arXiv:2006.15368v4 [cs.LG] 16 Jun 2021

Offline Contextual Bandits with Overparameterized Models

David Brandfonbrener ! William F. Whitney ! Rajesh Ranganath! Joan Bruna'

Abstract

Recent results in supervised learning suggest that
while overparameterized models have the capac-
ity to overfit, they in fact generalize quite well.
We ask whether the same phenomenon occurs for
offline contextual bandits. Our results are mixed.
Value-based algorithms benefit from the same gen-
eralization behavior as overparameterized super-
vised learning, but policy-based algorithms do
not. We show that this discrepancy is due to
the action-stability of their objectives. An ob-
jective is action-stable if there exists a prediction
(action-value vector or action distribution) which
is optimal no matter which action is observed.
While value-based objectives are action-stable,
policy-based objectives are unstable. We formally
prove upper bounds on the regret of overparam-
eterized value-based learning and lower bounds
on the regret for policy-based algorithms. In our
experiments with large neural networks, this gap
between action-stable value-based objectives and
unstable policy-based objectives leads to signifi-
cant performance differences.

1. Introduction

The offline contextual bandit problem can be used to model
decision making from logged data in domains as diverse as
recommender systems (Li et al., 2010; Bottou et al., 2013),
healthcare (Prasad et al., 2017; Raghu et al., 2017), and
robotics (Pinto & Gupta, 2016). Prior work on the problem
has primarily focused on underparameterized models with
finite and small VC dimensions. This work has come from
the bandit literature (Strehl et al., 2010; Swaminathan &
Joachims, 2015a;b), the reinforcement learning literature
(Munos & Szepesviri, 2008; Chen & Jiang, 2019), and the
causal inference literature (Bottou et al., 2013; Athey &
Wager, 2017; Kallus, 2018; Zhou et al., 2018).

'Courant Institute of Mathematical Sciences, New York Uni-
versity, New York, New York, USA. Correspondence to: David
Brandfonbrener <david.brandfonbrener @nyu.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

In contrast, the best performance in modern supervised
learning is often achieved by massively overparameterized
models that are capable of fitting random labels (Zhang
et al., 2016). Use of such large models renders vacuous the
bounds that require a small model class. But, the massive
capacity of popular neural network models is now often
viewed as a feature rather than a bug. Large models reduce
approximation error and allow for easier optimization (Du
et al., 2018) while still being able to generalize in regression
and classification problems (Belkin et al., 2018; 2019). In
this paper, we investigate whether the strong performance of
overparameterized models in supervised learning translates
to the offline contextual bandit setting. The main prior work
that considers this setup is (Joachims et al., 2018), which
we discuss in detail in Section 7.

To formalize the differences between the supervised learning
and contextual bandit settings, we introduce a novel regret
decomposition. This decomposition shares the approxima-
tion and estimation terms from classic work in supervised
learning (Vapnik, 1982; Bottou & Bousquet, 2008), but adds
a term for “bandit” error which captures the excess risk due
to only receiving partial feedback.

We use this framework to address the question: can we
use overparameterized models for offline contextual ban-
dits? Or is the bandit error a fundamental problem when
we use large models? We find mixed results. Value-based
algorithms benefit from the same generalization behavior
as overparameterized supervised learning, but policy-based
algorithms do not. We show that this difference is explained
by a property of their objectives called action-stability. An
objective is action-stable if there exists a single prediction
which is simultaneously optimal for any observed action
(where a “prediction” is a vector of state-action values for a
value-based objective or an action distribution for a policy-
based objective). Action-stable objectives perform well
when combined with overparameterized models since the
random actions taken by the behavior policy do not change
the optimal prediction. However, interpolating an unstable
objective results in learning a different function for every
sample of actions, even though the true optimal policy re-
mains unchanged.

On the theory side, we prove that overparameterized value-
based algorithms are action stable and have small bandit

Bandit Overfitting in Offline Policy Learning

error via reduction to overparameterized regression. Mean-
while we prove that policy-based algorithms are not action-
stable which allows us to prove lower bounds on the “in-
sample” regret and lower bounds on the regret for simple
nonparametric models.

Empirically, we demonstrate the gap in both action stability
and bandit error between policy-based and value-based algo-
rithms when using large neural network models on synthetic
and image-based datasets.

In summary, our main contributions are:

* We introduce the concept of bandit error, which sepa-
rates contextual bandits from supervised learning.

* We introduce action-stability and show that a lack of
action-stability causes bandit error.

* We show a gap between policy-based and value-based
algorithms based on action-stability and bandit error
both in theory and experiments.

2. Setup
2.1. Offline contextual bandit problem

First we will define the contextual bandit problem (Lang-
ford & Zhang, 2008). Let the context space A" be infinite
and the action space A be finite with |A| = K < oco. At
each round, a context x € X and a full feedback reward
Vector 7 € [Fmin, "max)* are drawn from a joint distribu-
tion D. Note that r can depend on x since they are jointly
distributed. A policy 7 : X — P(.A) maps contexts to dis-
tributions over actions. An action a is sampled according to
m(a|x) and the reward is r(a), the component of the vector
r corresponding to a. We use “bandit feedback” to refer to
only observing r(a). This contrasts with the “full feedback”
problem where at each round the full vector of rewards 7 is
revealed, independent of the action.

In the offline setting there is a finite dataset of N rounds with
a fixed behavior policy 5. Then we denote the dataset as
S = {xi,7i,a;,p;}}, where p; is the observed propen-
sity p; = p(a;|z;). The tuples in the datasets lie in
X X [Pomins Tmaz) € x A x [0, 1] and are drawn i.i.d from the
joint distribution induced by D and 5. From S we define the
datasets S for bandit feedback and S for full feedback:

Sp = {(zs;ri(ar), ai,pi) Yy, Sp = {(zi,ma) }Hls-

Note that we are assuming access to the behavior probabili-
ties p; = S(a;|x;), so the issues that we raise do not have to
do with estimating propensities. We will further make the
following assumption about the behavior.

Assumption 1 (Strict positivity). We have strict positivity
of Tif B(alx) > 7 > 0 for all a,x. Thus, in any dataset we
will have p; = B(a;|x;) > T > 0.

There is important work that focuses learning without strict
positivity by making algorithmic modifications like clipping
(Bottou et al., 2013; Strehl et al., 2010; Swaminathan &
Joachims, 2015a) and behavior constraints (Fujimoto et al.,
2018; Laroche et al., 2019). However, these issues are
orthogonal to the main contribution of our paper, so we
focus on the setting with strict positivity.

The goal of an offline contextual bandit algorithm is to take

in a dataset and produce a policy 7 so as to maximize the

value V (7r) defined as
V(7T) = Em,r~DEa~ﬂ-(-|m) [r(a)]

We will use 7* to denote the deterministic policy that max-

imizes V. Finally, define the @) function at a particular
context, action pair as

Q(l‘, a’) = Er|w[r(a)]

2.2. Model classes

The novelty of our setting comes from the use of overparam-
eterized model classes that are capable of interpolating the
training objective. To define this more formally, all of the al-
gorithms we consider take a model class of either policies 1T
or (Q functions Q and optimize some objective over the data
with respect to the model class. Following the empirical
work of (Zhang et al., 2016) and theoretical work of (Belkin
et al., 2018) we will call a model class “overparameterized”
or “interpolating” if the model class contains a model that
exactly optimizes the training objective. Formally, if we
have data {z;}}¥., and a pointwise loss function /(z,y),
then a model class II can interpolate the data if

N N
inf Lxg, m(x;)) = inf £(x;,y).

=93 (s, m(x)) ; inf £(z:,)

This contrasts with traditional statistical learning settings
where we assume that the model class is finite or has low
complexity as measured by something like VC dimension
(Strehl et al., 2010; Swaminathan & Joachims, 2015a).

2.3. Algorithms

Now that we have defined the problem setting, we can define
the algorithms that we will analyze. This is not meant to
be a comprehensive account of all algorithms, but a broad
picture of the “vanilla” versions of the main families of
algorithms. Since we are focusing on statistical issues we
do not consider how the objectives are optimized.

