

hw patches, {X(i)
n }Zi=1, such that the size

of each patch is h× w (for h = w = 32). Then, we vectorize
each patch as a(i)n := vec(X(i)

n ) by vertical concatenation of its
columns. Next, for the i-th patch, i ∈ [Z], we define

A(i) := [a
(i)
1 ,a

(i)
2 , . . . ,a

(i)
N ] (21)

and, similar to (7), its L1-PC

q(i)∗ = A(i)b(i)∗‖A(i)b(i)∗‖−12 , (22)

where b(i)∗ = argmaxb∈{±1}N ‖A(i)b‖2. In practice, adding

AWGN to A(i) may result to some very small negative en-
tries, which we truncate setting them to 0 so that A(i) ∈

{0, 1, 2, . . . , 255}hw×N . Since the entries of A(i) are non-
negative, b(i)∗ = 1N and (22) equals7

q(i) = A(i)1N‖A(i)1N‖−12 . (23)

Using the L1-PC, we form the L1-reliability of the n-th copy of
the i-th patch as [36], [54]:

r(i)n = ‖a(i)n − q(i)qi�a(i)n ‖−21 . (24)

Subsequently, we define the normalized reliability weights

w(i)
n := r(i)n ‖r(i)‖−11 , (25)

where r(i) := [r
(i)
1 , r

(i)
2 , . . . , r

(i)
N ]�. Then, we reconstruct the i-

th vectorized patch as

â(i) =

N∑
n=1

w(i)
n a(i)n = A(i)w(i), (26)

where w(i) := [w
(i)
1 , w

(i)
2 , . . . , w

(i)
N ]�. Finally, we reshape â(i)

into patch Â(i) ∈ R
h×w and appropriately arrange/assemble the

reconstructed patches to form X̂0 ∈ R
H×W .

Next, we repeat the above study, using instead low-rank
approximations of A(i) and the corresponding RR L1-PCs.

a) SVD Approximation of Patches: According to the pro-
posed method, the rank-d approximation of A(i) is defined as
A

(i)
d := U1→dU

�
1→dA

(i) = UDdV
�. Then, we use the L1-PC

of A
(i)
d instead of q(i) to reconstruct the original image as

presented above.
b) NNMF Approximation of Patches: Next, we use Non-

Negative Matrix Factorization (NNMF) [55] to obtain the rank-d
approximation matrixA(i)

d . Specifically, we used the multiplica-
tive method of [55] to find non-negative matrices R ∈ R

hw×d
+

and S ∈ R
d×N
+ such as ‖A(i) −RS‖2F is minimized. Then we

approximated A(i) by A
(i)
d = RS and used the L1-PC of A(i)

d

instead of q(i) to reconstruct X0.
c) SVD approximation of centralized patches: Next, we

centralize the patches in A(i), as

T(i) := [t
(i)
1 , t

(i)
2 , . . . , t

(i)
N ]hw×N = A(i)CN , (27)

where CN = IN − 1
N 1N1�N . Then, we rank-d approximate

T(i) by SVD, obtainingT(i)
d and we find the L1-PC ofT(i)

d ,q(i)
c .

For the n-th copy of the i-th patch we compute its L1-reliability
as ‖t(i)n − q

(i)
c qi�

c t
(i)
n ‖−21 instead of r(i)n in (24).

In Fig. 21 (d), (e), and (f) we present the reconstructed image,
by means of the three RR methods above, for d = 3. We notice
that centralization before L1-PC-based reconstruction offers a
better result. For a more detailed comparison between the three
approaches, we plot in Fig. 22 the Mean Squared Estimation
Error (MSE), evaluated as the average of 1

HW ‖X0 − X̂0‖22
over 1000 independent noise/corruption realizations, versus the
reduced rank d = 1, 3, . . . , 9. We notice that for d = 1, RR
L1-PCA coincides with standard PCA. Also, we notice that the
MSE decreases as d increases, for all approaches. Finally, we
observe that the third approach (RR by SVD on centralized data)
clearly outperforms the other two, for every value of d.

7For any matrix X ∈ R
D×N
+ with non-negative entries, it holds

that 1N ∈ argmaxb∈{±1}N ‖Xb‖2 and, accordingly, X1N‖X1N‖−12 ∈
argmaxq∈SD,1

‖X�q‖1 [36].
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Fig. 22. MSE versus d attained by RR L1-PCA based on SVD, NNMF, and
centralized SVD.

