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Abstract

Deep neural networks have recently been recognized as one of the
powerful learning techniques in computer vision and medical image
analysis. Trained deep neural networks need to be generalizable to
new data that was not seen before. In practice, there is often in-
sufficient training data available and augmentation is used to expand
the dataset. Even though graph convolutional neural network (graph-
CNN) has been widely used in deep learning, there is a lack of aug-
mentation methods to generate data on graphs or surfaces. This study
proposes two unbiased augmentation methods, Laplace-Beltrami eigen-
function Data Augmentation (LB-eigDA) and Chebyshev polynomial
Data Augmentation (C-pDA), to generate new data on surfaces, whose
mean is the same as that of real data. LB-eigDA augments data via
the resampling of the LB coefficients. In parallel with LB-eigDA, we
introduce a fast augmentation approach, C-pDA, that employs a poly-
nomial approximation of LB spectral filters on surfaces. We design
LB spectral bandpass filters by Chebyshev polynomial approximation
and resample signals filtered via these filters to generate new data on
surfaces. We first validate LB-eigDA and C-pDA via simulated data
and demonstrate their use for improving classification accuracy. We
then employ the brain images of Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and extract cortical thickness that is represented
on the cortical surface to illustrate the use of the two augmentation
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methods. We demonstrate that augmented cortical thickness has a
similar pattern to real data. Second, we show that C-pDA is much
faster than LB-eigDA. Last, we show that C-pDA can improve the AD
classification accuracy of graph-CNN.

1 Introduction

Deep neural networks have recently been recognized as one of the powerful
learning techniques in computer vision and medical image analysis [1, 2].
Training deep neural networks requires a large dataset so that they are
generalizable to data that have never been seen before. This is challenging
especially in the field of medical image analysis. Building big medical image
datasets is expensive and labor-intensive to collect, and is related to patient
privacy, and the requirement of medical experts for labeling. Not having
enough data could overfit training data so that network models are not
generalized to new data. Moreover, studies on rare diseases or medical
screening also face the problem of class imbalance with a skewed ratio of
majority to minority samples [3, 4]. These obstacles have led to many studies
on image data augmentation (see review in [5]). Data augmentation assumes
that additional information can be extracted from an original dataset. It is
a very powerful approach for overcoming overfitting in deep learning.

Image augmentation inflates the size of training data via either image
transformation or oversampling. New images can be generated by warping
existing images via geometric (rotation, flipping) and color transformations
[6], random erasing [7], and adversarial training [8, 9] such that their labels
are preserved. In contrast, oversampling augmentation creates synthetic
data by mixing existing images, auto encoder-decoder [10, 11], and genera-
tive adversarial networks (GANs) [12, 13]. Even though GANs are powerful,
their computation is more expensive compared to image warping methods.

Among existing image augmentation methods [6, 7, 10, 11, 12, 13], image
data are defined on an equi-spaced grid in the Euclidean space. However,
medical images in the Euclidean space may not fully characterize the geome-
try of human organs that encompass their intrinsic and complex anatomy, as
well as physiological functions. For example, the cerebral cortex is composed
of ridges (gyri) and valleys (sulci). Due to the way gyri and sulci are curved,
the cortex is thicker in gyri but thinner in sulci. Hence, it is preferred to rep-
resent brain images in a way that the underlying geometrical information is
encoded. One can express the cerebral cortex as a surface embedded in the
3D Euclidean space. Existing literature has demonstrated that such repre-
sentation incorporates useful geometry information of the brain into machine
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learning for disease diagnosis [14, 15, 16, 17]. Recently, a number of deep
neural networks, such as diffusion-convolutional neural networks (DCNNs)
[18], PATCHY-SAN [19, 20], gated graph sequential neural networks [21],
DeepWalk [22], and spectral graph convolutional neural networks (graph-
CNN) [23, 24, 25, 26, 27, 28, 29] can take data on surfaces for classification.
The core challenge for implementing CNN on surfaces lies in defining the
convolution on surfaces. These existing neural network approaches focus on
how to process vertices whose neighborhood has different sizes and connec-
tions for the convolution in the spatial domain. Alternately, the convolution
can be defined as a multiplication involving a diagonal matrix in the graph
Fourier transform derived from a normalized graph Laplacian in the spectral
domain. Hence, existing image warping augmentations on equi-spaced grids
(e.g., flipping, rotation, shifting) may not directly apply to data on surfaces
since the points on surfaces are not on the equi-spaced grid of the Euclidean
space. Nevertheless, there is a lack of augmentation approaches to generate
data on surfaces.