Supervised learning with full feedback. In a full feed-
back problem, empirical value maximization (the analog to
standard empirical risk minimization) is defined by maxi-

Bandit Overfitting in Offline Policy Learning

mizing the empirical value Ve

N
V ﬂ_ SF Z T3y, T |.%‘l (1)
TR = argr;leaﬁCVF(WQ SF)' @)

Policy-based learning. Importance weighted or “inverse
propensity weighted” policy optimization directly optimizes
the policy to maximize an estimate of its value. Since we
only observe the rewards of the behavior policy, we use
importance weighting to get an unbiased value estimate to
maximize. Explicitly:

. 1 & (as|z;)
V(m; Sp) = N;mai)T 3)
= arngrrlezlﬁ(VB(ﬁ;SB). 4)

Note that this is the “vanilla” version of the policy-
based algorithm and modifications like regularizers, base-
lines/control variates, clipped importance weights, and self-
normalized importance weights have been proposed (Bottou
etal., 2013; Joachims et al., 2018; Strehl et al., 2010; Swami-
nathan & Joachims, 2015a;b). For our purposes considering
this vanilla version is sufficient since as we show in Section
4, any objective that takes the form 7 (a;|x;) f (z;, ai, ri, pi)
at each datapoint will have the same sort of problem with
action-stability.

It is important to note that with underparameterized model
classes, this algorithm is guaranteed to return nearly the best
policy in the class. Explicilty, Strehl et al. (2010) prove that
for a finite policy class 11, with high probability the regret

of the learned policy 73 is bounded as O(1 4/ %) This
is elaborated in Appendix F. However, these guarantees no
longer hold in our overparameterized setting.

Value-based learning. Another simple algorithm is to
first learn the @) function and then use a greedy policy with
respect to this estimated () function. Explicitly:

N
Qsp = arg%irgl;(f(m“az) ri(ai))® (5)
Tos, (alx) =1 [a = argmgXQSB (z,a")] . (6)

This algorithm is sometimes called the “direct method”
(Dudik et al., 2011). The RL literature also often defines
a class of model-based algorithms, but in the contextual
bandit problem there are no state transitions so model-based
algorithms are equivalent to value-based algorithms.

This algorithm also has a guarantee with small model classes.
Explicilty, Chen & Jiang (2019) prove that for a finite and

well specified model class Q, with high probability the regret

log | Q]).

of the learned policy Tos, is bounded as O(% N

This is elaborated in Appendix F. Again, these guarantees
no longer hold in our overparameterized setting.

Doubly robust policy optimization. The class of doubly
robust algorithms (Dudik et al., 2011) does not fall cleanly
into the value-based or policy-based bins since it requires
first learning a value function and using that to optimize
a policy. However, with overparamterized models, doubly
robust learning becomes exactly equivalent to our vanilla
value-based algorithm unless we use crossfitting since the
estimated Q values will coincide with the rewards. We prove
this formally in Appendix D where we also show some is-
sues that the doubly robust policy objective can have with
overparameterized models and highly stochastic rewards.
For our purposes, we will only consider the policy-based and
value-based approaches since the doubly robust approach
collapses to the value-based approach with overparameter-
ized models.

3. Bandit error

In supervised learning, the standard decomposition of the
excess risk separates the approximation and estimation error
(Bottou & Bousquet, 2008). The approximation error is
due to the limited function class and the estimation error
is due to minimizing the empirical risk rather than the true
risk. Since the full feedback policy learning problem is
equivalent to supervised learning, the same decomposition
applies. Formally, consider a full feedback algorithm Ag
which takes the dataset S and produces a policy 7. Then

Es[V(r*) = V(rp)] =V(x*) — su}r)I V()
regret s
approximation error
+ Eg[sup V(m) = V(rr)].
mell

estimation error

We can instead consider a bandit feedback algorithm A5
which takes the dataset Sp and produces a policy 7z. To
extend the above decomposition to the bandit problem we
add a new term, the bandit error, that results from having
access to S rather than Sr. Now we have:

Eg[V(n*) = V(mp)] = V(x*) — sup V(n)

mell
regret

approximation error
r)]+Es[V(rp)—V(rp)].

bandit error

+ Eg[sup V(n) = V(n

mell

estimation error

Disentangling sources of error. The approximation er-
ror is the same quantity that we encounter in the supervised

Bandit Overfitting in Offline Policy Learning

learning problem, measuring how well our function class
can do. The estimation error measures the error due to over-
fitting on finite contexts and noisy rewards. The bandit error
accounts for the error due to only observing the actions
chosen by the behavior policy. This is not quite analogous
to overfitting to noise in the rewards since stochasticity
in the actions is actually required to have the coverage of
context-action pairs needed to learn a policy. While the
standard approximation-estimation decomposition could be
directly extended to the bandit problem, our approximation-
estimation-bandit decomposition is more conceptually use-
ful since it disentangles these two types of error.

Can bandit error be negative? Usually, we think about
an error decomposition as a sum of positive terms. This
is not necessarily the case with our decomposition, but we
view this as a feature rather than a bug. Intuitively, the bandit
error term captures the contribution of the actions selected
by the behavior policy. If the behavior policy is nearly
optimal and the rewards are highly stochastic, there may be
more signal in the actions selected by the behavior policy
than the observed rewards. Thus overfitting the actions
chosen by behavior policy can sometimes be beneficial,
causing the bandit error to be negative. The two terms
disentangle the approximation error (due to reward noise)
from bandit error (due to behavior actions).

4. Action-stable objective functions

Consider a simple thought experiment. We collect a con-
textual bandit dataset Sg from a two-action environment
using a uniformly random behavior policy. Then we con-
struct a second dataset Sp by evaluating the outcome of
taking the opposite action at each observed context. Since
nothing about the environment has changed, we know that
the optimal policy remains the same. Therefore we desire
the following property from a bandit objective: there exists
a single model which is optimal (with respect to that ob-
jective) on both Sp and Sp. We say that such an objective
is action-stable because it has an optimal policy which is
stable to re-sampling of the actions in the dataset.

More formally, we define action stability pointwise at a
datapoint z = (x,7,p) where € [Fimin, "max) ™ and p €
A is the behavior probability vector in the /& -dimensional
simplex (recall that K is the number of the actions). Let
z(a) denote the datapoint when action a is sampled so that
z(a) = (z,7(a),p(a),a). The objectives for both policy
and value-based algorithms decompose into sums over the
data of some loss £(z(a), w(a|x)) or £(z(a), Q(x, a)).

Note that the output space of a policy is the simplex so
that 7(-|z) € AK, while the output of a Q function' is

"When using neural networks Q is usually implemented as a

Q(z,-) € RE. To allow for this difference in our definition,
we will define a generic K -dimensional output space J*
and its corresponding restriction to one dimension as). So
for a policy-based algorithm VX = AX and Y = [0,1],
while for a value-based algorithm Y% = RX and) = R.
Now we can define action-stability.

Definition 1 (Action-stable objective). An objective func-
tion { is action-stable at a datapoint z if there exists
y* € V& such that for all a € A:

(@), 9" (@) = minf(=(a).v).

If an objective is not action-stable, a function which
minimizes that objective exactly at every datapoint
(z,7(a),p(a), a) does not minimize it for a different choice
of a. As a direct consequence, interpolating an unstable
objective results in learning a different function for every
sample of actions, even though the true optimal policy re-
mains unchanged.

We find that policy-based objectives are not action-stable,
while value-based objectives are. In the next section we
will use the instability of policy-based objectives to show
that policy-based algorithms exhibit large bandit error when
used with overparameterized models. Our stability results
are stated in the following two Lemmas, whose proofs can
be found in Appendix A.

Lemma 1 (Value-based stability). Value-based objectives
are action stable since we can let y* = r and this minimizes
the square loss at every action.

Lemma 2 (Policy-based instability). All policy-based objec-
tives which take the form £(z(a), w(a|x)) = f(z(a))7(a|z)
are not action-stable at z unless f(z(a)) > 0 for exactly
one action q.

These Lemmas tell us that the stochasticity of the behav-
ior policy can cause instability for policy-based objectives.
This is worrisome since one would hope that more stochas-
tic behavior policies give us more information about all the
actions and should thus yield better policies. Indeed, this is
the case for value-based algorithms as we will see in the next
section. But for policy-based algorithms, stochastic behav-
ior can itself be a cause of overfitting due to the instability
of the objective function.

Stabilizing policy-based algorithms. To avoid this prob-
lem in a policy-based algorithm, the sign of the function
f(2(a)) must indicate the optimal action. This essentially
requires having access to a baseline function b(s) that
separates the optimal action from all the others so that
r(a) > b(s) if and only if a is the optimal action. And

then f(z(a)) = % yields an action-stable algorithm.

function of x with K outputs (Mnih et al., 2015)

Bandit Overfitting in Offline Policy Learning

This is in general as difficult as learning the full value func-
tion (). One notable special case is when the bandit problem
is induced by an underlying classification problem, so that
only one action has reward 1 and all others have 0. In this
case, any constant baseline between 0 and 1 will lead to
action stability. This case has often been considered in the
literature, e.g. by Joachims et al. (2018) as we discuss in
Section 7.