Fig. 23. MUSIC power spectrum based on PCA, L1-PCA, and RR L1-PCA
for d = 2 and 10.

E. Direction-of-Arrival Estimation

In this section we consider a uniform linear antenna array of
D = 7 elements that collectsN = 17 snapshots of Binary Phase
Shift Keying (BPSK) signals from angle φ = 60◦,

xn = Abnsφ + nn, (28)

n = 1, 2, . . . , 17. In (28), A denotes the received signal ampli-
tude, sφ is the array response vector for angleφ, bn ∈ {±1} is the
BPSK symbol, and nn ∼ CN (07, σ

2I7) is AWGN. We assume
that the Signal-to-Noise-Ratio (SNR) is SNR = 10 log10

A2

σ2 =
3dB. Next we consider that three arbitrarily selected observa-
tions are corrupted by three jammers with SNRj1 = SNRj2 =
SNRj3 = 7dB and angles of arrival φj1 = −60◦, φj2 = −30◦,
and φj3 = 15◦, respectively. The resulting corrupted collection
of snapshots is denoted by XCRPT ∈ C

7×17. Next, we transform
XCRPT by Re{·}, Im{·}part concatenation to its real-domain ver-
sion X̃CRPT = [Re(XCRPT)�, Im(XCRPT)�]� ∈ R

14×17 similar
to [38]. Then, we calculate and plot in Fig. 23 , the MUSIC
spectrum

P (θ; q) =
1

D − (q∗� s̃θ)2
, θ ∈

[
−π

2
,
π

2

)
, (29)

Fig. 24. RMSE versus jammer SNR based on PCA, L1-PCA, and RR L1-PCA
(d = 2, 6, 10) when D = 7 and N = 17.

Fig. 25. RMSE versus source SNR based on PCA, L1-PCA, and RR L1-PCA
(d = 2, 6, 10) when SNRj = 7dB, D = 7, and N = 17.

where s̃θ = [Re(sθ)�, Im(sθ)
�]� and q is set to q∗ ∈ S14,1, the

top principal component of X̃CRPT produced by L1-PCA or PCA.
Also, we consider the rank-d approximation matrix X̃CRPT

d =
UDdV

� and find the DoA by means the peak of P (θ; q∗d),
where q∗d ∈ S14,1 is the L1-PC of X̃CRPT

d (proposed method).
The true angle of arrival φ is estimated by the peak of P (θ;q).
In Fig. 23, we notice that the spectrum based on PCA is more
affected by jammers rather than that obtained by L1-PCA and
RR L1-PCA. Also, we notice that the performances of L1-PCA
and the proposed RR L1-PCA are very similar. Next, we repeat
the study M = 103 times, for M independent realizations. We
denote by φ̂(m) the estimated angle obtained by finding the
peak of P (θ;q) in the mth experiment. In Fig. 24, we plot the

Root-Mean-Squared-Error RMSE =
√

1
M

∑M
m=1(φ− φ̂(m))2

as a function of the jammer SNR for different values of d.
Interestingly, we notice that the performance of L1-PCA and
RR L1-PCA is almost identical (for every value of d) and
significantly superior to that of standard PCA by means of SVD.
In Fig. 25, we plot the RMSE versus source SNR when jammer
SNR = 7 dB, D = 7, and N = 17. According to this figure,
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Fig. 26. Average classification accuracy versus number of mislabeled points
in the training batch of each class.

Fig. 27. Average runtime versus number of mislabeled points in the training
batch of each class.

by increasing the source SNR, the RMSE will decrease. Also,
similar to Fig. 24, increasing d does not affect RMSE in Fig. 25.

F. MNIST Data Classification

In this experiment, we consider the MNIST dataset [56] and
particularly the classes of digits ‘0’ and ‘1’. From each class,
we consider 1000 training points and 892 testing points. Each
point is a vectorized image of length 784. The training data
are organized in matrix X ∈ R

784×2000. Each training point
is additively corrupted with noise from N (0, 25). Also, we
consider that Nmis of the training points (equal number from
each class) are in fact a mislabeled image of digit ‘4’.