This study proposes two unbiased augmentation methods, Laplace-Beltrami
eigenfunction Data Augmentation (LB-eigDA) and Chebyshev polynomial
Data Augmentation (C-pDA), to generate new data on surfaces. These two
approaches preserve the mean of real data in each class, which is crucial for
classification problems. These two approaches are motivated by the Fourier
representation of signals in equi-spaced Euclidean grids. A signal in equi-
spaced Euclidean grids can be created as a linear combination of Fourier
bases, where the corresponding Fourier coefficients can be generated via the
resampling of the Fourier coefficients of existing signals [30, 31, 32]. We
adopt this idea and compute the eigenfunctions of the Laplace-Beltrami
(LB) operator on a surface. New data on the surface can be constructed via
the resampling of the LB coefficients among real data on the surface.

In parallel with LB-eigDA, we introduce a fast augmentation approach,
C-pDA, that employs a polynomial approximation of LB spectral filters on
surfaces. C-pDA is designed to be in line with graph-CNN [24, 29], where
spectral filters are implemented via Chebychev polynomial approximation
such that the resulting convolution can be written as a polynomial of the
adjacency matrix of a graph. This avoids the cost of calculating the eigen-
functions of a large-scale graph Laplacian. In [24, 29], it is shown that
the k-th order Chebyshev polynomial formation of the graph Laplacian is
equivalent to k-ring filtering. In C-pDA, we design LB spectral bandpass
filters by Chebyshev polynomial approximation and resample filtered real
data to generate new data. Due to the recurrence relation of Chebyshev
polynomials, the computation of the C-pDA method can be efficient. We
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validate LB-eigDA and C-pDA using simulated data with the ground truth
of class labels. We further employ the methods to the cortical surface data in
Alzheimer’s Disease Neuroimaging Initiative (ADNI). We first demonstrate
that augmented cortical thickness data have a similar pattern to real data.
Second, we show that C-pDA is much faster than LB-eigDA . Last, we illus-
trate the use of C-pDA to improve the AD classification of the graph-CNN
[24].

The main contributions of this study are as follows.

• We introduce two augmentation methods to generate new data on
surfaces using the LB eigenfunctions and LB spectral filters.

• We show that C-pDA is computationally more efficient than LB-eigDA.

• We demonstrate that C-pDA improves the graph-CNN performance
on the classification of AD patients.

2 Methods

2.1 Augmentation based on the Laplace-Beltrami represen-
tation of signals on a surface mesh

We introduce a data augmentation method based on the Laplace-Beltrami
representation of signals on a surface mesh. We denote the surface as M
with the Laplace-Beltrami (LB) operator ∆ on M. Let ψj be the jth eigen-
function of the LB-operator with eigenvalue λj

∆ψj = λjψj , (1)

where 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · . A signal f(x) on the surface M can be
represented as a linear combination of the LB eigenfunctions

f(x) =
∞∑
j=0

cjψj(x) , (2)

where cj is the jth coefficient associated with the eigenfunction ψj(x). For
n observations, f1(x), · · · , fn(x), fi(x) can be represented as

fi(x) =
∞∑
j=0

c
(i)
j ψj(x) ,
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where c
(i)
j is the jth coefficient associated with the jth LB eigenfunction for

the ith observation. We like to generate new data based on the frequency
resampling of these n observations. This is similar to creating new samples
via permuting Fourier coefficients [32]. Let Sn be the permutation group of
order n [33] and τ ∈ Sn be an element of permutation given by

τ =

(
1 2 · · · n

τ(1) τ(2) · · · τ(n)

)
. (3)

τ(i) indicates element i is permuted to τ(i). We resample the LB coefficients
to obtain new data representation fi′(x):

fi′(x) =
∞∑
j=0

c
τj(i)
j ψj(x) , (4)

where τj(·) is the permutation on the jth LB coefficients among the n obser-
vations. We will refer this approach as LB eigenfunction Data Augmentation
(LB-eigDA).