Now that we have built up an understanding of the problem
we can prove some formal results that show how value-
based algorithms more effectively leverage overparameter-
ized models by being action-stable.

5. Regret bounds

Recall that as explained in Section 2, both policy-based
and value-based algorithms have regret guarantees when
we use small model classes (Strehl et al., 2010; Chen &
Jiang, 2019). But, when we move to the overparameterized
setting, this is no longer the case. In this section we prove
regret upper bounds for value-based learning by using recent
results in overparameterized regression. Then we prove
lower bounds on the regret of policy-based algorithms due
to their action-instability.

5.1. Value-based learning

In this section we show that value-based algorithms can
provably compete with the optimal policy. The key insight
is to reduce the problem to regression and then leverage
the guarantees on overparameterized regression from the
supervised learning literature. This is formalized by the
following theorem.

Theorem 1 (Reduction to regression). By Assumption I we
have B(a|x) > T for all x,a. Then with Qs,, as defined in
(5) we have

2 -
V() = Ving,,) < =) B (@)~ Qsy (w0

A proof can be found in Appendix B. Similar results are
presented as intermediate results in Chen & Jiang (2019);
Munos & Szepesvari (2008). The implication of this result
that we want to emphasize is that any generalization guaran-
tees for overparameterized regression immediately become
guarantees for value-based learning in offline contextual
bandits. Essentially, Theorem 1 gives us a regret bound
in any problem where overparameterized regression works.
The following results from the overparameterized regression
literature demonstrate a few of these guarantees, which all
require some sort of regularity assumption on the true @
function to bound the regression error:

e The results of (Bartlett et al., 2020) give finite sam-

ple rates for overparameterized linear regression by
the minimum norm interpolator depending on the co-
variance matrix of the data and assuming that the true
function is realizable.

* The results of (Belkin et al., 2019) imply that under
smoothness assumptions on (), a particular singular
kernel will interpolate the data and have optimal non-
parametric rates. After applying our reduction, the
rates are no longer optimal for the policy learning prob-
lem due to the square root.

e The results of (Bach, 2017) show how choosing the
minimum norm infinite width neural network in a par-
ticular function space can yield adaptive finite sample
guarantees for many types of underlying structure in
the () function.

¢ The results of (Cover, 1968) imply the consistency of
a one nearest neighbor regressor when the rewards are
noiseless and () is piecewise continuous. This will
contrast nicely with Theorem 3 below.

Each of these guarantees implies a corresponding corollary
to Theorem 1 resulting in a regret bound for that particular
combination of model and assumptions on Q).

5.2. Policy-based learning

Now we will show how the policy-based learning algorithms
can provably fail because they lack action-stability. We will
do this in a few ways. First, we will show that on the con-
texts in the dataset an action-unstable algorithm must suffer
regret. This means that we cannot even learn the optimal
policy at the contexts seen during training. Then to deal
with generalization beyond the dataset we will prove a regret
lower bound for a specific overparameterized model, namely
one nearest neighbor. Finally, we discuss a conjecture that
such lower bounds can be extended to richer model classes
like neural networks.

Since we are proving lower bounds, making any more sim-
plifying assumptions only makes the bound stronger. As
such, all of our problem instances that create the lower
bounds have only two actions (K = 2).

Regret on the observed contexts. Before considering
how a policy generalizes off of the data, it is useful to
consider what happens at the contexts in the dataset. This
is especially true for overparameterized models which can
exactly optimize the objective on the dataset. To do this,
we will define the value of a policy 7 on the contexts in a
dataset .S (which we will call the “in-sample” value) by

N
1
V(ﬂ-; S) = N § Er|xiEa~7r(~|xi)[r(a)]' (N
i=1

Bandit Overfitting in Offline Policy Learning

Then the following Theorem shows that the policy 7p
learned by the simple policy-based algorithm in Equation
(4) must suffer substantial regret on S.

Theorem 2 (In-sample regret lower bound). Let K = 2
and the policy class be overparameterized. Define A,.(x) =
|E,4[r(1) — r(2)]| as the absolute expected gap in rewards
at x. Define p, () to be the probability that the policy-based
objective is action-unstable at x. Recall that B(a|x) > T by
Assumption 1. Then

Eg[V(n*;S)-V (7p;S)] > TE, [pu(x)Ar(x)])

The full proof is in Appendix C. This Theorem tells us that
as often as the objective is action-unstable, we can suffer
substantial regret even on the contexts in the dataset. We
now offer some brief intuition of the proof. When we have
two actions and an algorithm is not action-stable at z, then
action chosen by the learned policy 7p at x; is directly de-
pendent on the observed action a;. Since the behavior 5 will
choose each action with probability at least 7 by Assump-
tion 1, the learned policy 7 must choose the suboptimal
action with probability at least 7 at ;. This causes unavoid-
able regret for unstable algorithms, as formally stated in
Theorem 2.

Note that Theorem 2 essentially says that action-unstable
algorithms convert noise in the behavior into regret. This is
the essential problem with unstable algorithms. Rather than
using stochasticity in the behavior policy to get estimates of
counterfactual actions, an action-unstable algorithm is sen-
sitive to this stochasticity like it is label noise in supervised
learning.

In Appendix C.2 we present a result that makes this con-
nection between behavior policy noise and action-instability
more direct. Specifically we show a reduction that takes
any classification problem and turns it into a bandit problem
such that optimizing the policy-based objective is equiva-
lent to solving a noisy variant of the classification problem.
On the contrary, optimizing the full-feedback objective is
equivalent to the noiseless classification problem.

The limitation of this result is that it only applies in-sample
and does not rule out that the model class could leverage
its inductive bias to perform well away from the training
data. Next we convert this in-sample regret lower bound
into a standard regret lower bound for a particular simple
interpolating model class, the nearest neighbor policy.

Regret with generalization: nearest neighbor models.
The above result shows what happens at the contexts in
the dataset S. It seems that only pathological combinations
of model class and problem instance could perform poorly
on S but recover strong performance off of the data. How-
ever, it cannot be ruled out a priori if the model class has

strong inductive biases to generalize well. In this section
we will show that at least for a very simple overparameter-
ized model class, the generalization of the model does not
improve performance.

The following theorem shows that the simplest interpolating
model class, a one nearest neighbor rule, fails to recover the
optimal policy even in the limit of infinite data.

Theorem 3 (Regret lower bound for one nearest neighbor).
Let A, = rimax — Tmin. Then there exist problem instances
with noiseless rewards where

limsupEg[V(wp) — V(rp)] = —

)
N—00 2

but

limsup Eg[V(7*) — V(7p)] = 0.

N —o0

The proof is in Appendix C. This result shows that using a
nearest neighbor scheme to generalize based on the signal
provided by the policy-based objective is not sufficient to
learn an optimal policy. Importantly, note that since the
rewards are noiseless, a nearest neighbor policy does recover
the optimal policy with full feedback and Theorem 1 shows
that value-based algorithms also recover the optimal policy
in this setting. So, the model class is capable of solving the
problem, it is the action-unstable algorithm that is causing
irreducible error.

More complicated model classes. The above result for
nearest neighbor models is illustrative, but does not apply to
richer model classes like neural networks. While we were
not able to construct such lower bounds, we conjecture that
they do exist and hope that future work can prove them.
We have two reasons to believe that such lower bounds
exist. First, Theorem 2 is agnostic to model class. For a
policy to perform well despite poor performance in-sample
would require strong inductive biases from the model class.
Proving lower bounds requires ruling out such inductive
biases as we have shown for nearest neighbor rules. Second,
our empirical results presented in the next section show that
policy-based algorithms have action-instability and high
bandit error with neural networks. The inductive biases are
not enough to overcome the poor in-sample performance.

6. Experiments

In this section we experimentally verify that the phenom-
ena described by the theory above extend to practical set-
tings that go slightly beyond the assumptions of the theory.”
Specifically we want to verify the following with overpa-
rameterized neural network models:

2Code can be found at https://github.com/
davidbrandfonbrener/deep-offline-bandits.

Bandit Overfitting in Offline Policy Learning

1. Policy-based algorithms are action-unstable while
value-based algorithms are action-stable.

2. This causes high bandit error for policy-based algo-
rithms, but not value-based algorithms.

We will break the section into two parts. First we consider
a synthetic problem using simple feed-forward neural nets
and then we show similar phenomena when the contexts are
high-dimensional images and the models are Resnets (He
et al., 2016).