In our classification experiment, we work as follows. First,
we compute a rank-2 principal basis Q by decomposing the cor-
rupted training dataset X. Then, we project all training/testing
data on Q. We use the projected data to train and test a standard
nearest neighbor classifier (1-NN) and measure its accuracy. We
repeat this study over 100 realizations of training/testing data. In
Fig. 26 we plot average classification accuracy vs. Nmis, when
Q is computed by means of PCA, RPCA OP, L1-PCA AO, and
the proposed RR L1-PCA AO (d = 5). L1-PCA and RR L1-PCA
attain the highest performance.

In Fig. 27 we also plot the average subspace computation time
vs. the number of mislabeled points in each training class. The
runtime of RPCA OP was above 40 sec. across the board and
therefore it is not even plotted. We notice that the proposed RR

L1-PCA AO is almost two times faster than full-rank L1-PCA
AO.

VI. CONCLUSION

We presented RR L1-PCA: a new framework for reduced-rank
L1-PCA. The presented method approximates the K L1-PCs of
X by the L1-PCs of its SVD-obtained rank-d approximation
(d ≤ r) Xd. Importantly, we also derived formal performance
bounds for RR L1-PCA. Our experimental studies corroborate
that the proposed framework effectively combines the denoising
capabilities and low computation cost of standard PCA with the
outlier-resistance of L1-PCA.

A. Proof of Lemma 1

It has been shown that the solution to (2) is given by (5). The
argument of (3) can be rewritten as

‖XB‖∗ = Tr(
√
B�X�XB) = Tr(

√
B�VD�DV�B)

= ‖DV�B‖∗. (30)

By (30), B∗ maximizes both ‖XB‖∗ and ‖DV�B‖∗. Thus,

Q̄∗ = Φ(DV�B∗) := argmax
Q ∈ SD,K

‖VD�Q‖1 = ΩW�,

(31)

where DV�B∗ svd
= ΩΛW�. Moreover, if we consider XB∗ =

UDV�B∗ svd
= (UΩ)ΛW�, then

Q∗ = Φ(XB∗) = Φ(UDV�B∗) = UΩW�

= UΦ(DV�B∗) = UQ̄∗. (32)

By (32), we conclude the proof of Lemma 1.

B. Proof of Theorem 2

Let Q̃ ∈ SD,D−K be orthonormal matrix spanning the or-
thogonal complement of span(Q).8 Then, by the Pythagorean
theorem, it holds that ‖X�‖2F = ‖X�Q‖2F + ‖X�Q̃‖2F . Next,
we consider the following Lemmas 2, 3, and 4, presented in [52]
and [53].

Lemma 2: ([52]) Consider A ∈ R
n×p and B ∈ R

p×m. For
any z > 0, it holds that

min{n,m,p}∑
i=1

σz
i (AB) ≤

min{n,m,p}∑
i=1

σz
i (A)σz

i (B). (33)

Lemma 3: ([53]) For every conformable matrix pair A, B,
and any matrix norm ‖ · ‖, it holds that ‖A+B‖ ≤ ‖A‖+ ‖B‖
and ‖A‖ − ‖B‖ ≤ ‖A−B‖.

Lemma 4: ([53]) For every matrix A ∈ R
m×n of rank

r ≤ min(m,n) and every vector q ∈ R
N , we have ‖A‖F ≤

‖A‖∗ ≤ ‖A‖1 ≤
√
mn‖A‖F , ‖A‖∗ ≤

√
r‖A‖F , and ‖q‖2 ≤

‖q‖1 ≤
√
N‖q‖2.

In addition, we derive the following Lemma 5, the proof of
which is provided below.

8For any A ∈ R
n×p, span(A) := {x̄ ∈ R

n : x̄ = Aȳ for some ȳ ∈ R
p}.