Based on Eq. (4), one can show that the mean of fi′(x) over every
possible permutation is the same as that of fi(x) since the permutation
function τ(·) does not change the mean of the LB coefficients.

2.2 Augmentation via Chebyshev polynomials

Previous research suggests that the augmentation strategy of Gaussian filters
leads to the best validation accuracy in medical imaging classification tasks
[34]. We now introduce the second data augmentation approach, Chebyshev
polynomial Data Augmentation (C-pDA). The idea of C-pDA is similar to
the augmentation strategy of Gaussian filters in equi-spaced grids of the
Euclidean space by designing LB spectral filters on surfaces. We design
LB spectral filters that are similar to spectral filter banks [35]. We can
then approximate real data on surfaces using these LB spectral filters and
resample the LB spectral filtered signals of real data in order to generate new
data on surfaces. To avoid the direct computation of the LB eigenfunctions,
we will employ the Chebyshev polynomial approximation of LB spectral
filters, which is computationally efficient. In the following, we first describe
the Chebyshev polynomial approximation of an LB spectral filter and then
design LB spectral bandpass filters for the C-pDA approach.
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2.2.1 Chebychev polynomial approximation of LB spectral filters

Consider an LB spectral filter g on the surface M with spectrum g(λ) as

g(x, y) =
∞∑
j=0

g(λj)ψj(x)ψj(y). (5)

Based on Eq. (2), the convolution of a signal f with the filter g can be
written as

h(x) = g ∗ f(x) =

∞∑
j=0

g(λj)cjψj(x). (6)

As suggested in [24, 36, 37, 38, 39, 35], the filter spectrum g(λ) in Eq.
(6) can be represented as the expansion of Chebyshev polynomials, Tk, k =
0, 1, 2, . . . ,∞, such that

g(λ) =

∞∑
k=0

θkTk(λ) . (7)

θk is the kth expansion coefficient associated with the kth Chebyshev poly-
nomial. Tk is the Chebyshev polynomial of the form Tk(λ) = cos(k cos−1 λ)
with recurrence

Tk+1(λ) = (2− δk0)λ Tk(λ)− Tk−1(λ),

where δk0 is Kronecker delta. The convolution in Eq. (6) can be rewritten
as

h(x) = g ∗ f(x) =

∞∑
k=0

θkTk(∆)f(x). (8)

This Chebyshev polynomial approximation of the spectral filter has previ-
ously used in diffusion wavelet transform [38, 37, 39, 40], graph convolutional
neural network [24, 36], spectral wavelet transform [35], and heat diffusion
[41] on graphs. The polynomial method avoids the direct computation of
the LB eigenfunctions through the recursive computation of Tk(∆)f(x) and
preserves local geometric structure of the surface [24, 41].

2.2.2 C-pDA

We design a series of LB spectral bandpass filters, gl, l = 1, 2, . . . , L, based
on Eq. (7) such that

gl(λ) =
∞∑
k=0

θlkTk(λ)
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where θlk is the kth Chebyshev expansion coefficient of the lth bandpass
filter. The frequency band of the lth bandpass filter is λ ∈ [εl εl+1]. Now, a
signal f(x) on surface M can be approximated using these filters such that

f(x) ≈ h0 +

L∑
l=1

gl(∆)f(x), (9)

where h0 is the mean of f(x) over the surface. If gl, l = 1, 2, . . . , L, together
span the entire spectrum of f(x), then the spectral information of f(x) is
retained.

We develop the C-pDA approach in a way similar to the LB-eigDA ap-
proach in Eq. (4) such that

fi′(x) = h
τ0(i)
0 +

L∑
l=1

(
gl(∆)fi(x)

)τl(i)
, (10)

where τl(·) is the permutation on the lth filtered signal among the n obser-
vations f1, f2,..., fn such that the ith observation is permuted to the τl(i)

th

observation. Hence, C-pDA generates new data via resampling the lth fil-
tered outputs among the n observations and summing the resampled signals
across L filters. Again, we can show that the mean of fi′(x) over every possi-
ble permutation is the same as that of fi(x) since the permutation function
τ(·) does not change the mean of the filtered signals.