6.1. Synthetic data

First, we will clearly demonstrate action-stability and bandit
error in a synthetic problem with a linear reward function.
Specifically, we sample some hidden reward matrix 6 and
then sample contexts and rewards from isotropic Gaussians:

0~ U([0,1]5%), 2~ N(0,1), 7 ~N(Oz,ely).

Actions are sampled according to a uniform behavior:

For these experiments we set K = 2,d = 10,e = 0.1. We
take N = 100 training points and sample an independent
test set of 500 points. As our models we use MLPs with one
hidden layer of width 512. In our experience, the findings
are robust to all these hyperparameters of the problem so
long as the model is overparameterized. Full details about
the training procedure along with learning curves and further
results are in Appendix E.

Value-based

Policy-based

Action seed Action seed

Figure 1. We test action-stability by resampling the actions 20
times for a single dataset of contexts. Each pixel corresponds to
the pair of action seeds ¢, j and the color shows the TV distance
between 7;(-|x) and 7; (-|) on a held-out test set sampled from
the data generating distribution. The policy-based algorithms are
highly sensitive to the randomly sampled actions.

To confirm (1) and (2) listed above we conduct two exper-
iments. First, to test the action-stability of an algorithm
with a neural network model, we train 20 different poli-
cies on the same dataset of contexts and rewards, but with

W Estimation error
Bandit error

0.30

0.20

Regret

0.10

oo DI eeeslees |
Yolicy-based ue-based

Figure 2. Estimated bandit error by averaging the values calculated
on the held-out test sets for 50 independently sampled datasets.
Error bars show one standard deviation. While policy-based learn-
ing has high bandit error, value-based learning has essentially zero
bandit error.

resampled actions. Formally, we sample {z;, 7}, from
the Gaussian distributions described above and then sample
a; ~ B(:|z;) with 20 different seeds. We then train each
algorithm to convergence and compare the resulting policies
by total variation (TV) distance. Results are shown in Figure
1. We find that our results from Section 4 are confirmed:
policy-based algorithms are unstable leading to high TV
distance between policies trained on different seeds while
value-based algorithms are stable.

Second, we estimate the bandit error of each algorithm.
To do this we train policies to convergence for the policy-
based, value-based, and full-feedback objectives 50 inde-
pendently sampled datasets (where now we also resample
the contexts and rewards). For this estimate, we assume
perfect optimization and no approximation error. Each
estimate is calculated on a held out test set. Explicitly,
let 75, 71'%2, 77, are the policy-based, value-based, and full-
feedback policies trained on dataset S’/ with seed j and
corresponding test set T3, Then we estimate bandit error
as %ijl V(w5 T7) — V(75 T79). Similarly, since we
know 6 we can compute 7* and use this to estimate the
estimation error. The results shown in Figure 2 demonstrate
that the policy-based algorithm suffers from substantially
more bandit error and thus more regret.

6.2. Classification data

Most prior work on offline contextual bandits conducts ex-
periments on classification datasets that are transformed into
bandit problems (Beygelzimer & Langford, 2009; Dudik
et al., 2011; Swaminathan & Joachims, 2015a;b; Joachims
et al., 2018; Chen et al., 2019). This methodology obscures
issues of action-stability because the very particular reward
function used (namely 1 for a correct label and O for incor-
rect) makes the policy-based objective action-stable. How-
ever, even minor changes to this reward function can dramat-
ically change the performance of policy-based algorithms
by rendering the objective action-unstable.

Bandit Overfitting in Offline Policy Learning

Uniform behavior Hand-crafted behavior

Value-based Unstable Stable
policy-base

policy-based policy-based

Figure 3. Estimated regret decomposition on CIFAR with uniform
behavior (left) and the hand-crafted behavior of Joachims et al.
(2018) (right). We see that the value-based learning has lowest
bandit error and unstable policy-based learning the most. On the
hand-crafted dataset the stable policy-based algorithm performs as
well as value-based learning.

To make a clear comparison to prior work that uses deep
neural networks for offline contextual bandits like Joachims
et al. (2018), we will consider the same image based bandit
problem that they do in their work. Namely, we will use the
a bandit version of CIFAR-10 (Krizhevsky, 2009).

To turn CIFAR into an offline bandit problem we view each
possible label as an action and assign reward of 1 for a
correct label/action and O for an incorrect label/action. We
use two different behavior policies to generate training data:
(1) a uniformly random behavior policy and (2) the hand-
crafted policy used in (Joachims et al., 2018). We train
Resnet-18 (He et al., 2016) models using Pytorch (Paszke
et al., 2019). Again full details about the training procedure
are in Appendix E.

As explained in Section 4, the policy-based objective is
stable if and only if the sign of the reward minus baseline
is an indicator of the optimal action. To test this insight we
consider two variants of policy-based learning: “unstable”
where we use a baseline of -0.1 so that the effective rewards
are 1.1 for a correct label and 0.1 for incorrect and “stable”
where we use a baseline of 0.1 so that the effective rewards
are of 0.9 and -0.1 to make the objective stable?. Note that
this “stable” variant of the algorithm only exists because
we are considering a classification problem. In settings
with more rich structure in the rewards, defining such an
algorithm is not possible and only versions of the unstable
algorithm would exist.

We again estimate the regret decomposition as we did with
the synthetic data. The difference is that this time we only
use one seed since we only have one CIFAR-10 dataset. The
results in Figure 3 confirm the results from the synthetic
data. The standard (unstable) policy-based algorithm suffers

3This corresponds to the optimal value of X in the experiments
of Joachims et al. (2018). Our “stable” model slightly outperforms
theirs, likely due to a slightly better implementation.

from large bandit error. The value-based algorithm has the
best performance across both datasets although the “stable”
policy-based algorithm performs about as well for the hand-
crafted behavior policy.

7. Related work

Now that we have presented our results, we will contrast
them with some related work to clarify our contribution.

7.1. Relation to propensity overfitting

Swaminathan & Joachims (2015b) introduce what they
call “propensity overfitting”. By providing an example,
they show that policy-based algorithms overfit to maximize
the sum of propensities (_, %) rather than the value
when the rewards are strictly posiltive. They provide a moti-
vating example, but no formal definition of propensity over-
fitting and argue that it helps to describe the gap between
supervised learning and bandit learning. In contrast, we in-
troduce and formally define bandit error, which makes this
gap between supervised learning and bandit learning precise
and does not rely on the specific algorithm being used. Then
we introduce and formally define action-instability, which
explains an important cause of bandit error for policy-based
algorithms when using large models. By mathematically for-
malizing these ideas we provide a more rigorous foundation
for future work.

7.2. Relation to (Joachims et al., 2018)

The main related work that considers offline contextual ban-
dits with large neural network models is Joachims et al.
(2018). Specifically, that paper proposes a policy-based al-
gorithm with an objective of the form: %ﬂ(az |;) for
some constant baseline A determined by a hyperparameter
sweep, but motivated by a connection to self-normalized

importance sampling.

Our work contrasts with this prior work in two key ways.
First, we show that the algorithm proposed in Joachims
et al. (2018) is action-unstable. Specifically, our Lemma
2 shows that any policy-based algorithm with an objective
of the form), f(2;(a;))m(a;|x;) cannot be action-stable
unless the sign of f(z(a)) is the indicator of the optimal
action. However, since that paper only tests the algorithm on
classification problems where the rewards are in {0, 1}, any
setting of A between 0 and 1 causes the sign of f to indicate
the optimal action. The action-stability analysis shows how
this algorithm will struggle beyond the classification setting.

Second, we show that value-based methods provably and
empirically work in the overparameterized setting. In con-
trast, Joachims et al. (2018) does not consider value-based
methods. We show that value-based methods are not af-

Bandit Overfitting in Offline Policy Learning

fected by action-stability issues (Lemma 1) and have vanish-
ing bandit error (Theorem 1). We empirically test this con-
clusion on the same CIFAR-10 bandit problem as Joachims
et al. (2018) and find that a value-based approach outper-
forms the policy-based approach proposed in that paper
(Figure 3).