SubspaceX ⊆ R
n is the “orthogonal complement” of subspaceY ⊆ R

n, if and
only if (i) x̄�ȳ = 0 ∀x̄ ∈ X and ȳ ∈ Y and (ii)X ∪ Y = R

n.
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Lemma 5: Consider any Q ∈ SD,K for K ≤ d ≤ r ≤
min{D,N}. It holds that

λh+1→r(X) ≤ ‖X�Q‖F ≤ λ1→K(X), (34)

where h = min{r,D −K}.
Similar to (34), for the reduced-rank approximation matrix

Xd, it holds that

λh+1→d(X) ≤ ‖X�dQ‖F ≤ λ1→K(X). (35)

In the above, if h+ 1 > d, then λh+1→d(X) = 0. By Lemma
3, Lemma 4, and (35), for every matrix Q with orthonormal
columns, it holds

‖X�Q‖1 − ‖X�dQ‖1 = ‖(UDV�)�Q‖1 − ‖(UDdV
�)�Q‖1

≤ ‖(U(D−Dd)V
�)�Q‖1

≤
√
NK‖(U(D−Dd)V

�)�Q‖F
(35)

≤
√
NKλmin(d+1,r)→min(K+d,r)(X). (36)

Also, by Lemma 4 and (35), for every matrixQwith orthonormal
columns, we can write

‖X�Q‖1 ≤
√
NK‖X�Q‖F ≤

√
NKλ1→K(X) (37)

and

‖X�dQ‖1 ≥ ‖X�dQ‖F ≥ λh+1→d(X). (38)

Then, by (37) and (38), it holds

‖X�Q‖1 − ‖X�dQ‖1 ≤
√
NKλ1→K(X)− λh+1→d(X).

(39)

As a result, by (36) and (39), we have

‖X�Q‖1 − ‖X�dQ‖1 (40)

≤ min
{√

NKλmin(d+1,r)→min(K+d,r)(X),

√
NKλ1→K(X)− λh+1→d(X)

}
. (41)

On the other hand, by Lemma 4 and Lemma 5, it holds

‖X�Q‖1 ≥ ‖X�Q‖F ≥ λh+1→r(X). (42)

Also, for the reduced-rank matrix Xd, we have

‖X�dQ‖1 ≤
√
NK‖X�dQ‖F ≤

√
NKλ1→K(X). (43)

Therefore, by (42) and (43), it holds that

λh+1→r(X)−
√
NKλ1→K(X) ≤ ‖X�Q‖1 − ‖X�dQ‖1.

(44)

Finally, by (41) and (44), we conclude Theorem 2.

C. Proof of Lemma 5

By (33), it holds

‖X�Q‖F = λ1→K(X�Q) ≤
√√√√ K∑

i=1

σ2
i (X

�)σ2
i (Q)

= λ1→K(X�) = λ1→K(X). (45)

Then, similar to (45), we have

‖X�Q̃‖F = λ1→h(X
�Q̃) ≤

√√√√ h∑
i=1

σ2
i (X

�)σ2
i (Q̃)

= λ1→h(X
�) = λ1→h(X). (46)

Therefore, by the Pythagorean theorem and (46), it holds that

‖X�Q‖F ≥ λh+1→r(X). (47)

In the above, we note that if h+ 1 > r, then λh+1→r(X) = 0.
Finally, combining (45) with (47) yields (34), which concludes
the proof of Lemma 5.

D. Proof of Theorem 3

For any i, j ∈ [r], with i < j, we define Xi→j :=
Ui→jU

�
i→jX. Accordingly, X = X1→r and Xd = X1→d.

In addition, we define B∗i→j := argmaxB∈{±1}N×K ‖Xi→jB‖∗,
Q∗i→j = Φ(Xi→jB

∗
i→j), and f ∗i→j := ‖X�i→jQ

∗
i→j‖1 =

‖Xi→jB
∗
i→j‖∗. We commence our proof by noting that,

for all i, j ∈ [r] with i < j, it holds

span(Q∗i→j) = span(Xi→jB
∗
i→j) ⊆ span(Xi→j)

⊆ span(Ui→j). (48)

Since U�1→jU(i+1)→j = 0j×(j−i), (48) implies that

X�(i+1)→jQ
∗
1→i = 0N×K . (49)

Therefore, X�1→jQ
∗
1→i = (X1→i +X(i+1)→j)

�Q∗1→i =

X�1→iQ
∗
1→i +X�(i+1)→jQ

∗
1→i = X�1→iQ

∗
1→i and

f ∗1→i = ‖X�1→iQ
∗
1→i‖1 = ‖X�1→jQ

∗
1→i‖1

≤ ‖X�1→jQ
∗
1→j‖1 = f ∗1→j . (50)

By (50), the accuracy ratio of (14) can be re-written as

ρd(X) :=
f ∗1→d

f ∗1→r

≤ 1. (51)