With the Chebyshev polynomial approximation, we can rewrite Eq. (10)
as

fi′(x) = h
τ0(i)
0 +

L∑
l=1

( ∞∑
k=0

θlkTk(∆)fi(x)
)τl(i)

. (11)

2.3 LB-eigDA and C-pDA numerical implementation

For the implementation of the LB-eigDA in Eq. (4), we adopt the discretiza-
tion scheme of the LB operator in [35], where surfaceM is represented by a
triangulated mesh with a set of triangles and vertices vi. The ijth element
of the LB-operator on M can be computed as

∆ij = Cij/Ai, (12)

where Ai is the Voronoi area of vertex vi if the triangles containing vi are
nonobtuse [42] and Heron’s area if the triangles containing vi are obtuse
[35, 42]. The off-diagonal entries are defined as Cij = −(cot θij + cotφij)/2
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Figure 1: (a) Chebyshev polynomials of order 1 to 6. (b) An ideal rectangu-
lar bandpass filter with range λ ∈ [0.05λmax, 0.1λmax] and its approximation
of Chebyshev polynomials of order up to K = 500, 2000, and 5000.

if vi and vj form an edge, otherwise Cij = 0. The diagonal entries Cii are
computed as Cii = −

∑
j Cij . Other cotan discretizations of the LB operator

are discussed in [43, 44, 45]. When the number of vertices on M is large,
the computation of the LB eigenfunctions can be costly [46].

For the numerical implementation of the C-pDA method in Eq. (11), we
need to first determine the order of Chebyshev polynomials while gl(λ) have
less overlap for C-pDA. One can quantify the overlap among the filters gl
via training the spectral band between the passband and stopband [47]. A
higher-order filter has a narrower transition band than a lower-order filter.
Fig. 1 shows the transition bandwidth over order K for Chebyshev poly-
nomials when the filter band is λ ∈ [0.05λmax, 0.1λmax], where λmax is the
maximum eigenvalue of the LB operator. In this study, we empirically deter-
mined the order of Chebyshev polynomials as K = 5000 for C-pDA, which
achieves the transition bandwidth as small as 3.5 × 10−4 as illustrated in
Fig. 1. L depends on the spectral distribution of the observations and thus
is application specific. This study empirically determines L in the below
applications.

We take the advantage of the recurrence relation of the Chebyshev poly-
nomials and compute C-pDA recursively. We now describe steps for the
numerical implementation of Eq. (11).

1. discretize the surface M using a triangulated mesh;

2. compute ∆ based on Eq. (12) for the surface mesh M;

3. compute the maximum eigenvalue λmax of ∆. For the standardization
across surface meshes, we normalize ∆ as ∆̃ = 2∆

λmax
− I, where I is an
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identity matrix;

4. for the signal fi of the ith subject, compute Tk(∆̃)fi(x) recursively by

Tk+1(∆̃)fi(x) = (2− δk0)∆̃ Tk(∆̃)fi(x)− Tk−1(∆̃)fi(x)

with initial conditions

T−1(∆̃)fi(x) = 0

and
T0(∆̃)fi(x) = fi(x).

5. compute each augmented signal f ′i recursively as

fki′(x) = fk−1
i′ (x) +

L∑
l=0

(
θlkTk(∆̃)fi(x)

)τl(i)
,

where

θlk =
2− δk0

π

∫ εk+1

εk

Tk(λ)
dλ√

1− λ2
,

where [εk εk+1] is the frequency band of gl. Steps 4 and 5 are repeated from
k = 0 till k = K − 1. In step 5, there is no need to explicitly compute
each filtered signal, which saves computational time and memory, especially
when a large number of filters are used.

3 Simulation Experiments

A majority of medical applications often face two challenges, limited sample
sizes and potential uncertainty of diagnosis [48, 49]. We designed simulation
experiments with the ground truth of group labels to illustrate the use of LB-
eigDA and C-pDA in the sample size estimation and diagnosis classification.