7.3. Variance of importance weighting

The importance weighted value estimates used by policy-
based algorithms suffer from high variance due to low proba-
bility actions that have very large importance weights. Much
prior work focuses on reducing this variance (Strehl et al.,
2010; Bottou et al., 2013; Swaminathan & Joachims, 2015a).
In contrast, the issue we consider, action-instability in the
overparameterized setting, is distinct from this variance is-
sue. When the policy class is flexible enough to optimize
the objective at each datapoint, the optimal predictor in that
class does not depend on the importance weights. Mean-
while action-unstable objectives translate stochasticity in
the behavior policy into noise in the objective, causing the
overfitting issues that we see in policy-based algorithms.
In fact, our Theorem 2 suggests that regret will be worse
for more uniform behavior policies when using an action-
unstable objective, even though these may be beneficial in
terms of variance. This is born out in our experiments where
the behavior is usually uniform and known, which is a favor-
able setup in terms of the variance of the value estimates,
but an unfavorable setup for action-unstable policy learning
algorithms.

8. Discussion

We have examined the offline contextual bandit problem
with overparameterized models. We introduced a new regret
decomposition to separate the effects of estimation error and
bandit error. We showed that policy-based algorithms are
not action-stable and thus suffer from high bandit error with
stochastic behavior policies. This is borne out both in the
theory and experiments.

It is important to emphasize that our results may not apply
beyond the setting we consider in this paper. When there is
no strict positivity, there is unobserved confounding, there
are continuous actions, or the model classes are small and
misspecified then policy-based learning may have lower
regret and lower bandit error than value-based learning.

In future work we hope to extend the ideas from the bandit
setting to the full RL problem with longer horizon that
requires temporal credit assignment. We predict that action-
stability and bandit error remain significant issues there. We
also hope to investigate action-stable algorithms beyond the
simple value-based algorithms we consider here.

Acknowledgements

We would like to thank Aahlad Puli for thoughtful conversa-
tions and Aaron Zweig, Min Jae Song, and Evgenii Nikishin
for comments on earlier drafts.

This work is partially supported by the Alfred P. Sloan
Foundation, NSF RI-1816753, NSF CAREER CIF 1845360,
NSF CHS-1901091, Samsung Electronics, and the Institute
for Advanced Study. DB is supported by the Department
of Defense (DoD) through the National Defense Science &
Engineering Graduate Fellowship (NDSEG) Program.

References

Athey, S. and Wager, S. Efficient policy learning. arXiv
preprint arXiv:1702.02896, 2017.

Bach, F. Breaking the curse of dimensionality with con-
vex neural networks. The Journal of Machine Learning
Research, 18(1):629-681, 2017.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 2020.

Belkin, M., Hsu, D. J., and Mitra, P. Overfitting or per-
fect fitting? risk bounds for classification and regression
rules that interpolate. In Advances in neural information
processing systems, pp. 2300-2311, 2018.

Belkin, M., Rakhlin, A., and Tsybakov, A. B. Does data
interpolation contradict statistical optimality? In The
22nd International Conference on Artificial Intelligence

and Statistics, pp. 1611-1619. PMLR, 2019.

Beygelzimer, A. and Langford, J. The offset tree for learn-
ing with partial labels. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 129-138, 2009.

Bottou, L. and Bousquet, O. The tradeoffs of large scale
learning. In Advances in neural information processing
systems, pp. 161-168, 2008.

Bottou, L., Peters, J., Quifionero-Candela, J., Charles, D. X.,
Chickering, D. M., Portugaly, E., Ray, D., Simard, P.,
and Snelson, E. Counterfactual reasoning and learning
systems: The example of computational advertising. The
Journal of Machine Learning Research, 14(1):3207-3260,
2013.

Chen, J. and Jiang, N. Information-theoretic considera-
tions in batch reinforcement learning. In Proceedings of
the 36th International Conference on Machine Learning.
PMLR, 2019.

Bandit Overfitting in Offline Policy Learning

Chen, M., Gummadi, R., Harris, C., and Schuurmans, D.
Surrogate objectives for batch policy optimization in one-
step decision making. In Advances in Neural Information
Processing Systems, pp. 8825-8835, 2019.

Cover, T. Estimation by the nearest neighbor rule. /EEE
Transactions on Information Theory, 14(1):50-55, 1968.

Cover, T. and Hart, P. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1):21-27,
1967.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. arXiv preprint arXiv:1810.02054, 2018.

Dudik, M., Langford, J., and Li, L. Doubly robust policy
evaluation and learning. arXiv preprint arXiv:1103.4601,
2011.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep re-
inforcement learning without exploration. arXiv preprint
arXiv:1812.02900, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Joachims, T., Swaminathan, A., and de Rijke, M.
Deep learning with logged bandit feedback. In In-
ternational Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=SJaP_-xAb.

Kallus, N. Balanced policy evaluation and learning. In
Advances in Neural Information Processing Systems, pp.

8895-8906, 2018.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009.

Langford, J. and Zhang, T. The epoch-greedy algorithm for
multi-armed bandits with side information. In Advances
in neural information processing systems, pp. 817-824,
2008.

Laroche, R., Trichelair, P., and Des Combes, R. T. Safe pol-
icy improvement with baseline bootstrapping. In Interna-
tional Conference on Machine Learning, pp. 3652-3661.
PMLR, 2019.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news arti-
cle recommendation. In Proceedings of the 19th Inter-
national Conference on World Wide Web, pp. 661-670,
2010.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Munos, R. and Szepesviri, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research, 9
(May):815-857, 2008.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information
processing systems, pp. 8026-8037, 2019.

Pinto, L. and Gupta, A. Supersizing self-supervision: Learn-
ing to grasp from 50k tries and 700 robot hours. In 2016
IEEE international conference on robotics and automa-
tion (ICRA), pp. 3406-3413. 1IEEE, 2016.

Prasad, N., Cheng, L.-F., Chivers, C., Draugelis, M., and
Engelhardt, B. A reinforcement learning approach to
weaning of mechanical ventilation in intensive care units.
ArXiv, abs/1704.06300, 2017.

Raghu, A., Komorowski, M., Ahmed, 1., Celi, L. A,,
Szolovits, P, and Ghassemi, M. Deep reinforcement
learning for sepsis treatment. ArXiv, abs/1711.09602,
2017.

Strehl, A., Langford, J., Li, L., and Kakade, S. M. Learning
from logged implicit exploration data. In Advances in
Neural Information Processing Systems, pp. 2217-2225,
2010.

Swaminathan, A. and Joachims, T. Counterfactual risk
minimization: Learning from logged bandit feedback.
In International Conference on Machine Learning, pp.
814-823, 2015a.

Swaminathan, A. and Joachims, T. The self-normalized
estimator for counterfactual learning. In advances in
neural information processing systems, pp. 3231-3239,
2015b.

Vapnik, V. Estimation of Dependences Based on Empirical
Data: Springer Series in Statistics (Springer Series in
Statistics). Springer-Verlag, Berlin, Heidelberg, 1982.
ISBN 0387907335.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. arXiv preprint arXiv:1611.03530, 2016.

Zhou, Z., Athey, S., and Wager, S. Offline multi-action
policy learning: Generalization and optimization. arXiv
preprint arXiv:1810.04778, 2018.

Bandit Overfitting in Offline Policy Learning

Appendix

A. Action-stability

Lemma 1 (Value-based stability). Value-based objectives are action stable since we can let y* = r and this minimizes the
square loss at every action.

Proof. Consider a datapoint z = (,) which becomes z(a) = (, a,7(a)) when we sample action a from the behavior. At
this datapoint, the value-based objective for an estimated Q function () is

((2(a), Q(x,) = (r(a) - Q(x,0))’ ®)
This is minimized at all @ by Q(x, a) = r(a). So setting y* = Q(x,-) = r, we can exactly minimize ¢ at z. Since such a y*
exists, the objective is by definition action-stable. O

Lemma 2 (Policy-based instability). All policy-based objectives which take the form {(z(a), m(a|z)) = f(z(a))r(a|z) are
not action-stable at z unless f(z(a)) > 0 for exactly one action a.

Proof. Consider a datapoint z = (x,r) which becomes z(a) = (x,a,r(a),p(a)) when we sample action a from the
behavior with probability p(a). At this datapoint, a generic policy-based objective evaluated on a policy 7 takes the form

t(2(a), 7 (alz)) = f(z(a))7(alz) ©)

r(a)

p(a)’
Moreover we can incorporate any baseline function b(x) so that f(z(a)) = %. This algorithm covers the one
presented by Joachims et al. (2018).

As special examples of the function f we have the generic policy-based objective from Equation (4) when f(z(a)) =

Now to prove the claim, we have three cases: (1) f(z(a)) < 0 forall a, (2) f(z(a)) > 0 for at least two actions a1, ag, and
(3) f(2(a)) > 0 at exactly one action a;. We will show that in cases 1 and 2 the objective is action-unstable, but in case 3 it
is action-stable.