Accordingly, by Lemma 3 and Lemma 4, we find that

f ∗1→j

= ‖X1→jB
∗
1→j‖∗

≤ ‖X1→iB
∗
1→j‖∗ + ‖X(i+1)→jB

∗
1→j‖∗ (52)

≤ f ∗1→i +
√

rank(X(i+1)→jB
∗
1→j) ‖X(i+1)→jB

∗
1→j‖F

≤ f ∗1→i +
√

min{(j − i),K} ‖X(i+1)→jB
∗
1→j‖F

≤ f ∗1→i +
√

min{(j − i),K}NK max
b∈{± 1√

N
}N
‖X(i+1)→jb‖2

≤ f ∗1→i +
√

min{(j − i),K}NK max
b∈SN,1

‖X(i+1)→jb‖2

= f ∗1→i +
√

min{(j − i),K}NK σi+1(X). (53)

Inequalities (50) and (53) are summarized in the following
Lemma 6.

Lemma 6: For any i, j ∈ [r] with i ≤ j, it holds

f ∗1→i ≤ f ∗1→j

≤ f ∗1→i +
√

min{(j − i),K}NK σi+1(X). (54)

Substituting i and j in the right-hand inequality of (54) by d
and r, respectively, we obtain

f ∗1→r ≤ f ∗1→d +
√

min{(r − d),K}NKσd+1(X). (55)
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Dividing both sides of (55) by f ∗1→d, we find

f ∗1→r

f ∗1→d

≤ 1 +

√
min{(r − d),K}NKσd+1(X)

f ∗1→d

. (56)

Therefore,

ρd(X) =
f ∗1→d

f ∗1→r

≥ 1

1 +

√
min{(r−d),K}NKσd+1(X)

f ∗1→d

. (57)

For obtaining lower and upper bounds for (18) and (19), respec-
tively, we present the following Lemma 7, a proof for which is
offered below.

Lemma 7: For every j ∈ [r], it holds√
K‖X1→j‖F ≤ f ∗1→j ≤

√
min{j,K}NK σ1(X). (58)

By (37), we find

f ∗1→r ≤
√
NKλ1→K(X). (59)

By (58) and r > K, it holds

f ∗1→r ≤ K
√
Nσ1(X). (60)

It is clear that
√
NKλ1→K(X) =

√
NK

√∑K
i=1 σ

2
i (X) ≤√

NK
√

Kσ2
1(X) = K

√
Nσ1(X). Interestingly, by (54), it

holds

f ∗1→d ≥ f ∗1→1 = max
B∈{±1}N×K

σ1(X)‖u1v
�
1B‖∗

= σ1(X) max
B∈{±1}N×K

‖v�1B‖2

=
√
Kσ1(X) max

b∈{±1}N
|v�1 b|

=
√
Kσ1(X)‖v1‖1. (61)

Then, by (59) and (61), we find

ρd(X) =
f ∗1→d

f ∗1→r

≥ σ1(X)‖v1‖1√
Nλ1→K(X)

. (62)

By Lemma 7, it holds

f ∗1→d ≥
√
K‖X1→d‖F . (63)

As a result,

ρd(X) =
f ∗1→d

f ∗1→r

≥ 1

1 +

√
min{(r−d),K}NKσd+1(X)√

K‖X1→d‖F

=
1

1 +

√
min{(r−d),K}Nσd+1(X)

λ1→d(X)

(64)

and

ρd(X) =
f ∗1→d

f ∗1→r

≥ 1

1 +

√
min{(r−d),K}NKσd+1(X)√

Kσ1(X)‖v1‖1

=
1

1 +

√
min{(r−d),K}Nσd+1(X)

σ1(X)‖v1‖1

. (65)

Finally, by (59) and (63), it holds

ρd(X) =
f ∗1→d

f ∗1→r

≥ f ∗1→d√
NKλ1→K(X)

≥
√
K‖X1→d‖F√
NKλ1→K(X)

=
λ1→d(X)√
Nλ1→K(X)

, (66)

which concludes our proof of (18). That is, so far we showed that,
expectedly, ρd(X) is upper bounded by 1. Also, we presented a
lower bound for ρd(X) that can be calculated by means of SVD
of X with cost O(NDmin{N,D}).