We performed simulation experiments using a hippocampus surface mesh
with 1184 vertices and 2364 triangles. We generated two groups of simulated
data on this surface mesh: n samples in Group 0 and m samples in Group
1. We first generated n + m measurements by a normal distribution with
mean 0 and variance σ2, i.e., N (0, σ2), at each vertex of the hippocampus
surface. The first n measurements were considered as samples in Group 0,
while the rest of m measurements were added signal 1 in a small patch on the
hippocampus (see the red region in Fig. 2 (a)) and were considered as Group
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Figure 2: Simulated and augmented data in Group 1. (a) Averaged signal
over 500 data that were simulated via the distribution N (1, σ2) in the small
patch (red region) of the hippocampus and the distribution of N (0, σ2) at
each vertex on the rest of the hippocampus. (b) five augmented data for
Group 1 via the LB-eigDA method ; and (c) five augmented data for Group
1 via the C-pDA method.

1. Thus, Group 0 had the distribution N (0, σ2) at each vertex, while Group
1 had the distribution N (1, σ2) in the small patch of the hippocampus and
the distribution of N (0, σ2) at each vertex on the rest of the hippocampus.
Fig. 2 (a) shows the signal averaged over 500 samples in Group 1.

To generate augmented data, we computed all the 1184 eigenfunctions for
LB-eigDA. The hippocampal surface mesh had the spectrum over [0, 10.9].
For C-pDA, we used 109 bandpass filters whose bandwidth was 0.1 and a
mean filter that computed the average value of a signal over the hippocampal
surface. Each filter was approximated by Chebyshev polynomials of order
5000. Fig. 2(b) and (c) show 5 augmented data generated by LB-eigDA and
C-pDA for Group 1, respectively.

We employed a convolutional neural network (CNN) that was a modified
version of the graph-CNN in [24, 36]. We employed the LB operator instead
of the graph Laplacian in the CNN in this study. We called it as an LB-
based spectral CNN. Fig. 3) shows the LB-based spectral CNN architecture
with two convolutional layers due to the relatively small surface mesh of
the hippocampus and one fully connected layer. The two convolutional
layers had 8 and 16 filters, respectively. Each filter was characterized by
the Chebyshev polynomials of order 7. Moreover, each layer also included
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fully connected layer 
(128 nodes)

Group 0 / Group 1

convolutional layer

convolutional layer

softmax

16 filters
ReLU

average pooling

8 filters
ReLU

average pooling

Figure 3: The LB-based spectral CNN with 2 convolutional layers and one
fully connected layer. Each convolutional layer is comprised of filters ap-
proximated by the Chebyshev polynomials of order 7, a rectified linear unit
(ReLU), and average pooling.

a rectified linear unit (ReLU) and average pooling. We trained the network
with an initial learning rate of 10−3, and a learning rate decay of 0.05 for
every 20 epochs. We applied the ten-fold cross-validation, where one fold was
used for testing and the other 9 folds were for training (75%) and validation
(25%). Fig. 5 (a) shows the classification accuracy versus total sample size
n + m with ratio n/m = 2, which was similar to real ADNI data used
below in this study. σ = 0.6 was used. A higher value of σ resulted in
a similar curve except that more samples were required to reach the same
classification accuracy. The accuracy reached 98.1% when the total sample
size was 3000 and then increased slowly as the sample size increased.

To demonstrate the use of the two augmented data in classification, we
fixed the total sample size as 3000 (n = 2000, m = 1000). Among the 3000
samples, 2025, 675, and 300 samples were respectively used as the training,
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training (75%) validation (25%) testing

90% real data 10% real data

training validation

X% real data

testing

training the LB-based 
spectral CNN

classification accuracy

training the LB-based 
spectral CNN

classification accuracy

training 

1-X% augmented data

Figure 4: Real and augmented data used in the LB-based spectral CNN. X%
indicates that the percentage of the training set is real data and 1−X% are
augmented data.