Case 1. Assume that f(z(a)) < O for all a. Now for any given a to maximize the objective f(z(a))#(a|x) while ensuring
that 7 (a|x) is a valid probability we must set 7 (a|z) = 0. But, if we set 7 (a|z) = 0 for all a, we no longer have a valid
probability distribution, since 0 ¢ AX. Thus, we cannot find y* € A¥ that optimizes the loss at z across all actions, so the
objective is action-unstable.

Case 2. Assume that f(2(a)) > 0 for at least two actions a1, as. Now at ay, ao the objective f(z(a))7(a|x) is maximized
by setting 7(a|z) = 1. However, there is no valid element i of AX such that y(a;) = 1 and y(as) = 1. Thus, we cannot
find y* € AK that optimizes the loss at z across all actions, so the objective is action-unstable.

Case 3. Assume f(z(a)) > 0 at exactly one action a;. Then at action a; we can maximize f(z(a1))7(a1|x) by setting
#(a1]|z) = 1. And since f(z(a)) < 0O for all other actions a # a1, we can maximize f(z(a))7(a|x) by setting 7(a|z) = 0.
Now since 1[a = a;] € A¥, there does exist a vector y* €) which exactly optimizes ¢ regardless of which action is
sampled. So, the objective is action-stable if and only if we are in this case. O

B. Value-based learning

Theorem 1 (Reduction to regression). By Assumption I we have (a|z) > 7 for all z,a. Then with Qs,, as defined in (5)
we have

Vi) - Vimg,,) < }¢ E [(Qr,a) — Qsy (2,0))).

z,a~ 3

Bandit Overfitting in Offline Policy Learning

Proof. The proof follows directly from linking the subsequent lemmas with 7 = Ths and II be the set of all policies in
B
Lemma 3. O

Lemma 3 (Mismatch: from MSE to Regret). Assume strict positivity. Let T be the greedy policy with respect to some Q
and let 11 be any class of policies to compete against, which contains 7. Then

sup V(m) = V(x) < 2\/sup E; oop [(Qz,a) — Q(a:, a))?] (10)

mwell mell

Proof. We can expand the definition of regret and then add and subtract and apply a few inequalities. Let 7 be the policy in
IT which maximizes V. Then

iIEIIr)I V(r) = V() = Eg |Equr 2 [Q(7, a)] — Eqos)o[Q(2, a)]} (11)

= Ey |Egr2[Q(2,0)] = B o[Q(2,0)] + Eqr 2 [Q(2, 0)] — Equrf2[Q(2, a)}] (12)

<E, EaNﬁ'\z[lQ(I7a) - Q(l‘, a‘)” + an,ﬂz“Q(‘xv a) B Q(x’ a)|]:| (13)
< VB aa (Qr,0) — Q(,0)?] 4y BB [(Q,) — Q(ir,0))?) (14)
< V SUp s (B (@, @) — Qe)?] (1)

The first inequality holds since 7 maximizes Q and by using the definition of absolute value, the second by Jensen, and the
third by introducing the supremum. O

Lemma 4 (Transfer: from § to w). Assume strict positivity and take any Q-function Q and any policy w, then

Br Q0,0 = Q)] < £ (Baomp Qo) — Qo)) 6
Proof. Let m be any policy. Then
EyEqmnrz[(Q(z,a) — Q(z,a))?] = /p(a?) Zﬂ(a|x)(Q(x, a) — Q(z,a))dx (17)

a

[S el 5@ @) - Qo) s 18)

<7 [X lalo)n() (@, a) - Qa,a)Pdo 19)
= 1Beann (@) ~ Qla,)] o)

where we use a multiply and divide trick and apply the definition of strict positivity to ensure that ggzm

<1 O
T

C. Policy-based learning
C.1. In-sample regret

Lemma 5. Let 11 be an interpolating class and K = 2. Then there exists a mp as defined in Equation (4) such that

1. the behavior of T at each datapoint x; € S only depends on a;,r;(a;), and p;

2. m(|as) € {(0,1), (1,0)}.

Bandit Overfitting in Offline Policy Learning

Proof. We will begin by proving part 2. Note that the objective that 75 optimizes takes the form (a’) m(a;|x;) at each

datapoint. Since probabilities are constrained to [0, 1] this is optimized by 7(a;|z;) = 0 if = (“‘) <0 and m(a;|z;) = 1if
ri(ai)

Pi
optimizer at each datapoint. Since K = 2, once we know 7 (a;|z;) we immediately have w(a;|x;) = 1 — m(a;|z;) (where

a; is the action that is not equal to a;). Thus 75 (-|z;) € {(0,1),(1,0)}.

i) > 0. Since we have an overparameterized model class, we know that Il contains a 7 that can exactly choose the

Now part 1 follows directly since the above reasoning showed that 75 (+|x;) is defined precisely by the sign of = 2(7) and the
identity of a;. O

Theorem 2 (In-sample regret lower bound). Let K = 2 and the policy class be overparameterized. Define A, (x) =
|E,4[r(1) — r(2)]| as the absolute expected gap in rewards at x. Define p, () to be the probability that the policy-based
objective is action-unstable at x. Recall that 3(a|x) > 7 by Assumption 1. Then

Es[V(7*;9)=V(7p; S)] > 7E; [pu(2)Ar(2)].
Proof. By part 1 of Lemma 5 and linearity of expectation we can decompose the expected in-sample value as

N
ES[V(T"*§ S) = V(rp; S Z Ty, [aNW*Erlmi [T(a)] - EaNﬂB]Er\wi [T(a)]}

Since the data are iid we further have that

Es[V(x*:S) — V(15:5)] = Ev, yo [ENE (1(0)] — EarpErjo, [r(a)]] |

Define the event U, - to be the event that the policy-based objective is action-unstable at x, 7. So p,(z) = E.,[1[U,]].

We can split this expectation up into stable and unstable parts by conditioning on either U, ., or U,, ., and lower bound
the regret on the stable datapoints by 0:

i ilUzy,ry

Es[V(r*;8) = V(rg;S)| =E, . &]anilxi _]EaNW*E,«m [r(a)] — EaNWB]ETIwi [r(a)]

+ ET«@',U\U%,W Eai\l’i EQNW*ET\M [T(a)] - EGNWB ETl:EL [T(a)}

2 E:rumlUl . Eallxl]EaNTr*Erlaci [T(a)] - EaNﬂBET\wi [T(a)] .

By part 2 of Lemma 5 we know that w5 (-|z;) is either (1, 0) or (0, 1). Conditioned on the objective being unstable at x;
and using the fact that there are only two actions, we know that 75 (x;) must be different depending on whether a; = 1
or a; = 2. Define a pto be the action that 7w selects at x; when a; = 1 and a B the action when a; = 2. Let a] be the
action chosen by the deterministic optimal policy 7* at ;. Thus we can split the expectation over a; in the above expression
and then plug in definitions to get:

Es[V(x*;8) — V(8] > Evo o . [Mai U)Ev o [r(a?) — ral)] + Blas = 20y r(al) — r(a?,Bﬂ] |

Since we assumed that S(a|x;) > 7 for all @ we can lower bound the above by

Es[V(1*5) — V(np:S)] > rEs, [mU%,m] <E| r(a?) — r(a)] + Enposlr(al) — r(aiBnﬂ .

Bandit Overfitting in Offline Policy Learning

Finally, we note that since a; 5 # a? 5 and there are only 2 actions that the above is precisely

Es[V(r*;8) = V(np; 8)] = TEa, v, | L[Ea, 1+ JEpia,[r(a]) — r(a # a])]

= TEu; i [L[Ew, r] Ar (2:)]

= TEq, [Er, |, [1[Us, .]| Ar ()]
= TEqy, [pu(2i)Ar ()]

= 7Bz [pu () Ar(2)].

C.2. Connection to noisy classification
This section states and proves the Theorem referenced in the main text connecting action-unstable policy-based learning
with noisy classification.

Theorem 4 (Noisy classification reduction). Take any noise level n < 1/2 and any binary classification problem C consisting
of a distribution D¢ over X and a labeling function yc : X — {—1,1}. There exists an offline contextual bandit problem BB
with noiseless rewards such that

1. Maximizing Vi in B is equivalent to minimizing the 0/1 loss on a training set drawn from C where labels are flipped
with probability n.

2. Maximizing Vp in B is equivalent to minimizing the 0/1 loss on a training set drawn from C with noiseless training
labels.