To prove (19), we first note that

X = UDV� = UDdV
� +U(D−Dd)V

�. (67)

By (50),

‖X�dQ∗d‖1 = ‖X�Q∗d‖1 ≤ ‖X�Q∗‖1. (68)

Therefore, we find

0 ≤ ‖X�Q∗‖1 − ‖X�Q∗d‖1. (69)

By (54), we find

‖X�Q∗‖1 − ‖X�Q∗d‖1
≤

√
min{(r − d),K}NK σd+1(X). (70)

Also, by (59),

‖X�Q∗‖1 ≤
√
NKλ1→K(X). (71)

Therefore, by (71) and (61), we find

‖X�Q∗‖1 − ‖X�Q∗d‖1
≤
√
NKλ1→K(X)−

√
K σ1(X)‖v1‖1. (72)

In addition, by (50) and (59), we have√
K‖UDdV

�‖F ≤ ‖(UDdV
�)�Q∗d‖1

= ‖(UDV�)�Q∗d‖1
≤
√
NKλ1→K(X). (73)

As a result, by (71), (68), and (73),

‖X�Q∗‖1 − ‖X�Q∗d‖1
≤
√
NKλ1→K(X)−

√
K ‖UDdV

�‖F
=
√
NKλ1→K(X)−

√
Kλ1→d(X). (74)

Finally, by (69), (70), (72), and (74), we derive (19).

E. Proof of Lemma 7

For the right side of inequality (58), we find

f ∗1→j ≤
√

rank(X1→jB∗1→j)‖X1→jB
∗
1→j‖F

≤
√

min{j,K}K max
b∈{±1}N

‖X1→jb‖2

≤
√

min{j,K}KN max
b∈SN,1

‖X1→jb‖2

=
√

min{j,K}KN σ1(X). (75)

By Lemma 4 and the definition of f ∗1→j ,

f ∗1→j ≥ ‖X1→jb
∗
1→j1

�
K‖∗

≥ ‖X1→jb
∗
1→j1

�
K‖F =

√
K‖X1→jb

∗
1→j‖2, (76)

where b∗1→j = argmaxb∈{±1}N ‖X1→jb‖2. Then, we observe
that, as it was originally shown in [30],

[b∗1→j ]n[X1→j ]
�
:,n X1→jb

∗
1→j ≥ ‖[X1→j ]:,n‖22 ∀n, (77)

which implies that

‖X1→jb
∗
1→j‖2 ≥ ‖X1→j‖F . (78)
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Next, we prove (77) below for completeness purposes. We start
the to-be-contradicted assumption

[b∗1→j ]n[X1→j ]
�
:,n X1→jb

∗
1→j < ‖[X1→j ]:,n‖22, (79)

for some n = {1, 2, . . . , N}. Then, we define b′ := b∗1→j −
2[b∗1→j ]nen,N ∈ {±1}N , where en,N := [IN ]:,n; that is, we set
b′m = [b∗1→j ]m for every m �= n and b′n = −[b∗1→j ]n. Then, we
find

‖X1→jb
′‖22 − ‖X1→jb

∗‖22
= b′n[X1→j ]

�
:,n X1→jb

′ − [b∗1→j ]n[X1→j ]
�
:,n X1→jb

∗
1→j

= b′n[X1→j ]
�
:,n

∑
m �=n

[X1→j ]:,mb′m + ‖[X1→j ]:,n‖22

− ([b∗1→j ]n[X1→j ]
�
:,n

∑
m �=n

[X1→j ]:,m[b∗1→j ]m + ‖[X1→j ]:,n‖22)

= −2[b∗1→j ]n[X1→j ]
�
:,n

∑
m �=n

[X1→j ]:,m[b∗1→j ]m

= −2([b∗1→j ]n[X1→j ]
�
:,n X1→jb

∗
1→j − ‖[X1→j ]:,n‖22)

(79)

> 0, (80)

which cannot hold true since by the definition of b∗1→j and
‖X1→jb

∗
1→j‖22 ≥ ‖X1→jb‖22 ∀b ∈ {±1}N . Therefore, (79) is

contradicted and (77) holds true. By (76) and (78), the left side
of inequality of Lemma 7 holds true as well. Finally, by (75),
(76), and (78), we conclude the proof of Lemma 7.
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