validation, and testing samples. As illustrated in Fig. 4, when only a smaller
fraction of the simulated data in the training, denoted as X%, was available,
we applied the augmentation methods to add 1−X% augmented data to the
training set. For instance, if X = 10, we only used 203 of the training sam-
ples and employed LB-eigDA or C-pDA to generate 1822 augmented data
as additional training samples. The augmentation was employed separately
for the two groups. The validation (675 samples) and testing (300 sam-
ples) sets remained the same. The classification accuracy was respectively
95.5% for LB-eigDA and 92.5% for C-pDA. Without the augmented data,
the classification accuracy was 80.3%, more than 10% lower than that ob-
tained using the data augmented by LB-eigDA and C-pDA. Fig. 5 (b) shows
that LB-eigDA and C-pDA improved the classification accuracy when com-
pared to that without augmented data. Moreover, the LB-eigDA method
performed in general better than the C-pDA method. This is mainly be-
cause the C-pDA method employs the polynomial approximation of the LB
spectral filters.
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(b) Improvement by augmentation
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Figure 5: Classification accuracy on simulated and augmented data. (a) The
classifications accuracy using simulated data when the sample size increase
from 500 to 9000. (b) The green dotted line shows the classification accuracy
when only X% of simulated data was used as the training set. The red
dashed and blue solid lines show the classification accuracy when only X%
of the training set were simulated data and 1−X% of the training set were
augmented data by the LB-eigDA and C-pDA methods, respectively.

4 Results

We used MRI data from ADNI. We first illustrate the similarity of aug-
mented data by LB-eigDA and C-pDA to real MRI data. We then compare
the computational cost of the LB-eigDA and C-pDA approaches. Finally,
we show the use of C-pDA in the LB-based spectral CNN to improve the
classification accuracy of Alzheimer’s patients.

4.1 MRI data acquisition and preprocessing

We used ADNI-2 cohort (adni.loni.ucla.edu) acquired from participants
aging from 55 to 90 using either 1.5 or 3T scanners. For the typical 1.5T
acquisition, repetition time (TR) = 2400 ms, minimum full echo time (TE)
and inversion time (TI)= 1000 ms, flip angle= 8◦, field-of-view (FOV)=
240 × 240 mm2, acquisition matrix= 256 × 256 × 170 in the x-, y-, and
z-dimensions, yielding a voxel size of 1.25 × 1.25 × 1.2 mm3. For the 3T
scans, TR= 2300 ms, minimum full TE and TI = 900 ms, flip angle= 8◦,
FOV= 260 × 260 mm2, acquisition matrix = 256 × 256 × 170, yielding a
voxel size of 1.0× 1.0× 1.2 mm3.

We utilized the structural T1-weighted MRI from the ADNI-2 dataset.
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The number of visits of each subject varied from 1 to 7 (i.e., baseline, 3-,
6-, 12-, 24-, 36-, and 48-month), and at each visit, the subjects were diag-
nosed with one of the four clinical statuses based on the criteria in the ADNI
protocol (adni.loni.ucla.edu): healthy control (HC), early mild cognitive
impairment (MCI), late MCI, and Alzheimer’s disease (AD). In this study,
we illustrated the use of the augmentation methods via the HC/AD classi-
fication since it has been well studied using T1-weighted image data (e.g.,
[50, 51, 52, 53, 54, 55, 56, 36]). Hence, this study involved 643 subjects with
HC or AD scans (392 subjects had HC scans; 253 subjects had AD scans).
There were 8 subjects who fell into both groups due to the conversion from
HC to AD. Tables 1 lists the demographic information of the ADNI-2 cohort.

The T1-weighted images were segmented using FreeSurfer (version 5.3.0)
[57]. The white and pial cortical surfaces were generated at the boundary
between white and gray matter and the boundary of gray matter and CSF,
respectively. Cortical thickness was computed as the distance between the
white and pial cortical surfaces. It represents the depth of the cortical
ribbon. We represented cortical thickness on the mean surface, the average
between the white and pial cortical surfaces. We employed large deformation
diffeomorphic metric mapping (LDDMM) [58, 59] to align individual cortical
surfaces to the atlas and transferred the cortical thickness of each subject to
the atlas. The cortical atlas surface was represented as a triangulated mesh
with 655,360 triangles and 327,684 vertices. At each surface vertex, a spline
regression implemented by piecewise step functions [60] was performed to
regress out the effects of age and gender. The residuals from the regression
were used in the below LB-based spectral CNN.

Table 1: Demographic information of the ADNI-2 cohort with MRI scans.

HC AD

the number of subjects† 400 261

the number of scans 1122 587

gender (female/male) 607/515 254/333

age (years; mean±SD) 75.3±6.8 75.3±7.7
† There are 8 subjects who fall into both the HC and AD groups due to the

conversion from HC to AD. Abbreviations: HC, healthy controls; AD: Alzheimer’s
disease; SD, standard deviation.
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4.2 LB-eigDA and C-pDA augmentation

We extracted cortical thickness data from 500 ADNI brain MRI scans and
then used them to generate augmented cortical thickness via LB-eigDA and
C-pDA.