Proof. First we will construct the bandit problem B with two actions corresponding to the classification problem C. For any
constant ¢, > 0 we define B by

v~ oy = derd—mn) ye(z) =1 o Jien we@) =1
Der Tl {QMA—n>yam:~4’ o) {n vel@) = -1 v

Now we will show that in this problem, Vg is equivalent to the 0/1 loss for C with noisy labels. To do this first note that

by construction, for x with y¢(z) = 1 we have ;,8)‘5 = Crflfnn) = ¢, and (é)lg = =1 = ¢p, and similarly for = with
r(D|z _ cpm r(2)lz _ ¢ (1—m) _
ye(x) = —1 we have ﬁ(()‘L) = &l =c, and ((“z) = Ln") =c,
~ 1 < m(a;lz;) 1 ri(a;)
Ve(m) ==Y ri(a)——=% == ——m(a;|m; (22)
50 = § 250 25 = N 2 Blagey " @)
o N
=~ > wlailas) (23)
i=1

This is equivalent to 0/1 loss with noisy labels since 3 generates a; according to y¢ where the label is flipped with probability
7.

Now we will show that Vi is equivalent to the 0/1 loss for C with clean labels. Note that by construction r(a)|x =
ern + 7 (alz)er (1 — 2n). So,

N N
Vi (r) = Z (ri, m(:|z:)) j\; D 1+ (1= 2p)7* (), 7 (i) 24)
=1 =1
07-77 1 — 27] Y
= N ; (Clzi), w(-@:)) (25)

This is equivalent to 0/1 loss with noisy labels since 7* exactly corresponds to yc. O

Bandit Overfitting in Offline Policy Learning

C.3. Nearest Neighbor

Theorem 3 (Regret lower bound for one nearest neighbor). Let A, = 70 — Tmin- Then there exist problem instances
with noiseless rewards where

limsup Eg[V(np) — V(ng)] = —,
N—oo 2
but
limsup Eg[V (7*) — V(7p)] = 0.

N —oc0

Proof. First we need to formally define the nearest neighbor rules that interpolate the objectives Vi and V. These are
simple in the case of two actions. Let i(x) be the index of the nearest neighbor to z in the dataset. Then

1 (a = a;) AND 75 (aiz)) > 0)OR(a # a;(z) AND 75 (a;2)) < 0
WB(a|x){ (@ = ai@) (@) (@i()) > 0)OR(a # ai(y) (@) (@i()) < 0) 26)

0 otherwise.

This is saying that mp chooses the same action as the observed nearest neighbor if that reward was positive, and the opposite
action if that was negative. And for the full feedback we just choose the best action from the nearest datapoint.

1 a=argmaxy ;) (a’)
alx) = 27
mr(al) {0 otherwise. @7)

Now we can construct the problem instances needed for the Theorem. To construct the example, take a bandit problem with
two actions (called 1 and 2):

z~U(-1,1]), rlz=(1,14+A4,), B(1lz)=p32z)=1/2Vx,a

The true optimal policy has 7*(2|z) = 1 for all z and V(7*) = 1 + A,.. The policy with full feedback 7 is to always
choose action 2, since every observation will show that action 2 is better.

Now, we will show that in the limit of infinite data, w7 has no regret. Since the rewards are noiseless, the maximum
observed reward at a context is exactly the optimal action at that context. Thus, we precisely have a classification problem
with noiseless labels so that the Bayes risk is 0. Since we 7* is continuous, the class conditional densities (determined by
the indicator of the argmax of ()) are piecewise continuous. This allows us to apply the classic result of (Cover & Hart,
1967) that a nearest neighbor rule has asymptotic risk less twice the Bayes risk, which in this case is zero. This means that
asymptotically P(mp(alx) # 7*(az)) = 0 which immediately gives the second desired result of zero regret in the limit of
infinite data under full feedback.

Now we note that since rewards are always positive, we can simplify the definition of 75 as

np(alr) = 1a = a;()]. (28)
Then we have that

V(np) = V(np) =E,; []anrp\w[Q(xv a)] - EQNWBIw[Q('r’ a)]] (29)
=E,[A, +1— (mp(1l]|z) + m5(2|z) (A, + 1))]] (30)
=A,+1- Em[]l[ai(x) = 1} + (AT + 1)]l[ai(m) = 2” (31)

Taking expectation over S we get
Es[V(np) = V(rg)] = Es[Ar + 1 = Eg[1]a;m) = 1] + (A, + 1)1[a;g) = 2]]] (32)
= Ar +1-— EI[Ps(CLI(x) =].) + (Ar +].)Ps(ai(m) = 2)]] (33)
= A+ 1Bl + (A4 1)) (34)

A

== (35)

This construction did not depend on the size of the dataset, so it is even true as the number of datapoints tends to infinity. [J

Bandit Overfitting in Offline Policy Learning

D. Discussion of doubly robust algorithms

Before going into the comparison, we will define the doubly robust algorithm (Dudik et al., 2011) in our notation. Specifically,

N

Ton(r) = Y- | - wlale)Qesa) +

i=1 a

m(ai|zi)

Blai|z;)

(ria;) — Q(‘ria a;))|, TpR = arg gleaﬁc XA/DR(w) (36)

As stated in the main text, when we use overparameterized models and train Q on the same data that we use to optimize
the policy, then doubly robust methods are equivalent to the vanilla value-based algorithm. This is formalized in Lemma 6
below.

This equivalence can be avoided by using crossfitting so that Q is not trained on the same data as 7. However, then it is
possible that the doubly robust policy objective becomes action-unstable. This is true even with access to the true ¢ function,
but requires stochastic rewards. To construct such an example we leverage the stochastic rewards so that instability only
occurs at datapoints where certain reward vectors are sampled. This is shown in Lemma 7 below.

One final point is to consider the motivation for doubly robust methods. Usually it is motivated by concerns about consistency
of the value function estimation or estimation of behavior policy (Dudik et al., 2011). However, in our setting we have (1) an
overparamterized model class which is large enough to contain the true value function, and (2) exact access to the behavior
probabilities. So it is not clear why doubly robust methods would be motivated in our setting.

Lemma 6 (Equivalence of DR and vanilla VB). When we use overparameterized models and do not use crossfitting, doubly
robust learning from Equation (36) is equivalent to vanilla value-based learning from Equation (5).

Proof. When the model for Q is overparameterized and trained on the full dataset, we know that Q(z;, a;) = r;(a;). Thus
we get that

% - A 7(a;|z;) A
Vpr(m) =Y |:Z7T(a|$i)Q(fL'i7a> + o (rias) — (wuai))} 37)
i=1"% a Blailz;)
3 s r(ala)
= X[et S050) o)
N
= Zzw(a‘xi)Q(%ﬂ) (39)

1 a

.
I

With an overparameterized policy class, we can exactly recover the greedy policy relative to Q to optimize this objective. [

Lemma 7 (Instability of DR). There exist problems with stochastic rewards where even with access to the exact Q function,
the doubly robust policy objective is action-unstable with probability 1/2.

Proof. We need only consider one datapoint since the action-stability property is defined on a per datapoint basis. To make
this construction we will consider only two actions.

o {(0,) otherwise’ PUIP) = W/21/2) (40)
So, we know that
Q(-|z) = (0,-0.5) an

Now we claim that when the sampled datapoint has » = (0, 1) the doubly robust objective is action-unstable (and this
happens with probability 1/2 by construction). We can explicitly expand the DR objective for the policy 7 at z when action
a is sampled

7(alx)
1/2

lpr(m,x,a,7) = 7w(1]z) - 04+ w(2|x) - (—0.5) + (r(a) — Q(z,a)) (42)

Bandit Overfitting in Offline Policy Learning

So when a = 1 we have r(a) = 0 and Q(x, a) = 0 so that
(pr(m,x,a,7) = 7(2|2) - (=0.5) + 2 7(1]x)(0 — 0) = 7(2|z) - (—0.5) (43)
And when a = 2 we have r(a) = 1 (because that was the sampled reward) and Q(x, a) = 0 so that
lpr(m,z,a,r) =m(2|z) - (=0.5) + 2 - 7(2|z)(1 — (=0.5)) = m(2|z) - (2.5) (44)

Now, this is clearly action-unstable since the optimizer when a = 1 is sampled is 7(-|x) = (1,0) while when a = 2 is
sampled we get 7(-|z) = (0,1). O

E. Experiments

E.1. Synthetic data

Data. As described in the main text we sample some hidden reward matrix ¢ and then sample contexts and rewards from
isotropic Gaussians:

0~ U([0, 1155 2~ N(0,1;), 7 ~N(Oz,ely).
Actions are sampled according to a uniform behavior:
a~ B(lz) =U{1,...,K}).