C-pDA requires determining the number of filters and the bandwidth
of each filter. These parameters are dependent on the spectrum of real
data and application specific. First, we analyzed the spectrum of cortical
thickness data, which was predominantly in the low-frequency band. More
filters with narrow bandwidth were needed in the low frequency, while fewer
filters with wide bandwidth were needed in the high frequency. Second, the
discrimination of cortical thickness between controls and AD patients lies in
the low-frequency band. Hence, we empirically designed more filters in the
low-frequency band based on the following procedure.

Let λmax be the maximum eigenvalue of the LB-operator of the cortical
surface mesh. We divided the spectral range of [0, λmax

4m−1 ] into 2m+1 equal-
width frequency bands, where m is an integer between 1 and 5, and assigned
a bandpass filter to each frequency band. This procedure resulted in a total
of 109 filters. Fig. 6 illustrates the filters used in this study. Moreover,
the order of the Chebyshev polynomials needs to be determined so that the
transition of the filters is sharp. As illustrated in Fig. 1, when K = 5000, the
approximation of the Chebyshev polynomials converges fast and has a small
transition bandwidth. For the rest of this study, we employed K = 5000 for
C-pDA.

On the other hand, only one parameter, the number of LB eigenfunc-
tions, is needed for LB-eigDA. This study used 5000 eigenfunctions for LB-
eigDA, which covered the spectral range critical to the discrimination of
controls and AD patients.

We employed LB-eigDA and C-pDA and generated 500 augmented corti-
cal thickness data based on 500 randomly selected data from ADNI. Fig. 7(a)
illustrates cortical thickness averaged over the 500 real data. Fig. 7(b) and
(c) show 5 augmented thickness data that were respectively generated by LB-
eigDA and C-pDA. This figure suggests that the pattern of the augmented
data from the two methods is similar to the averaged pattern observed in
real data.

Moreover, Fig. 8 shows the thickness averaged over the 500 real data
(green solid line), the 500 LB-eigDA augmented data (blue dashed line),
and the 500 C-pDA data (red dotted line), respectively. Both LB-eigDA
and C-pDA preserved the mean of the real thickness data at each vertex of
the cortical surface mesh. Empirically, the largest difference between the real
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Figure 6: A filter bank with 109 bandpass filters used in the C-pDA method.
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Figure 7: Augmented cortical thickness. (a) Cortical thickness averaged
over 500 real datasets; (b) five augmented thickness data via the LB-eigDA
method; and (c) five augmented thickness data via the C-pDA method.

and augmented data was smaller than 10−8 mm. Moreover, we computed
Pearson’s correlation of the averaged real data with the 500 augmented data.
Fig. 9 shows the distribution of these correlation values for the LB-eigDA
and C-pDA methods. The correlation value of the LB-eigDA augmented
thickness was in the range of [0.58, 0.68] with mean and standard deviation
of 0.64 ± 0.02, while the C-pDA augmented data showed the correlation in
the range of [0.53, 0.72] with mean and standard deviation of 0.65 ± 0.03.
Overall, both the LB-eigDA and C-pDA methods can generate new data
whose pattern is similar to that of real data.

The LB-eigDA computational time was dependent on the number of
the LB eigenfunctions, while the C-pDA computational time was related
to the order of Chebyshev polynomials. Fig. 10 shows the LB-eigDA com-
putational time as a function of the number of the LB eigenfunctions and
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Figure 8: Sorted thickness values at each vertex on the cortical surface mesh.
The green solid, blue dashed, and red dotted lines represent the thickness
value at a particular vertex averaged over the 500 real data, 500 augmented
data via LB-eigDA, and 500 augmented data via C-pDA, respectively. For
the purpose of visualization, the thickness averaged over 500 original data
is sorted in a descend manner across all the vertices on the cortical surface
mesh. The augmented data follow the sorted vertex index.

the C-pDA computational time as the order of Chebyshev polynomials, K.
This figure suggests that more LB eigenfunctions used in LB-eigDA allow
the augmentation over a wider spectrum but require a high computational
cost when the cortical surface mesh is large (the cortical surface mesh with
327,684 vertices). The LB-eigDA computational cost was exponentially in-
creased as the number of the LB eigenfunctions increased. In contrast, the
C-pDA computational time was approximately a linear function of the order
of Chebyshev polynomials. Compared to C-pDA , LB-eigDA was 70 times
slower when K = 5000.