We set K = 2,d = 10, € = 0.1. For each random seed we take /N = 100 training points and sample an independent test set
of 500 points. For experiment 1 we sample ¢ and one dataset of z, r tuples, then we sample 20 independent sets of actions.
For experiment 2 we sample all parameters separately to construct each of the 50 datasets.

Model. For policies and Q functions we use a multilayer perceptron with one hidden layer of width 512 and ReLU
activations. The only difference between policy and Q architecture is that the policy has a softmax layer on the output so
that the output is a probability distribution.

Learning. We train using SGD with momentum. Learning rate is 0.01, momentum is 0.9, batch size is 10, and weight
decay is 0.0001. We train every model for 1000 epochs decreasing the learning rate by a factor of 10 after 200 epochs. This
trains well past the point of convergence in our experience.

Policy-based Value-based
1.0 —— Train obj
Test value
0.8 —— Train value
—— Test optimal
© 0.6 !
= 04
L
0.2
0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch

Figure 4. We show learning curves across each of the twenty different action resampled datasets.

Extended results. Figure 4 shows learning curves for each of the twenty different action datasets from experiment 1. We
use “train obj” to refer to the training objective which is squared error for value-based learning and Vi for policy-based
learning. We use “train value” and “test value” to refer to V' (7r; S) for S being the train and test sets respectively. We can
evaluate the true value at each datapoint since we know the full reward vector at each datapoint.

We see that the policy-based objective is dramatically higher than the highest achievable value due to overfitting of the
noise in the actions. The gap between train and test value is mot likely explained by noise in the contexts sampled in those
respective datasets (by chance the test set has higher value contexts).

Bandit Overfitting in Offline Policy Learning

E.2. CIFAR-10

Data. We use a bandit version of the CIFAR-10 dataset (Krizhevsky, 2009). We split the train set into a train set of the
first 45000 examples and validation set of the last 5000. We normalize the images and use data augmentation of random
flips and crops of size 32. Each of the 10 labels becomes an action. We define rewards to be 1 for a correct prediction and 0
for an incorrect prediction. We use two different behavior policies. One is a uniform behavior that selects each action with
probability 0.1 and the other is the hand-crafted behavior policy from (Joachims et al., 2018).

Model. We use a ResNet-18 (He et al., 2016) from PyTorch (Paszke et al., 2019) for both the policy and the Q function.
The only modification we make to accommodate for the smaller images in CIFAR is to remove the first max-pooling layer.

Learning. We train using SGD with momentum 0.9,a batch size 128, and weight decay of 0.0001 for 1000 epochs.
Training takes about 20 hours for each run on an NVIDIA RTX 2080 Ti GPU. We use a learning rate of 0.1 for the first
200 epochs, 0.01 for the next 200, and 0.001 for the last 600. To improve stability we use gradient clipping and reduce the
learning rate in the very first epoch to 0.01.

Extended results. Figures 5 and 6 show learning curves for each of the three algorithms we consider across each dataset.
The labels refer to the same quantities as they did on the synthetic problem.

One interesting phenomena is that the unstable policy-based algorithm displays a clear overfitting phenomena as we would
predict due to the noise in the actions being transferred into noise in the objective. Since we have strictly positive rewards
here, this is also an instance of “propensity overfitting” (Swaminathan & Joachims, 2015b). As a result, limiting the capacity
of the model class by early stopping could improve performance somewhat. But by limiting capacity in this way we are
exiting the overparameterized/interpolating regime described by Zhang et al. (2016).

Unstable policy-based 6 Stable policy-based » Value-based

1.0

0.8

0.6

Value

—— Train obj
0.4 0.4 . ;
—— Test value
0.2 —— Train value
—— Optimal
0.0 0.0 0.0
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Epoch Epoch Epoch
Figure 5. Learning curves on the hand-crafted action dataset.
) Unstable policy-based 6 Stable policy-based ; Value-based
D 0 -0
14 14 14
1.2 12 12

1.0 1.0 1.0

=08 0.8 0.8
-~ 0.6 0.6 0.6
—— Train obj
0.4 0.4 0.4
—— Test value
0.2 0.2 0.2 —— Train value
\ —— Optimal
0.0 T T T T T 0.0 T T T T 0.0 T T T T
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Epoch Epoch Epoch

Figure 6. Learning curves on the uniform action dataset.

Bandit Overfitting in Offline Policy Learning

F. Small model classes

In this section we state and prove theorems that bound each term of our regret decomposition for each algorithm we consider
when we use finite model classes. Similar results can be shown for other classical notions of model class complexity. We
include these results for completeness, but the main focus of our paper is the overparameterized regime where such bounds
are vacuous.

Theorem 5 (Policy-based learning with a small model class). Assume strict positivity and a finite policy class 11. Let
en = V(1*) —sup,cp V(7). Denote Ay = r'rmaz — Tmin. Then we have that for any § > 0 with probability 1 — 0 each of
the following holds:

Approximation Error =V (1) — sup V(7) < en

mell
log(2|11|/§
Estimation Error = sup V() — V(mp) < 2A, M
mell 2N
2A,. [log(2|I1]/0
Bandit Error =V (np) — V(rp) < Og<2|N|/)
-

Proof. The bound on approximation error follows directly from the definition of ;. The bound on the estimation error
follows from a standard application of a Hoeffding bound on the random variables X; = (r;, w(-|z;)) which are bounded by
A, and a union bound over the policy class.

The bound on bandit error essentially follows Theorem 3.2 of (Strehl et al., 2010), we include a proof for completeness:

V(rp) = V(rp) = V(rr) = Va(rp) + Va(rs) = V(7p)
<V(rp)— VB(WF) + VB(WB) —V(rp)
<2 sgg [V (7) — Vi(n)]

< 24, [log(2[T1|/6)
- T 2N
The first inequality comes from the definition of 7. The second comes since both 7, 75 € 1I. And the last inequality

follows from an application of a Hoeffding bound on the random variables X; = r;(a;) ”(allm) which are bounded by &=
and a union bound over the policy class. D

Theorem 6 (Value-based learning with a small model class). Assume strict positivity and a finite function class Q which
induces a finite class of greedy policies Ilg. Leteg = inf Ey.a~p,8[(Q(z,a) — Q(x,a))?]. Denote Ay = Tz — Tmin.
Then we have that for any 6 > 0 with probability 1 — § each of the following holds:

Approximation Error =V (7*) — sup V(7) < 2y/eg/T (45)
wellg

Estimation Error = sup V(7)) — V(mp) < 2A, M
mellg 2N

1/4
Bandit Error =V (np) — V(7 A) 104, /log(‘QV(S 6\/7<10g 191/9) Q) +2\/eg/T 47)

(40)

NG

Proof. To bound the approximation error, we can let 7 be the greedy policy associated with a Q-function CAQ and apply
Lemmas 3 and 4. This gives us

V(r®) = sup V(7) = inf [V(7") = V(#)] < inf —=\/Epaup pl(Q(z,0) — Q(w,0))2) = 2/ef7. (48)
ellg Qeo Qe VT

The bound on the estimation error follows the same as before from standard uniform convergence arguments.

Bandit Overfitting in Offline Policy Learning

The bound on the bandit error follows by again applying Lemmas 3 and 4 and then making the concentration argument from
Lemma 16 of (Chen & Jiang, 2019). Explicitly, our Lemmas give us

« 2 A
Vire) = Virg) < Vin') = Ving) € —/Eu oo sl(QUr.) - Qaa)2). (49)
Then, to bound the squared error term, we can add and subtract:

Ev.onp,[(Q(7,0) = Q(2,0))’] = Evan 5[(Q, a) = Q(x,0))%] = inf By onp s[(Q(w,a) = Q(z,0)?] (50)

QeQ
+ inf Beonpsl(Q(w,0) ~ Qla,))’) D
< Em,aN'D,ﬁ[(Q(xv (l) - @($7 a’))Q] - (;elfg EI,aND,B[(Q(x? a’) - Q(Qﬁ, a’))2] (52)
+eg. (53)

Now we want to show that the difference in squared error terms concentrates for large /V. This is precisely what Lemma 16
from (Chen & Jiang, 2019) does using a one-sided Bernstein inequality. This gives us for any § > 0 an upper bound with
probability 1 — 4 of

5647 10g(|Q1/9) \/593%;% log(|21/9) 54

3N N

Plugging this in and simplifying the constants gives the result. O