4.3 Does classification improve by data augmentation?

We illustrate the use of the C-pDA method to classify healthy controls (HC)
and AD patients based on the cortical thickness of the ADNI dataset. Again,
we employed the LB-based spectral CNN with the architecture similar to
that in Fig. 3, but used five convolutional layers. Each layer involved 8, 16,
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Figure 9: The distribution of the correlation between the 500 augmented
thickness data and the thickness averaged over 500 real data (blue bar for
the LB-eigDA and orange bar for the C-pDA method.

32, 64, and 128 filters, respectively. The initial learning rate was 10−3, and
the learning rate decay was 0.05 for every 20 epochs. In this experiment,
the total sample from the ADNI dataset was 1709 (HC: n = 1122; AD:
n = 587). Ten-fold cross-validation was adopted. One fold of real data was
left out for testing. The remaining nine folds of data were further separated
into training (75%) and validation (25%) sets. When the MRI datasets
were separated into the training, validation, and testing sets, we considered
subjects instead of MRI scans so that the scans from the same subjects were
in the same set to avoid potential data over leakage.

The HC/AD classification accuracy based on the real ADNI data and the
LB-based spectral CNN was 90.9± 0.6%. However, when only a smaller set
of the real data was available (X% of the training set), that is, the training
sample size was reduced, the classification accuracy dropped as illustrated by
the red dashed line in Fig.11. When only 10% of the real data was available,
the classification accuracy was 75.8% and decreased 15% compared to that
using the full ADNI data.

We previously showed that both C-pDA and LB-eigDA have the same re-
sults but C-pDA was more computationally efficient than LB-eigDA. Thus,
the following experiments only used C-pDA with 109 filters and the Cheby-
shev polynomials of order K = 5000. As illustrated in Fig. 4, the training
samples contained X% of real ADNI data and 1 − X% augmented data,
where X = 10, 20, · · · , 80. We added 1−X% augmented data using C-pDA
in the LB-based spectral CNN and computed the network performance us-
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Figure 10: Computational time of the LB-eigDA (blue) and C-pDA (red-
orange) methods for generating 500 augmented thickness data from 500
randomly selected subjects in ADNI.

ing the testing real data. The augmentation was done separately for the
HC and AD groups. For instance, when 90% of the training samples were
augmented data and 10% of the training samples were real data, the clas-
sification accuracy was 83.3% and improved by 7.5%. Fig.11 shows that
C-pDA can increase the sample size and improve the HC/AD classification
accuracy.

5 Discussion

This study introduces the LB-eigDA and C-pDA methods to generate aug-
mented data on surfaces. Using the simulation with the ground truth label,
we demonstrate that both methods improve the performance of graph-CNN.
In particular, LB-eigDA has the potential to outperform C-pDA method
since C-pDA approximates the LB spectral filters using Chebyshev polyno-
mials. Nevertheless, when the mesh becomes large, LB-eigDA is computa-
tionally intensive while C-pDA is computationally efficient. C-pDA gener-
ates augmented thickness data and improves the AD classification accuracy
in a real clinical application.

To our best knowledge, this study provides the first unbiased oversam-
pling approaches for data augmentation on surfaces. These methods have
a great potential to open new research areas in graph CNN in conjunction
with generative adversarial networks (GANs). In particular, the formulation
of the C-pDA method is consistent with that the LB-based spectral CNN
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Figure 11: Classification accuracy. The red dashed line shows the classi-
fication accuracy when only X% of the real training samples were used in
the training of the LB-based spectral CNN. The blue solid line shows the
classification accuracy when only X% of the real raining set and 1 − X%
of the augmented data were used in the training of the LB-based spectral
CNN, where the augmented data were generated by the C-pDA method.

[24, 36], which is feasible to adapt the C-pDA and graph network to the
GAN framework. Further investigation will be needed.
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